xref: /openbmc/linux/drivers/of/property.c (revision 74de3792)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/of/property.c - Procedures for accessing and interpreting
4  *			   Devicetree properties and graphs.
5  *
6  * Initially created by copying procedures from drivers/of/base.c. This
7  * file contains the OF property as well as the OF graph interface
8  * functions.
9  *
10  * Paul Mackerras	August 1996.
11  * Copyright (C) 1996-2005 Paul Mackerras.
12  *
13  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14  *    {engebret|bergner}@us.ibm.com
15  *
16  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17  *
18  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19  *  Grant Likely.
20  */
21 
22 #define pr_fmt(fmt)	"OF: " fmt
23 
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/of_irq.h>
28 #include <linux/string.h>
29 #include <linux/moduleparam.h>
30 
31 #include "of_private.h"
32 
33 /**
34  * of_graph_is_present() - check graph's presence
35  * @node: pointer to device_node containing graph port
36  *
37  * Return: True if @node has a port or ports (with a port) sub-node,
38  * false otherwise.
39  */
40 bool of_graph_is_present(const struct device_node *node)
41 {
42 	struct device_node *ports, *port;
43 
44 	ports = of_get_child_by_name(node, "ports");
45 	if (ports)
46 		node = ports;
47 
48 	port = of_get_child_by_name(node, "port");
49 	of_node_put(ports);
50 	of_node_put(port);
51 
52 	return !!port;
53 }
54 EXPORT_SYMBOL(of_graph_is_present);
55 
56 /**
57  * of_property_count_elems_of_size - Count the number of elements in a property
58  *
59  * @np:		device node from which the property value is to be read.
60  * @propname:	name of the property to be searched.
61  * @elem_size:	size of the individual element
62  *
63  * Search for a property in a device node and count the number of elements of
64  * size elem_size in it.
65  *
66  * Return: The number of elements on sucess, -EINVAL if the property does not
67  * exist or its length does not match a multiple of elem_size and -ENODATA if
68  * the property does not have a value.
69  */
70 int of_property_count_elems_of_size(const struct device_node *np,
71 				const char *propname, int elem_size)
72 {
73 	struct property *prop = of_find_property(np, propname, NULL);
74 
75 	if (!prop)
76 		return -EINVAL;
77 	if (!prop->value)
78 		return -ENODATA;
79 
80 	if (prop->length % elem_size != 0) {
81 		pr_err("size of %s in node %pOF is not a multiple of %d\n",
82 		       propname, np, elem_size);
83 		return -EINVAL;
84 	}
85 
86 	return prop->length / elem_size;
87 }
88 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
89 
90 /**
91  * of_find_property_value_of_size
92  *
93  * @np:		device node from which the property value is to be read.
94  * @propname:	name of the property to be searched.
95  * @min:	minimum allowed length of property value
96  * @max:	maximum allowed length of property value (0 means unlimited)
97  * @len:	if !=NULL, actual length is written to here
98  *
99  * Search for a property in a device node and valid the requested size.
100  *
101  * Return: The property value on success, -EINVAL if the property does not
102  * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
103  * property data is too small or too large.
104  *
105  */
106 static void *of_find_property_value_of_size(const struct device_node *np,
107 			const char *propname, u32 min, u32 max, size_t *len)
108 {
109 	struct property *prop = of_find_property(np, propname, NULL);
110 
111 	if (!prop)
112 		return ERR_PTR(-EINVAL);
113 	if (!prop->value)
114 		return ERR_PTR(-ENODATA);
115 	if (prop->length < min)
116 		return ERR_PTR(-EOVERFLOW);
117 	if (max && prop->length > max)
118 		return ERR_PTR(-EOVERFLOW);
119 
120 	if (len)
121 		*len = prop->length;
122 
123 	return prop->value;
124 }
125 
126 /**
127  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
128  *
129  * @np:		device node from which the property value is to be read.
130  * @propname:	name of the property to be searched.
131  * @index:	index of the u32 in the list of values
132  * @out_value:	pointer to return value, modified only if no error.
133  *
134  * Search for a property in a device node and read nth 32-bit value from
135  * it.
136  *
137  * Return: 0 on success, -EINVAL if the property does not exist,
138  * -ENODATA if property does not have a value, and -EOVERFLOW if the
139  * property data isn't large enough.
140  *
141  * The out_value is modified only if a valid u32 value can be decoded.
142  */
143 int of_property_read_u32_index(const struct device_node *np,
144 				       const char *propname,
145 				       u32 index, u32 *out_value)
146 {
147 	const u32 *val = of_find_property_value_of_size(np, propname,
148 					((index + 1) * sizeof(*out_value)),
149 					0,
150 					NULL);
151 
152 	if (IS_ERR(val))
153 		return PTR_ERR(val);
154 
155 	*out_value = be32_to_cpup(((__be32 *)val) + index);
156 	return 0;
157 }
158 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
159 
160 /**
161  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
162  *
163  * @np:		device node from which the property value is to be read.
164  * @propname:	name of the property to be searched.
165  * @index:	index of the u64 in the list of values
166  * @out_value:	pointer to return value, modified only if no error.
167  *
168  * Search for a property in a device node and read nth 64-bit value from
169  * it.
170  *
171  * Return: 0 on success, -EINVAL if the property does not exist,
172  * -ENODATA if property does not have a value, and -EOVERFLOW if the
173  * property data isn't large enough.
174  *
175  * The out_value is modified only if a valid u64 value can be decoded.
176  */
177 int of_property_read_u64_index(const struct device_node *np,
178 				       const char *propname,
179 				       u32 index, u64 *out_value)
180 {
181 	const u64 *val = of_find_property_value_of_size(np, propname,
182 					((index + 1) * sizeof(*out_value)),
183 					0, NULL);
184 
185 	if (IS_ERR(val))
186 		return PTR_ERR(val);
187 
188 	*out_value = be64_to_cpup(((__be64 *)val) + index);
189 	return 0;
190 }
191 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
192 
193 /**
194  * of_property_read_variable_u8_array - Find and read an array of u8 from a
195  * property, with bounds on the minimum and maximum array size.
196  *
197  * @np:		device node from which the property value is to be read.
198  * @propname:	name of the property to be searched.
199  * @out_values:	pointer to found values.
200  * @sz_min:	minimum number of array elements to read
201  * @sz_max:	maximum number of array elements to read, if zero there is no
202  *		upper limit on the number of elements in the dts entry but only
203  *		sz_min will be read.
204  *
205  * Search for a property in a device node and read 8-bit value(s) from
206  * it.
207  *
208  * dts entry of array should be like:
209  *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
210  *
211  * Return: The number of elements read on success, -EINVAL if the property
212  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
213  * if the property data is smaller than sz_min or longer than sz_max.
214  *
215  * The out_values is modified only if a valid u8 value can be decoded.
216  */
217 int of_property_read_variable_u8_array(const struct device_node *np,
218 					const char *propname, u8 *out_values,
219 					size_t sz_min, size_t sz_max)
220 {
221 	size_t sz, count;
222 	const u8 *val = of_find_property_value_of_size(np, propname,
223 						(sz_min * sizeof(*out_values)),
224 						(sz_max * sizeof(*out_values)),
225 						&sz);
226 
227 	if (IS_ERR(val))
228 		return PTR_ERR(val);
229 
230 	if (!sz_max)
231 		sz = sz_min;
232 	else
233 		sz /= sizeof(*out_values);
234 
235 	count = sz;
236 	while (count--)
237 		*out_values++ = *val++;
238 
239 	return sz;
240 }
241 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
242 
243 /**
244  * of_property_read_variable_u16_array - Find and read an array of u16 from a
245  * property, with bounds on the minimum and maximum array size.
246  *
247  * @np:		device node from which the property value is to be read.
248  * @propname:	name of the property to be searched.
249  * @out_values:	pointer to found values.
250  * @sz_min:	minimum number of array elements to read
251  * @sz_max:	maximum number of array elements to read, if zero there is no
252  *		upper limit on the number of elements in the dts entry but only
253  *		sz_min will be read.
254  *
255  * Search for a property in a device node and read 16-bit value(s) from
256  * it.
257  *
258  * dts entry of array should be like:
259  *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
260  *
261  * Return: The number of elements read on success, -EINVAL if the property
262  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
263  * if the property data is smaller than sz_min or longer than sz_max.
264  *
265  * The out_values is modified only if a valid u16 value can be decoded.
266  */
267 int of_property_read_variable_u16_array(const struct device_node *np,
268 					const char *propname, u16 *out_values,
269 					size_t sz_min, size_t sz_max)
270 {
271 	size_t sz, count;
272 	const __be16 *val = of_find_property_value_of_size(np, propname,
273 						(sz_min * sizeof(*out_values)),
274 						(sz_max * sizeof(*out_values)),
275 						&sz);
276 
277 	if (IS_ERR(val))
278 		return PTR_ERR(val);
279 
280 	if (!sz_max)
281 		sz = sz_min;
282 	else
283 		sz /= sizeof(*out_values);
284 
285 	count = sz;
286 	while (count--)
287 		*out_values++ = be16_to_cpup(val++);
288 
289 	return sz;
290 }
291 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
292 
293 /**
294  * of_property_read_variable_u32_array - Find and read an array of 32 bit
295  * integers from a property, with bounds on the minimum and maximum array size.
296  *
297  * @np:		device node from which the property value is to be read.
298  * @propname:	name of the property to be searched.
299  * @out_values:	pointer to return found values.
300  * @sz_min:	minimum number of array elements to read
301  * @sz_max:	maximum number of array elements to read, if zero there is no
302  *		upper limit on the number of elements in the dts entry but only
303  *		sz_min will be read.
304  *
305  * Search for a property in a device node and read 32-bit value(s) from
306  * it.
307  *
308  * Return: The number of elements read on success, -EINVAL if the property
309  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
310  * if the property data is smaller than sz_min or longer than sz_max.
311  *
312  * The out_values is modified only if a valid u32 value can be decoded.
313  */
314 int of_property_read_variable_u32_array(const struct device_node *np,
315 			       const char *propname, u32 *out_values,
316 			       size_t sz_min, size_t sz_max)
317 {
318 	size_t sz, count;
319 	const __be32 *val = of_find_property_value_of_size(np, propname,
320 						(sz_min * sizeof(*out_values)),
321 						(sz_max * sizeof(*out_values)),
322 						&sz);
323 
324 	if (IS_ERR(val))
325 		return PTR_ERR(val);
326 
327 	if (!sz_max)
328 		sz = sz_min;
329 	else
330 		sz /= sizeof(*out_values);
331 
332 	count = sz;
333 	while (count--)
334 		*out_values++ = be32_to_cpup(val++);
335 
336 	return sz;
337 }
338 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
339 
340 /**
341  * of_property_read_u64 - Find and read a 64 bit integer from a property
342  * @np:		device node from which the property value is to be read.
343  * @propname:	name of the property to be searched.
344  * @out_value:	pointer to return value, modified only if return value is 0.
345  *
346  * Search for a property in a device node and read a 64-bit value from
347  * it.
348  *
349  * Return: 0 on success, -EINVAL if the property does not exist,
350  * -ENODATA if property does not have a value, and -EOVERFLOW if the
351  * property data isn't large enough.
352  *
353  * The out_value is modified only if a valid u64 value can be decoded.
354  */
355 int of_property_read_u64(const struct device_node *np, const char *propname,
356 			 u64 *out_value)
357 {
358 	const __be32 *val = of_find_property_value_of_size(np, propname,
359 						sizeof(*out_value),
360 						0,
361 						NULL);
362 
363 	if (IS_ERR(val))
364 		return PTR_ERR(val);
365 
366 	*out_value = of_read_number(val, 2);
367 	return 0;
368 }
369 EXPORT_SYMBOL_GPL(of_property_read_u64);
370 
371 /**
372  * of_property_read_variable_u64_array - Find and read an array of 64 bit
373  * integers from a property, with bounds on the minimum and maximum array size.
374  *
375  * @np:		device node from which the property value is to be read.
376  * @propname:	name of the property to be searched.
377  * @out_values:	pointer to found values.
378  * @sz_min:	minimum number of array elements to read
379  * @sz_max:	maximum number of array elements to read, if zero there is no
380  *		upper limit on the number of elements in the dts entry but only
381  *		sz_min will be read.
382  *
383  * Search for a property in a device node and read 64-bit value(s) from
384  * it.
385  *
386  * Return: The number of elements read on success, -EINVAL if the property
387  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
388  * if the property data is smaller than sz_min or longer than sz_max.
389  *
390  * The out_values is modified only if a valid u64 value can be decoded.
391  */
392 int of_property_read_variable_u64_array(const struct device_node *np,
393 			       const char *propname, u64 *out_values,
394 			       size_t sz_min, size_t sz_max)
395 {
396 	size_t sz, count;
397 	const __be32 *val = of_find_property_value_of_size(np, propname,
398 						(sz_min * sizeof(*out_values)),
399 						(sz_max * sizeof(*out_values)),
400 						&sz);
401 
402 	if (IS_ERR(val))
403 		return PTR_ERR(val);
404 
405 	if (!sz_max)
406 		sz = sz_min;
407 	else
408 		sz /= sizeof(*out_values);
409 
410 	count = sz;
411 	while (count--) {
412 		*out_values++ = of_read_number(val, 2);
413 		val += 2;
414 	}
415 
416 	return sz;
417 }
418 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
419 
420 /**
421  * of_property_read_string - Find and read a string from a property
422  * @np:		device node from which the property value is to be read.
423  * @propname:	name of the property to be searched.
424  * @out_string:	pointer to null terminated return string, modified only if
425  *		return value is 0.
426  *
427  * Search for a property in a device tree node and retrieve a null
428  * terminated string value (pointer to data, not a copy).
429  *
430  * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
431  * property does not have a value, and -EILSEQ if the string is not
432  * null-terminated within the length of the property data.
433  *
434  * Note that the empty string "" has length of 1, thus -ENODATA cannot
435  * be interpreted as an empty string.
436  *
437  * The out_string pointer is modified only if a valid string can be decoded.
438  */
439 int of_property_read_string(const struct device_node *np, const char *propname,
440 				const char **out_string)
441 {
442 	const struct property *prop = of_find_property(np, propname, NULL);
443 	if (!prop)
444 		return -EINVAL;
445 	if (!prop->length)
446 		return -ENODATA;
447 	if (strnlen(prop->value, prop->length) >= prop->length)
448 		return -EILSEQ;
449 	*out_string = prop->value;
450 	return 0;
451 }
452 EXPORT_SYMBOL_GPL(of_property_read_string);
453 
454 /**
455  * of_property_match_string() - Find string in a list and return index
456  * @np: pointer to node containing string list property
457  * @propname: string list property name
458  * @string: pointer to string to search for in string list
459  *
460  * This function searches a string list property and returns the index
461  * of a specific string value.
462  */
463 int of_property_match_string(const struct device_node *np, const char *propname,
464 			     const char *string)
465 {
466 	const struct property *prop = of_find_property(np, propname, NULL);
467 	size_t l;
468 	int i;
469 	const char *p, *end;
470 
471 	if (!prop)
472 		return -EINVAL;
473 	if (!prop->value)
474 		return -ENODATA;
475 
476 	p = prop->value;
477 	end = p + prop->length;
478 
479 	for (i = 0; p < end; i++, p += l) {
480 		l = strnlen(p, end - p) + 1;
481 		if (p + l > end)
482 			return -EILSEQ;
483 		pr_debug("comparing %s with %s\n", string, p);
484 		if (strcmp(string, p) == 0)
485 			return i; /* Found it; return index */
486 	}
487 	return -ENODATA;
488 }
489 EXPORT_SYMBOL_GPL(of_property_match_string);
490 
491 /**
492  * of_property_read_string_helper() - Utility helper for parsing string properties
493  * @np:		device node from which the property value is to be read.
494  * @propname:	name of the property to be searched.
495  * @out_strs:	output array of string pointers.
496  * @sz:		number of array elements to read.
497  * @skip:	Number of strings to skip over at beginning of list.
498  *
499  * Don't call this function directly. It is a utility helper for the
500  * of_property_read_string*() family of functions.
501  */
502 int of_property_read_string_helper(const struct device_node *np,
503 				   const char *propname, const char **out_strs,
504 				   size_t sz, int skip)
505 {
506 	const struct property *prop = of_find_property(np, propname, NULL);
507 	int l = 0, i = 0;
508 	const char *p, *end;
509 
510 	if (!prop)
511 		return -EINVAL;
512 	if (!prop->value)
513 		return -ENODATA;
514 	p = prop->value;
515 	end = p + prop->length;
516 
517 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
518 		l = strnlen(p, end - p) + 1;
519 		if (p + l > end)
520 			return -EILSEQ;
521 		if (out_strs && i >= skip)
522 			*out_strs++ = p;
523 	}
524 	i -= skip;
525 	return i <= 0 ? -ENODATA : i;
526 }
527 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
528 
529 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
530 			       u32 *pu)
531 {
532 	const void *curv = cur;
533 
534 	if (!prop)
535 		return NULL;
536 
537 	if (!cur) {
538 		curv = prop->value;
539 		goto out_val;
540 	}
541 
542 	curv += sizeof(*cur);
543 	if (curv >= prop->value + prop->length)
544 		return NULL;
545 
546 out_val:
547 	*pu = be32_to_cpup(curv);
548 	return curv;
549 }
550 EXPORT_SYMBOL_GPL(of_prop_next_u32);
551 
552 const char *of_prop_next_string(struct property *prop, const char *cur)
553 {
554 	const void *curv = cur;
555 
556 	if (!prop)
557 		return NULL;
558 
559 	if (!cur)
560 		return prop->value;
561 
562 	curv += strlen(cur) + 1;
563 	if (curv >= prop->value + prop->length)
564 		return NULL;
565 
566 	return curv;
567 }
568 EXPORT_SYMBOL_GPL(of_prop_next_string);
569 
570 /**
571  * of_graph_parse_endpoint() - parse common endpoint node properties
572  * @node: pointer to endpoint device_node
573  * @endpoint: pointer to the OF endpoint data structure
574  *
575  * The caller should hold a reference to @node.
576  */
577 int of_graph_parse_endpoint(const struct device_node *node,
578 			    struct of_endpoint *endpoint)
579 {
580 	struct device_node *port_node = of_get_parent(node);
581 
582 	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
583 		  __func__, node);
584 
585 	memset(endpoint, 0, sizeof(*endpoint));
586 
587 	endpoint->local_node = node;
588 	/*
589 	 * It doesn't matter whether the two calls below succeed.
590 	 * If they don't then the default value 0 is used.
591 	 */
592 	of_property_read_u32(port_node, "reg", &endpoint->port);
593 	of_property_read_u32(node, "reg", &endpoint->id);
594 
595 	of_node_put(port_node);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL(of_graph_parse_endpoint);
600 
601 /**
602  * of_graph_get_port_by_id() - get the port matching a given id
603  * @parent: pointer to the parent device node
604  * @id: id of the port
605  *
606  * Return: A 'port' node pointer with refcount incremented. The caller
607  * has to use of_node_put() on it when done.
608  */
609 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
610 {
611 	struct device_node *node, *port;
612 
613 	node = of_get_child_by_name(parent, "ports");
614 	if (node)
615 		parent = node;
616 
617 	for_each_child_of_node(parent, port) {
618 		u32 port_id = 0;
619 
620 		if (!of_node_name_eq(port, "port"))
621 			continue;
622 		of_property_read_u32(port, "reg", &port_id);
623 		if (id == port_id)
624 			break;
625 	}
626 
627 	of_node_put(node);
628 
629 	return port;
630 }
631 EXPORT_SYMBOL(of_graph_get_port_by_id);
632 
633 /**
634  * of_graph_get_next_endpoint() - get next endpoint node
635  * @parent: pointer to the parent device node
636  * @prev: previous endpoint node, or NULL to get first
637  *
638  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
639  * of the passed @prev node is decremented.
640  */
641 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
642 					struct device_node *prev)
643 {
644 	struct device_node *endpoint;
645 	struct device_node *port;
646 
647 	if (!parent)
648 		return NULL;
649 
650 	/*
651 	 * Start by locating the port node. If no previous endpoint is specified
652 	 * search for the first port node, otherwise get the previous endpoint
653 	 * parent port node.
654 	 */
655 	if (!prev) {
656 		struct device_node *node;
657 
658 		node = of_get_child_by_name(parent, "ports");
659 		if (node)
660 			parent = node;
661 
662 		port = of_get_child_by_name(parent, "port");
663 		of_node_put(node);
664 
665 		if (!port) {
666 			pr_err("graph: no port node found in %pOF\n", parent);
667 			return NULL;
668 		}
669 	} else {
670 		port = of_get_parent(prev);
671 		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
672 			      __func__, prev))
673 			return NULL;
674 	}
675 
676 	while (1) {
677 		/*
678 		 * Now that we have a port node, get the next endpoint by
679 		 * getting the next child. If the previous endpoint is NULL this
680 		 * will return the first child.
681 		 */
682 		endpoint = of_get_next_child(port, prev);
683 		if (endpoint) {
684 			of_node_put(port);
685 			return endpoint;
686 		}
687 
688 		/* No more endpoints under this port, try the next one. */
689 		prev = NULL;
690 
691 		do {
692 			port = of_get_next_child(parent, port);
693 			if (!port)
694 				return NULL;
695 		} while (!of_node_name_eq(port, "port"));
696 	}
697 }
698 EXPORT_SYMBOL(of_graph_get_next_endpoint);
699 
700 /**
701  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
702  * @parent: pointer to the parent device node
703  * @port_reg: identifier (value of reg property) of the parent port node
704  * @reg: identifier (value of reg property) of the endpoint node
705  *
706  * Return: An 'endpoint' node pointer which is identified by reg and at the same
707  * is the child of a port node identified by port_reg. reg and port_reg are
708  * ignored when they are -1. Use of_node_put() on the pointer when done.
709  */
710 struct device_node *of_graph_get_endpoint_by_regs(
711 	const struct device_node *parent, int port_reg, int reg)
712 {
713 	struct of_endpoint endpoint;
714 	struct device_node *node = NULL;
715 
716 	for_each_endpoint_of_node(parent, node) {
717 		of_graph_parse_endpoint(node, &endpoint);
718 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
719 			((reg == -1) || (endpoint.id == reg)))
720 			return node;
721 	}
722 
723 	return NULL;
724 }
725 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
726 
727 /**
728  * of_graph_get_remote_endpoint() - get remote endpoint node
729  * @node: pointer to a local endpoint device_node
730  *
731  * Return: Remote endpoint node associated with remote endpoint node linked
732  *	   to @node. Use of_node_put() on it when done.
733  */
734 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
735 {
736 	/* Get remote endpoint node. */
737 	return of_parse_phandle(node, "remote-endpoint", 0);
738 }
739 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
740 
741 /**
742  * of_graph_get_port_parent() - get port's parent node
743  * @node: pointer to a local endpoint device_node
744  *
745  * Return: device node associated with endpoint node linked
746  *	   to @node. Use of_node_put() on it when done.
747  */
748 struct device_node *of_graph_get_port_parent(struct device_node *node)
749 {
750 	unsigned int depth;
751 
752 	if (!node)
753 		return NULL;
754 
755 	/*
756 	 * Preserve usecount for passed in node as of_get_next_parent()
757 	 * will do of_node_put() on it.
758 	 */
759 	of_node_get(node);
760 
761 	/* Walk 3 levels up only if there is 'ports' node. */
762 	for (depth = 3; depth && node; depth--) {
763 		node = of_get_next_parent(node);
764 		if (depth == 2 && !of_node_name_eq(node, "ports"))
765 			break;
766 	}
767 	return node;
768 }
769 EXPORT_SYMBOL(of_graph_get_port_parent);
770 
771 /**
772  * of_graph_get_remote_port_parent() - get remote port's parent node
773  * @node: pointer to a local endpoint device_node
774  *
775  * Return: Remote device node associated with remote endpoint node linked
776  *	   to @node. Use of_node_put() on it when done.
777  */
778 struct device_node *of_graph_get_remote_port_parent(
779 			       const struct device_node *node)
780 {
781 	struct device_node *np, *pp;
782 
783 	/* Get remote endpoint node. */
784 	np = of_graph_get_remote_endpoint(node);
785 
786 	pp = of_graph_get_port_parent(np);
787 
788 	of_node_put(np);
789 
790 	return pp;
791 }
792 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
793 
794 /**
795  * of_graph_get_remote_port() - get remote port node
796  * @node: pointer to a local endpoint device_node
797  *
798  * Return: Remote port node associated with remote endpoint node linked
799  * to @node. Use of_node_put() on it when done.
800  */
801 struct device_node *of_graph_get_remote_port(const struct device_node *node)
802 {
803 	struct device_node *np;
804 
805 	/* Get remote endpoint node. */
806 	np = of_graph_get_remote_endpoint(node);
807 	if (!np)
808 		return NULL;
809 	return of_get_next_parent(np);
810 }
811 EXPORT_SYMBOL(of_graph_get_remote_port);
812 
813 int of_graph_get_endpoint_count(const struct device_node *np)
814 {
815 	struct device_node *endpoint;
816 	int num = 0;
817 
818 	for_each_endpoint_of_node(np, endpoint)
819 		num++;
820 
821 	return num;
822 }
823 EXPORT_SYMBOL(of_graph_get_endpoint_count);
824 
825 /**
826  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
827  * @node: pointer to parent device_node containing graph port/endpoint
828  * @port: identifier (value of reg property) of the parent port node
829  * @endpoint: identifier (value of reg property) of the endpoint node
830  *
831  * Return: Remote device node associated with remote endpoint node linked
832  * to @node. Use of_node_put() on it when done.
833  */
834 struct device_node *of_graph_get_remote_node(const struct device_node *node,
835 					     u32 port, u32 endpoint)
836 {
837 	struct device_node *endpoint_node, *remote;
838 
839 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
840 	if (!endpoint_node) {
841 		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
842 			 port, endpoint, node);
843 		return NULL;
844 	}
845 
846 	remote = of_graph_get_remote_port_parent(endpoint_node);
847 	of_node_put(endpoint_node);
848 	if (!remote) {
849 		pr_debug("no valid remote node\n");
850 		return NULL;
851 	}
852 
853 	if (!of_device_is_available(remote)) {
854 		pr_debug("not available for remote node\n");
855 		of_node_put(remote);
856 		return NULL;
857 	}
858 
859 	return remote;
860 }
861 EXPORT_SYMBOL(of_graph_get_remote_node);
862 
863 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
864 {
865 	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
866 }
867 
868 static void of_fwnode_put(struct fwnode_handle *fwnode)
869 {
870 	of_node_put(to_of_node(fwnode));
871 }
872 
873 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
874 {
875 	return of_device_is_available(to_of_node(fwnode));
876 }
877 
878 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
879 				       const char *propname)
880 {
881 	return of_property_read_bool(to_of_node(fwnode), propname);
882 }
883 
884 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
885 					     const char *propname,
886 					     unsigned int elem_size, void *val,
887 					     size_t nval)
888 {
889 	const struct device_node *node = to_of_node(fwnode);
890 
891 	if (!val)
892 		return of_property_count_elems_of_size(node, propname,
893 						       elem_size);
894 
895 	switch (elem_size) {
896 	case sizeof(u8):
897 		return of_property_read_u8_array(node, propname, val, nval);
898 	case sizeof(u16):
899 		return of_property_read_u16_array(node, propname, val, nval);
900 	case sizeof(u32):
901 		return of_property_read_u32_array(node, propname, val, nval);
902 	case sizeof(u64):
903 		return of_property_read_u64_array(node, propname, val, nval);
904 	}
905 
906 	return -ENXIO;
907 }
908 
909 static int
910 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
911 				     const char *propname, const char **val,
912 				     size_t nval)
913 {
914 	const struct device_node *node = to_of_node(fwnode);
915 
916 	return val ?
917 		of_property_read_string_array(node, propname, val, nval) :
918 		of_property_count_strings(node, propname);
919 }
920 
921 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
922 {
923 	return kbasename(to_of_node(fwnode)->full_name);
924 }
925 
926 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
927 {
928 	/* Root needs no prefix here (its name is "/"). */
929 	if (!to_of_node(fwnode)->parent)
930 		return "";
931 
932 	return "/";
933 }
934 
935 static struct fwnode_handle *
936 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
937 {
938 	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
939 }
940 
941 static struct fwnode_handle *
942 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
943 			      struct fwnode_handle *child)
944 {
945 	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
946 							    to_of_node(child)));
947 }
948 
949 static struct fwnode_handle *
950 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
951 			       const char *childname)
952 {
953 	const struct device_node *node = to_of_node(fwnode);
954 	struct device_node *child;
955 
956 	for_each_available_child_of_node(node, child)
957 		if (of_node_name_eq(child, childname))
958 			return of_fwnode_handle(child);
959 
960 	return NULL;
961 }
962 
963 static int
964 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
965 			     const char *prop, const char *nargs_prop,
966 			     unsigned int nargs, unsigned int index,
967 			     struct fwnode_reference_args *args)
968 {
969 	struct of_phandle_args of_args;
970 	unsigned int i;
971 	int ret;
972 
973 	if (nargs_prop)
974 		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
975 						 nargs_prop, index, &of_args);
976 	else
977 		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
978 						       nargs, index, &of_args);
979 	if (ret < 0)
980 		return ret;
981 	if (!args)
982 		return 0;
983 
984 	args->nargs = of_args.args_count;
985 	args->fwnode = of_fwnode_handle(of_args.np);
986 
987 	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
988 		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
989 
990 	return 0;
991 }
992 
993 static struct fwnode_handle *
994 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
995 				  struct fwnode_handle *prev)
996 {
997 	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
998 							   to_of_node(prev)));
999 }
1000 
1001 static struct fwnode_handle *
1002 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1003 {
1004 	return of_fwnode_handle(
1005 		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1006 }
1007 
1008 static struct fwnode_handle *
1009 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1010 {
1011 	struct device_node *np;
1012 
1013 	/* Get the parent of the port */
1014 	np = of_get_parent(to_of_node(fwnode));
1015 	if (!np)
1016 		return NULL;
1017 
1018 	/* Is this the "ports" node? If not, it's the port parent. */
1019 	if (!of_node_name_eq(np, "ports"))
1020 		return of_fwnode_handle(np);
1021 
1022 	return of_fwnode_handle(of_get_next_parent(np));
1023 }
1024 
1025 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1026 					  struct fwnode_endpoint *endpoint)
1027 {
1028 	const struct device_node *node = to_of_node(fwnode);
1029 	struct device_node *port_node = of_get_parent(node);
1030 
1031 	endpoint->local_fwnode = fwnode;
1032 
1033 	of_property_read_u32(port_node, "reg", &endpoint->port);
1034 	of_property_read_u32(node, "reg", &endpoint->id);
1035 
1036 	of_node_put(port_node);
1037 
1038 	return 0;
1039 }
1040 
1041 static const void *
1042 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1043 				const struct device *dev)
1044 {
1045 	return of_device_get_match_data(dev);
1046 }
1047 
1048 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1049 			      struct device_node *child)
1050 {
1051 	of_node_get(child);
1052 	while (child) {
1053 		if (child == test_ancestor) {
1054 			of_node_put(child);
1055 			return true;
1056 		}
1057 		child = of_get_next_parent(child);
1058 	}
1059 	return false;
1060 }
1061 
1062 static struct device_node *of_get_compat_node(struct device_node *np)
1063 {
1064 	of_node_get(np);
1065 
1066 	while (np) {
1067 		if (!of_device_is_available(np)) {
1068 			of_node_put(np);
1069 			np = NULL;
1070 		}
1071 
1072 		if (of_find_property(np, "compatible", NULL))
1073 			break;
1074 
1075 		np = of_get_next_parent(np);
1076 	}
1077 
1078 	return np;
1079 }
1080 
1081 static struct device_node *of_get_compat_node_parent(struct device_node *np)
1082 {
1083 	struct device_node *parent, *node;
1084 
1085 	parent = of_get_parent(np);
1086 	node = of_get_compat_node(parent);
1087 	of_node_put(parent);
1088 
1089 	return node;
1090 }
1091 
1092 /**
1093  * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1094  * @con_np: consumer device tree node
1095  * @sup_np: supplier device tree node
1096  *
1097  * Given a phandle to a supplier device tree node (@sup_np), this function
1098  * finds the device that owns the supplier device tree node and creates a
1099  * device link from @dev consumer device to the supplier device. This function
1100  * doesn't create device links for invalid scenarios such as trying to create a
1101  * link with a parent device as the consumer of its child device. In such
1102  * cases, it returns an error.
1103  *
1104  * Returns:
1105  * - 0 if fwnode link successfully created to supplier
1106  * - -EINVAL if the supplier link is invalid and should not be created
1107  * - -ENODEV if struct device will never be create for supplier
1108  */
1109 static int of_link_to_phandle(struct device_node *con_np,
1110 			      struct device_node *sup_np)
1111 {
1112 	struct device *sup_dev;
1113 	struct device_node *tmp_np = sup_np;
1114 
1115 	/*
1116 	 * Find the device node that contains the supplier phandle.  It may be
1117 	 * @sup_np or it may be an ancestor of @sup_np.
1118 	 */
1119 	sup_np = of_get_compat_node(sup_np);
1120 	if (!sup_np) {
1121 		pr_debug("Not linking %pOFP to %pOFP - No device\n",
1122 			 con_np, tmp_np);
1123 		return -ENODEV;
1124 	}
1125 
1126 	/*
1127 	 * Don't allow linking a device node as a consumer of one of its
1128 	 * descendant nodes. By definition, a child node can't be a functional
1129 	 * dependency for the parent node.
1130 	 */
1131 	if (of_is_ancestor_of(con_np, sup_np)) {
1132 		pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1133 			 con_np, sup_np);
1134 		of_node_put(sup_np);
1135 		return -EINVAL;
1136 	}
1137 
1138 	/*
1139 	 * Don't create links to "early devices" that won't have struct devices
1140 	 * created for them.
1141 	 */
1142 	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1143 	if (!sup_dev &&
1144 	    (of_node_check_flag(sup_np, OF_POPULATED) ||
1145 	     sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1146 		pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1147 			 con_np, sup_np);
1148 		of_node_put(sup_np);
1149 		return -ENODEV;
1150 	}
1151 	put_device(sup_dev);
1152 
1153 	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1154 	of_node_put(sup_np);
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * parse_prop_cells - Property parsing function for suppliers
1161  *
1162  * @np:		Pointer to device tree node containing a list
1163  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1164  * @index:	For properties holding a list of phandles, this is the index
1165  *		into the list.
1166  * @list_name:	Property name that is known to contain list of phandle(s) to
1167  *		supplier(s)
1168  * @cells_name:	property name that specifies phandles' arguments count
1169  *
1170  * This is a helper function to parse properties that have a known fixed name
1171  * and are a list of phandles and phandle arguments.
1172  *
1173  * Returns:
1174  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1175  *   on it when done.
1176  * - NULL if no phandle found at index
1177  */
1178 static struct device_node *parse_prop_cells(struct device_node *np,
1179 					    const char *prop_name, int index,
1180 					    const char *list_name,
1181 					    const char *cells_name)
1182 {
1183 	struct of_phandle_args sup_args;
1184 
1185 	if (strcmp(prop_name, list_name))
1186 		return NULL;
1187 
1188 	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1189 				       &sup_args))
1190 		return NULL;
1191 
1192 	return sup_args.np;
1193 }
1194 
1195 #define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1196 static struct device_node *parse_##fname(struct device_node *np,	  \
1197 					const char *prop_name, int index) \
1198 {									  \
1199 	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1200 }
1201 
1202 static int strcmp_suffix(const char *str, const char *suffix)
1203 {
1204 	unsigned int len, suffix_len;
1205 
1206 	len = strlen(str);
1207 	suffix_len = strlen(suffix);
1208 	if (len <= suffix_len)
1209 		return -1;
1210 	return strcmp(str + len - suffix_len, suffix);
1211 }
1212 
1213 /**
1214  * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1215  *
1216  * @np:		Pointer to device tree node containing a list
1217  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1218  * @index:	For properties holding a list of phandles, this is the index
1219  *		into the list.
1220  * @suffix:	Property suffix that is known to contain list of phandle(s) to
1221  *		supplier(s)
1222  * @cells_name:	property name that specifies phandles' arguments count
1223  *
1224  * This is a helper function to parse properties that have a known fixed suffix
1225  * and are a list of phandles and phandle arguments.
1226  *
1227  * Returns:
1228  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1229  *   on it when done.
1230  * - NULL if no phandle found at index
1231  */
1232 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1233 					    const char *prop_name, int index,
1234 					    const char *suffix,
1235 					    const char *cells_name)
1236 {
1237 	struct of_phandle_args sup_args;
1238 
1239 	if (strcmp_suffix(prop_name, suffix))
1240 		return NULL;
1241 
1242 	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1243 				       &sup_args))
1244 		return NULL;
1245 
1246 	return sup_args.np;
1247 }
1248 
1249 #define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1250 static struct device_node *parse_##fname(struct device_node *np,	     \
1251 					const char *prop_name, int index)    \
1252 {									     \
1253 	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1254 }
1255 
1256 /**
1257  * struct supplier_bindings - Property parsing functions for suppliers
1258  *
1259  * @parse_prop: function name
1260  *	parse_prop() finds the node corresponding to a supplier phandle
1261  * @parse_prop.np: Pointer to device node holding supplier phandle property
1262  * @parse_prop.prop_name: Name of property holding a phandle value
1263  * @parse_prop.index: For properties holding a list of phandles, this is the
1264  *		      index into the list
1265  * @optional: Describes whether a supplier is mandatory or not
1266  * @node_not_dev: The consumer node containing the property is never converted
1267  *		  to a struct device. Instead, parse ancestor nodes for the
1268  *		  compatible property to find a node corresponding to a device.
1269  *
1270  * Returns:
1271  * parse_prop() return values are
1272  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1273  *   on it when done.
1274  * - NULL if no phandle found at index
1275  */
1276 struct supplier_bindings {
1277 	struct device_node *(*parse_prop)(struct device_node *np,
1278 					  const char *prop_name, int index);
1279 	bool optional;
1280 	bool node_not_dev;
1281 };
1282 
1283 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1284 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1285 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1286 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1287 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1288 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1289 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1290 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1291 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1292 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1293 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1294 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1295 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1296 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1297 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1298 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1299 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1300 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1301 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1302 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1303 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1304 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1305 DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1306 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1307 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1308 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1309 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1310 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1311 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1312 
1313 static struct device_node *parse_gpios(struct device_node *np,
1314 				       const char *prop_name, int index)
1315 {
1316 	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1317 		return NULL;
1318 
1319 	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1320 				       "#gpio-cells");
1321 }
1322 
1323 static struct device_node *parse_iommu_maps(struct device_node *np,
1324 					    const char *prop_name, int index)
1325 {
1326 	if (strcmp(prop_name, "iommu-map"))
1327 		return NULL;
1328 
1329 	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1330 }
1331 
1332 static struct device_node *parse_gpio_compat(struct device_node *np,
1333 					     const char *prop_name, int index)
1334 {
1335 	struct of_phandle_args sup_args;
1336 
1337 	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1338 		return NULL;
1339 
1340 	/*
1341 	 * Ignore node with gpio-hog property since its gpios are all provided
1342 	 * by its parent.
1343 	 */
1344 	if (of_find_property(np, "gpio-hog", NULL))
1345 		return NULL;
1346 
1347 	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1348 				       &sup_args))
1349 		return NULL;
1350 
1351 	return sup_args.np;
1352 }
1353 
1354 static struct device_node *parse_interrupts(struct device_node *np,
1355 					    const char *prop_name, int index)
1356 {
1357 	struct of_phandle_args sup_args;
1358 
1359 	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1360 		return NULL;
1361 
1362 	if (strcmp(prop_name, "interrupts") &&
1363 	    strcmp(prop_name, "interrupts-extended"))
1364 		return NULL;
1365 
1366 	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1367 }
1368 
1369 static const struct supplier_bindings of_supplier_bindings[] = {
1370 	{ .parse_prop = parse_clocks, },
1371 	{ .parse_prop = parse_interconnects, },
1372 	{ .parse_prop = parse_iommus, .optional = true, },
1373 	{ .parse_prop = parse_iommu_maps, .optional = true, },
1374 	{ .parse_prop = parse_mboxes, },
1375 	{ .parse_prop = parse_io_channels, },
1376 	{ .parse_prop = parse_interrupt_parent, },
1377 	{ .parse_prop = parse_dmas, .optional = true, },
1378 	{ .parse_prop = parse_power_domains, },
1379 	{ .parse_prop = parse_hwlocks, },
1380 	{ .parse_prop = parse_extcon, },
1381 	{ .parse_prop = parse_nvmem_cells, },
1382 	{ .parse_prop = parse_phys, },
1383 	{ .parse_prop = parse_wakeup_parent, },
1384 	{ .parse_prop = parse_pinctrl0, },
1385 	{ .parse_prop = parse_pinctrl1, },
1386 	{ .parse_prop = parse_pinctrl2, },
1387 	{ .parse_prop = parse_pinctrl3, },
1388 	{ .parse_prop = parse_pinctrl4, },
1389 	{ .parse_prop = parse_pinctrl5, },
1390 	{ .parse_prop = parse_pinctrl6, },
1391 	{ .parse_prop = parse_pinctrl7, },
1392 	{ .parse_prop = parse_pinctrl8, },
1393 	{ .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1394 	{ .parse_prop = parse_pwms, },
1395 	{ .parse_prop = parse_resets, },
1396 	{ .parse_prop = parse_leds, },
1397 	{ .parse_prop = parse_backlight, },
1398 	{ .parse_prop = parse_gpio_compat, },
1399 	{ .parse_prop = parse_interrupts, },
1400 	{ .parse_prop = parse_regulators, },
1401 	{ .parse_prop = parse_gpio, },
1402 	{ .parse_prop = parse_gpios, },
1403 	{}
1404 };
1405 
1406 /**
1407  * of_link_property - Create device links to suppliers listed in a property
1408  * @con_np: The consumer device tree node which contains the property
1409  * @prop_name: Name of property to be parsed
1410  *
1411  * This function checks if the property @prop_name that is present in the
1412  * @con_np device tree node is one of the known common device tree bindings
1413  * that list phandles to suppliers. If @prop_name isn't one, this function
1414  * doesn't do anything.
1415  *
1416  * If @prop_name is one, this function attempts to create fwnode links from the
1417  * consumer device tree node @con_np to all the suppliers device tree nodes
1418  * listed in @prop_name.
1419  *
1420  * Any failed attempt to create a fwnode link will NOT result in an immediate
1421  * return.  of_link_property() must create links to all the available supplier
1422  * device tree nodes even when attempts to create a link to one or more
1423  * suppliers fail.
1424  */
1425 static int of_link_property(struct device_node *con_np, const char *prop_name)
1426 {
1427 	struct device_node *phandle;
1428 	const struct supplier_bindings *s = of_supplier_bindings;
1429 	unsigned int i = 0;
1430 	bool matched = false;
1431 
1432 	/* Do not stop at first failed link, link all available suppliers. */
1433 	while (!matched && s->parse_prop) {
1434 		if (s->optional && !fw_devlink_is_strict()) {
1435 			s++;
1436 			continue;
1437 		}
1438 
1439 		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1440 			struct device_node *con_dev_np;
1441 
1442 			con_dev_np = s->node_not_dev
1443 					? of_get_compat_node_parent(con_np)
1444 					: of_node_get(con_np);
1445 			matched = true;
1446 			i++;
1447 			of_link_to_phandle(con_dev_np, phandle);
1448 			of_node_put(phandle);
1449 			of_node_put(con_dev_np);
1450 		}
1451 		s++;
1452 	}
1453 	return 0;
1454 }
1455 
1456 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1457 {
1458 	struct property *p;
1459 	struct device_node *con_np = to_of_node(fwnode);
1460 
1461 	if (IS_ENABLED(CONFIG_X86))
1462 		return 0;
1463 
1464 	if (!con_np)
1465 		return -EINVAL;
1466 
1467 	for_each_property_of_node(con_np, p)
1468 		of_link_property(con_np, p->name);
1469 
1470 	return 0;
1471 }
1472 
1473 const struct fwnode_operations of_fwnode_ops = {
1474 	.get = of_fwnode_get,
1475 	.put = of_fwnode_put,
1476 	.device_is_available = of_fwnode_device_is_available,
1477 	.device_get_match_data = of_fwnode_device_get_match_data,
1478 	.property_present = of_fwnode_property_present,
1479 	.property_read_int_array = of_fwnode_property_read_int_array,
1480 	.property_read_string_array = of_fwnode_property_read_string_array,
1481 	.get_name = of_fwnode_get_name,
1482 	.get_name_prefix = of_fwnode_get_name_prefix,
1483 	.get_parent = of_fwnode_get_parent,
1484 	.get_next_child_node = of_fwnode_get_next_child_node,
1485 	.get_named_child_node = of_fwnode_get_named_child_node,
1486 	.get_reference_args = of_fwnode_get_reference_args,
1487 	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1488 	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1489 	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1490 	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1491 	.add_links = of_fwnode_add_links,
1492 };
1493 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1494