1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/of_irq.h> 28 #include <linux/string.h> 29 #include <linux/moduleparam.h> 30 31 #include "of_private.h" 32 33 /** 34 * of_graph_is_present() - check graph's presence 35 * @node: pointer to device_node containing graph port 36 * 37 * Return: True if @node has a port or ports (with a port) sub-node, 38 * false otherwise. 39 */ 40 bool of_graph_is_present(const struct device_node *node) 41 { 42 struct device_node *ports, *port; 43 44 ports = of_get_child_by_name(node, "ports"); 45 if (ports) 46 node = ports; 47 48 port = of_get_child_by_name(node, "port"); 49 of_node_put(ports); 50 of_node_put(port); 51 52 return !!port; 53 } 54 EXPORT_SYMBOL(of_graph_is_present); 55 56 /** 57 * of_property_count_elems_of_size - Count the number of elements in a property 58 * 59 * @np: device node from which the property value is to be read. 60 * @propname: name of the property to be searched. 61 * @elem_size: size of the individual element 62 * 63 * Search for a property in a device node and count the number of elements of 64 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 65 * property does not exist or its length does not match a multiple of elem_size 66 * and -ENODATA if the property does not have a value. 67 */ 68 int of_property_count_elems_of_size(const struct device_node *np, 69 const char *propname, int elem_size) 70 { 71 struct property *prop = of_find_property(np, propname, NULL); 72 73 if (!prop) 74 return -EINVAL; 75 if (!prop->value) 76 return -ENODATA; 77 78 if (prop->length % elem_size != 0) { 79 pr_err("size of %s in node %pOF is not a multiple of %d\n", 80 propname, np, elem_size); 81 return -EINVAL; 82 } 83 84 return prop->length / elem_size; 85 } 86 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 87 88 /** 89 * of_find_property_value_of_size 90 * 91 * @np: device node from which the property value is to be read. 92 * @propname: name of the property to be searched. 93 * @min: minimum allowed length of property value 94 * @max: maximum allowed length of property value (0 means unlimited) 95 * @len: if !=NULL, actual length is written to here 96 * 97 * Search for a property in a device node and valid the requested size. 98 * Returns the property value on success, -EINVAL if the property does not 99 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 100 * property data is too small or too large. 101 * 102 */ 103 static void *of_find_property_value_of_size(const struct device_node *np, 104 const char *propname, u32 min, u32 max, size_t *len) 105 { 106 struct property *prop = of_find_property(np, propname, NULL); 107 108 if (!prop) 109 return ERR_PTR(-EINVAL); 110 if (!prop->value) 111 return ERR_PTR(-ENODATA); 112 if (prop->length < min) 113 return ERR_PTR(-EOVERFLOW); 114 if (max && prop->length > max) 115 return ERR_PTR(-EOVERFLOW); 116 117 if (len) 118 *len = prop->length; 119 120 return prop->value; 121 } 122 123 /** 124 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 125 * 126 * @np: device node from which the property value is to be read. 127 * @propname: name of the property to be searched. 128 * @index: index of the u32 in the list of values 129 * @out_value: pointer to return value, modified only if no error. 130 * 131 * Search for a property in a device node and read nth 32-bit value from 132 * it. Returns 0 on success, -EINVAL if the property does not exist, 133 * -ENODATA if property does not have a value, and -EOVERFLOW if the 134 * property data isn't large enough. 135 * 136 * The out_value is modified only if a valid u32 value can be decoded. 137 */ 138 int of_property_read_u32_index(const struct device_node *np, 139 const char *propname, 140 u32 index, u32 *out_value) 141 { 142 const u32 *val = of_find_property_value_of_size(np, propname, 143 ((index + 1) * sizeof(*out_value)), 144 0, 145 NULL); 146 147 if (IS_ERR(val)) 148 return PTR_ERR(val); 149 150 *out_value = be32_to_cpup(((__be32 *)val) + index); 151 return 0; 152 } 153 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 154 155 /** 156 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 157 * 158 * @np: device node from which the property value is to be read. 159 * @propname: name of the property to be searched. 160 * @index: index of the u64 in the list of values 161 * @out_value: pointer to return value, modified only if no error. 162 * 163 * Search for a property in a device node and read nth 64-bit value from 164 * it. Returns 0 on success, -EINVAL if the property does not exist, 165 * -ENODATA if property does not have a value, and -EOVERFLOW if the 166 * property data isn't large enough. 167 * 168 * The out_value is modified only if a valid u64 value can be decoded. 169 */ 170 int of_property_read_u64_index(const struct device_node *np, 171 const char *propname, 172 u32 index, u64 *out_value) 173 { 174 const u64 *val = of_find_property_value_of_size(np, propname, 175 ((index + 1) * sizeof(*out_value)), 176 0, NULL); 177 178 if (IS_ERR(val)) 179 return PTR_ERR(val); 180 181 *out_value = be64_to_cpup(((__be64 *)val) + index); 182 return 0; 183 } 184 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 185 186 /** 187 * of_property_read_variable_u8_array - Find and read an array of u8 from a 188 * property, with bounds on the minimum and maximum array size. 189 * 190 * @np: device node from which the property value is to be read. 191 * @propname: name of the property to be searched. 192 * @out_values: pointer to found values. 193 * @sz_min: minimum number of array elements to read 194 * @sz_max: maximum number of array elements to read, if zero there is no 195 * upper limit on the number of elements in the dts entry but only 196 * sz_min will be read. 197 * 198 * Search for a property in a device node and read 8-bit value(s) from 199 * it. Returns number of elements read on success, -EINVAL if the property 200 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 201 * if the property data is smaller than sz_min or longer than sz_max. 202 * 203 * dts entry of array should be like: 204 * property = /bits/ 8 <0x50 0x60 0x70>; 205 * 206 * The out_values is modified only if a valid u8 value can be decoded. 207 */ 208 int of_property_read_variable_u8_array(const struct device_node *np, 209 const char *propname, u8 *out_values, 210 size_t sz_min, size_t sz_max) 211 { 212 size_t sz, count; 213 const u8 *val = of_find_property_value_of_size(np, propname, 214 (sz_min * sizeof(*out_values)), 215 (sz_max * sizeof(*out_values)), 216 &sz); 217 218 if (IS_ERR(val)) 219 return PTR_ERR(val); 220 221 if (!sz_max) 222 sz = sz_min; 223 else 224 sz /= sizeof(*out_values); 225 226 count = sz; 227 while (count--) 228 *out_values++ = *val++; 229 230 return sz; 231 } 232 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 233 234 /** 235 * of_property_read_variable_u16_array - Find and read an array of u16 from a 236 * property, with bounds on the minimum and maximum array size. 237 * 238 * @np: device node from which the property value is to be read. 239 * @propname: name of the property to be searched. 240 * @out_values: pointer to found values. 241 * @sz_min: minimum number of array elements to read 242 * @sz_max: maximum number of array elements to read, if zero there is no 243 * upper limit on the number of elements in the dts entry but only 244 * sz_min will be read. 245 * 246 * Search for a property in a device node and read 16-bit value(s) from 247 * it. Returns number of elements read on success, -EINVAL if the property 248 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 249 * if the property data is smaller than sz_min or longer than sz_max. 250 * 251 * dts entry of array should be like: 252 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 253 * 254 * The out_values is modified only if a valid u16 value can be decoded. 255 */ 256 int of_property_read_variable_u16_array(const struct device_node *np, 257 const char *propname, u16 *out_values, 258 size_t sz_min, size_t sz_max) 259 { 260 size_t sz, count; 261 const __be16 *val = of_find_property_value_of_size(np, propname, 262 (sz_min * sizeof(*out_values)), 263 (sz_max * sizeof(*out_values)), 264 &sz); 265 266 if (IS_ERR(val)) 267 return PTR_ERR(val); 268 269 if (!sz_max) 270 sz = sz_min; 271 else 272 sz /= sizeof(*out_values); 273 274 count = sz; 275 while (count--) 276 *out_values++ = be16_to_cpup(val++); 277 278 return sz; 279 } 280 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 281 282 /** 283 * of_property_read_variable_u32_array - Find and read an array of 32 bit 284 * integers from a property, with bounds on the minimum and maximum array size. 285 * 286 * @np: device node from which the property value is to be read. 287 * @propname: name of the property to be searched. 288 * @out_values: pointer to return found values. 289 * @sz_min: minimum number of array elements to read 290 * @sz_max: maximum number of array elements to read, if zero there is no 291 * upper limit on the number of elements in the dts entry but only 292 * sz_min will be read. 293 * 294 * Search for a property in a device node and read 32-bit value(s) from 295 * it. Returns number of elements read on success, -EINVAL if the property 296 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 297 * if the property data is smaller than sz_min or longer than sz_max. 298 * 299 * The out_values is modified only if a valid u32 value can be decoded. 300 */ 301 int of_property_read_variable_u32_array(const struct device_node *np, 302 const char *propname, u32 *out_values, 303 size_t sz_min, size_t sz_max) 304 { 305 size_t sz, count; 306 const __be32 *val = of_find_property_value_of_size(np, propname, 307 (sz_min * sizeof(*out_values)), 308 (sz_max * sizeof(*out_values)), 309 &sz); 310 311 if (IS_ERR(val)) 312 return PTR_ERR(val); 313 314 if (!sz_max) 315 sz = sz_min; 316 else 317 sz /= sizeof(*out_values); 318 319 count = sz; 320 while (count--) 321 *out_values++ = be32_to_cpup(val++); 322 323 return sz; 324 } 325 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 326 327 /** 328 * of_property_read_u64 - Find and read a 64 bit integer from a property 329 * @np: device node from which the property value is to be read. 330 * @propname: name of the property to be searched. 331 * @out_value: pointer to return value, modified only if return value is 0. 332 * 333 * Search for a property in a device node and read a 64-bit value from 334 * it. Returns 0 on success, -EINVAL if the property does not exist, 335 * -ENODATA if property does not have a value, and -EOVERFLOW if the 336 * property data isn't large enough. 337 * 338 * The out_value is modified only if a valid u64 value can be decoded. 339 */ 340 int of_property_read_u64(const struct device_node *np, const char *propname, 341 u64 *out_value) 342 { 343 const __be32 *val = of_find_property_value_of_size(np, propname, 344 sizeof(*out_value), 345 0, 346 NULL); 347 348 if (IS_ERR(val)) 349 return PTR_ERR(val); 350 351 *out_value = of_read_number(val, 2); 352 return 0; 353 } 354 EXPORT_SYMBOL_GPL(of_property_read_u64); 355 356 /** 357 * of_property_read_variable_u64_array - Find and read an array of 64 bit 358 * integers from a property, with bounds on the minimum and maximum array size. 359 * 360 * @np: device node from which the property value is to be read. 361 * @propname: name of the property to be searched. 362 * @out_values: pointer to found values. 363 * @sz_min: minimum number of array elements to read 364 * @sz_max: maximum number of array elements to read, if zero there is no 365 * upper limit on the number of elements in the dts entry but only 366 * sz_min will be read. 367 * 368 * Search for a property in a device node and read 64-bit value(s) from 369 * it. Returns number of elements read on success, -EINVAL if the property 370 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 371 * if the property data is smaller than sz_min or longer than sz_max. 372 * 373 * The out_values is modified only if a valid u64 value can be decoded. 374 */ 375 int of_property_read_variable_u64_array(const struct device_node *np, 376 const char *propname, u64 *out_values, 377 size_t sz_min, size_t sz_max) 378 { 379 size_t sz, count; 380 const __be32 *val = of_find_property_value_of_size(np, propname, 381 (sz_min * sizeof(*out_values)), 382 (sz_max * sizeof(*out_values)), 383 &sz); 384 385 if (IS_ERR(val)) 386 return PTR_ERR(val); 387 388 if (!sz_max) 389 sz = sz_min; 390 else 391 sz /= sizeof(*out_values); 392 393 count = sz; 394 while (count--) { 395 *out_values++ = of_read_number(val, 2); 396 val += 2; 397 } 398 399 return sz; 400 } 401 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 402 403 /** 404 * of_property_read_string - Find and read a string from a property 405 * @np: device node from which the property value is to be read. 406 * @propname: name of the property to be searched. 407 * @out_string: pointer to null terminated return string, modified only if 408 * return value is 0. 409 * 410 * Search for a property in a device tree node and retrieve a null 411 * terminated string value (pointer to data, not a copy). Returns 0 on 412 * success, -EINVAL if the property does not exist, -ENODATA if property 413 * does not have a value, and -EILSEQ if the string is not null-terminated 414 * within the length of the property data. 415 * 416 * The out_string pointer is modified only if a valid string can be decoded. 417 */ 418 int of_property_read_string(const struct device_node *np, const char *propname, 419 const char **out_string) 420 { 421 const struct property *prop = of_find_property(np, propname, NULL); 422 if (!prop) 423 return -EINVAL; 424 if (!prop->value) 425 return -ENODATA; 426 if (strnlen(prop->value, prop->length) >= prop->length) 427 return -EILSEQ; 428 *out_string = prop->value; 429 return 0; 430 } 431 EXPORT_SYMBOL_GPL(of_property_read_string); 432 433 /** 434 * of_property_match_string() - Find string in a list and return index 435 * @np: pointer to node containing string list property 436 * @propname: string list property name 437 * @string: pointer to string to search for in string list 438 * 439 * This function searches a string list property and returns the index 440 * of a specific string value. 441 */ 442 int of_property_match_string(const struct device_node *np, const char *propname, 443 const char *string) 444 { 445 const struct property *prop = of_find_property(np, propname, NULL); 446 size_t l; 447 int i; 448 const char *p, *end; 449 450 if (!prop) 451 return -EINVAL; 452 if (!prop->value) 453 return -ENODATA; 454 455 p = prop->value; 456 end = p + prop->length; 457 458 for (i = 0; p < end; i++, p += l) { 459 l = strnlen(p, end - p) + 1; 460 if (p + l > end) 461 return -EILSEQ; 462 pr_debug("comparing %s with %s\n", string, p); 463 if (strcmp(string, p) == 0) 464 return i; /* Found it; return index */ 465 } 466 return -ENODATA; 467 } 468 EXPORT_SYMBOL_GPL(of_property_match_string); 469 470 /** 471 * of_property_read_string_helper() - Utility helper for parsing string properties 472 * @np: device node from which the property value is to be read. 473 * @propname: name of the property to be searched. 474 * @out_strs: output array of string pointers. 475 * @sz: number of array elements to read. 476 * @skip: Number of strings to skip over at beginning of list. 477 * 478 * Don't call this function directly. It is a utility helper for the 479 * of_property_read_string*() family of functions. 480 */ 481 int of_property_read_string_helper(const struct device_node *np, 482 const char *propname, const char **out_strs, 483 size_t sz, int skip) 484 { 485 const struct property *prop = of_find_property(np, propname, NULL); 486 int l = 0, i = 0; 487 const char *p, *end; 488 489 if (!prop) 490 return -EINVAL; 491 if (!prop->value) 492 return -ENODATA; 493 p = prop->value; 494 end = p + prop->length; 495 496 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 497 l = strnlen(p, end - p) + 1; 498 if (p + l > end) 499 return -EILSEQ; 500 if (out_strs && i >= skip) 501 *out_strs++ = p; 502 } 503 i -= skip; 504 return i <= 0 ? -ENODATA : i; 505 } 506 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 507 508 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 509 u32 *pu) 510 { 511 const void *curv = cur; 512 513 if (!prop) 514 return NULL; 515 516 if (!cur) { 517 curv = prop->value; 518 goto out_val; 519 } 520 521 curv += sizeof(*cur); 522 if (curv >= prop->value + prop->length) 523 return NULL; 524 525 out_val: 526 *pu = be32_to_cpup(curv); 527 return curv; 528 } 529 EXPORT_SYMBOL_GPL(of_prop_next_u32); 530 531 const char *of_prop_next_string(struct property *prop, const char *cur) 532 { 533 const void *curv = cur; 534 535 if (!prop) 536 return NULL; 537 538 if (!cur) 539 return prop->value; 540 541 curv += strlen(cur) + 1; 542 if (curv >= prop->value + prop->length) 543 return NULL; 544 545 return curv; 546 } 547 EXPORT_SYMBOL_GPL(of_prop_next_string); 548 549 /** 550 * of_graph_parse_endpoint() - parse common endpoint node properties 551 * @node: pointer to endpoint device_node 552 * @endpoint: pointer to the OF endpoint data structure 553 * 554 * The caller should hold a reference to @node. 555 */ 556 int of_graph_parse_endpoint(const struct device_node *node, 557 struct of_endpoint *endpoint) 558 { 559 struct device_node *port_node = of_get_parent(node); 560 561 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 562 __func__, node); 563 564 memset(endpoint, 0, sizeof(*endpoint)); 565 566 endpoint->local_node = node; 567 /* 568 * It doesn't matter whether the two calls below succeed. 569 * If they don't then the default value 0 is used. 570 */ 571 of_property_read_u32(port_node, "reg", &endpoint->port); 572 of_property_read_u32(node, "reg", &endpoint->id); 573 574 of_node_put(port_node); 575 576 return 0; 577 } 578 EXPORT_SYMBOL(of_graph_parse_endpoint); 579 580 /** 581 * of_graph_get_port_by_id() - get the port matching a given id 582 * @parent: pointer to the parent device node 583 * @id: id of the port 584 * 585 * Return: A 'port' node pointer with refcount incremented. The caller 586 * has to use of_node_put() on it when done. 587 */ 588 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 589 { 590 struct device_node *node, *port; 591 592 node = of_get_child_by_name(parent, "ports"); 593 if (node) 594 parent = node; 595 596 for_each_child_of_node(parent, port) { 597 u32 port_id = 0; 598 599 if (!of_node_name_eq(port, "port")) 600 continue; 601 of_property_read_u32(port, "reg", &port_id); 602 if (id == port_id) 603 break; 604 } 605 606 of_node_put(node); 607 608 return port; 609 } 610 EXPORT_SYMBOL(of_graph_get_port_by_id); 611 612 /** 613 * of_graph_get_next_endpoint() - get next endpoint node 614 * @parent: pointer to the parent device node 615 * @prev: previous endpoint node, or NULL to get first 616 * 617 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 618 * of the passed @prev node is decremented. 619 */ 620 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 621 struct device_node *prev) 622 { 623 struct device_node *endpoint; 624 struct device_node *port; 625 626 if (!parent) 627 return NULL; 628 629 /* 630 * Start by locating the port node. If no previous endpoint is specified 631 * search for the first port node, otherwise get the previous endpoint 632 * parent port node. 633 */ 634 if (!prev) { 635 struct device_node *node; 636 637 node = of_get_child_by_name(parent, "ports"); 638 if (node) 639 parent = node; 640 641 port = of_get_child_by_name(parent, "port"); 642 of_node_put(node); 643 644 if (!port) { 645 pr_err("graph: no port node found in %pOF\n", parent); 646 return NULL; 647 } 648 } else { 649 port = of_get_parent(prev); 650 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 651 __func__, prev)) 652 return NULL; 653 } 654 655 while (1) { 656 /* 657 * Now that we have a port node, get the next endpoint by 658 * getting the next child. If the previous endpoint is NULL this 659 * will return the first child. 660 */ 661 endpoint = of_get_next_child(port, prev); 662 if (endpoint) { 663 of_node_put(port); 664 return endpoint; 665 } 666 667 /* No more endpoints under this port, try the next one. */ 668 prev = NULL; 669 670 do { 671 port = of_get_next_child(parent, port); 672 if (!port) 673 return NULL; 674 } while (!of_node_name_eq(port, "port")); 675 } 676 } 677 EXPORT_SYMBOL(of_graph_get_next_endpoint); 678 679 /** 680 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 681 * @parent: pointer to the parent device node 682 * @port_reg: identifier (value of reg property) of the parent port node 683 * @reg: identifier (value of reg property) of the endpoint node 684 * 685 * Return: An 'endpoint' node pointer which is identified by reg and at the same 686 * is the child of a port node identified by port_reg. reg and port_reg are 687 * ignored when they are -1. Use of_node_put() on the pointer when done. 688 */ 689 struct device_node *of_graph_get_endpoint_by_regs( 690 const struct device_node *parent, int port_reg, int reg) 691 { 692 struct of_endpoint endpoint; 693 struct device_node *node = NULL; 694 695 for_each_endpoint_of_node(parent, node) { 696 of_graph_parse_endpoint(node, &endpoint); 697 if (((port_reg == -1) || (endpoint.port == port_reg)) && 698 ((reg == -1) || (endpoint.id == reg))) 699 return node; 700 } 701 702 return NULL; 703 } 704 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 705 706 /** 707 * of_graph_get_remote_endpoint() - get remote endpoint node 708 * @node: pointer to a local endpoint device_node 709 * 710 * Return: Remote endpoint node associated with remote endpoint node linked 711 * to @node. Use of_node_put() on it when done. 712 */ 713 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 714 { 715 /* Get remote endpoint node. */ 716 return of_parse_phandle(node, "remote-endpoint", 0); 717 } 718 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 719 720 /** 721 * of_graph_get_port_parent() - get port's parent node 722 * @node: pointer to a local endpoint device_node 723 * 724 * Return: device node associated with endpoint node linked 725 * to @node. Use of_node_put() on it when done. 726 */ 727 struct device_node *of_graph_get_port_parent(struct device_node *node) 728 { 729 unsigned int depth; 730 731 if (!node) 732 return NULL; 733 734 /* 735 * Preserve usecount for passed in node as of_get_next_parent() 736 * will do of_node_put() on it. 737 */ 738 of_node_get(node); 739 740 /* Walk 3 levels up only if there is 'ports' node. */ 741 for (depth = 3; depth && node; depth--) { 742 node = of_get_next_parent(node); 743 if (depth == 2 && !of_node_name_eq(node, "ports")) 744 break; 745 } 746 return node; 747 } 748 EXPORT_SYMBOL(of_graph_get_port_parent); 749 750 /** 751 * of_graph_get_remote_port_parent() - get remote port's parent node 752 * @node: pointer to a local endpoint device_node 753 * 754 * Return: Remote device node associated with remote endpoint node linked 755 * to @node. Use of_node_put() on it when done. 756 */ 757 struct device_node *of_graph_get_remote_port_parent( 758 const struct device_node *node) 759 { 760 struct device_node *np, *pp; 761 762 /* Get remote endpoint node. */ 763 np = of_graph_get_remote_endpoint(node); 764 765 pp = of_graph_get_port_parent(np); 766 767 of_node_put(np); 768 769 return pp; 770 } 771 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 772 773 /** 774 * of_graph_get_remote_port() - get remote port node 775 * @node: pointer to a local endpoint device_node 776 * 777 * Return: Remote port node associated with remote endpoint node linked 778 * to @node. Use of_node_put() on it when done. 779 */ 780 struct device_node *of_graph_get_remote_port(const struct device_node *node) 781 { 782 struct device_node *np; 783 784 /* Get remote endpoint node. */ 785 np = of_graph_get_remote_endpoint(node); 786 if (!np) 787 return NULL; 788 return of_get_next_parent(np); 789 } 790 EXPORT_SYMBOL(of_graph_get_remote_port); 791 792 int of_graph_get_endpoint_count(const struct device_node *np) 793 { 794 struct device_node *endpoint; 795 int num = 0; 796 797 for_each_endpoint_of_node(np, endpoint) 798 num++; 799 800 return num; 801 } 802 EXPORT_SYMBOL(of_graph_get_endpoint_count); 803 804 /** 805 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 806 * @node: pointer to parent device_node containing graph port/endpoint 807 * @port: identifier (value of reg property) of the parent port node 808 * @endpoint: identifier (value of reg property) of the endpoint node 809 * 810 * Return: Remote device node associated with remote endpoint node linked 811 * to @node. Use of_node_put() on it when done. 812 */ 813 struct device_node *of_graph_get_remote_node(const struct device_node *node, 814 u32 port, u32 endpoint) 815 { 816 struct device_node *endpoint_node, *remote; 817 818 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 819 if (!endpoint_node) { 820 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 821 port, endpoint, node); 822 return NULL; 823 } 824 825 remote = of_graph_get_remote_port_parent(endpoint_node); 826 of_node_put(endpoint_node); 827 if (!remote) { 828 pr_debug("no valid remote node\n"); 829 return NULL; 830 } 831 832 if (!of_device_is_available(remote)) { 833 pr_debug("not available for remote node\n"); 834 of_node_put(remote); 835 return NULL; 836 } 837 838 return remote; 839 } 840 EXPORT_SYMBOL(of_graph_get_remote_node); 841 842 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 843 { 844 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 845 } 846 847 static void of_fwnode_put(struct fwnode_handle *fwnode) 848 { 849 of_node_put(to_of_node(fwnode)); 850 } 851 852 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 853 { 854 return of_device_is_available(to_of_node(fwnode)); 855 } 856 857 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 858 const char *propname) 859 { 860 return of_property_read_bool(to_of_node(fwnode), propname); 861 } 862 863 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 864 const char *propname, 865 unsigned int elem_size, void *val, 866 size_t nval) 867 { 868 const struct device_node *node = to_of_node(fwnode); 869 870 if (!val) 871 return of_property_count_elems_of_size(node, propname, 872 elem_size); 873 874 switch (elem_size) { 875 case sizeof(u8): 876 return of_property_read_u8_array(node, propname, val, nval); 877 case sizeof(u16): 878 return of_property_read_u16_array(node, propname, val, nval); 879 case sizeof(u32): 880 return of_property_read_u32_array(node, propname, val, nval); 881 case sizeof(u64): 882 return of_property_read_u64_array(node, propname, val, nval); 883 } 884 885 return -ENXIO; 886 } 887 888 static int 889 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 890 const char *propname, const char **val, 891 size_t nval) 892 { 893 const struct device_node *node = to_of_node(fwnode); 894 895 return val ? 896 of_property_read_string_array(node, propname, val, nval) : 897 of_property_count_strings(node, propname); 898 } 899 900 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 901 { 902 return kbasename(to_of_node(fwnode)->full_name); 903 } 904 905 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 906 { 907 /* Root needs no prefix here (its name is "/"). */ 908 if (!to_of_node(fwnode)->parent) 909 return ""; 910 911 return "/"; 912 } 913 914 static struct fwnode_handle * 915 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 916 { 917 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 918 } 919 920 static struct fwnode_handle * 921 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 922 struct fwnode_handle *child) 923 { 924 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 925 to_of_node(child))); 926 } 927 928 static struct fwnode_handle * 929 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 930 const char *childname) 931 { 932 const struct device_node *node = to_of_node(fwnode); 933 struct device_node *child; 934 935 for_each_available_child_of_node(node, child) 936 if (of_node_name_eq(child, childname)) 937 return of_fwnode_handle(child); 938 939 return NULL; 940 } 941 942 static int 943 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 944 const char *prop, const char *nargs_prop, 945 unsigned int nargs, unsigned int index, 946 struct fwnode_reference_args *args) 947 { 948 struct of_phandle_args of_args; 949 unsigned int i; 950 int ret; 951 952 if (nargs_prop) 953 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 954 nargs_prop, index, &of_args); 955 else 956 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 957 nargs, index, &of_args); 958 if (ret < 0) 959 return ret; 960 if (!args) 961 return 0; 962 963 args->nargs = of_args.args_count; 964 args->fwnode = of_fwnode_handle(of_args.np); 965 966 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 967 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 968 969 return 0; 970 } 971 972 static struct fwnode_handle * 973 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 974 struct fwnode_handle *prev) 975 { 976 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 977 to_of_node(prev))); 978 } 979 980 static struct fwnode_handle * 981 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 982 { 983 return of_fwnode_handle( 984 of_graph_get_remote_endpoint(to_of_node(fwnode))); 985 } 986 987 static struct fwnode_handle * 988 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 989 { 990 struct device_node *np; 991 992 /* Get the parent of the port */ 993 np = of_get_parent(to_of_node(fwnode)); 994 if (!np) 995 return NULL; 996 997 /* Is this the "ports" node? If not, it's the port parent. */ 998 if (!of_node_name_eq(np, "ports")) 999 return of_fwnode_handle(np); 1000 1001 return of_fwnode_handle(of_get_next_parent(np)); 1002 } 1003 1004 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1005 struct fwnode_endpoint *endpoint) 1006 { 1007 const struct device_node *node = to_of_node(fwnode); 1008 struct device_node *port_node = of_get_parent(node); 1009 1010 endpoint->local_fwnode = fwnode; 1011 1012 of_property_read_u32(port_node, "reg", &endpoint->port); 1013 of_property_read_u32(node, "reg", &endpoint->id); 1014 1015 of_node_put(port_node); 1016 1017 return 0; 1018 } 1019 1020 static const void * 1021 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1022 const struct device *dev) 1023 { 1024 return of_device_get_match_data(dev); 1025 } 1026 1027 static bool of_is_ancestor_of(struct device_node *test_ancestor, 1028 struct device_node *child) 1029 { 1030 of_node_get(child); 1031 while (child) { 1032 if (child == test_ancestor) { 1033 of_node_put(child); 1034 return true; 1035 } 1036 child = of_get_next_parent(child); 1037 } 1038 return false; 1039 } 1040 1041 /** 1042 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle 1043 * @con_np: consumer device tree node 1044 * @sup_np: supplier device tree node 1045 * 1046 * Given a phandle to a supplier device tree node (@sup_np), this function 1047 * finds the device that owns the supplier device tree node and creates a 1048 * device link from @dev consumer device to the supplier device. This function 1049 * doesn't create device links for invalid scenarios such as trying to create a 1050 * link with a parent device as the consumer of its child device. In such 1051 * cases, it returns an error. 1052 * 1053 * Returns: 1054 * - 0 if fwnode link successfully created to supplier 1055 * - -EINVAL if the supplier link is invalid and should not be created 1056 * - -ENODEV if struct device will never be create for supplier 1057 */ 1058 static int of_link_to_phandle(struct device_node *con_np, 1059 struct device_node *sup_np) 1060 { 1061 struct device *sup_dev; 1062 struct device_node *tmp_np = sup_np; 1063 1064 of_node_get(sup_np); 1065 /* 1066 * Find the device node that contains the supplier phandle. It may be 1067 * @sup_np or it may be an ancestor of @sup_np. 1068 */ 1069 while (sup_np) { 1070 1071 /* Don't allow linking to a disabled supplier */ 1072 if (!of_device_is_available(sup_np)) { 1073 of_node_put(sup_np); 1074 sup_np = NULL; 1075 } 1076 1077 if (of_find_property(sup_np, "compatible", NULL)) 1078 break; 1079 1080 sup_np = of_get_next_parent(sup_np); 1081 } 1082 1083 if (!sup_np) { 1084 pr_debug("Not linking %pOFP to %pOFP - No device\n", 1085 con_np, tmp_np); 1086 return -ENODEV; 1087 } 1088 1089 /* 1090 * Don't allow linking a device node as a consumer of one of its 1091 * descendant nodes. By definition, a child node can't be a functional 1092 * dependency for the parent node. 1093 */ 1094 if (of_is_ancestor_of(con_np, sup_np)) { 1095 pr_debug("Not linking %pOFP to %pOFP - is descendant\n", 1096 con_np, sup_np); 1097 of_node_put(sup_np); 1098 return -EINVAL; 1099 } 1100 1101 /* 1102 * Don't create links to "early devices" that won't have struct devices 1103 * created for them. 1104 */ 1105 sup_dev = get_dev_from_fwnode(&sup_np->fwnode); 1106 if (!sup_dev && 1107 (of_node_check_flag(sup_np, OF_POPULATED) || 1108 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) { 1109 pr_debug("Not linking %pOFP to %pOFP - No struct device\n", 1110 con_np, sup_np); 1111 of_node_put(sup_np); 1112 return -ENODEV; 1113 } 1114 put_device(sup_dev); 1115 1116 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np)); 1117 of_node_put(sup_np); 1118 1119 return 0; 1120 } 1121 1122 /** 1123 * parse_prop_cells - Property parsing function for suppliers 1124 * 1125 * @np: Pointer to device tree node containing a list 1126 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1127 * @index: For properties holding a list of phandles, this is the index 1128 * into the list. 1129 * @list_name: Property name that is known to contain list of phandle(s) to 1130 * supplier(s) 1131 * @cells_name: property name that specifies phandles' arguments count 1132 * 1133 * This is a helper function to parse properties that have a known fixed name 1134 * and are a list of phandles and phandle arguments. 1135 * 1136 * Returns: 1137 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1138 * on it when done. 1139 * - NULL if no phandle found at index 1140 */ 1141 static struct device_node *parse_prop_cells(struct device_node *np, 1142 const char *prop_name, int index, 1143 const char *list_name, 1144 const char *cells_name) 1145 { 1146 struct of_phandle_args sup_args; 1147 1148 if (strcmp(prop_name, list_name)) 1149 return NULL; 1150 1151 if (of_parse_phandle_with_args(np, list_name, cells_name, index, 1152 &sup_args)) 1153 return NULL; 1154 1155 return sup_args.np; 1156 } 1157 1158 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1159 static struct device_node *parse_##fname(struct device_node *np, \ 1160 const char *prop_name, int index) \ 1161 { \ 1162 return parse_prop_cells(np, prop_name, index, name, cells); \ 1163 } 1164 1165 static int strcmp_suffix(const char *str, const char *suffix) 1166 { 1167 unsigned int len, suffix_len; 1168 1169 len = strlen(str); 1170 suffix_len = strlen(suffix); 1171 if (len <= suffix_len) 1172 return -1; 1173 return strcmp(str + len - suffix_len, suffix); 1174 } 1175 1176 /** 1177 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1178 * 1179 * @np: Pointer to device tree node containing a list 1180 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1181 * @index: For properties holding a list of phandles, this is the index 1182 * into the list. 1183 * @suffix: Property suffix that is known to contain list of phandle(s) to 1184 * supplier(s) 1185 * @cells_name: property name that specifies phandles' arguments count 1186 * 1187 * This is a helper function to parse properties that have a known fixed suffix 1188 * and are a list of phandles and phandle arguments. 1189 * 1190 * Returns: 1191 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1192 * on it when done. 1193 * - NULL if no phandle found at index 1194 */ 1195 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1196 const char *prop_name, int index, 1197 const char *suffix, 1198 const char *cells_name) 1199 { 1200 struct of_phandle_args sup_args; 1201 1202 if (strcmp_suffix(prop_name, suffix)) 1203 return NULL; 1204 1205 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1206 &sup_args)) 1207 return NULL; 1208 1209 return sup_args.np; 1210 } 1211 1212 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1213 static struct device_node *parse_##fname(struct device_node *np, \ 1214 const char *prop_name, int index) \ 1215 { \ 1216 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1217 } 1218 1219 /** 1220 * struct supplier_bindings - Property parsing functions for suppliers 1221 * 1222 * @parse_prop: function name 1223 * parse_prop() finds the node corresponding to a supplier phandle 1224 * @parse_prop.np: Pointer to device node holding supplier phandle property 1225 * @parse_prop.prop_name: Name of property holding a phandle value 1226 * @parse_prop.index: For properties holding a list of phandles, this is the 1227 * index into the list 1228 * 1229 * Returns: 1230 * parse_prop() return values are 1231 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1232 * on it when done. 1233 * - NULL if no phandle found at index 1234 */ 1235 struct supplier_bindings { 1236 struct device_node *(*parse_prop)(struct device_node *np, 1237 const char *prop_name, int index); 1238 bool optional; 1239 }; 1240 1241 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1242 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1243 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1244 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1245 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells") 1246 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) 1247 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1248 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1249 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1250 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1251 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL) 1252 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1253 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1254 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1255 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1256 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1257 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1258 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1259 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1260 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1261 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1262 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1263 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1264 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1265 DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells") 1266 1267 static struct device_node *parse_iommu_maps(struct device_node *np, 1268 const char *prop_name, int index) 1269 { 1270 if (strcmp(prop_name, "iommu-map")) 1271 return NULL; 1272 1273 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1274 } 1275 1276 static struct device_node *parse_gpio_compat(struct device_node *np, 1277 const char *prop_name, int index) 1278 { 1279 struct of_phandle_args sup_args; 1280 1281 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1282 return NULL; 1283 1284 /* 1285 * Ignore node with gpio-hog property since its gpios are all provided 1286 * by its parent. 1287 */ 1288 if (of_find_property(np, "gpio-hog", NULL)) 1289 return NULL; 1290 1291 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1292 &sup_args)) 1293 return NULL; 1294 1295 return sup_args.np; 1296 } 1297 1298 static struct device_node *parse_interrupts(struct device_node *np, 1299 const char *prop_name, int index) 1300 { 1301 struct of_phandle_args sup_args; 1302 1303 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1304 return NULL; 1305 1306 if (strcmp(prop_name, "interrupts") && 1307 strcmp(prop_name, "interrupts-extended")) 1308 return NULL; 1309 1310 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1311 } 1312 1313 static const struct supplier_bindings of_supplier_bindings[] = { 1314 { .parse_prop = parse_clocks, }, 1315 { .parse_prop = parse_interconnects, }, 1316 { .parse_prop = parse_iommus, .optional = true, }, 1317 { .parse_prop = parse_iommu_maps, .optional = true, }, 1318 { .parse_prop = parse_mboxes, }, 1319 { .parse_prop = parse_io_channels, }, 1320 { .parse_prop = parse_interrupt_parent, }, 1321 { .parse_prop = parse_dmas, .optional = true, }, 1322 { .parse_prop = parse_power_domains, }, 1323 { .parse_prop = parse_hwlocks, }, 1324 { .parse_prop = parse_extcon, }, 1325 { .parse_prop = parse_nvmem_cells, }, 1326 { .parse_prop = parse_phys, }, 1327 { .parse_prop = parse_wakeup_parent, }, 1328 { .parse_prop = parse_pinctrl0, }, 1329 { .parse_prop = parse_pinctrl1, }, 1330 { .parse_prop = parse_pinctrl2, }, 1331 { .parse_prop = parse_pinctrl3, }, 1332 { .parse_prop = parse_pinctrl4, }, 1333 { .parse_prop = parse_pinctrl5, }, 1334 { .parse_prop = parse_pinctrl6, }, 1335 { .parse_prop = parse_pinctrl7, }, 1336 { .parse_prop = parse_pinctrl8, }, 1337 { .parse_prop = parse_gpio_compat, }, 1338 { .parse_prop = parse_interrupts, }, 1339 { .parse_prop = parse_regulators, }, 1340 { .parse_prop = parse_gpio, }, 1341 { .parse_prop = parse_gpios, }, 1342 {} 1343 }; 1344 1345 /** 1346 * of_link_property - Create device links to suppliers listed in a property 1347 * @dev: Consumer device 1348 * @con_np: The consumer device tree node which contains the property 1349 * @prop_name: Name of property to be parsed 1350 * 1351 * This function checks if the property @prop_name that is present in the 1352 * @con_np device tree node is one of the known common device tree bindings 1353 * that list phandles to suppliers. If @prop_name isn't one, this function 1354 * doesn't do anything. 1355 * 1356 * If @prop_name is one, this function attempts to create fwnode links from the 1357 * consumer device tree node @con_np to all the suppliers device tree nodes 1358 * listed in @prop_name. 1359 * 1360 * Any failed attempt to create a fwnode link will NOT result in an immediate 1361 * return. of_link_property() must create links to all the available supplier 1362 * device tree nodes even when attempts to create a link to one or more 1363 * suppliers fail. 1364 */ 1365 static int of_link_property(struct device_node *con_np, const char *prop_name) 1366 { 1367 struct device_node *phandle; 1368 const struct supplier_bindings *s = of_supplier_bindings; 1369 unsigned int i = 0; 1370 bool matched = false; 1371 int ret = 0; 1372 1373 /* Do not stop at first failed link, link all available suppliers. */ 1374 while (!matched && s->parse_prop) { 1375 if (s->optional && !fw_devlink_is_strict()) { 1376 s++; 1377 continue; 1378 } 1379 1380 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1381 matched = true; 1382 i++; 1383 of_link_to_phandle(con_np, phandle); 1384 of_node_put(phandle); 1385 } 1386 s++; 1387 } 1388 return ret; 1389 } 1390 1391 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1392 { 1393 struct property *p; 1394 struct device_node *con_np = to_of_node(fwnode); 1395 1396 if (!con_np) 1397 return -EINVAL; 1398 1399 for_each_property_of_node(con_np, p) 1400 of_link_property(con_np, p->name); 1401 1402 return 0; 1403 } 1404 1405 const struct fwnode_operations of_fwnode_ops = { 1406 .get = of_fwnode_get, 1407 .put = of_fwnode_put, 1408 .device_is_available = of_fwnode_device_is_available, 1409 .device_get_match_data = of_fwnode_device_get_match_data, 1410 .property_present = of_fwnode_property_present, 1411 .property_read_int_array = of_fwnode_property_read_int_array, 1412 .property_read_string_array = of_fwnode_property_read_string_array, 1413 .get_name = of_fwnode_get_name, 1414 .get_name_prefix = of_fwnode_get_name_prefix, 1415 .get_parent = of_fwnode_get_parent, 1416 .get_next_child_node = of_fwnode_get_next_child_node, 1417 .get_named_child_node = of_fwnode_get_named_child_node, 1418 .get_reference_args = of_fwnode_get_reference_args, 1419 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1420 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1421 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1422 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1423 .add_links = of_fwnode_add_links, 1424 }; 1425 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1426