xref: /openbmc/linux/drivers/of/of_reserved_mem.c (revision 4c79e98b)
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *		http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15 
16 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
17 
18 #include <linux/err.h>
19 #include <linux/of.h>
20 #include <linux/of_fdt.h>
21 #include <linux/of_platform.h>
22 #include <linux/mm.h>
23 #include <linux/sizes.h>
24 #include <linux/of_reserved_mem.h>
25 #include <linux/sort.h>
26 #include <linux/slab.h>
27 
28 #define MAX_RESERVED_REGIONS	16
29 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
30 static int reserved_mem_count;
31 
32 #if defined(CONFIG_HAVE_MEMBLOCK)
33 #include <linux/memblock.h>
34 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
35 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
36 	phys_addr_t *res_base)
37 {
38 	phys_addr_t base;
39 	/*
40 	 * We use __memblock_alloc_base() because memblock_alloc_base()
41 	 * panic()s on allocation failure.
42 	 */
43 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
44 	base = __memblock_alloc_base(size, align, end);
45 	if (!base)
46 		return -ENOMEM;
47 
48 	/*
49 	 * Check if the allocated region fits in to start..end window
50 	 */
51 	if (base < start) {
52 		memblock_free(base, size);
53 		return -ENOMEM;
54 	}
55 
56 	*res_base = base;
57 	if (nomap)
58 		return memblock_remove(base, size);
59 	return 0;
60 }
61 #else
62 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
63 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
64 	phys_addr_t *res_base)
65 {
66 	pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
67 		  size, nomap ? " (nomap)" : "");
68 	return -ENOSYS;
69 }
70 #endif
71 
72 /**
73  * res_mem_save_node() - save fdt node for second pass initialization
74  */
75 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
76 				      phys_addr_t base, phys_addr_t size)
77 {
78 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
79 
80 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
81 		pr_err("not enough space all defined regions.\n");
82 		return;
83 	}
84 
85 	rmem->fdt_node = node;
86 	rmem->name = uname;
87 	rmem->base = base;
88 	rmem->size = size;
89 
90 	reserved_mem_count++;
91 	return;
92 }
93 
94 /**
95  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
96  *			  and 'alloc-ranges' properties
97  */
98 static int __init __reserved_mem_alloc_size(unsigned long node,
99 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
100 {
101 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
102 	phys_addr_t start = 0, end = 0;
103 	phys_addr_t base = 0, align = 0, size;
104 	int len;
105 	const __be32 *prop;
106 	int nomap;
107 	int ret;
108 
109 	prop = of_get_flat_dt_prop(node, "size", &len);
110 	if (!prop)
111 		return -EINVAL;
112 
113 	if (len != dt_root_size_cells * sizeof(__be32)) {
114 		pr_err("invalid size property in '%s' node.\n", uname);
115 		return -EINVAL;
116 	}
117 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
118 
119 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
120 
121 	prop = of_get_flat_dt_prop(node, "alignment", &len);
122 	if (prop) {
123 		if (len != dt_root_addr_cells * sizeof(__be32)) {
124 			pr_err("invalid alignment property in '%s' node.\n",
125 				uname);
126 			return -EINVAL;
127 		}
128 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
129 	}
130 
131 	/* Need adjust the alignment to satisfy the CMA requirement */
132 	if (IS_ENABLED(CONFIG_CMA)
133 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
134 	    && of_get_flat_dt_prop(node, "reusable", NULL)
135 	    && !of_get_flat_dt_prop(node, "no-map", NULL)) {
136 		unsigned long order =
137 			max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
138 
139 		align = max(align, (phys_addr_t)PAGE_SIZE << order);
140 	}
141 
142 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
143 	if (prop) {
144 
145 		if (len % t_len != 0) {
146 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
147 			       uname);
148 			return -EINVAL;
149 		}
150 
151 		base = 0;
152 
153 		while (len > 0) {
154 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
155 			end = start + dt_mem_next_cell(dt_root_size_cells,
156 						       &prop);
157 
158 			ret = early_init_dt_alloc_reserved_memory_arch(size,
159 					align, start, end, nomap, &base);
160 			if (ret == 0) {
161 				pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
162 					uname, &base,
163 					(unsigned long)size / SZ_1M);
164 				break;
165 			}
166 			len -= t_len;
167 		}
168 
169 	} else {
170 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
171 							0, 0, nomap, &base);
172 		if (ret == 0)
173 			pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
174 				uname, &base, (unsigned long)size / SZ_1M);
175 	}
176 
177 	if (base == 0) {
178 		pr_info("failed to allocate memory for node '%s'\n", uname);
179 		return -ENOMEM;
180 	}
181 
182 	*res_base = base;
183 	*res_size = size;
184 
185 	return 0;
186 }
187 
188 static const struct of_device_id __rmem_of_table_sentinel
189 	__used __section(__reservedmem_of_table_end);
190 
191 /**
192  * res_mem_init_node() - call region specific reserved memory init code
193  */
194 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
195 {
196 	extern const struct of_device_id __reservedmem_of_table[];
197 	const struct of_device_id *i;
198 
199 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
200 		reservedmem_of_init_fn initfn = i->data;
201 		const char *compat = i->compatible;
202 
203 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
204 			continue;
205 
206 		if (initfn(rmem) == 0) {
207 			pr_info("initialized node %s, compatible id %s\n",
208 				rmem->name, compat);
209 			return 0;
210 		}
211 	}
212 	return -ENOENT;
213 }
214 
215 static int __init __rmem_cmp(const void *a, const void *b)
216 {
217 	const struct reserved_mem *ra = a, *rb = b;
218 
219 	if (ra->base < rb->base)
220 		return -1;
221 
222 	if (ra->base > rb->base)
223 		return 1;
224 
225 	return 0;
226 }
227 
228 static void __init __rmem_check_for_overlap(void)
229 {
230 	int i;
231 
232 	if (reserved_mem_count < 2)
233 		return;
234 
235 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
236 	     __rmem_cmp, NULL);
237 	for (i = 0; i < reserved_mem_count - 1; i++) {
238 		struct reserved_mem *this, *next;
239 
240 		this = &reserved_mem[i];
241 		next = &reserved_mem[i + 1];
242 		if (!(this->base && next->base))
243 			continue;
244 		if (this->base + this->size > next->base) {
245 			phys_addr_t this_end, next_end;
246 
247 			this_end = this->base + this->size;
248 			next_end = next->base + next->size;
249 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
250 			       this->name, &this->base, &this_end,
251 			       next->name, &next->base, &next_end);
252 		}
253 	}
254 }
255 
256 /**
257  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
258  */
259 void __init fdt_init_reserved_mem(void)
260 {
261 	int i;
262 
263 	/* check for overlapping reserved regions */
264 	__rmem_check_for_overlap();
265 
266 	for (i = 0; i < reserved_mem_count; i++) {
267 		struct reserved_mem *rmem = &reserved_mem[i];
268 		unsigned long node = rmem->fdt_node;
269 		int len;
270 		const __be32 *prop;
271 		int err = 0;
272 
273 		prop = of_get_flat_dt_prop(node, "phandle", &len);
274 		if (!prop)
275 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
276 		if (prop)
277 			rmem->phandle = of_read_number(prop, len/4);
278 
279 		if (rmem->size == 0)
280 			err = __reserved_mem_alloc_size(node, rmem->name,
281 						 &rmem->base, &rmem->size);
282 		if (err == 0)
283 			__reserved_mem_init_node(rmem);
284 	}
285 }
286 
287 static inline struct reserved_mem *__find_rmem(struct device_node *node)
288 {
289 	unsigned int i;
290 
291 	if (!node->phandle)
292 		return NULL;
293 
294 	for (i = 0; i < reserved_mem_count; i++)
295 		if (reserved_mem[i].phandle == node->phandle)
296 			return &reserved_mem[i];
297 	return NULL;
298 }
299 
300 struct rmem_assigned_device {
301 	struct device *dev;
302 	struct reserved_mem *rmem;
303 	struct list_head list;
304 };
305 
306 static LIST_HEAD(of_rmem_assigned_device_list);
307 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
308 
309 /**
310  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
311  *					  given device
312  * @dev:	Pointer to the device to configure
313  * @np:		Pointer to the device_node with 'reserved-memory' property
314  * @idx:	Index of selected region
315  *
316  * This function assigns respective DMA-mapping operations based on reserved
317  * memory region specified by 'memory-region' property in @np node to the @dev
318  * device. When driver needs to use more than one reserved memory region, it
319  * should allocate child devices and initialize regions by name for each of
320  * child device.
321  *
322  * Returns error code or zero on success.
323  */
324 int of_reserved_mem_device_init_by_idx(struct device *dev,
325 				       struct device_node *np, int idx)
326 {
327 	struct rmem_assigned_device *rd;
328 	struct device_node *target;
329 	struct reserved_mem *rmem;
330 	int ret;
331 
332 	if (!np || !dev)
333 		return -EINVAL;
334 
335 	target = of_parse_phandle(np, "memory-region", idx);
336 	if (!target)
337 		return -ENODEV;
338 
339 	rmem = __find_rmem(target);
340 	of_node_put(target);
341 
342 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
343 		return -EINVAL;
344 
345 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
346 	if (!rd)
347 		return -ENOMEM;
348 
349 	ret = rmem->ops->device_init(rmem, dev);
350 	if (ret == 0) {
351 		rd->dev = dev;
352 		rd->rmem = rmem;
353 
354 		mutex_lock(&of_rmem_assigned_device_mutex);
355 		list_add(&rd->list, &of_rmem_assigned_device_list);
356 		mutex_unlock(&of_rmem_assigned_device_mutex);
357 		/* ensure that dma_ops is set for virtual devices
358 		 * using reserved memory
359 		 */
360 		of_dma_configure(dev, np);
361 
362 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
363 	} else {
364 		kfree(rd);
365 	}
366 
367 	return ret;
368 }
369 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
370 
371 /**
372  * of_reserved_mem_device_release() - release reserved memory device structures
373  * @dev:	Pointer to the device to deconfigure
374  *
375  * This function releases structures allocated for memory region handling for
376  * the given device.
377  */
378 void of_reserved_mem_device_release(struct device *dev)
379 {
380 	struct rmem_assigned_device *rd;
381 	struct reserved_mem *rmem = NULL;
382 
383 	mutex_lock(&of_rmem_assigned_device_mutex);
384 	list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
385 		if (rd->dev == dev) {
386 			rmem = rd->rmem;
387 			list_del(&rd->list);
388 			kfree(rd);
389 			break;
390 		}
391 	}
392 	mutex_unlock(&of_rmem_assigned_device_mutex);
393 
394 	if (!rmem || !rmem->ops || !rmem->ops->device_release)
395 		return;
396 
397 	rmem->ops->device_release(rmem, dev);
398 }
399 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
400