xref: /openbmc/linux/drivers/of/property.c (revision 305c8388)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/of/property.c - Procedures for accessing and interpreting
4  *			   Devicetree properties and graphs.
5  *
6  * Initially created by copying procedures from drivers/of/base.c. This
7  * file contains the OF property as well as the OF graph interface
8  * functions.
9  *
10  * Paul Mackerras	August 1996.
11  * Copyright (C) 1996-2005 Paul Mackerras.
12  *
13  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14  *    {engebret|bergner}@us.ibm.com
15  *
16  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17  *
18  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19  *  Grant Likely.
20  */
21 
22 #define pr_fmt(fmt)	"OF: " fmt
23 
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/string.h>
28 #include <linux/moduleparam.h>
29 
30 #include "of_private.h"
31 
32 /**
33  * of_property_count_elems_of_size - Count the number of elements in a property
34  *
35  * @np:		device node from which the property value is to be read.
36  * @propname:	name of the property to be searched.
37  * @elem_size:	size of the individual element
38  *
39  * Search for a property in a device node and count the number of elements of
40  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
41  * property does not exist or its length does not match a multiple of elem_size
42  * and -ENODATA if the property does not have a value.
43  */
44 int of_property_count_elems_of_size(const struct device_node *np,
45 				const char *propname, int elem_size)
46 {
47 	struct property *prop = of_find_property(np, propname, NULL);
48 
49 	if (!prop)
50 		return -EINVAL;
51 	if (!prop->value)
52 		return -ENODATA;
53 
54 	if (prop->length % elem_size != 0) {
55 		pr_err("size of %s in node %pOF is not a multiple of %d\n",
56 		       propname, np, elem_size);
57 		return -EINVAL;
58 	}
59 
60 	return prop->length / elem_size;
61 }
62 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
63 
64 /**
65  * of_find_property_value_of_size
66  *
67  * @np:		device node from which the property value is to be read.
68  * @propname:	name of the property to be searched.
69  * @min:	minimum allowed length of property value
70  * @max:	maximum allowed length of property value (0 means unlimited)
71  * @len:	if !=NULL, actual length is written to here
72  *
73  * Search for a property in a device node and valid the requested size.
74  * Returns the property value on success, -EINVAL if the property does not
75  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
76  * property data is too small or too large.
77  *
78  */
79 static void *of_find_property_value_of_size(const struct device_node *np,
80 			const char *propname, u32 min, u32 max, size_t *len)
81 {
82 	struct property *prop = of_find_property(np, propname, NULL);
83 
84 	if (!prop)
85 		return ERR_PTR(-EINVAL);
86 	if (!prop->value)
87 		return ERR_PTR(-ENODATA);
88 	if (prop->length < min)
89 		return ERR_PTR(-EOVERFLOW);
90 	if (max && prop->length > max)
91 		return ERR_PTR(-EOVERFLOW);
92 
93 	if (len)
94 		*len = prop->length;
95 
96 	return prop->value;
97 }
98 
99 /**
100  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
101  *
102  * @np:		device node from which the property value is to be read.
103  * @propname:	name of the property to be searched.
104  * @index:	index of the u32 in the list of values
105  * @out_value:	pointer to return value, modified only if no error.
106  *
107  * Search for a property in a device node and read nth 32-bit value from
108  * it. Returns 0 on success, -EINVAL if the property does not exist,
109  * -ENODATA if property does not have a value, and -EOVERFLOW if the
110  * property data isn't large enough.
111  *
112  * The out_value is modified only if a valid u32 value can be decoded.
113  */
114 int of_property_read_u32_index(const struct device_node *np,
115 				       const char *propname,
116 				       u32 index, u32 *out_value)
117 {
118 	const u32 *val = of_find_property_value_of_size(np, propname,
119 					((index + 1) * sizeof(*out_value)),
120 					0,
121 					NULL);
122 
123 	if (IS_ERR(val))
124 		return PTR_ERR(val);
125 
126 	*out_value = be32_to_cpup(((__be32 *)val) + index);
127 	return 0;
128 }
129 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
130 
131 /**
132  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
133  *
134  * @np:		device node from which the property value is to be read.
135  * @propname:	name of the property to be searched.
136  * @index:	index of the u64 in the list of values
137  * @out_value:	pointer to return value, modified only if no error.
138  *
139  * Search for a property in a device node and read nth 64-bit value from
140  * it. Returns 0 on success, -EINVAL if the property does not exist,
141  * -ENODATA if property does not have a value, and -EOVERFLOW if the
142  * property data isn't large enough.
143  *
144  * The out_value is modified only if a valid u64 value can be decoded.
145  */
146 int of_property_read_u64_index(const struct device_node *np,
147 				       const char *propname,
148 				       u32 index, u64 *out_value)
149 {
150 	const u64 *val = of_find_property_value_of_size(np, propname,
151 					((index + 1) * sizeof(*out_value)),
152 					0, NULL);
153 
154 	if (IS_ERR(val))
155 		return PTR_ERR(val);
156 
157 	*out_value = be64_to_cpup(((__be64 *)val) + index);
158 	return 0;
159 }
160 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
161 
162 /**
163  * of_property_read_variable_u8_array - Find and read an array of u8 from a
164  * property, with bounds on the minimum and maximum array size.
165  *
166  * @np:		device node from which the property value is to be read.
167  * @propname:	name of the property to be searched.
168  * @out_values:	pointer to found values.
169  * @sz_min:	minimum number of array elements to read
170  * @sz_max:	maximum number of array elements to read, if zero there is no
171  *		upper limit on the number of elements in the dts entry but only
172  *		sz_min will be read.
173  *
174  * Search for a property in a device node and read 8-bit value(s) from
175  * it. Returns number of elements read on success, -EINVAL if the property
176  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
177  * if the property data is smaller than sz_min or longer than sz_max.
178  *
179  * dts entry of array should be like:
180  *	property = /bits/ 8 <0x50 0x60 0x70>;
181  *
182  * The out_values is modified only if a valid u8 value can be decoded.
183  */
184 int of_property_read_variable_u8_array(const struct device_node *np,
185 					const char *propname, u8 *out_values,
186 					size_t sz_min, size_t sz_max)
187 {
188 	size_t sz, count;
189 	const u8 *val = of_find_property_value_of_size(np, propname,
190 						(sz_min * sizeof(*out_values)),
191 						(sz_max * sizeof(*out_values)),
192 						&sz);
193 
194 	if (IS_ERR(val))
195 		return PTR_ERR(val);
196 
197 	if (!sz_max)
198 		sz = sz_min;
199 	else
200 		sz /= sizeof(*out_values);
201 
202 	count = sz;
203 	while (count--)
204 		*out_values++ = *val++;
205 
206 	return sz;
207 }
208 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
209 
210 /**
211  * of_property_read_variable_u16_array - Find and read an array of u16 from a
212  * property, with bounds on the minimum and maximum array size.
213  *
214  * @np:		device node from which the property value is to be read.
215  * @propname:	name of the property to be searched.
216  * @out_values:	pointer to found values.
217  * @sz_min:	minimum number of array elements to read
218  * @sz_max:	maximum number of array elements to read, if zero there is no
219  *		upper limit on the number of elements in the dts entry but only
220  *		sz_min will be read.
221  *
222  * Search for a property in a device node and read 16-bit value(s) from
223  * it. Returns number of elements read on success, -EINVAL if the property
224  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
225  * if the property data is smaller than sz_min or longer than sz_max.
226  *
227  * dts entry of array should be like:
228  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
229  *
230  * The out_values is modified only if a valid u16 value can be decoded.
231  */
232 int of_property_read_variable_u16_array(const struct device_node *np,
233 					const char *propname, u16 *out_values,
234 					size_t sz_min, size_t sz_max)
235 {
236 	size_t sz, count;
237 	const __be16 *val = of_find_property_value_of_size(np, propname,
238 						(sz_min * sizeof(*out_values)),
239 						(sz_max * sizeof(*out_values)),
240 						&sz);
241 
242 	if (IS_ERR(val))
243 		return PTR_ERR(val);
244 
245 	if (!sz_max)
246 		sz = sz_min;
247 	else
248 		sz /= sizeof(*out_values);
249 
250 	count = sz;
251 	while (count--)
252 		*out_values++ = be16_to_cpup(val++);
253 
254 	return sz;
255 }
256 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
257 
258 /**
259  * of_property_read_variable_u32_array - Find and read an array of 32 bit
260  * integers from a property, with bounds on the minimum and maximum array size.
261  *
262  * @np:		device node from which the property value is to be read.
263  * @propname:	name of the property to be searched.
264  * @out_values:	pointer to return found values.
265  * @sz_min:	minimum number of array elements to read
266  * @sz_max:	maximum number of array elements to read, if zero there is no
267  *		upper limit on the number of elements in the dts entry but only
268  *		sz_min will be read.
269  *
270  * Search for a property in a device node and read 32-bit value(s) from
271  * it. Returns number of elements read on success, -EINVAL if the property
272  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
273  * if the property data is smaller than sz_min or longer than sz_max.
274  *
275  * The out_values is modified only if a valid u32 value can be decoded.
276  */
277 int of_property_read_variable_u32_array(const struct device_node *np,
278 			       const char *propname, u32 *out_values,
279 			       size_t sz_min, size_t sz_max)
280 {
281 	size_t sz, count;
282 	const __be32 *val = of_find_property_value_of_size(np, propname,
283 						(sz_min * sizeof(*out_values)),
284 						(sz_max * sizeof(*out_values)),
285 						&sz);
286 
287 	if (IS_ERR(val))
288 		return PTR_ERR(val);
289 
290 	if (!sz_max)
291 		sz = sz_min;
292 	else
293 		sz /= sizeof(*out_values);
294 
295 	count = sz;
296 	while (count--)
297 		*out_values++ = be32_to_cpup(val++);
298 
299 	return sz;
300 }
301 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
302 
303 /**
304  * of_property_read_u64 - Find and read a 64 bit integer from a property
305  * @np:		device node from which the property value is to be read.
306  * @propname:	name of the property to be searched.
307  * @out_value:	pointer to return value, modified only if return value is 0.
308  *
309  * Search for a property in a device node and read a 64-bit value from
310  * it. Returns 0 on success, -EINVAL if the property does not exist,
311  * -ENODATA if property does not have a value, and -EOVERFLOW if the
312  * property data isn't large enough.
313  *
314  * The out_value is modified only if a valid u64 value can be decoded.
315  */
316 int of_property_read_u64(const struct device_node *np, const char *propname,
317 			 u64 *out_value)
318 {
319 	const __be32 *val = of_find_property_value_of_size(np, propname,
320 						sizeof(*out_value),
321 						0,
322 						NULL);
323 
324 	if (IS_ERR(val))
325 		return PTR_ERR(val);
326 
327 	*out_value = of_read_number(val, 2);
328 	return 0;
329 }
330 EXPORT_SYMBOL_GPL(of_property_read_u64);
331 
332 /**
333  * of_property_read_variable_u64_array - Find and read an array of 64 bit
334  * integers from a property, with bounds on the minimum and maximum array size.
335  *
336  * @np:		device node from which the property value is to be read.
337  * @propname:	name of the property to be searched.
338  * @out_values:	pointer to found values.
339  * @sz_min:	minimum number of array elements to read
340  * @sz_max:	maximum number of array elements to read, if zero there is no
341  *		upper limit on the number of elements in the dts entry but only
342  *		sz_min will be read.
343  *
344  * Search for a property in a device node and read 64-bit value(s) from
345  * it. Returns number of elements read on success, -EINVAL if the property
346  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
347  * if the property data is smaller than sz_min or longer than sz_max.
348  *
349  * The out_values is modified only if a valid u64 value can be decoded.
350  */
351 int of_property_read_variable_u64_array(const struct device_node *np,
352 			       const char *propname, u64 *out_values,
353 			       size_t sz_min, size_t sz_max)
354 {
355 	size_t sz, count;
356 	const __be32 *val = of_find_property_value_of_size(np, propname,
357 						(sz_min * sizeof(*out_values)),
358 						(sz_max * sizeof(*out_values)),
359 						&sz);
360 
361 	if (IS_ERR(val))
362 		return PTR_ERR(val);
363 
364 	if (!sz_max)
365 		sz = sz_min;
366 	else
367 		sz /= sizeof(*out_values);
368 
369 	count = sz;
370 	while (count--) {
371 		*out_values++ = of_read_number(val, 2);
372 		val += 2;
373 	}
374 
375 	return sz;
376 }
377 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
378 
379 /**
380  * of_property_read_string - Find and read a string from a property
381  * @np:		device node from which the property value is to be read.
382  * @propname:	name of the property to be searched.
383  * @out_string:	pointer to null terminated return string, modified only if
384  *		return value is 0.
385  *
386  * Search for a property in a device tree node and retrieve a null
387  * terminated string value (pointer to data, not a copy). Returns 0 on
388  * success, -EINVAL if the property does not exist, -ENODATA if property
389  * does not have a value, and -EILSEQ if the string is not null-terminated
390  * within the length of the property data.
391  *
392  * The out_string pointer is modified only if a valid string can be decoded.
393  */
394 int of_property_read_string(const struct device_node *np, const char *propname,
395 				const char **out_string)
396 {
397 	const struct property *prop = of_find_property(np, propname, NULL);
398 	if (!prop)
399 		return -EINVAL;
400 	if (!prop->value)
401 		return -ENODATA;
402 	if (strnlen(prop->value, prop->length) >= prop->length)
403 		return -EILSEQ;
404 	*out_string = prop->value;
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(of_property_read_string);
408 
409 /**
410  * of_property_match_string() - Find string in a list and return index
411  * @np: pointer to node containing string list property
412  * @propname: string list property name
413  * @string: pointer to string to search for in string list
414  *
415  * This function searches a string list property and returns the index
416  * of a specific string value.
417  */
418 int of_property_match_string(const struct device_node *np, const char *propname,
419 			     const char *string)
420 {
421 	const struct property *prop = of_find_property(np, propname, NULL);
422 	size_t l;
423 	int i;
424 	const char *p, *end;
425 
426 	if (!prop)
427 		return -EINVAL;
428 	if (!prop->value)
429 		return -ENODATA;
430 
431 	p = prop->value;
432 	end = p + prop->length;
433 
434 	for (i = 0; p < end; i++, p += l) {
435 		l = strnlen(p, end - p) + 1;
436 		if (p + l > end)
437 			return -EILSEQ;
438 		pr_debug("comparing %s with %s\n", string, p);
439 		if (strcmp(string, p) == 0)
440 			return i; /* Found it; return index */
441 	}
442 	return -ENODATA;
443 }
444 EXPORT_SYMBOL_GPL(of_property_match_string);
445 
446 /**
447  * of_property_read_string_helper() - Utility helper for parsing string properties
448  * @np:		device node from which the property value is to be read.
449  * @propname:	name of the property to be searched.
450  * @out_strs:	output array of string pointers.
451  * @sz:		number of array elements to read.
452  * @skip:	Number of strings to skip over at beginning of list.
453  *
454  * Don't call this function directly. It is a utility helper for the
455  * of_property_read_string*() family of functions.
456  */
457 int of_property_read_string_helper(const struct device_node *np,
458 				   const char *propname, const char **out_strs,
459 				   size_t sz, int skip)
460 {
461 	const struct property *prop = of_find_property(np, propname, NULL);
462 	int l = 0, i = 0;
463 	const char *p, *end;
464 
465 	if (!prop)
466 		return -EINVAL;
467 	if (!prop->value)
468 		return -ENODATA;
469 	p = prop->value;
470 	end = p + prop->length;
471 
472 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
473 		l = strnlen(p, end - p) + 1;
474 		if (p + l > end)
475 			return -EILSEQ;
476 		if (out_strs && i >= skip)
477 			*out_strs++ = p;
478 	}
479 	i -= skip;
480 	return i <= 0 ? -ENODATA : i;
481 }
482 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
483 
484 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
485 			       u32 *pu)
486 {
487 	const void *curv = cur;
488 
489 	if (!prop)
490 		return NULL;
491 
492 	if (!cur) {
493 		curv = prop->value;
494 		goto out_val;
495 	}
496 
497 	curv += sizeof(*cur);
498 	if (curv >= prop->value + prop->length)
499 		return NULL;
500 
501 out_val:
502 	*pu = be32_to_cpup(curv);
503 	return curv;
504 }
505 EXPORT_SYMBOL_GPL(of_prop_next_u32);
506 
507 const char *of_prop_next_string(struct property *prop, const char *cur)
508 {
509 	const void *curv = cur;
510 
511 	if (!prop)
512 		return NULL;
513 
514 	if (!cur)
515 		return prop->value;
516 
517 	curv += strlen(cur) + 1;
518 	if (curv >= prop->value + prop->length)
519 		return NULL;
520 
521 	return curv;
522 }
523 EXPORT_SYMBOL_GPL(of_prop_next_string);
524 
525 /**
526  * of_graph_parse_endpoint() - parse common endpoint node properties
527  * @node: pointer to endpoint device_node
528  * @endpoint: pointer to the OF endpoint data structure
529  *
530  * The caller should hold a reference to @node.
531  */
532 int of_graph_parse_endpoint(const struct device_node *node,
533 			    struct of_endpoint *endpoint)
534 {
535 	struct device_node *port_node = of_get_parent(node);
536 
537 	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
538 		  __func__, node);
539 
540 	memset(endpoint, 0, sizeof(*endpoint));
541 
542 	endpoint->local_node = node;
543 	/*
544 	 * It doesn't matter whether the two calls below succeed.
545 	 * If they don't then the default value 0 is used.
546 	 */
547 	of_property_read_u32(port_node, "reg", &endpoint->port);
548 	of_property_read_u32(node, "reg", &endpoint->id);
549 
550 	of_node_put(port_node);
551 
552 	return 0;
553 }
554 EXPORT_SYMBOL(of_graph_parse_endpoint);
555 
556 /**
557  * of_graph_get_port_by_id() - get the port matching a given id
558  * @parent: pointer to the parent device node
559  * @id: id of the port
560  *
561  * Return: A 'port' node pointer with refcount incremented. The caller
562  * has to use of_node_put() on it when done.
563  */
564 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
565 {
566 	struct device_node *node, *port;
567 
568 	node = of_get_child_by_name(parent, "ports");
569 	if (node)
570 		parent = node;
571 
572 	for_each_child_of_node(parent, port) {
573 		u32 port_id = 0;
574 
575 		if (!of_node_name_eq(port, "port"))
576 			continue;
577 		of_property_read_u32(port, "reg", &port_id);
578 		if (id == port_id)
579 			break;
580 	}
581 
582 	of_node_put(node);
583 
584 	return port;
585 }
586 EXPORT_SYMBOL(of_graph_get_port_by_id);
587 
588 /**
589  * of_graph_get_next_endpoint() - get next endpoint node
590  * @parent: pointer to the parent device node
591  * @prev: previous endpoint node, or NULL to get first
592  *
593  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
594  * of the passed @prev node is decremented.
595  */
596 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
597 					struct device_node *prev)
598 {
599 	struct device_node *endpoint;
600 	struct device_node *port;
601 
602 	if (!parent)
603 		return NULL;
604 
605 	/*
606 	 * Start by locating the port node. If no previous endpoint is specified
607 	 * search for the first port node, otherwise get the previous endpoint
608 	 * parent port node.
609 	 */
610 	if (!prev) {
611 		struct device_node *node;
612 
613 		node = of_get_child_by_name(parent, "ports");
614 		if (node)
615 			parent = node;
616 
617 		port = of_get_child_by_name(parent, "port");
618 		of_node_put(node);
619 
620 		if (!port) {
621 			pr_err("graph: no port node found in %pOF\n", parent);
622 			return NULL;
623 		}
624 	} else {
625 		port = of_get_parent(prev);
626 		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
627 			      __func__, prev))
628 			return NULL;
629 	}
630 
631 	while (1) {
632 		/*
633 		 * Now that we have a port node, get the next endpoint by
634 		 * getting the next child. If the previous endpoint is NULL this
635 		 * will return the first child.
636 		 */
637 		endpoint = of_get_next_child(port, prev);
638 		if (endpoint) {
639 			of_node_put(port);
640 			return endpoint;
641 		}
642 
643 		/* No more endpoints under this port, try the next one. */
644 		prev = NULL;
645 
646 		do {
647 			port = of_get_next_child(parent, port);
648 			if (!port)
649 				return NULL;
650 		} while (!of_node_name_eq(port, "port"));
651 	}
652 }
653 EXPORT_SYMBOL(of_graph_get_next_endpoint);
654 
655 /**
656  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
657  * @parent: pointer to the parent device node
658  * @port_reg: identifier (value of reg property) of the parent port node
659  * @reg: identifier (value of reg property) of the endpoint node
660  *
661  * Return: An 'endpoint' node pointer which is identified by reg and at the same
662  * is the child of a port node identified by port_reg. reg and port_reg are
663  * ignored when they are -1. Use of_node_put() on the pointer when done.
664  */
665 struct device_node *of_graph_get_endpoint_by_regs(
666 	const struct device_node *parent, int port_reg, int reg)
667 {
668 	struct of_endpoint endpoint;
669 	struct device_node *node = NULL;
670 
671 	for_each_endpoint_of_node(parent, node) {
672 		of_graph_parse_endpoint(node, &endpoint);
673 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
674 			((reg == -1) || (endpoint.id == reg)))
675 			return node;
676 	}
677 
678 	return NULL;
679 }
680 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
681 
682 /**
683  * of_graph_get_remote_endpoint() - get remote endpoint node
684  * @node: pointer to a local endpoint device_node
685  *
686  * Return: Remote endpoint node associated with remote endpoint node linked
687  *	   to @node. Use of_node_put() on it when done.
688  */
689 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
690 {
691 	/* Get remote endpoint node. */
692 	return of_parse_phandle(node, "remote-endpoint", 0);
693 }
694 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
695 
696 /**
697  * of_graph_get_port_parent() - get port's parent node
698  * @node: pointer to a local endpoint device_node
699  *
700  * Return: device node associated with endpoint node linked
701  *	   to @node. Use of_node_put() on it when done.
702  */
703 struct device_node *of_graph_get_port_parent(struct device_node *node)
704 {
705 	unsigned int depth;
706 
707 	if (!node)
708 		return NULL;
709 
710 	/*
711 	 * Preserve usecount for passed in node as of_get_next_parent()
712 	 * will do of_node_put() on it.
713 	 */
714 	of_node_get(node);
715 
716 	/* Walk 3 levels up only if there is 'ports' node. */
717 	for (depth = 3; depth && node; depth--) {
718 		node = of_get_next_parent(node);
719 		if (depth == 2 && !of_node_name_eq(node, "ports"))
720 			break;
721 	}
722 	return node;
723 }
724 EXPORT_SYMBOL(of_graph_get_port_parent);
725 
726 /**
727  * of_graph_get_remote_port_parent() - get remote port's parent node
728  * @node: pointer to a local endpoint device_node
729  *
730  * Return: Remote device node associated with remote endpoint node linked
731  *	   to @node. Use of_node_put() on it when done.
732  */
733 struct device_node *of_graph_get_remote_port_parent(
734 			       const struct device_node *node)
735 {
736 	struct device_node *np, *pp;
737 
738 	/* Get remote endpoint node. */
739 	np = of_graph_get_remote_endpoint(node);
740 
741 	pp = of_graph_get_port_parent(np);
742 
743 	of_node_put(np);
744 
745 	return pp;
746 }
747 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
748 
749 /**
750  * of_graph_get_remote_port() - get remote port node
751  * @node: pointer to a local endpoint device_node
752  *
753  * Return: Remote port node associated with remote endpoint node linked
754  *	   to @node. Use of_node_put() on it when done.
755  */
756 struct device_node *of_graph_get_remote_port(const struct device_node *node)
757 {
758 	struct device_node *np;
759 
760 	/* Get remote endpoint node. */
761 	np = of_graph_get_remote_endpoint(node);
762 	if (!np)
763 		return NULL;
764 	return of_get_next_parent(np);
765 }
766 EXPORT_SYMBOL(of_graph_get_remote_port);
767 
768 int of_graph_get_endpoint_count(const struct device_node *np)
769 {
770 	struct device_node *endpoint;
771 	int num = 0;
772 
773 	for_each_endpoint_of_node(np, endpoint)
774 		num++;
775 
776 	return num;
777 }
778 EXPORT_SYMBOL(of_graph_get_endpoint_count);
779 
780 /**
781  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
782  * @node: pointer to parent device_node containing graph port/endpoint
783  * @port: identifier (value of reg property) of the parent port node
784  * @endpoint: identifier (value of reg property) of the endpoint node
785  *
786  * Return: Remote device node associated with remote endpoint node linked
787  *	   to @node. Use of_node_put() on it when done.
788  */
789 struct device_node *of_graph_get_remote_node(const struct device_node *node,
790 					     u32 port, u32 endpoint)
791 {
792 	struct device_node *endpoint_node, *remote;
793 
794 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
795 	if (!endpoint_node) {
796 		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
797 			 port, endpoint, node);
798 		return NULL;
799 	}
800 
801 	remote = of_graph_get_remote_port_parent(endpoint_node);
802 	of_node_put(endpoint_node);
803 	if (!remote) {
804 		pr_debug("no valid remote node\n");
805 		return NULL;
806 	}
807 
808 	if (!of_device_is_available(remote)) {
809 		pr_debug("not available for remote node\n");
810 		of_node_put(remote);
811 		return NULL;
812 	}
813 
814 	return remote;
815 }
816 EXPORT_SYMBOL(of_graph_get_remote_node);
817 
818 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
819 {
820 	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
821 }
822 
823 static void of_fwnode_put(struct fwnode_handle *fwnode)
824 {
825 	of_node_put(to_of_node(fwnode));
826 }
827 
828 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
829 {
830 	return of_device_is_available(to_of_node(fwnode));
831 }
832 
833 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
834 				       const char *propname)
835 {
836 	return of_property_read_bool(to_of_node(fwnode), propname);
837 }
838 
839 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
840 					     const char *propname,
841 					     unsigned int elem_size, void *val,
842 					     size_t nval)
843 {
844 	const struct device_node *node = to_of_node(fwnode);
845 
846 	if (!val)
847 		return of_property_count_elems_of_size(node, propname,
848 						       elem_size);
849 
850 	switch (elem_size) {
851 	case sizeof(u8):
852 		return of_property_read_u8_array(node, propname, val, nval);
853 	case sizeof(u16):
854 		return of_property_read_u16_array(node, propname, val, nval);
855 	case sizeof(u32):
856 		return of_property_read_u32_array(node, propname, val, nval);
857 	case sizeof(u64):
858 		return of_property_read_u64_array(node, propname, val, nval);
859 	}
860 
861 	return -ENXIO;
862 }
863 
864 static int
865 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
866 				     const char *propname, const char **val,
867 				     size_t nval)
868 {
869 	const struct device_node *node = to_of_node(fwnode);
870 
871 	return val ?
872 		of_property_read_string_array(node, propname, val, nval) :
873 		of_property_count_strings(node, propname);
874 }
875 
876 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
877 {
878 	return kbasename(to_of_node(fwnode)->full_name);
879 }
880 
881 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
882 {
883 	/* Root needs no prefix here (its name is "/"). */
884 	if (!to_of_node(fwnode)->parent)
885 		return "";
886 
887 	return "/";
888 }
889 
890 static struct fwnode_handle *
891 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
892 {
893 	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
894 }
895 
896 static struct fwnode_handle *
897 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
898 			      struct fwnode_handle *child)
899 {
900 	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
901 							    to_of_node(child)));
902 }
903 
904 static struct fwnode_handle *
905 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
906 			       const char *childname)
907 {
908 	const struct device_node *node = to_of_node(fwnode);
909 	struct device_node *child;
910 
911 	for_each_available_child_of_node(node, child)
912 		if (of_node_name_eq(child, childname))
913 			return of_fwnode_handle(child);
914 
915 	return NULL;
916 }
917 
918 static int
919 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
920 			     const char *prop, const char *nargs_prop,
921 			     unsigned int nargs, unsigned int index,
922 			     struct fwnode_reference_args *args)
923 {
924 	struct of_phandle_args of_args;
925 	unsigned int i;
926 	int ret;
927 
928 	if (nargs_prop)
929 		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
930 						 nargs_prop, index, &of_args);
931 	else
932 		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
933 						       nargs, index, &of_args);
934 	if (ret < 0)
935 		return ret;
936 	if (!args)
937 		return 0;
938 
939 	args->nargs = of_args.args_count;
940 	args->fwnode = of_fwnode_handle(of_args.np);
941 
942 	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
943 		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
944 
945 	return 0;
946 }
947 
948 static struct fwnode_handle *
949 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
950 				  struct fwnode_handle *prev)
951 {
952 	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
953 							   to_of_node(prev)));
954 }
955 
956 static struct fwnode_handle *
957 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
958 {
959 	return of_fwnode_handle(
960 		of_graph_get_remote_endpoint(to_of_node(fwnode)));
961 }
962 
963 static struct fwnode_handle *
964 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
965 {
966 	struct device_node *np;
967 
968 	/* Get the parent of the port */
969 	np = of_get_parent(to_of_node(fwnode));
970 	if (!np)
971 		return NULL;
972 
973 	/* Is this the "ports" node? If not, it's the port parent. */
974 	if (!of_node_name_eq(np, "ports"))
975 		return of_fwnode_handle(np);
976 
977 	return of_fwnode_handle(of_get_next_parent(np));
978 }
979 
980 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
981 					  struct fwnode_endpoint *endpoint)
982 {
983 	const struct device_node *node = to_of_node(fwnode);
984 	struct device_node *port_node = of_get_parent(node);
985 
986 	endpoint->local_fwnode = fwnode;
987 
988 	of_property_read_u32(port_node, "reg", &endpoint->port);
989 	of_property_read_u32(node, "reg", &endpoint->id);
990 
991 	of_node_put(port_node);
992 
993 	return 0;
994 }
995 
996 static const void *
997 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
998 				const struct device *dev)
999 {
1000 	return of_device_get_match_data(dev);
1001 }
1002 
1003 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1004 			      struct device_node *child)
1005 {
1006 	of_node_get(child);
1007 	while (child) {
1008 		if (child == test_ancestor) {
1009 			of_node_put(child);
1010 			return true;
1011 		}
1012 		child = of_get_next_parent(child);
1013 	}
1014 	return false;
1015 }
1016 
1017 /**
1018  * of_link_to_phandle - Add device link to supplier from supplier phandle
1019  * @dev: consumer device
1020  * @sup_np: phandle to supplier device tree node
1021  *
1022  * Given a phandle to a supplier device tree node (@sup_np), this function
1023  * finds the device that owns the supplier device tree node and creates a
1024  * device link from @dev consumer device to the supplier device. This function
1025  * doesn't create device links for invalid scenarios such as trying to create a
1026  * link with a parent device as the consumer of its child device. In such
1027  * cases, it returns an error.
1028  *
1029  * Returns:
1030  * - 0 if link successfully created to supplier
1031  * - -EAGAIN if linking to the supplier should be reattempted
1032  * - -EINVAL if the supplier link is invalid and should not be created
1033  * - -ENODEV if there is no device that corresponds to the supplier phandle
1034  */
1035 static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1036 			      u32 dl_flags)
1037 {
1038 	struct device *sup_dev;
1039 	int ret = 0;
1040 	struct device_node *tmp_np = sup_np;
1041 	int is_populated;
1042 
1043 	of_node_get(sup_np);
1044 	/*
1045 	 * Find the device node that contains the supplier phandle.  It may be
1046 	 * @sup_np or it may be an ancestor of @sup_np.
1047 	 */
1048 	while (sup_np) {
1049 
1050 		/* Don't allow linking to a disabled supplier */
1051 		if (!of_device_is_available(sup_np)) {
1052 			of_node_put(sup_np);
1053 			sup_np = NULL;
1054 		}
1055 
1056 		if (of_find_property(sup_np, "compatible", NULL))
1057 			break;
1058 
1059 		sup_np = of_get_next_parent(sup_np);
1060 	}
1061 
1062 	if (!sup_np) {
1063 		dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1064 		return -ENODEV;
1065 	}
1066 
1067 	/*
1068 	 * Don't allow linking a device node as a consumer of one of its
1069 	 * descendant nodes. By definition, a child node can't be a functional
1070 	 * dependency for the parent node.
1071 	 */
1072 	if (of_is_ancestor_of(dev->of_node, sup_np)) {
1073 		dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1074 		of_node_put(sup_np);
1075 		return -EINVAL;
1076 	}
1077 	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1078 	is_populated = of_node_check_flag(sup_np, OF_POPULATED);
1079 	of_node_put(sup_np);
1080 	if (!sup_dev && is_populated) {
1081 		/* Early device without struct device. */
1082 		dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1083 			sup_np);
1084 		return -ENODEV;
1085 	} else if (!sup_dev) {
1086 		return -EAGAIN;
1087 	}
1088 	if (!device_link_add(dev, sup_dev, dl_flags))
1089 		ret = -EINVAL;
1090 	put_device(sup_dev);
1091 	return ret;
1092 }
1093 
1094 /**
1095  * parse_prop_cells - Property parsing function for suppliers
1096  *
1097  * @np:		Pointer to device tree node containing a list
1098  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1099  * @index:	For properties holding a list of phandles, this is the index
1100  *		into the list.
1101  * @list_name:	Property name that is known to contain list of phandle(s) to
1102  *		supplier(s)
1103  * @cells_name:	property name that specifies phandles' arguments count
1104  *
1105  * This is a helper function to parse properties that have a known fixed name
1106  * and are a list of phandles and phandle arguments.
1107  *
1108  * Returns:
1109  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1110  *   on it when done.
1111  * - NULL if no phandle found at index
1112  */
1113 static struct device_node *parse_prop_cells(struct device_node *np,
1114 					    const char *prop_name, int index,
1115 					    const char *list_name,
1116 					    const char *cells_name)
1117 {
1118 	struct of_phandle_args sup_args;
1119 
1120 	if (strcmp(prop_name, list_name))
1121 		return NULL;
1122 
1123 	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1124 				       &sup_args))
1125 		return NULL;
1126 
1127 	return sup_args.np;
1128 }
1129 
1130 #define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1131 static struct device_node *parse_##fname(struct device_node *np,	  \
1132 					const char *prop_name, int index) \
1133 {									  \
1134 	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1135 }
1136 
1137 static int strcmp_suffix(const char *str, const char *suffix)
1138 {
1139 	unsigned int len, suffix_len;
1140 
1141 	len = strlen(str);
1142 	suffix_len = strlen(suffix);
1143 	if (len <= suffix_len)
1144 		return -1;
1145 	return strcmp(str + len - suffix_len, suffix);
1146 }
1147 
1148 /**
1149  * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1150  *
1151  * @np:		Pointer to device tree node containing a list
1152  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1153  * @index:	For properties holding a list of phandles, this is the index
1154  *		into the list.
1155  * @suffix:	Property suffix that is known to contain list of phandle(s) to
1156  *		supplier(s)
1157  * @cells_name:	property name that specifies phandles' arguments count
1158  *
1159  * This is a helper function to parse properties that have a known fixed suffix
1160  * and are a list of phandles and phandle arguments.
1161  *
1162  * Returns:
1163  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1164  *   on it when done.
1165  * - NULL if no phandle found at index
1166  */
1167 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1168 					    const char *prop_name, int index,
1169 					    const char *suffix,
1170 					    const char *cells_name)
1171 {
1172 	struct of_phandle_args sup_args;
1173 
1174 	if (strcmp_suffix(prop_name, suffix))
1175 		return NULL;
1176 
1177 	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1178 				       &sup_args))
1179 		return NULL;
1180 
1181 	return sup_args.np;
1182 }
1183 
1184 #define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1185 static struct device_node *parse_##fname(struct device_node *np,	     \
1186 					const char *prop_name, int index)    \
1187 {									     \
1188 	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1189 }
1190 
1191 /**
1192  * struct supplier_bindings - Property parsing functions for suppliers
1193  *
1194  * @parse_prop: function name
1195  *	parse_prop() finds the node corresponding to a supplier phandle
1196  * @parse_prop.np: Pointer to device node holding supplier phandle property
1197  * @parse_prop.prop_name: Name of property holding a phandle value
1198  * @parse_prop.index: For properties holding a list of phandles, this is the
1199  *		      index into the list
1200  *
1201  * Returns:
1202  * parse_prop() return values are
1203  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1204  *   on it when done.
1205  * - NULL if no phandle found at index
1206  */
1207 struct supplier_bindings {
1208 	struct device_node *(*parse_prop)(struct device_node *np,
1209 					  const char *prop_name, int index);
1210 };
1211 
1212 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1213 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1214 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1215 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1216 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1217 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1218 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1219 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1220 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1221 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1222 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1223 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1224 DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
1225 
1226 static struct device_node *parse_iommu_maps(struct device_node *np,
1227 					    const char *prop_name, int index)
1228 {
1229 	if (strcmp(prop_name, "iommu-map"))
1230 		return NULL;
1231 
1232 	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1233 }
1234 
1235 static const struct supplier_bindings of_supplier_bindings[] = {
1236 	{ .parse_prop = parse_clocks, },
1237 	{ .parse_prop = parse_interconnects, },
1238 	{ .parse_prop = parse_iommus, },
1239 	{ .parse_prop = parse_iommu_maps, },
1240 	{ .parse_prop = parse_mboxes, },
1241 	{ .parse_prop = parse_io_channels, },
1242 	{ .parse_prop = parse_interrupt_parent, },
1243 	{ .parse_prop = parse_dmas, },
1244 	{ .parse_prop = parse_power_domains, },
1245 	{ .parse_prop = parse_hwlocks, },
1246 	{ .parse_prop = parse_extcon, },
1247 	{ .parse_prop = parse_regulators, },
1248 	{ .parse_prop = parse_gpio, },
1249 	{ .parse_prop = parse_gpios, },
1250 	{}
1251 };
1252 
1253 /**
1254  * of_link_property - Create device links to suppliers listed in a property
1255  * @dev: Consumer device
1256  * @con_np: The consumer device tree node which contains the property
1257  * @prop_name: Name of property to be parsed
1258  *
1259  * This function checks if the property @prop_name that is present in the
1260  * @con_np device tree node is one of the known common device tree bindings
1261  * that list phandles to suppliers. If @prop_name isn't one, this function
1262  * doesn't do anything.
1263  *
1264  * If @prop_name is one, this function attempts to create device links from the
1265  * consumer device @dev to all the devices of the suppliers listed in
1266  * @prop_name.
1267  *
1268  * Any failed attempt to create a device link will NOT result in an immediate
1269  * return.  of_link_property() must create links to all the available supplier
1270  * devices even when attempts to create a link to one or more suppliers fail.
1271  */
1272 static int of_link_property(struct device *dev, struct device_node *con_np,
1273 			     const char *prop_name)
1274 {
1275 	struct device_node *phandle;
1276 	const struct supplier_bindings *s = of_supplier_bindings;
1277 	unsigned int i = 0;
1278 	bool matched = false;
1279 	int ret = 0;
1280 	u32 dl_flags;
1281 
1282 	if (dev->of_node == con_np)
1283 		dl_flags = fw_devlink_get_flags();
1284 	else
1285 		dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1286 
1287 	/* Do not stop at first failed link, link all available suppliers. */
1288 	while (!matched && s->parse_prop) {
1289 		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1290 			matched = true;
1291 			i++;
1292 			if (of_link_to_phandle(dev, phandle, dl_flags)
1293 								== -EAGAIN)
1294 				ret = -EAGAIN;
1295 			of_node_put(phandle);
1296 		}
1297 		s++;
1298 	}
1299 	return ret;
1300 }
1301 
1302 static int of_link_to_suppliers(struct device *dev,
1303 				  struct device_node *con_np)
1304 {
1305 	struct device_node *child;
1306 	struct property *p;
1307 	int ret = 0;
1308 
1309 	for_each_property_of_node(con_np, p)
1310 		if (of_link_property(dev, con_np, p->name))
1311 			ret = -ENODEV;
1312 
1313 	for_each_available_child_of_node(con_np, child)
1314 		if (of_link_to_suppliers(dev, child) && !ret)
1315 			ret = -EAGAIN;
1316 
1317 	return ret;
1318 }
1319 
1320 static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1321 			       struct device *dev)
1322 {
1323 	if (unlikely(!is_of_node(fwnode)))
1324 		return 0;
1325 
1326 	return of_link_to_suppliers(dev, to_of_node(fwnode));
1327 }
1328 
1329 const struct fwnode_operations of_fwnode_ops = {
1330 	.get = of_fwnode_get,
1331 	.put = of_fwnode_put,
1332 	.device_is_available = of_fwnode_device_is_available,
1333 	.device_get_match_data = of_fwnode_device_get_match_data,
1334 	.property_present = of_fwnode_property_present,
1335 	.property_read_int_array = of_fwnode_property_read_int_array,
1336 	.property_read_string_array = of_fwnode_property_read_string_array,
1337 	.get_name = of_fwnode_get_name,
1338 	.get_name_prefix = of_fwnode_get_name_prefix,
1339 	.get_parent = of_fwnode_get_parent,
1340 	.get_next_child_node = of_fwnode_get_next_child_node,
1341 	.get_named_child_node = of_fwnode_get_named_child_node,
1342 	.get_reference_args = of_fwnode_get_reference_args,
1343 	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1344 	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1345 	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1346 	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1347 	.add_links = of_fwnode_add_links,
1348 };
1349 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1350