xref: /openbmc/linux/drivers/of/of_reserved_mem.c (revision 9cfc5c90)
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *		http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15 
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 
25 #define MAX_RESERVED_REGIONS	16
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28 
29 #if defined(CONFIG_HAVE_MEMBLOCK)
30 #include <linux/memblock.h>
31 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
32 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
33 	phys_addr_t *res_base)
34 {
35 	/*
36 	 * We use __memblock_alloc_base() because memblock_alloc_base()
37 	 * panic()s on allocation failure.
38 	 */
39 	phys_addr_t base = __memblock_alloc_base(size, align, end);
40 	if (!base)
41 		return -ENOMEM;
42 
43 	/*
44 	 * Check if the allocated region fits in to start..end window
45 	 */
46 	if (base < start) {
47 		memblock_free(base, size);
48 		return -ENOMEM;
49 	}
50 
51 	*res_base = base;
52 	if (nomap)
53 		return memblock_remove(base, size);
54 	return 0;
55 }
56 #else
57 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
58 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
59 	phys_addr_t *res_base)
60 {
61 	pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
62 		  size, nomap ? " (nomap)" : "");
63 	return -ENOSYS;
64 }
65 #endif
66 
67 /**
68  * res_mem_save_node() - save fdt node for second pass initialization
69  */
70 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
71 				      phys_addr_t base, phys_addr_t size)
72 {
73 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
74 
75 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
76 		pr_err("Reserved memory: not enough space all defined regions.\n");
77 		return;
78 	}
79 
80 	rmem->fdt_node = node;
81 	rmem->name = uname;
82 	rmem->base = base;
83 	rmem->size = size;
84 
85 	reserved_mem_count++;
86 	return;
87 }
88 
89 /**
90  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
91  *			  and 'alloc-ranges' properties
92  */
93 static int __init __reserved_mem_alloc_size(unsigned long node,
94 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
95 {
96 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
97 	phys_addr_t start = 0, end = 0;
98 	phys_addr_t base = 0, align = 0, size;
99 	int len;
100 	const __be32 *prop;
101 	int nomap;
102 	int ret;
103 
104 	prop = of_get_flat_dt_prop(node, "size", &len);
105 	if (!prop)
106 		return -EINVAL;
107 
108 	if (len != dt_root_size_cells * sizeof(__be32)) {
109 		pr_err("Reserved memory: invalid size property in '%s' node.\n",
110 				uname);
111 		return -EINVAL;
112 	}
113 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
114 
115 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
116 
117 	prop = of_get_flat_dt_prop(node, "alignment", &len);
118 	if (prop) {
119 		if (len != dt_root_addr_cells * sizeof(__be32)) {
120 			pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
121 				uname);
122 			return -EINVAL;
123 		}
124 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
125 	}
126 
127 	/* Need adjust the alignment to satisfy the CMA requirement */
128 	if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool"))
129 		align = max(align, (phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
130 
131 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
132 	if (prop) {
133 
134 		if (len % t_len != 0) {
135 			pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
136 			       uname);
137 			return -EINVAL;
138 		}
139 
140 		base = 0;
141 
142 		while (len > 0) {
143 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
144 			end = start + dt_mem_next_cell(dt_root_size_cells,
145 						       &prop);
146 
147 			ret = early_init_dt_alloc_reserved_memory_arch(size,
148 					align, start, end, nomap, &base);
149 			if (ret == 0) {
150 				pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
151 					uname, &base,
152 					(unsigned long)size / SZ_1M);
153 				break;
154 			}
155 			len -= t_len;
156 		}
157 
158 	} else {
159 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
160 							0, 0, nomap, &base);
161 		if (ret == 0)
162 			pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
163 				uname, &base, (unsigned long)size / SZ_1M);
164 	}
165 
166 	if (base == 0) {
167 		pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
168 			uname);
169 		return -ENOMEM;
170 	}
171 
172 	*res_base = base;
173 	*res_size = size;
174 
175 	return 0;
176 }
177 
178 static const struct of_device_id __rmem_of_table_sentinel
179 	__used __section(__reservedmem_of_table_end);
180 
181 /**
182  * res_mem_init_node() - call region specific reserved memory init code
183  */
184 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
185 {
186 	extern const struct of_device_id __reservedmem_of_table[];
187 	const struct of_device_id *i;
188 
189 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
190 		reservedmem_of_init_fn initfn = i->data;
191 		const char *compat = i->compatible;
192 
193 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
194 			continue;
195 
196 		if (initfn(rmem) == 0) {
197 			pr_info("Reserved memory: initialized node %s, compatible id %s\n",
198 				rmem->name, compat);
199 			return 0;
200 		}
201 	}
202 	return -ENOENT;
203 }
204 
205 static int __init __rmem_cmp(const void *a, const void *b)
206 {
207 	const struct reserved_mem *ra = a, *rb = b;
208 
209 	return ra->base - rb->base;
210 }
211 
212 static void __init __rmem_check_for_overlap(void)
213 {
214 	int i;
215 
216 	if (reserved_mem_count < 2)
217 		return;
218 
219 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
220 	     __rmem_cmp, NULL);
221 	for (i = 0; i < reserved_mem_count - 1; i++) {
222 		struct reserved_mem *this, *next;
223 
224 		this = &reserved_mem[i];
225 		next = &reserved_mem[i + 1];
226 		if (!(this->base && next->base))
227 			continue;
228 		if (this->base + this->size > next->base) {
229 			phys_addr_t this_end, next_end;
230 
231 			this_end = this->base + this->size;
232 			next_end = next->base + next->size;
233 			pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
234 			       this->name, &this->base, &this_end,
235 			       next->name, &next->base, &next_end);
236 		}
237 	}
238 }
239 
240 /**
241  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
242  */
243 void __init fdt_init_reserved_mem(void)
244 {
245 	int i;
246 
247 	/* check for overlapping reserved regions */
248 	__rmem_check_for_overlap();
249 
250 	for (i = 0; i < reserved_mem_count; i++) {
251 		struct reserved_mem *rmem = &reserved_mem[i];
252 		unsigned long node = rmem->fdt_node;
253 		int len;
254 		const __be32 *prop;
255 		int err = 0;
256 
257 		prop = of_get_flat_dt_prop(node, "phandle", &len);
258 		if (!prop)
259 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
260 		if (prop)
261 			rmem->phandle = of_read_number(prop, len/4);
262 
263 		if (rmem->size == 0)
264 			err = __reserved_mem_alloc_size(node, rmem->name,
265 						 &rmem->base, &rmem->size);
266 		if (err == 0)
267 			__reserved_mem_init_node(rmem);
268 	}
269 }
270 
271 static inline struct reserved_mem *__find_rmem(struct device_node *node)
272 {
273 	unsigned int i;
274 
275 	if (!node->phandle)
276 		return NULL;
277 
278 	for (i = 0; i < reserved_mem_count; i++)
279 		if (reserved_mem[i].phandle == node->phandle)
280 			return &reserved_mem[i];
281 	return NULL;
282 }
283 
284 /**
285  * of_reserved_mem_device_init() - assign reserved memory region to given device
286  *
287  * This function assign memory region pointed by "memory-region" device tree
288  * property to the given device.
289  */
290 int of_reserved_mem_device_init(struct device *dev)
291 {
292 	struct reserved_mem *rmem;
293 	struct device_node *np;
294 	int ret;
295 
296 	np = of_parse_phandle(dev->of_node, "memory-region", 0);
297 	if (!np)
298 		return -ENODEV;
299 
300 	rmem = __find_rmem(np);
301 	of_node_put(np);
302 
303 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
304 		return -EINVAL;
305 
306 	ret = rmem->ops->device_init(rmem, dev);
307 	if (ret == 0)
308 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
313 
314 /**
315  * of_reserved_mem_device_release() - release reserved memory device structures
316  *
317  * This function releases structures allocated for memory region handling for
318  * the given device.
319  */
320 void of_reserved_mem_device_release(struct device *dev)
321 {
322 	struct reserved_mem *rmem;
323 	struct device_node *np;
324 
325 	np = of_parse_phandle(dev->of_node, "memory-region", 0);
326 	if (!np)
327 		return;
328 
329 	rmem = __find_rmem(np);
330 	of_node_put(np);
331 
332 	if (!rmem || !rmem->ops || !rmem->ops->device_release)
333 		return;
334 
335 	rmem->ops->device_release(rmem, dev);
336 }
337 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
338