xref: /openbmc/linux/drivers/of/irq.c (revision 842b6b16)
1 /*
2  *  Derived from arch/i386/kernel/irq.c
3  *    Copyright (C) 1992 Linus Torvalds
4  *  Adapted from arch/i386 by Gary Thomas
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  *  Updated and modified by Cort Dougan <cort@fsmlabs.com>
7  *    Copyright (C) 1996-2001 Cort Dougan
8  *  Adapted for Power Macintosh by Paul Mackerras
9  *    Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  *
16  * This file contains the code used to make IRQ descriptions in the
17  * device tree to actual irq numbers on an interrupt controller
18  * driver.
19  */
20 
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 
30 /**
31  * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
32  * @dev: Device node of the device whose interrupt is to be mapped
33  * @index: Index of the interrupt to map
34  *
35  * This function is a wrapper that chains of_irq_parse_one() and
36  * irq_create_of_mapping() to make things easier to callers
37  */
38 unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
39 {
40 	struct of_phandle_args oirq;
41 
42 	if (of_irq_parse_one(dev, index, &oirq))
43 		return 0;
44 
45 	return irq_create_of_mapping(&oirq);
46 }
47 EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
48 
49 /**
50  * of_irq_find_parent - Given a device node, find its interrupt parent node
51  * @child: pointer to device node
52  *
53  * Returns a pointer to the interrupt parent node, or NULL if the interrupt
54  * parent could not be determined.
55  */
56 struct device_node *of_irq_find_parent(struct device_node *child)
57 {
58 	struct device_node *p;
59 	const __be32 *parp;
60 
61 	if (!of_node_get(child))
62 		return NULL;
63 
64 	do {
65 		parp = of_get_property(child, "interrupt-parent", NULL);
66 		if (parp == NULL)
67 			p = of_get_parent(child);
68 		else {
69 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
70 				p = of_node_get(of_irq_dflt_pic);
71 			else
72 				p = of_find_node_by_phandle(be32_to_cpup(parp));
73 		}
74 		of_node_put(child);
75 		child = p;
76 	} while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
77 
78 	return p;
79 }
80 EXPORT_SYMBOL_GPL(of_irq_find_parent);
81 
82 /**
83  * of_irq_parse_raw - Low level interrupt tree parsing
84  * @parent:	the device interrupt parent
85  * @addr:	address specifier (start of "reg" property of the device) in be32 format
86  * @out_irq:	structure of_irq updated by this function
87  *
88  * Returns 0 on success and a negative number on error
89  *
90  * This function is a low-level interrupt tree walking function. It
91  * can be used to do a partial walk with synthetized reg and interrupts
92  * properties, for example when resolving PCI interrupts when no device
93  * node exist for the parent. It takes an interrupt specifier structure as
94  * input, walks the tree looking for any interrupt-map properties, translates
95  * the specifier for each map, and then returns the translated map.
96  */
97 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
98 {
99 	struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
100 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
101 	const __be32 *match_array = initial_match_array;
102 	const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
103 	u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
104 	int imaplen, match, i;
105 
106 #ifdef DEBUG
107 	of_print_phandle_args("of_irq_parse_raw: ", out_irq);
108 #endif
109 
110 	ipar = of_node_get(out_irq->np);
111 
112 	/* First get the #interrupt-cells property of the current cursor
113 	 * that tells us how to interpret the passed-in intspec. If there
114 	 * is none, we are nice and just walk up the tree
115 	 */
116 	do {
117 		tmp = of_get_property(ipar, "#interrupt-cells", NULL);
118 		if (tmp != NULL) {
119 			intsize = be32_to_cpu(*tmp);
120 			break;
121 		}
122 		tnode = ipar;
123 		ipar = of_irq_find_parent(ipar);
124 		of_node_put(tnode);
125 	} while (ipar);
126 	if (ipar == NULL) {
127 		pr_debug(" -> no parent found !\n");
128 		goto fail;
129 	}
130 
131 	pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize);
132 
133 	if (out_irq->args_count != intsize)
134 		return -EINVAL;
135 
136 	/* Look for this #address-cells. We have to implement the old linux
137 	 * trick of looking for the parent here as some device-trees rely on it
138 	 */
139 	old = of_node_get(ipar);
140 	do {
141 		tmp = of_get_property(old, "#address-cells", NULL);
142 		tnode = of_get_parent(old);
143 		of_node_put(old);
144 		old = tnode;
145 	} while (old && tmp == NULL);
146 	of_node_put(old);
147 	old = NULL;
148 	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
149 
150 	pr_debug(" -> addrsize=%d\n", addrsize);
151 
152 	/* Range check so that the temporary buffer doesn't overflow */
153 	if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS))
154 		goto fail;
155 
156 	/* Precalculate the match array - this simplifies match loop */
157 	for (i = 0; i < addrsize; i++)
158 		initial_match_array[i] = addr ? addr[i] : 0;
159 	for (i = 0; i < intsize; i++)
160 		initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
161 
162 	/* Now start the actual "proper" walk of the interrupt tree */
163 	while (ipar != NULL) {
164 		/* Now check if cursor is an interrupt-controller and if it is
165 		 * then we are done
166 		 */
167 		if (of_get_property(ipar, "interrupt-controller", NULL) !=
168 				NULL) {
169 			pr_debug(" -> got it !\n");
170 			return 0;
171 		}
172 
173 		/*
174 		 * interrupt-map parsing does not work without a reg
175 		 * property when #address-cells != 0
176 		 */
177 		if (addrsize && !addr) {
178 			pr_debug(" -> no reg passed in when needed !\n");
179 			goto fail;
180 		}
181 
182 		/* Now look for an interrupt-map */
183 		imap = of_get_property(ipar, "interrupt-map", &imaplen);
184 		/* No interrupt map, check for an interrupt parent */
185 		if (imap == NULL) {
186 			pr_debug(" -> no map, getting parent\n");
187 			newpar = of_irq_find_parent(ipar);
188 			goto skiplevel;
189 		}
190 		imaplen /= sizeof(u32);
191 
192 		/* Look for a mask */
193 		imask = of_get_property(ipar, "interrupt-map-mask", NULL);
194 		if (!imask)
195 			imask = dummy_imask;
196 
197 		/* Parse interrupt-map */
198 		match = 0;
199 		while (imaplen > (addrsize + intsize + 1) && !match) {
200 			/* Compare specifiers */
201 			match = 1;
202 			for (i = 0; i < (addrsize + intsize); i++, imaplen--)
203 				match &= !((match_array[i] ^ *imap++) & imask[i]);
204 
205 			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
206 
207 			/* Get the interrupt parent */
208 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
209 				newpar = of_node_get(of_irq_dflt_pic);
210 			else
211 				newpar = of_find_node_by_phandle(be32_to_cpup(imap));
212 			imap++;
213 			--imaplen;
214 
215 			/* Check if not found */
216 			if (newpar == NULL) {
217 				pr_debug(" -> imap parent not found !\n");
218 				goto fail;
219 			}
220 
221 			if (!of_device_is_available(newpar))
222 				match = 0;
223 
224 			/* Get #interrupt-cells and #address-cells of new
225 			 * parent
226 			 */
227 			tmp = of_get_property(newpar, "#interrupt-cells", NULL);
228 			if (tmp == NULL) {
229 				pr_debug(" -> parent lacks #interrupt-cells!\n");
230 				goto fail;
231 			}
232 			newintsize = be32_to_cpu(*tmp);
233 			tmp = of_get_property(newpar, "#address-cells", NULL);
234 			newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
235 
236 			pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
237 			    newintsize, newaddrsize);
238 
239 			/* Check for malformed properties */
240 			if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS))
241 				goto fail;
242 			if (imaplen < (newaddrsize + newintsize))
243 				goto fail;
244 
245 			imap += newaddrsize + newintsize;
246 			imaplen -= newaddrsize + newintsize;
247 
248 			pr_debug(" -> imaplen=%d\n", imaplen);
249 		}
250 		if (!match)
251 			goto fail;
252 
253 		/*
254 		 * Successfully parsed an interrrupt-map translation; copy new
255 		 * interrupt specifier into the out_irq structure
256 		 */
257 		match_array = imap - newaddrsize - newintsize;
258 		for (i = 0; i < newintsize; i++)
259 			out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
260 		out_irq->args_count = intsize = newintsize;
261 		addrsize = newaddrsize;
262 
263 	skiplevel:
264 		/* Iterate again with new parent */
265 		out_irq->np = newpar;
266 		pr_debug(" -> new parent: %s\n", of_node_full_name(newpar));
267 		of_node_put(ipar);
268 		ipar = newpar;
269 		newpar = NULL;
270 	}
271  fail:
272 	of_node_put(ipar);
273 	of_node_put(newpar);
274 
275 	return -EINVAL;
276 }
277 EXPORT_SYMBOL_GPL(of_irq_parse_raw);
278 
279 /**
280  * of_irq_parse_one - Resolve an interrupt for a device
281  * @device: the device whose interrupt is to be resolved
282  * @index: index of the interrupt to resolve
283  * @out_irq: structure of_irq filled by this function
284  *
285  * This function resolves an interrupt for a node by walking the interrupt tree,
286  * finding which interrupt controller node it is attached to, and returning the
287  * interrupt specifier that can be used to retrieve a Linux IRQ number.
288  */
289 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
290 {
291 	struct device_node *p;
292 	const __be32 *intspec, *tmp, *addr;
293 	u32 intsize, intlen;
294 	int i, res;
295 
296 	pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index);
297 
298 	/* OldWorld mac stuff is "special", handle out of line */
299 	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
300 		return of_irq_parse_oldworld(device, index, out_irq);
301 
302 	/* Get the reg property (if any) */
303 	addr = of_get_property(device, "reg", NULL);
304 
305 	/* Try the new-style interrupts-extended first */
306 	res = of_parse_phandle_with_args(device, "interrupts-extended",
307 					"#interrupt-cells", index, out_irq);
308 	if (!res)
309 		return of_irq_parse_raw(addr, out_irq);
310 
311 	/* Get the interrupts property */
312 	intspec = of_get_property(device, "interrupts", &intlen);
313 	if (intspec == NULL)
314 		return -EINVAL;
315 
316 	intlen /= sizeof(*intspec);
317 
318 	pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
319 
320 	/* Look for the interrupt parent. */
321 	p = of_irq_find_parent(device);
322 	if (p == NULL)
323 		return -EINVAL;
324 
325 	/* Get size of interrupt specifier */
326 	tmp = of_get_property(p, "#interrupt-cells", NULL);
327 	if (tmp == NULL) {
328 		res = -EINVAL;
329 		goto out;
330 	}
331 	intsize = be32_to_cpu(*tmp);
332 
333 	pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);
334 
335 	/* Check index */
336 	if ((index + 1) * intsize > intlen) {
337 		res = -EINVAL;
338 		goto out;
339 	}
340 
341 	/* Copy intspec into irq structure */
342 	intspec += index * intsize;
343 	out_irq->np = p;
344 	out_irq->args_count = intsize;
345 	for (i = 0; i < intsize; i++)
346 		out_irq->args[i] = be32_to_cpup(intspec++);
347 
348 	/* Check if there are any interrupt-map translations to process */
349 	res = of_irq_parse_raw(addr, out_irq);
350  out:
351 	of_node_put(p);
352 	return res;
353 }
354 EXPORT_SYMBOL_GPL(of_irq_parse_one);
355 
356 /**
357  * of_irq_to_resource - Decode a node's IRQ and return it as a resource
358  * @dev: pointer to device tree node
359  * @index: zero-based index of the irq
360  * @r: pointer to resource structure to return result into.
361  */
362 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
363 {
364 	int irq = irq_of_parse_and_map(dev, index);
365 
366 	/* Only dereference the resource if both the
367 	 * resource and the irq are valid. */
368 	if (r && irq) {
369 		const char *name = NULL;
370 
371 		memset(r, 0, sizeof(*r));
372 		/*
373 		 * Get optional "interrupt-names" property to add a name
374 		 * to the resource.
375 		 */
376 		of_property_read_string_index(dev, "interrupt-names", index,
377 					      &name);
378 
379 		r->start = r->end = irq;
380 		r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
381 		r->name = name ? name : of_node_full_name(dev);
382 	}
383 
384 	return irq;
385 }
386 EXPORT_SYMBOL_GPL(of_irq_to_resource);
387 
388 /**
389  * of_irq_get - Decode a node's IRQ and return it as a Linux irq number
390  * @dev: pointer to device tree node
391  * @index: zero-based index of the irq
392  *
393  * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain
394  * is not yet created.
395  *
396  */
397 int of_irq_get(struct device_node *dev, int index)
398 {
399 	int rc;
400 	struct of_phandle_args oirq;
401 	struct irq_domain *domain;
402 
403 	rc = of_irq_parse_one(dev, index, &oirq);
404 	if (rc)
405 		return rc;
406 
407 	domain = irq_find_host(oirq.np);
408 	if (!domain)
409 		return -EPROBE_DEFER;
410 
411 	return irq_create_of_mapping(&oirq);
412 }
413 EXPORT_SYMBOL_GPL(of_irq_get);
414 
415 /**
416  * of_irq_get_byname - Decode a node's IRQ and return it as a Linux irq number
417  * @dev: pointer to device tree node
418  * @name: irq name
419  *
420  * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain
421  * is not yet created, or error code in case of any other failure.
422  */
423 int of_irq_get_byname(struct device_node *dev, const char *name)
424 {
425 	int index;
426 
427 	if (unlikely(!name))
428 		return -EINVAL;
429 
430 	index = of_property_match_string(dev, "interrupt-names", name);
431 	if (index < 0)
432 		return index;
433 
434 	return of_irq_get(dev, index);
435 }
436 EXPORT_SYMBOL_GPL(of_irq_get_byname);
437 
438 /**
439  * of_irq_count - Count the number of IRQs a node uses
440  * @dev: pointer to device tree node
441  */
442 int of_irq_count(struct device_node *dev)
443 {
444 	struct of_phandle_args irq;
445 	int nr = 0;
446 
447 	while (of_irq_parse_one(dev, nr, &irq) == 0)
448 		nr++;
449 
450 	return nr;
451 }
452 
453 /**
454  * of_irq_to_resource_table - Fill in resource table with node's IRQ info
455  * @dev: pointer to device tree node
456  * @res: array of resources to fill in
457  * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
458  *
459  * Returns the size of the filled in table (up to @nr_irqs).
460  */
461 int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
462 		int nr_irqs)
463 {
464 	int i;
465 
466 	for (i = 0; i < nr_irqs; i++, res++)
467 		if (!of_irq_to_resource(dev, i, res))
468 			break;
469 
470 	return i;
471 }
472 EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
473 
474 struct of_intc_desc {
475 	struct list_head	list;
476 	struct device_node	*dev;
477 	struct device_node	*interrupt_parent;
478 };
479 
480 /**
481  * of_irq_init - Scan and init matching interrupt controllers in DT
482  * @matches: 0 terminated array of nodes to match and init function to call
483  *
484  * This function scans the device tree for matching interrupt controller nodes,
485  * and calls their initialization functions in order with parents first.
486  */
487 void __init of_irq_init(const struct of_device_id *matches)
488 {
489 	struct device_node *np, *parent = NULL;
490 	struct of_intc_desc *desc, *temp_desc;
491 	struct list_head intc_desc_list, intc_parent_list;
492 
493 	INIT_LIST_HEAD(&intc_desc_list);
494 	INIT_LIST_HEAD(&intc_parent_list);
495 
496 	for_each_matching_node(np, matches) {
497 		if (!of_find_property(np, "interrupt-controller", NULL) ||
498 				!of_device_is_available(np))
499 			continue;
500 		/*
501 		 * Here, we allocate and populate an of_intc_desc with the node
502 		 * pointer, interrupt-parent device_node etc.
503 		 */
504 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
505 		if (WARN_ON(!desc)) {
506 			of_node_put(np);
507 			goto err;
508 		}
509 
510 		desc->dev = of_node_get(np);
511 		desc->interrupt_parent = of_irq_find_parent(np);
512 		if (desc->interrupt_parent == np)
513 			desc->interrupt_parent = NULL;
514 		list_add_tail(&desc->list, &intc_desc_list);
515 	}
516 
517 	/*
518 	 * The root irq controller is the one without an interrupt-parent.
519 	 * That one goes first, followed by the controllers that reference it,
520 	 * followed by the ones that reference the 2nd level controllers, etc.
521 	 */
522 	while (!list_empty(&intc_desc_list)) {
523 		/*
524 		 * Process all controllers with the current 'parent'.
525 		 * First pass will be looking for NULL as the parent.
526 		 * The assumption is that NULL parent means a root controller.
527 		 */
528 		list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
529 			const struct of_device_id *match;
530 			int ret;
531 			of_irq_init_cb_t irq_init_cb;
532 
533 			if (desc->interrupt_parent != parent)
534 				continue;
535 
536 			list_del(&desc->list);
537 			match = of_match_node(matches, desc->dev);
538 			if (WARN(!match->data,
539 			    "of_irq_init: no init function for %s\n",
540 			    match->compatible)) {
541 				kfree(desc);
542 				continue;
543 			}
544 
545 			pr_debug("of_irq_init: init %s @ %p, parent %p\n",
546 				 match->compatible,
547 				 desc->dev, desc->interrupt_parent);
548 			irq_init_cb = (of_irq_init_cb_t)match->data;
549 			ret = irq_init_cb(desc->dev, desc->interrupt_parent);
550 			if (ret) {
551 				kfree(desc);
552 				continue;
553 			}
554 
555 			/*
556 			 * This one is now set up; add it to the parent list so
557 			 * its children can get processed in a subsequent pass.
558 			 */
559 			list_add_tail(&desc->list, &intc_parent_list);
560 		}
561 
562 		/* Get the next pending parent that might have children */
563 		desc = list_first_entry_or_null(&intc_parent_list,
564 						typeof(*desc), list);
565 		if (!desc) {
566 			pr_err("of_irq_init: children remain, but no parents\n");
567 			break;
568 		}
569 		list_del(&desc->list);
570 		parent = desc->dev;
571 		kfree(desc);
572 	}
573 
574 	list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
575 		list_del(&desc->list);
576 		kfree(desc);
577 	}
578 err:
579 	list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
580 		list_del(&desc->list);
581 		of_node_put(desc->dev);
582 		kfree(desc);
583 	}
584 }
585 
586 static u32 __of_msi_map_rid(struct device *dev, struct device_node **np,
587 			    u32 rid_in)
588 {
589 	struct device *parent_dev;
590 	struct device_node *msi_controller_node;
591 	struct device_node *msi_np = *np;
592 	u32 map_mask, masked_rid, rid_base, msi_base, rid_len, phandle;
593 	int msi_map_len;
594 	bool matched;
595 	u32 rid_out = rid_in;
596 	const __be32 *msi_map = NULL;
597 
598 	/*
599 	 * Walk up the device parent links looking for one with a
600 	 * "msi-map" property.
601 	 */
602 	for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent) {
603 		if (!parent_dev->of_node)
604 			continue;
605 
606 		msi_map = of_get_property(parent_dev->of_node,
607 					  "msi-map", &msi_map_len);
608 		if (!msi_map)
609 			continue;
610 
611 		if (msi_map_len % (4 * sizeof(__be32))) {
612 			dev_err(parent_dev, "Error: Bad msi-map length: %d\n",
613 				msi_map_len);
614 			return rid_out;
615 		}
616 		/* We have a good parent_dev and msi_map, let's use them. */
617 		break;
618 	}
619 	if (!msi_map)
620 		return rid_out;
621 
622 	/* The default is to select all bits. */
623 	map_mask = 0xffffffff;
624 
625 	/*
626 	 * Can be overridden by "msi-map-mask" property.  If
627 	 * of_property_read_u32() fails, the default is used.
628 	 */
629 	of_property_read_u32(parent_dev->of_node, "msi-map-mask", &map_mask);
630 
631 	masked_rid = map_mask & rid_in;
632 	matched = false;
633 	while (!matched && msi_map_len >= 4 * sizeof(__be32)) {
634 		rid_base = be32_to_cpup(msi_map + 0);
635 		phandle = be32_to_cpup(msi_map + 1);
636 		msi_base = be32_to_cpup(msi_map + 2);
637 		rid_len = be32_to_cpup(msi_map + 3);
638 
639 		msi_controller_node = of_find_node_by_phandle(phandle);
640 
641 		matched = (masked_rid >= rid_base &&
642 			   masked_rid < rid_base + rid_len);
643 		if (msi_np)
644 			matched &= msi_np == msi_controller_node;
645 
646 		if (matched && !msi_np) {
647 			*np = msi_np = msi_controller_node;
648 			break;
649 		}
650 
651 		of_node_put(msi_controller_node);
652 		msi_map_len -= 4 * sizeof(__be32);
653 		msi_map += 4;
654 	}
655 	if (!matched)
656 		return rid_out;
657 
658 	rid_out = masked_rid + msi_base;
659 	dev_dbg(dev,
660 		"msi-map at: %s, using mask %08x, rid-base: %08x, msi-base: %08x, length: %08x, rid: %08x -> %08x\n",
661 		dev_name(parent_dev), map_mask, rid_base, msi_base,
662 		rid_len, rid_in, rid_out);
663 
664 	return rid_out;
665 }
666 
667 /**
668  * of_msi_map_rid - Map a MSI requester ID for a device.
669  * @dev: device for which the mapping is to be done.
670  * @msi_np: device node of the expected msi controller.
671  * @rid_in: unmapped MSI requester ID for the device.
672  *
673  * Walk up the device hierarchy looking for devices with a "msi-map"
674  * property.  If found, apply the mapping to @rid_in.
675  *
676  * Returns the mapped MSI requester ID.
677  */
678 u32 of_msi_map_rid(struct device *dev, struct device_node *msi_np, u32 rid_in)
679 {
680 	return __of_msi_map_rid(dev, &msi_np, rid_in);
681 }
682 
683 static struct irq_domain *__of_get_msi_domain(struct device_node *np,
684 					      enum irq_domain_bus_token token)
685 {
686 	struct irq_domain *d;
687 
688 	d = irq_find_matching_host(np, token);
689 	if (!d)
690 		d = irq_find_host(np);
691 
692 	return d;
693 }
694 
695 /**
696  * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
697  * @dev: device for which the mapping is to be done.
698  * @rid: Requester ID for the device.
699  *
700  * Walk up the device hierarchy looking for devices with a "msi-map"
701  * property.
702  *
703  * Returns: the MSI domain for this device (or NULL on failure)
704  */
705 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 rid)
706 {
707 	struct device_node *np = NULL;
708 
709 	__of_msi_map_rid(dev, &np, rid);
710 	return __of_get_msi_domain(np, DOMAIN_BUS_PCI_MSI);
711 }
712 
713 /**
714  * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
715  * @dev: device for which the domain is requested
716  * @np: device node for @dev
717  * @token: bus type for this domain
718  *
719  * Parse the msi-parent property (both the simple and the complex
720  * versions), and returns the corresponding MSI domain.
721  *
722  * Returns: the MSI domain for this device (or NULL on failure).
723  */
724 struct irq_domain *of_msi_get_domain(struct device *dev,
725 				     struct device_node *np,
726 				     enum irq_domain_bus_token token)
727 {
728 	struct device_node *msi_np;
729 	struct irq_domain *d;
730 
731 	/* Check for a single msi-parent property */
732 	msi_np = of_parse_phandle(np, "msi-parent", 0);
733 	if (msi_np && !of_property_read_bool(msi_np, "#msi-cells")) {
734 		d = __of_get_msi_domain(msi_np, token);
735 		if (!d)
736 			of_node_put(msi_np);
737 		return d;
738 	}
739 
740 	if (token == DOMAIN_BUS_PLATFORM_MSI) {
741 		/* Check for the complex msi-parent version */
742 		struct of_phandle_args args;
743 		int index = 0;
744 
745 		while (!of_parse_phandle_with_args(np, "msi-parent",
746 						   "#msi-cells",
747 						   index, &args)) {
748 			d = __of_get_msi_domain(args.np, token);
749 			if (d)
750 				return d;
751 
752 			of_node_put(args.np);
753 			index++;
754 		}
755 	}
756 
757 	return NULL;
758 }
759 
760 /**
761  * of_msi_configure - Set the msi_domain field of a device
762  * @dev: device structure to associate with an MSI irq domain
763  * @np: device node for that device
764  */
765 void of_msi_configure(struct device *dev, struct device_node *np)
766 {
767 	dev_set_msi_domain(dev,
768 			   of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
769 }
770