1 /* 2 * Derived from arch/i386/kernel/irq.c 3 * Copyright (C) 1992 Linus Torvalds 4 * Adapted from arch/i386 by Gary Thomas 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Updated and modified by Cort Dougan <cort@fsmlabs.com> 7 * Copyright (C) 1996-2001 Cort Dougan 8 * Adapted for Power Macintosh by Paul Mackerras 9 * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 * 16 * This file contains the code used to make IRQ descriptions in the 17 * device tree to actual irq numbers on an interrupt controller 18 * driver. 19 */ 20 21 #include <linux/device.h> 22 #include <linux/errno.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_irq.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 30 /** 31 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space 32 * @dev: Device node of the device whose interrupt is to be mapped 33 * @index: Index of the interrupt to map 34 * 35 * This function is a wrapper that chains of_irq_parse_one() and 36 * irq_create_of_mapping() to make things easier to callers 37 */ 38 unsigned int irq_of_parse_and_map(struct device_node *dev, int index) 39 { 40 struct of_phandle_args oirq; 41 42 if (of_irq_parse_one(dev, index, &oirq)) 43 return 0; 44 45 return irq_create_of_mapping(&oirq); 46 } 47 EXPORT_SYMBOL_GPL(irq_of_parse_and_map); 48 49 /** 50 * of_irq_find_parent - Given a device node, find its interrupt parent node 51 * @child: pointer to device node 52 * 53 * Returns a pointer to the interrupt parent node, or NULL if the interrupt 54 * parent could not be determined. 55 */ 56 struct device_node *of_irq_find_parent(struct device_node *child) 57 { 58 struct device_node *p; 59 const __be32 *parp; 60 61 if (!of_node_get(child)) 62 return NULL; 63 64 do { 65 parp = of_get_property(child, "interrupt-parent", NULL); 66 if (parp == NULL) 67 p = of_get_parent(child); 68 else { 69 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) 70 p = of_node_get(of_irq_dflt_pic); 71 else 72 p = of_find_node_by_phandle(be32_to_cpup(parp)); 73 } 74 of_node_put(child); 75 child = p; 76 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL); 77 78 return p; 79 } 80 81 /** 82 * of_irq_parse_raw - Low level interrupt tree parsing 83 * @parent: the device interrupt parent 84 * @addr: address specifier (start of "reg" property of the device) in be32 format 85 * @out_irq: structure of_irq updated by this function 86 * 87 * Returns 0 on success and a negative number on error 88 * 89 * This function is a low-level interrupt tree walking function. It 90 * can be used to do a partial walk with synthetized reg and interrupts 91 * properties, for example when resolving PCI interrupts when no device 92 * node exist for the parent. It takes an interrupt specifier structure as 93 * input, walks the tree looking for any interrupt-map properties, translates 94 * the specifier for each map, and then returns the translated map. 95 */ 96 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq) 97 { 98 struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL; 99 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 100 const __be32 *match_array = initial_match_array; 101 const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 102 u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0; 103 int imaplen, match, i; 104 105 #ifdef DEBUG 106 of_print_phandle_args("of_irq_parse_raw: ", out_irq); 107 #endif 108 109 ipar = of_node_get(out_irq->np); 110 111 /* First get the #interrupt-cells property of the current cursor 112 * that tells us how to interpret the passed-in intspec. If there 113 * is none, we are nice and just walk up the tree 114 */ 115 do { 116 tmp = of_get_property(ipar, "#interrupt-cells", NULL); 117 if (tmp != NULL) { 118 intsize = be32_to_cpu(*tmp); 119 break; 120 } 121 tnode = ipar; 122 ipar = of_irq_find_parent(ipar); 123 of_node_put(tnode); 124 } while (ipar); 125 if (ipar == NULL) { 126 pr_debug(" -> no parent found !\n"); 127 goto fail; 128 } 129 130 pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize); 131 132 if (out_irq->args_count != intsize) 133 return -EINVAL; 134 135 /* Look for this #address-cells. We have to implement the old linux 136 * trick of looking for the parent here as some device-trees rely on it 137 */ 138 old = of_node_get(ipar); 139 do { 140 tmp = of_get_property(old, "#address-cells", NULL); 141 tnode = of_get_parent(old); 142 of_node_put(old); 143 old = tnode; 144 } while (old && tmp == NULL); 145 of_node_put(old); 146 old = NULL; 147 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp); 148 149 pr_debug(" -> addrsize=%d\n", addrsize); 150 151 /* Range check so that the temporary buffer doesn't overflow */ 152 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) 153 goto fail; 154 155 /* Precalculate the match array - this simplifies match loop */ 156 for (i = 0; i < addrsize; i++) 157 initial_match_array[i] = addr ? addr[i] : 0; 158 for (i = 0; i < intsize; i++) 159 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]); 160 161 /* Now start the actual "proper" walk of the interrupt tree */ 162 while (ipar != NULL) { 163 /* Now check if cursor is an interrupt-controller and if it is 164 * then we are done 165 */ 166 if (of_get_property(ipar, "interrupt-controller", NULL) != 167 NULL) { 168 pr_debug(" -> got it !\n"); 169 return 0; 170 } 171 172 /* 173 * interrupt-map parsing does not work without a reg 174 * property when #address-cells != 0 175 */ 176 if (addrsize && !addr) { 177 pr_debug(" -> no reg passed in when needed !\n"); 178 goto fail; 179 } 180 181 /* Now look for an interrupt-map */ 182 imap = of_get_property(ipar, "interrupt-map", &imaplen); 183 /* No interrupt map, check for an interrupt parent */ 184 if (imap == NULL) { 185 pr_debug(" -> no map, getting parent\n"); 186 newpar = of_irq_find_parent(ipar); 187 goto skiplevel; 188 } 189 imaplen /= sizeof(u32); 190 191 /* Look for a mask */ 192 imask = of_get_property(ipar, "interrupt-map-mask", NULL); 193 if (!imask) 194 imask = dummy_imask; 195 196 /* Parse interrupt-map */ 197 match = 0; 198 while (imaplen > (addrsize + intsize + 1) && !match) { 199 /* Compare specifiers */ 200 match = 1; 201 for (i = 0; i < (addrsize + intsize); i++, imaplen--) 202 match &= !((match_array[i] ^ *imap++) & imask[i]); 203 204 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen); 205 206 /* Get the interrupt parent */ 207 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) 208 newpar = of_node_get(of_irq_dflt_pic); 209 else 210 newpar = of_find_node_by_phandle(be32_to_cpup(imap)); 211 imap++; 212 --imaplen; 213 214 /* Check if not found */ 215 if (newpar == NULL) { 216 pr_debug(" -> imap parent not found !\n"); 217 goto fail; 218 } 219 220 if (!of_device_is_available(newpar)) 221 match = 0; 222 223 /* Get #interrupt-cells and #address-cells of new 224 * parent 225 */ 226 tmp = of_get_property(newpar, "#interrupt-cells", NULL); 227 if (tmp == NULL) { 228 pr_debug(" -> parent lacks #interrupt-cells!\n"); 229 goto fail; 230 } 231 newintsize = be32_to_cpu(*tmp); 232 tmp = of_get_property(newpar, "#address-cells", NULL); 233 newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp); 234 235 pr_debug(" -> newintsize=%d, newaddrsize=%d\n", 236 newintsize, newaddrsize); 237 238 /* Check for malformed properties */ 239 if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS)) 240 goto fail; 241 if (imaplen < (newaddrsize + newintsize)) 242 goto fail; 243 244 imap += newaddrsize + newintsize; 245 imaplen -= newaddrsize + newintsize; 246 247 pr_debug(" -> imaplen=%d\n", imaplen); 248 } 249 if (!match) 250 goto fail; 251 252 /* 253 * Successfully parsed an interrrupt-map translation; copy new 254 * interrupt specifier into the out_irq structure 255 */ 256 match_array = imap - newaddrsize - newintsize; 257 for (i = 0; i < newintsize; i++) 258 out_irq->args[i] = be32_to_cpup(imap - newintsize + i); 259 out_irq->args_count = intsize = newintsize; 260 addrsize = newaddrsize; 261 262 skiplevel: 263 /* Iterate again with new parent */ 264 out_irq->np = newpar; 265 pr_debug(" -> new parent: %s\n", of_node_full_name(newpar)); 266 of_node_put(ipar); 267 ipar = newpar; 268 newpar = NULL; 269 } 270 fail: 271 of_node_put(ipar); 272 of_node_put(newpar); 273 274 return -EINVAL; 275 } 276 EXPORT_SYMBOL_GPL(of_irq_parse_raw); 277 278 /** 279 * of_irq_parse_one - Resolve an interrupt for a device 280 * @device: the device whose interrupt is to be resolved 281 * @index: index of the interrupt to resolve 282 * @out_irq: structure of_irq filled by this function 283 * 284 * This function resolves an interrupt for a node by walking the interrupt tree, 285 * finding which interrupt controller node it is attached to, and returning the 286 * interrupt specifier that can be used to retrieve a Linux IRQ number. 287 */ 288 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq) 289 { 290 struct device_node *p; 291 const __be32 *intspec, *tmp, *addr; 292 u32 intsize, intlen; 293 int i, res; 294 295 pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index); 296 297 /* OldWorld mac stuff is "special", handle out of line */ 298 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC) 299 return of_irq_parse_oldworld(device, index, out_irq); 300 301 /* Get the reg property (if any) */ 302 addr = of_get_property(device, "reg", NULL); 303 304 /* Try the new-style interrupts-extended first */ 305 res = of_parse_phandle_with_args(device, "interrupts-extended", 306 "#interrupt-cells", index, out_irq); 307 if (!res) 308 return of_irq_parse_raw(addr, out_irq); 309 310 /* Get the interrupts property */ 311 intspec = of_get_property(device, "interrupts", &intlen); 312 if (intspec == NULL) 313 return -EINVAL; 314 315 intlen /= sizeof(*intspec); 316 317 pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen); 318 319 /* Look for the interrupt parent. */ 320 p = of_irq_find_parent(device); 321 if (p == NULL) 322 return -EINVAL; 323 324 /* Get size of interrupt specifier */ 325 tmp = of_get_property(p, "#interrupt-cells", NULL); 326 if (tmp == NULL) { 327 res = -EINVAL; 328 goto out; 329 } 330 intsize = be32_to_cpu(*tmp); 331 332 pr_debug(" intsize=%d intlen=%d\n", intsize, intlen); 333 334 /* Check index */ 335 if ((index + 1) * intsize > intlen) { 336 res = -EINVAL; 337 goto out; 338 } 339 340 /* Copy intspec into irq structure */ 341 intspec += index * intsize; 342 out_irq->np = p; 343 out_irq->args_count = intsize; 344 for (i = 0; i < intsize; i++) 345 out_irq->args[i] = be32_to_cpup(intspec++); 346 347 /* Check if there are any interrupt-map translations to process */ 348 res = of_irq_parse_raw(addr, out_irq); 349 out: 350 of_node_put(p); 351 return res; 352 } 353 EXPORT_SYMBOL_GPL(of_irq_parse_one); 354 355 /** 356 * of_irq_to_resource - Decode a node's IRQ and return it as a resource 357 * @dev: pointer to device tree node 358 * @index: zero-based index of the irq 359 * @r: pointer to resource structure to return result into. 360 */ 361 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r) 362 { 363 int irq = irq_of_parse_and_map(dev, index); 364 365 /* Only dereference the resource if both the 366 * resource and the irq are valid. */ 367 if (r && irq) { 368 const char *name = NULL; 369 370 memset(r, 0, sizeof(*r)); 371 /* 372 * Get optional "interrupt-names" property to add a name 373 * to the resource. 374 */ 375 of_property_read_string_index(dev, "interrupt-names", index, 376 &name); 377 378 r->start = r->end = irq; 379 r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq)); 380 r->name = name ? name : of_node_full_name(dev); 381 } 382 383 return irq; 384 } 385 EXPORT_SYMBOL_GPL(of_irq_to_resource); 386 387 /** 388 * of_irq_get - Decode a node's IRQ and return it as a Linux irq number 389 * @dev: pointer to device tree node 390 * @index: zero-based index of the irq 391 * 392 * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain 393 * is not yet created. 394 * 395 */ 396 int of_irq_get(struct device_node *dev, int index) 397 { 398 int rc; 399 struct of_phandle_args oirq; 400 struct irq_domain *domain; 401 402 rc = of_irq_parse_one(dev, index, &oirq); 403 if (rc) 404 return rc; 405 406 domain = irq_find_host(oirq.np); 407 if (!domain) 408 return -EPROBE_DEFER; 409 410 return irq_create_of_mapping(&oirq); 411 } 412 EXPORT_SYMBOL_GPL(of_irq_get); 413 414 /** 415 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux irq number 416 * @dev: pointer to device tree node 417 * @name: irq name 418 * 419 * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain 420 * is not yet created, or error code in case of any other failure. 421 */ 422 int of_irq_get_byname(struct device_node *dev, const char *name) 423 { 424 int index; 425 426 if (unlikely(!name)) 427 return -EINVAL; 428 429 index = of_property_match_string(dev, "interrupt-names", name); 430 if (index < 0) 431 return index; 432 433 return of_irq_get(dev, index); 434 } 435 EXPORT_SYMBOL_GPL(of_irq_get_byname); 436 437 /** 438 * of_irq_count - Count the number of IRQs a node uses 439 * @dev: pointer to device tree node 440 */ 441 int of_irq_count(struct device_node *dev) 442 { 443 struct of_phandle_args irq; 444 int nr = 0; 445 446 while (of_irq_parse_one(dev, nr, &irq) == 0) 447 nr++; 448 449 return nr; 450 } 451 452 /** 453 * of_irq_to_resource_table - Fill in resource table with node's IRQ info 454 * @dev: pointer to device tree node 455 * @res: array of resources to fill in 456 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements) 457 * 458 * Returns the size of the filled in table (up to @nr_irqs). 459 */ 460 int of_irq_to_resource_table(struct device_node *dev, struct resource *res, 461 int nr_irqs) 462 { 463 int i; 464 465 for (i = 0; i < nr_irqs; i++, res++) 466 if (!of_irq_to_resource(dev, i, res)) 467 break; 468 469 return i; 470 } 471 EXPORT_SYMBOL_GPL(of_irq_to_resource_table); 472 473 struct of_intc_desc { 474 struct list_head list; 475 struct device_node *dev; 476 struct device_node *interrupt_parent; 477 }; 478 479 /** 480 * of_irq_init - Scan and init matching interrupt controllers in DT 481 * @matches: 0 terminated array of nodes to match and init function to call 482 * 483 * This function scans the device tree for matching interrupt controller nodes, 484 * and calls their initialization functions in order with parents first. 485 */ 486 void __init of_irq_init(const struct of_device_id *matches) 487 { 488 struct device_node *np, *parent = NULL; 489 struct of_intc_desc *desc, *temp_desc; 490 struct list_head intc_desc_list, intc_parent_list; 491 492 INIT_LIST_HEAD(&intc_desc_list); 493 INIT_LIST_HEAD(&intc_parent_list); 494 495 for_each_matching_node(np, matches) { 496 if (!of_find_property(np, "interrupt-controller", NULL) || 497 !of_device_is_available(np)) 498 continue; 499 /* 500 * Here, we allocate and populate an of_intc_desc with the node 501 * pointer, interrupt-parent device_node etc. 502 */ 503 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 504 if (WARN_ON(!desc)) 505 goto err; 506 507 desc->dev = np; 508 desc->interrupt_parent = of_irq_find_parent(np); 509 if (desc->interrupt_parent == np) 510 desc->interrupt_parent = NULL; 511 list_add_tail(&desc->list, &intc_desc_list); 512 } 513 514 /* 515 * The root irq controller is the one without an interrupt-parent. 516 * That one goes first, followed by the controllers that reference it, 517 * followed by the ones that reference the 2nd level controllers, etc. 518 */ 519 while (!list_empty(&intc_desc_list)) { 520 /* 521 * Process all controllers with the current 'parent'. 522 * First pass will be looking for NULL as the parent. 523 * The assumption is that NULL parent means a root controller. 524 */ 525 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 526 const struct of_device_id *match; 527 int ret; 528 of_irq_init_cb_t irq_init_cb; 529 530 if (desc->interrupt_parent != parent) 531 continue; 532 533 list_del(&desc->list); 534 match = of_match_node(matches, desc->dev); 535 if (WARN(!match->data, 536 "of_irq_init: no init function for %s\n", 537 match->compatible)) { 538 kfree(desc); 539 continue; 540 } 541 542 pr_debug("of_irq_init: init %s @ %p, parent %p\n", 543 match->compatible, 544 desc->dev, desc->interrupt_parent); 545 irq_init_cb = (of_irq_init_cb_t)match->data; 546 ret = irq_init_cb(desc->dev, desc->interrupt_parent); 547 if (ret) { 548 kfree(desc); 549 continue; 550 } 551 552 /* 553 * This one is now set up; add it to the parent list so 554 * its children can get processed in a subsequent pass. 555 */ 556 list_add_tail(&desc->list, &intc_parent_list); 557 } 558 559 /* Get the next pending parent that might have children */ 560 desc = list_first_entry_or_null(&intc_parent_list, 561 typeof(*desc), list); 562 if (!desc) { 563 pr_err("of_irq_init: children remain, but no parents\n"); 564 break; 565 } 566 list_del(&desc->list); 567 parent = desc->dev; 568 kfree(desc); 569 } 570 571 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) { 572 list_del(&desc->list); 573 kfree(desc); 574 } 575 err: 576 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 577 list_del(&desc->list); 578 kfree(desc); 579 } 580 } 581 582 /** 583 * of_msi_configure - Set the msi_domain field of a device 584 * @dev: device structure to associate with an MSI irq domain 585 * @np: device node for that device 586 */ 587 void of_msi_configure(struct device *dev, struct device_node *np) 588 { 589 struct device_node *msi_np; 590 struct irq_domain *d; 591 592 msi_np = of_parse_phandle(np, "msi-parent", 0); 593 if (!msi_np) 594 return; 595 596 d = irq_find_matching_host(msi_np, DOMAIN_BUS_PLATFORM_MSI); 597 if (!d) 598 d = irq_find_host(msi_np); 599 dev_set_msi_domain(dev, d); 600 } 601