1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions for working with the Flattened Device Tree data format 4 * 5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp 6 * benh@kernel.crashing.org 7 */ 8 9 #define pr_fmt(fmt) "OF: fdt: " fmt 10 11 #include <linux/crc32.h> 12 #include <linux/kernel.h> 13 #include <linux/initrd.h> 14 #include <linux/memblock.h> 15 #include <linux/mutex.h> 16 #include <linux/of.h> 17 #include <linux/of_fdt.h> 18 #include <linux/of_reserved_mem.h> 19 #include <linux/sizes.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/libfdt.h> 24 #include <linux/debugfs.h> 25 #include <linux/serial_core.h> 26 #include <linux/sysfs.h> 27 28 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ 29 #include <asm/page.h> 30 31 #include "of_private.h" 32 33 /* 34 * of_fdt_limit_memory - limit the number of regions in the /memory node 35 * @limit: maximum entries 36 * 37 * Adjust the flattened device tree to have at most 'limit' number of 38 * memory entries in the /memory node. This function may be called 39 * any time after initial_boot_param is set. 40 */ 41 void of_fdt_limit_memory(int limit) 42 { 43 int memory; 44 int len; 45 const void *val; 46 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 47 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 48 const __be32 *addr_prop; 49 const __be32 *size_prop; 50 int root_offset; 51 int cell_size; 52 53 root_offset = fdt_path_offset(initial_boot_params, "/"); 54 if (root_offset < 0) 55 return; 56 57 addr_prop = fdt_getprop(initial_boot_params, root_offset, 58 "#address-cells", NULL); 59 if (addr_prop) 60 nr_address_cells = fdt32_to_cpu(*addr_prop); 61 62 size_prop = fdt_getprop(initial_boot_params, root_offset, 63 "#size-cells", NULL); 64 if (size_prop) 65 nr_size_cells = fdt32_to_cpu(*size_prop); 66 67 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); 68 69 memory = fdt_path_offset(initial_boot_params, "/memory"); 70 if (memory > 0) { 71 val = fdt_getprop(initial_boot_params, memory, "reg", &len); 72 if (len > limit*cell_size) { 73 len = limit*cell_size; 74 pr_debug("Limiting number of entries to %d\n", limit); 75 fdt_setprop(initial_boot_params, memory, "reg", val, 76 len); 77 } 78 } 79 } 80 81 /** 82 * of_fdt_is_compatible - Return true if given node from the given blob has 83 * compat in its compatible list 84 * @blob: A device tree blob 85 * @node: node to test 86 * @compat: compatible string to compare with compatible list. 87 * 88 * On match, returns a non-zero value with smaller values returned for more 89 * specific compatible values. 90 */ 91 static int of_fdt_is_compatible(const void *blob, 92 unsigned long node, const char *compat) 93 { 94 const char *cp; 95 int cplen; 96 unsigned long l, score = 0; 97 98 cp = fdt_getprop(blob, node, "compatible", &cplen); 99 if (cp == NULL) 100 return 0; 101 while (cplen > 0) { 102 score++; 103 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 104 return score; 105 l = strlen(cp) + 1; 106 cp += l; 107 cplen -= l; 108 } 109 110 return 0; 111 } 112 113 /** 114 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses 115 * @blob: A device tree blob 116 * @node: node to test 117 * 118 * Returns true if the node has a "big-endian" property, or if the kernel 119 * was compiled for BE *and* the node has a "native-endian" property. 120 * Returns false otherwise. 121 */ 122 bool of_fdt_is_big_endian(const void *blob, unsigned long node) 123 { 124 if (fdt_getprop(blob, node, "big-endian", NULL)) 125 return true; 126 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 127 fdt_getprop(blob, node, "native-endian", NULL)) 128 return true; 129 return false; 130 } 131 132 static bool of_fdt_device_is_available(const void *blob, unsigned long node) 133 { 134 const char *status = fdt_getprop(blob, node, "status", NULL); 135 136 if (!status) 137 return true; 138 139 if (!strcmp(status, "ok") || !strcmp(status, "okay")) 140 return true; 141 142 return false; 143 } 144 145 /** 146 * of_fdt_match - Return true if node matches a list of compatible values 147 */ 148 int of_fdt_match(const void *blob, unsigned long node, 149 const char *const *compat) 150 { 151 unsigned int tmp, score = 0; 152 153 if (!compat) 154 return 0; 155 156 while (*compat) { 157 tmp = of_fdt_is_compatible(blob, node, *compat); 158 if (tmp && (score == 0 || (tmp < score))) 159 score = tmp; 160 compat++; 161 } 162 163 return score; 164 } 165 166 static void *unflatten_dt_alloc(void **mem, unsigned long size, 167 unsigned long align) 168 { 169 void *res; 170 171 *mem = PTR_ALIGN(*mem, align); 172 res = *mem; 173 *mem += size; 174 175 return res; 176 } 177 178 static void populate_properties(const void *blob, 179 int offset, 180 void **mem, 181 struct device_node *np, 182 const char *nodename, 183 bool dryrun) 184 { 185 struct property *pp, **pprev = NULL; 186 int cur; 187 bool has_name = false; 188 189 pprev = &np->properties; 190 for (cur = fdt_first_property_offset(blob, offset); 191 cur >= 0; 192 cur = fdt_next_property_offset(blob, cur)) { 193 const __be32 *val; 194 const char *pname; 195 u32 sz; 196 197 val = fdt_getprop_by_offset(blob, cur, &pname, &sz); 198 if (!val) { 199 pr_warn("Cannot locate property at 0x%x\n", cur); 200 continue; 201 } 202 203 if (!pname) { 204 pr_warn("Cannot find property name at 0x%x\n", cur); 205 continue; 206 } 207 208 if (!strcmp(pname, "name")) 209 has_name = true; 210 211 pp = unflatten_dt_alloc(mem, sizeof(struct property), 212 __alignof__(struct property)); 213 if (dryrun) 214 continue; 215 216 /* We accept flattened tree phandles either in 217 * ePAPR-style "phandle" properties, or the 218 * legacy "linux,phandle" properties. If both 219 * appear and have different values, things 220 * will get weird. Don't do that. 221 */ 222 if (!strcmp(pname, "phandle") || 223 !strcmp(pname, "linux,phandle")) { 224 if (!np->phandle) 225 np->phandle = be32_to_cpup(val); 226 } 227 228 /* And we process the "ibm,phandle" property 229 * used in pSeries dynamic device tree 230 * stuff 231 */ 232 if (!strcmp(pname, "ibm,phandle")) 233 np->phandle = be32_to_cpup(val); 234 235 pp->name = (char *)pname; 236 pp->length = sz; 237 pp->value = (__be32 *)val; 238 *pprev = pp; 239 pprev = &pp->next; 240 } 241 242 /* With version 0x10 we may not have the name property, 243 * recreate it here from the unit name if absent 244 */ 245 if (!has_name) { 246 const char *p = nodename, *ps = p, *pa = NULL; 247 int len; 248 249 while (*p) { 250 if ((*p) == '@') 251 pa = p; 252 else if ((*p) == '/') 253 ps = p + 1; 254 p++; 255 } 256 257 if (pa < ps) 258 pa = p; 259 len = (pa - ps) + 1; 260 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, 261 __alignof__(struct property)); 262 if (!dryrun) { 263 pp->name = "name"; 264 pp->length = len; 265 pp->value = pp + 1; 266 *pprev = pp; 267 pprev = &pp->next; 268 memcpy(pp->value, ps, len - 1); 269 ((char *)pp->value)[len - 1] = 0; 270 pr_debug("fixed up name for %s -> %s\n", 271 nodename, (char *)pp->value); 272 } 273 } 274 275 if (!dryrun) 276 *pprev = NULL; 277 } 278 279 static bool populate_node(const void *blob, 280 int offset, 281 void **mem, 282 struct device_node *dad, 283 struct device_node **pnp, 284 bool dryrun) 285 { 286 struct device_node *np; 287 const char *pathp; 288 unsigned int l, allocl; 289 290 pathp = fdt_get_name(blob, offset, &l); 291 if (!pathp) { 292 *pnp = NULL; 293 return false; 294 } 295 296 allocl = ++l; 297 298 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl, 299 __alignof__(struct device_node)); 300 if (!dryrun) { 301 char *fn; 302 of_node_init(np); 303 np->full_name = fn = ((char *)np) + sizeof(*np); 304 305 memcpy(fn, pathp, l); 306 307 if (dad != NULL) { 308 np->parent = dad; 309 np->sibling = dad->child; 310 dad->child = np; 311 } 312 } 313 314 populate_properties(blob, offset, mem, np, pathp, dryrun); 315 if (!dryrun) { 316 np->name = of_get_property(np, "name", NULL); 317 np->type = of_get_property(np, "device_type", NULL); 318 319 if (!np->name) 320 np->name = "<NULL>"; 321 if (!np->type) 322 np->type = "<NULL>"; 323 } 324 325 *pnp = np; 326 return true; 327 } 328 329 static void reverse_nodes(struct device_node *parent) 330 { 331 struct device_node *child, *next; 332 333 /* In-depth first */ 334 child = parent->child; 335 while (child) { 336 reverse_nodes(child); 337 338 child = child->sibling; 339 } 340 341 /* Reverse the nodes in the child list */ 342 child = parent->child; 343 parent->child = NULL; 344 while (child) { 345 next = child->sibling; 346 347 child->sibling = parent->child; 348 parent->child = child; 349 child = next; 350 } 351 } 352 353 /** 354 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree 355 * @blob: The parent device tree blob 356 * @mem: Memory chunk to use for allocating device nodes and properties 357 * @dad: Parent struct device_node 358 * @nodepp: The device_node tree created by the call 359 * 360 * It returns the size of unflattened device tree or error code 361 */ 362 static int unflatten_dt_nodes(const void *blob, 363 void *mem, 364 struct device_node *dad, 365 struct device_node **nodepp) 366 { 367 struct device_node *root; 368 int offset = 0, depth = 0, initial_depth = 0; 369 #define FDT_MAX_DEPTH 64 370 struct device_node *nps[FDT_MAX_DEPTH]; 371 void *base = mem; 372 bool dryrun = !base; 373 374 if (nodepp) 375 *nodepp = NULL; 376 377 /* 378 * We're unflattening device sub-tree if @dad is valid. There are 379 * possibly multiple nodes in the first level of depth. We need 380 * set @depth to 1 to make fdt_next_node() happy as it bails 381 * immediately when negative @depth is found. Otherwise, the device 382 * nodes except the first one won't be unflattened successfully. 383 */ 384 if (dad) 385 depth = initial_depth = 1; 386 387 root = dad; 388 nps[depth] = dad; 389 390 for (offset = 0; 391 offset >= 0 && depth >= initial_depth; 392 offset = fdt_next_node(blob, offset, &depth)) { 393 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH)) 394 continue; 395 396 if (!IS_ENABLED(CONFIG_OF_KOBJ) && 397 !of_fdt_device_is_available(blob, offset)) 398 continue; 399 400 if (!populate_node(blob, offset, &mem, nps[depth], 401 &nps[depth+1], dryrun)) 402 return mem - base; 403 404 if (!dryrun && nodepp && !*nodepp) 405 *nodepp = nps[depth+1]; 406 if (!dryrun && !root) 407 root = nps[depth+1]; 408 } 409 410 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { 411 pr_err("Error %d processing FDT\n", offset); 412 return -EINVAL; 413 } 414 415 /* 416 * Reverse the child list. Some drivers assumes node order matches .dts 417 * node order 418 */ 419 if (!dryrun) 420 reverse_nodes(root); 421 422 return mem - base; 423 } 424 425 /** 426 * __unflatten_device_tree - create tree of device_nodes from flat blob 427 * 428 * unflattens a device-tree, creating the 429 * tree of struct device_node. It also fills the "name" and "type" 430 * pointers of the nodes so the normal device-tree walking functions 431 * can be used. 432 * @blob: The blob to expand 433 * @dad: Parent device node 434 * @mynodes: The device_node tree created by the call 435 * @dt_alloc: An allocator that provides a virtual address to memory 436 * for the resulting tree 437 * @detached: if true set OF_DETACHED on @mynodes 438 * 439 * Returns NULL on failure or the memory chunk containing the unflattened 440 * device tree on success. 441 */ 442 void *__unflatten_device_tree(const void *blob, 443 struct device_node *dad, 444 struct device_node **mynodes, 445 void *(*dt_alloc)(u64 size, u64 align), 446 bool detached) 447 { 448 int size; 449 void *mem; 450 451 pr_debug(" -> unflatten_device_tree()\n"); 452 453 if (!blob) { 454 pr_debug("No device tree pointer\n"); 455 return NULL; 456 } 457 458 pr_debug("Unflattening device tree:\n"); 459 pr_debug("magic: %08x\n", fdt_magic(blob)); 460 pr_debug("size: %08x\n", fdt_totalsize(blob)); 461 pr_debug("version: %08x\n", fdt_version(blob)); 462 463 if (fdt_check_header(blob)) { 464 pr_err("Invalid device tree blob header\n"); 465 return NULL; 466 } 467 468 /* First pass, scan for size */ 469 size = unflatten_dt_nodes(blob, NULL, dad, NULL); 470 if (size < 0) 471 return NULL; 472 473 size = ALIGN(size, 4); 474 pr_debug(" size is %d, allocating...\n", size); 475 476 /* Allocate memory for the expanded device tree */ 477 mem = dt_alloc(size + 4, __alignof__(struct device_node)); 478 if (!mem) 479 return NULL; 480 481 memset(mem, 0, size); 482 483 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); 484 485 pr_debug(" unflattening %p...\n", mem); 486 487 /* Second pass, do actual unflattening */ 488 unflatten_dt_nodes(blob, mem, dad, mynodes); 489 if (be32_to_cpup(mem + size) != 0xdeadbeef) 490 pr_warning("End of tree marker overwritten: %08x\n", 491 be32_to_cpup(mem + size)); 492 493 if (detached && mynodes) { 494 of_node_set_flag(*mynodes, OF_DETACHED); 495 pr_debug("unflattened tree is detached\n"); 496 } 497 498 pr_debug(" <- unflatten_device_tree()\n"); 499 return mem; 500 } 501 502 static void *kernel_tree_alloc(u64 size, u64 align) 503 { 504 return kzalloc(size, GFP_KERNEL); 505 } 506 507 static DEFINE_MUTEX(of_fdt_unflatten_mutex); 508 509 /** 510 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob 511 * @blob: Flat device tree blob 512 * @dad: Parent device node 513 * @mynodes: The device tree created by the call 514 * 515 * unflattens the device-tree passed by the firmware, creating the 516 * tree of struct device_node. It also fills the "name" and "type" 517 * pointers of the nodes so the normal device-tree walking functions 518 * can be used. 519 * 520 * Returns NULL on failure or the memory chunk containing the unflattened 521 * device tree on success. 522 */ 523 void *of_fdt_unflatten_tree(const unsigned long *blob, 524 struct device_node *dad, 525 struct device_node **mynodes) 526 { 527 void *mem; 528 529 mutex_lock(&of_fdt_unflatten_mutex); 530 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, 531 true); 532 mutex_unlock(&of_fdt_unflatten_mutex); 533 534 return mem; 535 } 536 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); 537 538 /* Everything below here references initial_boot_params directly. */ 539 int __initdata dt_root_addr_cells; 540 int __initdata dt_root_size_cells; 541 542 void *initial_boot_params; 543 544 #ifdef CONFIG_OF_EARLY_FLATTREE 545 546 static u32 of_fdt_crc32; 547 548 /** 549 * res_mem_reserve_reg() - reserve all memory described in 'reg' property 550 */ 551 static int __init __reserved_mem_reserve_reg(unsigned long node, 552 const char *uname) 553 { 554 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); 555 phys_addr_t base, size; 556 int len; 557 const __be32 *prop; 558 int nomap, first = 1; 559 560 prop = of_get_flat_dt_prop(node, "reg", &len); 561 if (!prop) 562 return -ENOENT; 563 564 if (len && len % t_len != 0) { 565 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", 566 uname); 567 return -EINVAL; 568 } 569 570 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; 571 572 while (len >= t_len) { 573 base = dt_mem_next_cell(dt_root_addr_cells, &prop); 574 size = dt_mem_next_cell(dt_root_size_cells, &prop); 575 576 if (size && 577 early_init_dt_reserve_memory_arch(base, size, nomap) == 0) 578 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n", 579 uname, &base, (unsigned long)size / SZ_1M); 580 else 581 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n", 582 uname, &base, (unsigned long)size / SZ_1M); 583 584 len -= t_len; 585 if (first) { 586 fdt_reserved_mem_save_node(node, uname, base, size); 587 first = 0; 588 } 589 } 590 return 0; 591 } 592 593 /** 594 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided 595 * in /reserved-memory matches the values supported by the current implementation, 596 * also check if ranges property has been provided 597 */ 598 static int __init __reserved_mem_check_root(unsigned long node) 599 { 600 const __be32 *prop; 601 602 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 603 if (!prop || be32_to_cpup(prop) != dt_root_size_cells) 604 return -EINVAL; 605 606 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 607 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) 608 return -EINVAL; 609 610 prop = of_get_flat_dt_prop(node, "ranges", NULL); 611 if (!prop) 612 return -EINVAL; 613 return 0; 614 } 615 616 /** 617 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory 618 */ 619 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname, 620 int depth, void *data) 621 { 622 static int found; 623 int err; 624 625 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) { 626 if (__reserved_mem_check_root(node) != 0) { 627 pr_err("Reserved memory: unsupported node format, ignoring\n"); 628 /* break scan */ 629 return 1; 630 } 631 found = 1; 632 /* scan next node */ 633 return 0; 634 } else if (!found) { 635 /* scan next node */ 636 return 0; 637 } else if (found && depth < 2) { 638 /* scanning of /reserved-memory has been finished */ 639 return 1; 640 } 641 642 if (!of_fdt_device_is_available(initial_boot_params, node)) 643 return 0; 644 645 err = __reserved_mem_reserve_reg(node, uname); 646 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL)) 647 fdt_reserved_mem_save_node(node, uname, 0, 0); 648 649 /* scan next node */ 650 return 0; 651 } 652 653 /** 654 * early_init_fdt_scan_reserved_mem() - create reserved memory regions 655 * 656 * This function grabs memory from early allocator for device exclusive use 657 * defined in device tree structures. It should be called by arch specific code 658 * once the early allocator (i.e. memblock) has been fully activated. 659 */ 660 void __init early_init_fdt_scan_reserved_mem(void) 661 { 662 int n; 663 u64 base, size; 664 665 if (!initial_boot_params) 666 return; 667 668 /* Process header /memreserve/ fields */ 669 for (n = 0; ; n++) { 670 fdt_get_mem_rsv(initial_boot_params, n, &base, &size); 671 if (!size) 672 break; 673 early_init_dt_reserve_memory_arch(base, size, 0); 674 } 675 676 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL); 677 fdt_init_reserved_mem(); 678 } 679 680 /** 681 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob 682 */ 683 void __init early_init_fdt_reserve_self(void) 684 { 685 if (!initial_boot_params) 686 return; 687 688 /* Reserve the dtb region */ 689 early_init_dt_reserve_memory_arch(__pa(initial_boot_params), 690 fdt_totalsize(initial_boot_params), 691 0); 692 } 693 694 /** 695 * of_scan_flat_dt - scan flattened tree blob and call callback on each. 696 * @it: callback function 697 * @data: context data pointer 698 * 699 * This function is used to scan the flattened device-tree, it is 700 * used to extract the memory information at boot before we can 701 * unflatten the tree 702 */ 703 int __init of_scan_flat_dt(int (*it)(unsigned long node, 704 const char *uname, int depth, 705 void *data), 706 void *data) 707 { 708 const void *blob = initial_boot_params; 709 const char *pathp; 710 int offset, rc = 0, depth = -1; 711 712 if (!blob) 713 return 0; 714 715 for (offset = fdt_next_node(blob, -1, &depth); 716 offset >= 0 && depth >= 0 && !rc; 717 offset = fdt_next_node(blob, offset, &depth)) { 718 719 pathp = fdt_get_name(blob, offset, NULL); 720 if (*pathp == '/') 721 pathp = kbasename(pathp); 722 rc = it(offset, pathp, depth, data); 723 } 724 return rc; 725 } 726 727 /** 728 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. 729 * @it: callback function 730 * @data: context data pointer 731 * 732 * This function is used to scan sub-nodes of a node. 733 */ 734 int __init of_scan_flat_dt_subnodes(unsigned long parent, 735 int (*it)(unsigned long node, 736 const char *uname, 737 void *data), 738 void *data) 739 { 740 const void *blob = initial_boot_params; 741 int node; 742 743 fdt_for_each_subnode(node, blob, parent) { 744 const char *pathp; 745 int rc; 746 747 pathp = fdt_get_name(blob, node, NULL); 748 if (*pathp == '/') 749 pathp = kbasename(pathp); 750 rc = it(node, pathp, data); 751 if (rc) 752 return rc; 753 } 754 return 0; 755 } 756 757 /** 758 * of_get_flat_dt_subnode_by_name - get the subnode by given name 759 * 760 * @node: the parent node 761 * @uname: the name of subnode 762 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none 763 */ 764 765 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) 766 { 767 return fdt_subnode_offset(initial_boot_params, node, uname); 768 } 769 770 /** 771 * of_get_flat_dt_root - find the root node in the flat blob 772 */ 773 unsigned long __init of_get_flat_dt_root(void) 774 { 775 return 0; 776 } 777 778 /** 779 * of_get_flat_dt_size - Return the total size of the FDT 780 */ 781 int __init of_get_flat_dt_size(void) 782 { 783 return fdt_totalsize(initial_boot_params); 784 } 785 786 /** 787 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr 788 * 789 * This function can be used within scan_flattened_dt callback to get 790 * access to properties 791 */ 792 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, 793 int *size) 794 { 795 return fdt_getprop(initial_boot_params, node, name, size); 796 } 797 798 /** 799 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list 800 * @node: node to test 801 * @compat: compatible string to compare with compatible list. 802 */ 803 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) 804 { 805 return of_fdt_is_compatible(initial_boot_params, node, compat); 806 } 807 808 /** 809 * of_flat_dt_match - Return true if node matches a list of compatible values 810 */ 811 int __init of_flat_dt_match(unsigned long node, const char *const *compat) 812 { 813 return of_fdt_match(initial_boot_params, node, compat); 814 } 815 816 /** 817 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle 818 */ 819 uint32_t __init of_get_flat_dt_phandle(unsigned long node) 820 { 821 return fdt_get_phandle(initial_boot_params, node); 822 } 823 824 struct fdt_scan_status { 825 const char *name; 826 int namelen; 827 int depth; 828 int found; 829 int (*iterator)(unsigned long node, const char *uname, int depth, void *data); 830 void *data; 831 }; 832 833 const char * __init of_flat_dt_get_machine_name(void) 834 { 835 const char *name; 836 unsigned long dt_root = of_get_flat_dt_root(); 837 838 name = of_get_flat_dt_prop(dt_root, "model", NULL); 839 if (!name) 840 name = of_get_flat_dt_prop(dt_root, "compatible", NULL); 841 return name; 842 } 843 844 /** 845 * of_flat_dt_match_machine - Iterate match tables to find matching machine. 846 * 847 * @default_match: A machine specific ptr to return in case of no match. 848 * @get_next_compat: callback function to return next compatible match table. 849 * 850 * Iterate through machine match tables to find the best match for the machine 851 * compatible string in the FDT. 852 */ 853 const void * __init of_flat_dt_match_machine(const void *default_match, 854 const void * (*get_next_compat)(const char * const**)) 855 { 856 const void *data = NULL; 857 const void *best_data = default_match; 858 const char *const *compat; 859 unsigned long dt_root; 860 unsigned int best_score = ~1, score = 0; 861 862 dt_root = of_get_flat_dt_root(); 863 while ((data = get_next_compat(&compat))) { 864 score = of_flat_dt_match(dt_root, compat); 865 if (score > 0 && score < best_score) { 866 best_data = data; 867 best_score = score; 868 } 869 } 870 if (!best_data) { 871 const char *prop; 872 int size; 873 874 pr_err("\n unrecognized device tree list:\n[ "); 875 876 prop = of_get_flat_dt_prop(dt_root, "compatible", &size); 877 if (prop) { 878 while (size > 0) { 879 printk("'%s' ", prop); 880 size -= strlen(prop) + 1; 881 prop += strlen(prop) + 1; 882 } 883 } 884 printk("]\n\n"); 885 return NULL; 886 } 887 888 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); 889 890 return best_data; 891 } 892 893 #ifdef CONFIG_BLK_DEV_INITRD 894 #ifndef __early_init_dt_declare_initrd 895 static void __early_init_dt_declare_initrd(unsigned long start, 896 unsigned long end) 897 { 898 initrd_start = (unsigned long)__va(start); 899 initrd_end = (unsigned long)__va(end); 900 initrd_below_start_ok = 1; 901 } 902 #endif 903 904 /** 905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree 906 * @node: reference to node containing initrd location ('chosen') 907 */ 908 static void __init early_init_dt_check_for_initrd(unsigned long node) 909 { 910 u64 start, end; 911 int len; 912 const __be32 *prop; 913 914 pr_debug("Looking for initrd properties... "); 915 916 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); 917 if (!prop) 918 return; 919 start = of_read_number(prop, len/4); 920 921 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); 922 if (!prop) 923 return; 924 end = of_read_number(prop, len/4); 925 926 __early_init_dt_declare_initrd(start, end); 927 928 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", 929 (unsigned long long)start, (unsigned long long)end); 930 } 931 #else 932 static inline void early_init_dt_check_for_initrd(unsigned long node) 933 { 934 } 935 #endif /* CONFIG_BLK_DEV_INITRD */ 936 937 #ifdef CONFIG_SERIAL_EARLYCON 938 939 int __init early_init_dt_scan_chosen_stdout(void) 940 { 941 int offset; 942 const char *p, *q, *options = NULL; 943 int l; 944 const struct earlycon_id **p_match; 945 const void *fdt = initial_boot_params; 946 947 offset = fdt_path_offset(fdt, "/chosen"); 948 if (offset < 0) 949 offset = fdt_path_offset(fdt, "/chosen@0"); 950 if (offset < 0) 951 return -ENOENT; 952 953 p = fdt_getprop(fdt, offset, "stdout-path", &l); 954 if (!p) 955 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); 956 if (!p || !l) 957 return -ENOENT; 958 959 q = strchrnul(p, ':'); 960 if (*q != '\0') 961 options = q + 1; 962 l = q - p; 963 964 /* Get the node specified by stdout-path */ 965 offset = fdt_path_offset_namelen(fdt, p, l); 966 if (offset < 0) { 967 pr_warn("earlycon: stdout-path %.*s not found\n", l, p); 968 return 0; 969 } 970 971 for (p_match = __earlycon_table; p_match < __earlycon_table_end; 972 p_match++) { 973 const struct earlycon_id *match = *p_match; 974 975 if (!match->compatible[0]) 976 continue; 977 978 if (fdt_node_check_compatible(fdt, offset, match->compatible)) 979 continue; 980 981 of_setup_earlycon(match, offset, options); 982 return 0; 983 } 984 return -ENODEV; 985 } 986 #endif 987 988 /** 989 * early_init_dt_scan_root - fetch the top level address and size cells 990 */ 991 int __init early_init_dt_scan_root(unsigned long node, const char *uname, 992 int depth, void *data) 993 { 994 const __be32 *prop; 995 996 if (depth != 0) 997 return 0; 998 999 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 1000 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 1001 1002 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 1003 if (prop) 1004 dt_root_size_cells = be32_to_cpup(prop); 1005 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); 1006 1007 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 1008 if (prop) 1009 dt_root_addr_cells = be32_to_cpup(prop); 1010 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); 1011 1012 /* break now */ 1013 return 1; 1014 } 1015 1016 u64 __init dt_mem_next_cell(int s, const __be32 **cellp) 1017 { 1018 const __be32 *p = *cellp; 1019 1020 *cellp = p + s; 1021 return of_read_number(p, s); 1022 } 1023 1024 /** 1025 * early_init_dt_scan_memory - Look for and parse memory nodes 1026 */ 1027 int __init early_init_dt_scan_memory(unsigned long node, const char *uname, 1028 int depth, void *data) 1029 { 1030 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 1031 const __be32 *reg, *endp; 1032 int l; 1033 bool hotpluggable; 1034 1035 /* We are scanning "memory" nodes only */ 1036 if (type == NULL || strcmp(type, "memory") != 0) 1037 return 0; 1038 1039 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); 1040 if (reg == NULL) 1041 reg = of_get_flat_dt_prop(node, "reg", &l); 1042 if (reg == NULL) 1043 return 0; 1044 1045 endp = reg + (l / sizeof(__be32)); 1046 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); 1047 1048 pr_debug("memory scan node %s, reg size %d,\n", uname, l); 1049 1050 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { 1051 u64 base, size; 1052 1053 base = dt_mem_next_cell(dt_root_addr_cells, ®); 1054 size = dt_mem_next_cell(dt_root_size_cells, ®); 1055 1056 if (size == 0) 1057 continue; 1058 pr_debug(" - %llx , %llx\n", (unsigned long long)base, 1059 (unsigned long long)size); 1060 1061 early_init_dt_add_memory_arch(base, size); 1062 1063 if (!hotpluggable) 1064 continue; 1065 1066 if (early_init_dt_mark_hotplug_memory_arch(base, size)) 1067 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", 1068 base, base + size); 1069 } 1070 1071 return 0; 1072 } 1073 1074 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, 1075 int depth, void *data) 1076 { 1077 int l; 1078 const char *p; 1079 1080 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); 1081 1082 if (depth != 1 || !data || 1083 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) 1084 return 0; 1085 1086 early_init_dt_check_for_initrd(node); 1087 1088 /* Retrieve command line */ 1089 p = of_get_flat_dt_prop(node, "bootargs", &l); 1090 if (p != NULL && l > 0) 1091 strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE)); 1092 1093 /* 1094 * CONFIG_CMDLINE is meant to be a default in case nothing else 1095 * managed to set the command line, unless CONFIG_CMDLINE_FORCE 1096 * is set in which case we override whatever was found earlier. 1097 */ 1098 #ifdef CONFIG_CMDLINE 1099 #if defined(CONFIG_CMDLINE_EXTEND) 1100 strlcat(data, " ", COMMAND_LINE_SIZE); 1101 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1102 #elif defined(CONFIG_CMDLINE_FORCE) 1103 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1104 #else 1105 /* No arguments from boot loader, use kernel's cmdl*/ 1106 if (!((char *)data)[0]) 1107 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1108 #endif 1109 #endif /* CONFIG_CMDLINE */ 1110 1111 pr_debug("Command line is: %s\n", (char*)data); 1112 1113 /* break now */ 1114 return 1; 1115 } 1116 1117 #ifndef MIN_MEMBLOCK_ADDR 1118 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) 1119 #endif 1120 #ifndef MAX_MEMBLOCK_ADDR 1121 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) 1122 #endif 1123 1124 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) 1125 { 1126 const u64 phys_offset = MIN_MEMBLOCK_ADDR; 1127 1128 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { 1129 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1130 base, base + size); 1131 return; 1132 } 1133 1134 if (!PAGE_ALIGNED(base)) { 1135 size -= PAGE_SIZE - (base & ~PAGE_MASK); 1136 base = PAGE_ALIGN(base); 1137 } 1138 size &= PAGE_MASK; 1139 1140 if (base > MAX_MEMBLOCK_ADDR) { 1141 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n", 1142 base, base + size); 1143 return; 1144 } 1145 1146 if (base + size - 1 > MAX_MEMBLOCK_ADDR) { 1147 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n", 1148 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); 1149 size = MAX_MEMBLOCK_ADDR - base + 1; 1150 } 1151 1152 if (base + size < phys_offset) { 1153 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n", 1154 base, base + size); 1155 return; 1156 } 1157 if (base < phys_offset) { 1158 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n", 1159 base, phys_offset); 1160 size -= phys_offset - base; 1161 base = phys_offset; 1162 } 1163 memblock_add(base, size); 1164 } 1165 1166 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size) 1167 { 1168 return memblock_mark_hotplug(base, size); 1169 } 1170 1171 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base, 1172 phys_addr_t size, bool nomap) 1173 { 1174 if (nomap) 1175 return memblock_remove(base, size); 1176 return memblock_reserve(base, size); 1177 } 1178 1179 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) 1180 { 1181 return memblock_alloc(size, align); 1182 } 1183 1184 bool __init early_init_dt_verify(void *params) 1185 { 1186 if (!params) 1187 return false; 1188 1189 /* check device tree validity */ 1190 if (fdt_check_header(params)) 1191 return false; 1192 1193 /* Setup flat device-tree pointer */ 1194 initial_boot_params = params; 1195 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1196 fdt_totalsize(initial_boot_params)); 1197 return true; 1198 } 1199 1200 1201 void __init early_init_dt_scan_nodes(void) 1202 { 1203 /* Retrieve various information from the /chosen node */ 1204 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); 1205 1206 /* Initialize {size,address}-cells info */ 1207 of_scan_flat_dt(early_init_dt_scan_root, NULL); 1208 1209 /* Setup memory, calling early_init_dt_add_memory_arch */ 1210 of_scan_flat_dt(early_init_dt_scan_memory, NULL); 1211 } 1212 1213 bool __init early_init_dt_scan(void *params) 1214 { 1215 bool status; 1216 1217 status = early_init_dt_verify(params); 1218 if (!status) 1219 return false; 1220 1221 early_init_dt_scan_nodes(); 1222 return true; 1223 } 1224 1225 /** 1226 * unflatten_device_tree - create tree of device_nodes from flat blob 1227 * 1228 * unflattens the device-tree passed by the firmware, creating the 1229 * tree of struct device_node. It also fills the "name" and "type" 1230 * pointers of the nodes so the normal device-tree walking functions 1231 * can be used. 1232 */ 1233 void __init unflatten_device_tree(void) 1234 { 1235 __unflatten_device_tree(initial_boot_params, NULL, &of_root, 1236 early_init_dt_alloc_memory_arch, false); 1237 1238 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ 1239 of_alias_scan(early_init_dt_alloc_memory_arch); 1240 1241 unittest_unflatten_overlay_base(); 1242 } 1243 1244 /** 1245 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob 1246 * 1247 * Copies and unflattens the device-tree passed by the firmware, creating the 1248 * tree of struct device_node. It also fills the "name" and "type" 1249 * pointers of the nodes so the normal device-tree walking functions 1250 * can be used. This should only be used when the FDT memory has not been 1251 * reserved such is the case when the FDT is built-in to the kernel init 1252 * section. If the FDT memory is reserved already then unflatten_device_tree 1253 * should be used instead. 1254 */ 1255 void __init unflatten_and_copy_device_tree(void) 1256 { 1257 int size; 1258 void *dt; 1259 1260 if (!initial_boot_params) { 1261 pr_warn("No valid device tree found, continuing without\n"); 1262 return; 1263 } 1264 1265 size = fdt_totalsize(initial_boot_params); 1266 dt = early_init_dt_alloc_memory_arch(size, 1267 roundup_pow_of_two(FDT_V17_SIZE)); 1268 1269 if (dt) { 1270 memcpy(dt, initial_boot_params, size); 1271 initial_boot_params = dt; 1272 } 1273 unflatten_device_tree(); 1274 } 1275 1276 #ifdef CONFIG_SYSFS 1277 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, 1278 struct bin_attribute *bin_attr, 1279 char *buf, loff_t off, size_t count) 1280 { 1281 memcpy(buf, initial_boot_params + off, count); 1282 return count; 1283 } 1284 1285 static int __init of_fdt_raw_init(void) 1286 { 1287 static struct bin_attribute of_fdt_raw_attr = 1288 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); 1289 1290 if (!initial_boot_params) 1291 return 0; 1292 1293 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, 1294 fdt_totalsize(initial_boot_params))) { 1295 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); 1296 return 0; 1297 } 1298 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); 1299 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); 1300 } 1301 late_initcall(of_fdt_raw_init); 1302 #endif 1303 1304 #endif /* CONFIG_OF_EARLY_FLATTREE */ 1305