xref: /openbmc/linux/drivers/of/irq.c (revision 0a907292)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Derived from arch/i386/kernel/irq.c
4  *    Copyright (C) 1992 Linus Torvalds
5  *  Adapted from arch/i386 by Gary Thomas
6  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7  *  Updated and modified by Cort Dougan <cort@fsmlabs.com>
8  *    Copyright (C) 1996-2001 Cort Dougan
9  *  Adapted for Power Macintosh by Paul Mackerras
10  *    Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
11  *
12  * This file contains the code used to make IRQ descriptions in the
13  * device tree to actual irq numbers on an interrupt controller
14  * driver.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/device.h>
20 #include <linux/errno.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 
28 /**
29  * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
30  * @dev: Device node of the device whose interrupt is to be mapped
31  * @index: Index of the interrupt to map
32  *
33  * This function is a wrapper that chains of_irq_parse_one() and
34  * irq_create_of_mapping() to make things easier to callers
35  */
36 unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
37 {
38 	struct of_phandle_args oirq;
39 
40 	if (of_irq_parse_one(dev, index, &oirq))
41 		return 0;
42 
43 	return irq_create_of_mapping(&oirq);
44 }
45 EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
46 
47 /**
48  * of_irq_find_parent - Given a device node, find its interrupt parent node
49  * @child: pointer to device node
50  *
51  * Return: A pointer to the interrupt parent node, or NULL if the interrupt
52  * parent could not be determined.
53  */
54 struct device_node *of_irq_find_parent(struct device_node *child)
55 {
56 	struct device_node *p;
57 	phandle parent;
58 
59 	if (!of_node_get(child))
60 		return NULL;
61 
62 	do {
63 		if (of_property_read_u32(child, "interrupt-parent", &parent)) {
64 			p = of_get_parent(child);
65 		} else	{
66 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
67 				p = of_node_get(of_irq_dflt_pic);
68 			else
69 				p = of_find_node_by_phandle(parent);
70 		}
71 		of_node_put(child);
72 		child = p;
73 	} while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
74 
75 	return p;
76 }
77 EXPORT_SYMBOL_GPL(of_irq_find_parent);
78 
79 /**
80  * of_irq_parse_raw - Low level interrupt tree parsing
81  * @addr:	address specifier (start of "reg" property of the device) in be32 format
82  * @out_irq:	structure of_phandle_args updated by this function
83  *
84  * This function is a low-level interrupt tree walking function. It
85  * can be used to do a partial walk with synthetized reg and interrupts
86  * properties, for example when resolving PCI interrupts when no device
87  * node exist for the parent. It takes an interrupt specifier structure as
88  * input, walks the tree looking for any interrupt-map properties, translates
89  * the specifier for each map, and then returns the translated map.
90  *
91  * Return: 0 on success and a negative number on error
92  */
93 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
94 {
95 	struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
96 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
97 	const __be32 *match_array = initial_match_array;
98 	const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
99 	u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
100 	int imaplen, match, i, rc = -EINVAL;
101 
102 #ifdef DEBUG
103 	of_print_phandle_args("of_irq_parse_raw: ", out_irq);
104 #endif
105 
106 	ipar = of_node_get(out_irq->np);
107 
108 	/* First get the #interrupt-cells property of the current cursor
109 	 * that tells us how to interpret the passed-in intspec. If there
110 	 * is none, we are nice and just walk up the tree
111 	 */
112 	do {
113 		if (!of_property_read_u32(ipar, "#interrupt-cells", &intsize))
114 			break;
115 		tnode = ipar;
116 		ipar = of_irq_find_parent(ipar);
117 		of_node_put(tnode);
118 	} while (ipar);
119 	if (ipar == NULL) {
120 		pr_debug(" -> no parent found !\n");
121 		goto fail;
122 	}
123 
124 	pr_debug("of_irq_parse_raw: ipar=%pOF, size=%d\n", ipar, intsize);
125 
126 	if (out_irq->args_count != intsize)
127 		goto fail;
128 
129 	/* Look for this #address-cells. We have to implement the old linux
130 	 * trick of looking for the parent here as some device-trees rely on it
131 	 */
132 	old = of_node_get(ipar);
133 	do {
134 		tmp = of_get_property(old, "#address-cells", NULL);
135 		tnode = of_get_parent(old);
136 		of_node_put(old);
137 		old = tnode;
138 	} while (old && tmp == NULL);
139 	of_node_put(old);
140 	old = NULL;
141 	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
142 
143 	pr_debug(" -> addrsize=%d\n", addrsize);
144 
145 	/* Range check so that the temporary buffer doesn't overflow */
146 	if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) {
147 		rc = -EFAULT;
148 		goto fail;
149 	}
150 
151 	/* Precalculate the match array - this simplifies match loop */
152 	for (i = 0; i < addrsize; i++)
153 		initial_match_array[i] = addr ? addr[i] : 0;
154 	for (i = 0; i < intsize; i++)
155 		initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
156 
157 	/* Now start the actual "proper" walk of the interrupt tree */
158 	while (ipar != NULL) {
159 		/*
160 		 * Now check if cursor is an interrupt-controller and
161 		 * if it is then we are done, unless there is an
162 		 * interrupt-map which takes precedence.
163 		 */
164 		imap = of_get_property(ipar, "interrupt-map", &imaplen);
165 		if (imap == NULL &&
166 		    of_property_read_bool(ipar, "interrupt-controller")) {
167 			pr_debug(" -> got it !\n");
168 			return 0;
169 		}
170 
171 		/*
172 		 * interrupt-map parsing does not work without a reg
173 		 * property when #address-cells != 0
174 		 */
175 		if (addrsize && !addr) {
176 			pr_debug(" -> no reg passed in when needed !\n");
177 			goto fail;
178 		}
179 
180 		/* No interrupt map, check for an interrupt parent */
181 		if (imap == NULL) {
182 			pr_debug(" -> no map, getting parent\n");
183 			newpar = of_irq_find_parent(ipar);
184 			goto skiplevel;
185 		}
186 		imaplen /= sizeof(u32);
187 
188 		/* Look for a mask */
189 		imask = of_get_property(ipar, "interrupt-map-mask", NULL);
190 		if (!imask)
191 			imask = dummy_imask;
192 
193 		/* Parse interrupt-map */
194 		match = 0;
195 		while (imaplen > (addrsize + intsize + 1) && !match) {
196 			/* Compare specifiers */
197 			match = 1;
198 			for (i = 0; i < (addrsize + intsize); i++, imaplen--)
199 				match &= !((match_array[i] ^ *imap++) & imask[i]);
200 
201 			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
202 
203 			/* Get the interrupt parent */
204 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
205 				newpar = of_node_get(of_irq_dflt_pic);
206 			else
207 				newpar = of_find_node_by_phandle(be32_to_cpup(imap));
208 			imap++;
209 			--imaplen;
210 
211 			/* Check if not found */
212 			if (newpar == NULL) {
213 				pr_debug(" -> imap parent not found !\n");
214 				goto fail;
215 			}
216 
217 			if (!of_device_is_available(newpar))
218 				match = 0;
219 
220 			/* Get #interrupt-cells and #address-cells of new
221 			 * parent
222 			 */
223 			if (of_property_read_u32(newpar, "#interrupt-cells",
224 						 &newintsize)) {
225 				pr_debug(" -> parent lacks #interrupt-cells!\n");
226 				goto fail;
227 			}
228 			if (of_property_read_u32(newpar, "#address-cells",
229 						 &newaddrsize))
230 				newaddrsize = 0;
231 
232 			pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
233 			    newintsize, newaddrsize);
234 
235 			/* Check for malformed properties */
236 			if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS)
237 			    || (imaplen < (newaddrsize + newintsize))) {
238 				rc = -EFAULT;
239 				goto fail;
240 			}
241 
242 			imap += newaddrsize + newintsize;
243 			imaplen -= newaddrsize + newintsize;
244 
245 			pr_debug(" -> imaplen=%d\n", imaplen);
246 		}
247 		if (!match)
248 			goto fail;
249 
250 		/*
251 		 * Successfully parsed an interrrupt-map translation; copy new
252 		 * interrupt specifier into the out_irq structure
253 		 */
254 		match_array = imap - newaddrsize - newintsize;
255 		for (i = 0; i < newintsize; i++)
256 			out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
257 		out_irq->args_count = intsize = newintsize;
258 		addrsize = newaddrsize;
259 
260 		if (ipar == newpar) {
261 			pr_debug("%pOF interrupt-map entry to self\n", ipar);
262 			return 0;
263 		}
264 
265 	skiplevel:
266 		/* Iterate again with new parent */
267 		out_irq->np = newpar;
268 		pr_debug(" -> new parent: %pOF\n", newpar);
269 		of_node_put(ipar);
270 		ipar = newpar;
271 		newpar = NULL;
272 	}
273 	rc = -ENOENT; /* No interrupt-map found */
274 
275  fail:
276 	of_node_put(ipar);
277 	of_node_put(newpar);
278 
279 	return rc;
280 }
281 EXPORT_SYMBOL_GPL(of_irq_parse_raw);
282 
283 /**
284  * of_irq_parse_one - Resolve an interrupt for a device
285  * @device: the device whose interrupt is to be resolved
286  * @index: index of the interrupt to resolve
287  * @out_irq: structure of_phandle_args filled by this function
288  *
289  * This function resolves an interrupt for a node by walking the interrupt tree,
290  * finding which interrupt controller node it is attached to, and returning the
291  * interrupt specifier that can be used to retrieve a Linux IRQ number.
292  */
293 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
294 {
295 	struct device_node *p;
296 	const __be32 *addr;
297 	u32 intsize;
298 	int i, res;
299 
300 	pr_debug("of_irq_parse_one: dev=%pOF, index=%d\n", device, index);
301 
302 	/* OldWorld mac stuff is "special", handle out of line */
303 	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
304 		return of_irq_parse_oldworld(device, index, out_irq);
305 
306 	/* Get the reg property (if any) */
307 	addr = of_get_property(device, "reg", NULL);
308 
309 	/* Try the new-style interrupts-extended first */
310 	res = of_parse_phandle_with_args(device, "interrupts-extended",
311 					"#interrupt-cells", index, out_irq);
312 	if (!res)
313 		return of_irq_parse_raw(addr, out_irq);
314 
315 	/* Look for the interrupt parent. */
316 	p = of_irq_find_parent(device);
317 	if (p == NULL)
318 		return -EINVAL;
319 
320 	/* Get size of interrupt specifier */
321 	if (of_property_read_u32(p, "#interrupt-cells", &intsize)) {
322 		res = -EINVAL;
323 		goto out;
324 	}
325 
326 	pr_debug(" parent=%pOF, intsize=%d\n", p, intsize);
327 
328 	/* Copy intspec into irq structure */
329 	out_irq->np = p;
330 	out_irq->args_count = intsize;
331 	for (i = 0; i < intsize; i++) {
332 		res = of_property_read_u32_index(device, "interrupts",
333 						 (index * intsize) + i,
334 						 out_irq->args + i);
335 		if (res)
336 			goto out;
337 	}
338 
339 	pr_debug(" intspec=%d\n", *out_irq->args);
340 
341 
342 	/* Check if there are any interrupt-map translations to process */
343 	res = of_irq_parse_raw(addr, out_irq);
344  out:
345 	of_node_put(p);
346 	return res;
347 }
348 EXPORT_SYMBOL_GPL(of_irq_parse_one);
349 
350 /**
351  * of_irq_to_resource - Decode a node's IRQ and return it as a resource
352  * @dev: pointer to device tree node
353  * @index: zero-based index of the irq
354  * @r: pointer to resource structure to return result into.
355  */
356 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
357 {
358 	int irq = of_irq_get(dev, index);
359 
360 	if (irq < 0)
361 		return irq;
362 
363 	/* Only dereference the resource if both the
364 	 * resource and the irq are valid. */
365 	if (r && irq) {
366 		const char *name = NULL;
367 
368 		memset(r, 0, sizeof(*r));
369 		/*
370 		 * Get optional "interrupt-names" property to add a name
371 		 * to the resource.
372 		 */
373 		of_property_read_string_index(dev, "interrupt-names", index,
374 					      &name);
375 
376 		r->start = r->end = irq;
377 		r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
378 		r->name = name ? name : of_node_full_name(dev);
379 	}
380 
381 	return irq;
382 }
383 EXPORT_SYMBOL_GPL(of_irq_to_resource);
384 
385 /**
386  * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number
387  * @dev: pointer to device tree node
388  * @index: zero-based index of the IRQ
389  *
390  * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
391  * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
392  * of any other failure.
393  */
394 int of_irq_get(struct device_node *dev, int index)
395 {
396 	int rc;
397 	struct of_phandle_args oirq;
398 	struct irq_domain *domain;
399 
400 	rc = of_irq_parse_one(dev, index, &oirq);
401 	if (rc)
402 		return rc;
403 
404 	domain = irq_find_host(oirq.np);
405 	if (!domain)
406 		return -EPROBE_DEFER;
407 
408 	return irq_create_of_mapping(&oirq);
409 }
410 EXPORT_SYMBOL_GPL(of_irq_get);
411 
412 /**
413  * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number
414  * @dev: pointer to device tree node
415  * @name: IRQ name
416  *
417  * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
418  * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
419  * of any other failure.
420  */
421 int of_irq_get_byname(struct device_node *dev, const char *name)
422 {
423 	int index;
424 
425 	if (unlikely(!name))
426 		return -EINVAL;
427 
428 	index = of_property_match_string(dev, "interrupt-names", name);
429 	if (index < 0)
430 		return index;
431 
432 	return of_irq_get(dev, index);
433 }
434 EXPORT_SYMBOL_GPL(of_irq_get_byname);
435 
436 /**
437  * of_irq_count - Count the number of IRQs a node uses
438  * @dev: pointer to device tree node
439  */
440 int of_irq_count(struct device_node *dev)
441 {
442 	struct of_phandle_args irq;
443 	int nr = 0;
444 
445 	while (of_irq_parse_one(dev, nr, &irq) == 0)
446 		nr++;
447 
448 	return nr;
449 }
450 
451 /**
452  * of_irq_to_resource_table - Fill in resource table with node's IRQ info
453  * @dev: pointer to device tree node
454  * @res: array of resources to fill in
455  * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
456  *
457  * Return: The size of the filled in table (up to @nr_irqs).
458  */
459 int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
460 		int nr_irqs)
461 {
462 	int i;
463 
464 	for (i = 0; i < nr_irqs; i++, res++)
465 		if (of_irq_to_resource(dev, i, res) <= 0)
466 			break;
467 
468 	return i;
469 }
470 EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
471 
472 struct of_intc_desc {
473 	struct list_head	list;
474 	of_irq_init_cb_t	irq_init_cb;
475 	struct device_node	*dev;
476 	struct device_node	*interrupt_parent;
477 };
478 
479 /**
480  * of_irq_init - Scan and init matching interrupt controllers in DT
481  * @matches: 0 terminated array of nodes to match and init function to call
482  *
483  * This function scans the device tree for matching interrupt controller nodes,
484  * and calls their initialization functions in order with parents first.
485  */
486 void __init of_irq_init(const struct of_device_id *matches)
487 {
488 	const struct of_device_id *match;
489 	struct device_node *np, *parent = NULL;
490 	struct of_intc_desc *desc, *temp_desc;
491 	struct list_head intc_desc_list, intc_parent_list;
492 
493 	INIT_LIST_HEAD(&intc_desc_list);
494 	INIT_LIST_HEAD(&intc_parent_list);
495 
496 	for_each_matching_node_and_match(np, matches, &match) {
497 		if (!of_property_read_bool(np, "interrupt-controller") ||
498 				!of_device_is_available(np))
499 			continue;
500 
501 		if (WARN(!match->data, "of_irq_init: no init function for %s\n",
502 			 match->compatible))
503 			continue;
504 
505 		/*
506 		 * Here, we allocate and populate an of_intc_desc with the node
507 		 * pointer, interrupt-parent device_node etc.
508 		 */
509 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
510 		if (!desc) {
511 			of_node_put(np);
512 			goto err;
513 		}
514 
515 		desc->irq_init_cb = match->data;
516 		desc->dev = of_node_get(np);
517 		desc->interrupt_parent = of_irq_find_parent(np);
518 		if (desc->interrupt_parent == np)
519 			desc->interrupt_parent = NULL;
520 		list_add_tail(&desc->list, &intc_desc_list);
521 	}
522 
523 	/*
524 	 * The root irq controller is the one without an interrupt-parent.
525 	 * That one goes first, followed by the controllers that reference it,
526 	 * followed by the ones that reference the 2nd level controllers, etc.
527 	 */
528 	while (!list_empty(&intc_desc_list)) {
529 		/*
530 		 * Process all controllers with the current 'parent'.
531 		 * First pass will be looking for NULL as the parent.
532 		 * The assumption is that NULL parent means a root controller.
533 		 */
534 		list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
535 			int ret;
536 
537 			if (desc->interrupt_parent != parent)
538 				continue;
539 
540 			list_del(&desc->list);
541 
542 			of_node_set_flag(desc->dev, OF_POPULATED);
543 
544 			pr_debug("of_irq_init: init %pOF (%p), parent %p\n",
545 				 desc->dev,
546 				 desc->dev, desc->interrupt_parent);
547 			ret = desc->irq_init_cb(desc->dev,
548 						desc->interrupt_parent);
549 			if (ret) {
550 				of_node_clear_flag(desc->dev, OF_POPULATED);
551 				kfree(desc);
552 				continue;
553 			}
554 
555 			/*
556 			 * This one is now set up; add it to the parent list so
557 			 * its children can get processed in a subsequent pass.
558 			 */
559 			list_add_tail(&desc->list, &intc_parent_list);
560 		}
561 
562 		/* Get the next pending parent that might have children */
563 		desc = list_first_entry_or_null(&intc_parent_list,
564 						typeof(*desc), list);
565 		if (!desc) {
566 			pr_err("of_irq_init: children remain, but no parents\n");
567 			break;
568 		}
569 		list_del(&desc->list);
570 		parent = desc->dev;
571 		kfree(desc);
572 	}
573 
574 	list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
575 		list_del(&desc->list);
576 		kfree(desc);
577 	}
578 err:
579 	list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
580 		list_del(&desc->list);
581 		of_node_put(desc->dev);
582 		kfree(desc);
583 	}
584 }
585 
586 static u32 __of_msi_map_id(struct device *dev, struct device_node **np,
587 			    u32 id_in)
588 {
589 	struct device *parent_dev;
590 	u32 id_out = id_in;
591 
592 	/*
593 	 * Walk up the device parent links looking for one with a
594 	 * "msi-map" property.
595 	 */
596 	for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent)
597 		if (!of_map_id(parent_dev->of_node, id_in, "msi-map",
598 				"msi-map-mask", np, &id_out))
599 			break;
600 	return id_out;
601 }
602 
603 /**
604  * of_msi_map_id - Map a MSI ID for a device.
605  * @dev: device for which the mapping is to be done.
606  * @msi_np: device node of the expected msi controller.
607  * @id_in: unmapped MSI ID for the device.
608  *
609  * Walk up the device hierarchy looking for devices with a "msi-map"
610  * property.  If found, apply the mapping to @id_in.
611  *
612  * Return: The mapped MSI ID.
613  */
614 u32 of_msi_map_id(struct device *dev, struct device_node *msi_np, u32 id_in)
615 {
616 	return __of_msi_map_id(dev, &msi_np, id_in);
617 }
618 
619 /**
620  * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
621  * @dev: device for which the mapping is to be done.
622  * @id: Device ID.
623  * @bus_token: Bus token
624  *
625  * Walk up the device hierarchy looking for devices with a "msi-map"
626  * property.
627  *
628  * Returns: the MSI domain for this device (or NULL on failure)
629  */
630 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 id,
631 						u32 bus_token)
632 {
633 	struct device_node *np = NULL;
634 
635 	__of_msi_map_id(dev, &np, id);
636 	return irq_find_matching_host(np, bus_token);
637 }
638 
639 /**
640  * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
641  * @dev: device for which the domain is requested
642  * @np: device node for @dev
643  * @token: bus type for this domain
644  *
645  * Parse the msi-parent property (both the simple and the complex
646  * versions), and returns the corresponding MSI domain.
647  *
648  * Returns: the MSI domain for this device (or NULL on failure).
649  */
650 struct irq_domain *of_msi_get_domain(struct device *dev,
651 				     struct device_node *np,
652 				     enum irq_domain_bus_token token)
653 {
654 	struct device_node *msi_np;
655 	struct irq_domain *d;
656 
657 	/* Check for a single msi-parent property */
658 	msi_np = of_parse_phandle(np, "msi-parent", 0);
659 	if (msi_np && !of_property_read_bool(msi_np, "#msi-cells")) {
660 		d = irq_find_matching_host(msi_np, token);
661 		if (!d)
662 			of_node_put(msi_np);
663 		return d;
664 	}
665 
666 	if (token == DOMAIN_BUS_PLATFORM_MSI) {
667 		/* Check for the complex msi-parent version */
668 		struct of_phandle_args args;
669 		int index = 0;
670 
671 		while (!of_parse_phandle_with_args(np, "msi-parent",
672 						   "#msi-cells",
673 						   index, &args)) {
674 			d = irq_find_matching_host(args.np, token);
675 			if (d)
676 				return d;
677 
678 			of_node_put(args.np);
679 			index++;
680 		}
681 	}
682 
683 	return NULL;
684 }
685 
686 /**
687  * of_msi_configure - Set the msi_domain field of a device
688  * @dev: device structure to associate with an MSI irq domain
689  * @np: device node for that device
690  */
691 void of_msi_configure(struct device *dev, struct device_node *np)
692 {
693 	dev_set_msi_domain(dev,
694 			   of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
695 }
696 EXPORT_SYMBOL_GPL(of_msi_configure);
697