xref: /openbmc/linux/drivers/of/fdt.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * of_fdt_limit_memory - limit the number of regions in the /memory node
37  * @limit: maximum entries
38  *
39  * Adjust the flattened device tree to have at most 'limit' number of
40  * memory entries in the /memory node. This function may be called
41  * any time after initial_boot_param is set.
42  */
43 void __init of_fdt_limit_memory(int limit)
44 {
45 	int memory;
46 	int len;
47 	const void *val;
48 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 	const __be32 *addr_prop;
51 	const __be32 *size_prop;
52 	int root_offset;
53 	int cell_size;
54 
55 	root_offset = fdt_path_offset(initial_boot_params, "/");
56 	if (root_offset < 0)
57 		return;
58 
59 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 				"#address-cells", NULL);
61 	if (addr_prop)
62 		nr_address_cells = fdt32_to_cpu(*addr_prop);
63 
64 	size_prop = fdt_getprop(initial_boot_params, root_offset,
65 				"#size-cells", NULL);
66 	if (size_prop)
67 		nr_size_cells = fdt32_to_cpu(*size_prop);
68 
69 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70 
71 	memory = fdt_path_offset(initial_boot_params, "/memory");
72 	if (memory > 0) {
73 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 		if (len > limit*cell_size) {
75 			len = limit*cell_size;
76 			pr_debug("Limiting number of entries to %d\n", limit);
77 			fdt_setprop(initial_boot_params, memory, "reg", val,
78 					len);
79 		}
80 	}
81 }
82 
83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 	const char *status = fdt_getprop(blob, node, "status", NULL);
86 
87 	if (!status)
88 		return true;
89 
90 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 		return true;
92 
93 	return false;
94 }
95 
96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 				       unsigned long align)
98 {
99 	void *res;
100 
101 	*mem = PTR_ALIGN(*mem, align);
102 	res = *mem;
103 	*mem += size;
104 
105 	return res;
106 }
107 
108 static void populate_properties(const void *blob,
109 				int offset,
110 				void **mem,
111 				struct device_node *np,
112 				const char *nodename,
113 				bool dryrun)
114 {
115 	struct property *pp, **pprev = NULL;
116 	int cur;
117 	bool has_name = false;
118 
119 	pprev = &np->properties;
120 	for (cur = fdt_first_property_offset(blob, offset);
121 	     cur >= 0;
122 	     cur = fdt_next_property_offset(blob, cur)) {
123 		const __be32 *val;
124 		const char *pname;
125 		u32 sz;
126 
127 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 		if (!val) {
129 			pr_warn("Cannot locate property at 0x%x\n", cur);
130 			continue;
131 		}
132 
133 		if (!pname) {
134 			pr_warn("Cannot find property name at 0x%x\n", cur);
135 			continue;
136 		}
137 
138 		if (!strcmp(pname, "name"))
139 			has_name = true;
140 
141 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 					__alignof__(struct property));
143 		if (dryrun)
144 			continue;
145 
146 		/* We accept flattened tree phandles either in
147 		 * ePAPR-style "phandle" properties, or the
148 		 * legacy "linux,phandle" properties.  If both
149 		 * appear and have different values, things
150 		 * will get weird. Don't do that.
151 		 */
152 		if (!strcmp(pname, "phandle") ||
153 		    !strcmp(pname, "linux,phandle")) {
154 			if (!np->phandle)
155 				np->phandle = be32_to_cpup(val);
156 		}
157 
158 		/* And we process the "ibm,phandle" property
159 		 * used in pSeries dynamic device tree
160 		 * stuff
161 		 */
162 		if (!strcmp(pname, "ibm,phandle"))
163 			np->phandle = be32_to_cpup(val);
164 
165 		pp->name   = (char *)pname;
166 		pp->length = sz;
167 		pp->value  = (__be32 *)val;
168 		*pprev     = pp;
169 		pprev      = &pp->next;
170 	}
171 
172 	/* With version 0x10 we may not have the name property,
173 	 * recreate it here from the unit name if absent
174 	 */
175 	if (!has_name) {
176 		const char *p = nodename, *ps = p, *pa = NULL;
177 		int len;
178 
179 		while (*p) {
180 			if ((*p) == '@')
181 				pa = p;
182 			else if ((*p) == '/')
183 				ps = p + 1;
184 			p++;
185 		}
186 
187 		if (pa < ps)
188 			pa = p;
189 		len = (pa - ps) + 1;
190 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 					__alignof__(struct property));
192 		if (!dryrun) {
193 			pp->name   = "name";
194 			pp->length = len;
195 			pp->value  = pp + 1;
196 			*pprev     = pp;
197 			memcpy(pp->value, ps, len - 1);
198 			((char *)pp->value)[len - 1] = 0;
199 			pr_debug("fixed up name for %s -> %s\n",
200 				 nodename, (char *)pp->value);
201 		}
202 	}
203 }
204 
205 static int populate_node(const void *blob,
206 			  int offset,
207 			  void **mem,
208 			  struct device_node *dad,
209 			  struct device_node **pnp,
210 			  bool dryrun)
211 {
212 	struct device_node *np;
213 	const char *pathp;
214 	int len;
215 
216 	pathp = fdt_get_name(blob, offset, &len);
217 	if (!pathp) {
218 		*pnp = NULL;
219 		return len;
220 	}
221 
222 	len++;
223 
224 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 				__alignof__(struct device_node));
226 	if (!dryrun) {
227 		char *fn;
228 		of_node_init(np);
229 		np->full_name = fn = ((char *)np) + sizeof(*np);
230 
231 		memcpy(fn, pathp, len);
232 
233 		if (dad != NULL) {
234 			np->parent = dad;
235 			np->sibling = dad->child;
236 			dad->child = np;
237 		}
238 	}
239 
240 	populate_properties(blob, offset, mem, np, pathp, dryrun);
241 	if (!dryrun) {
242 		np->name = of_get_property(np, "name", NULL);
243 		if (!np->name)
244 			np->name = "<NULL>";
245 	}
246 
247 	*pnp = np;
248 	return true;
249 }
250 
251 static void reverse_nodes(struct device_node *parent)
252 {
253 	struct device_node *child, *next;
254 
255 	/* In-depth first */
256 	child = parent->child;
257 	while (child) {
258 		reverse_nodes(child);
259 
260 		child = child->sibling;
261 	}
262 
263 	/* Reverse the nodes in the child list */
264 	child = parent->child;
265 	parent->child = NULL;
266 	while (child) {
267 		next = child->sibling;
268 
269 		child->sibling = parent->child;
270 		parent->child = child;
271 		child = next;
272 	}
273 }
274 
275 /**
276  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277  * @blob: The parent device tree blob
278  * @mem: Memory chunk to use for allocating device nodes and properties
279  * @dad: Parent struct device_node
280  * @nodepp: The device_node tree created by the call
281  *
282  * Return: The size of unflattened device tree or error code
283  */
284 static int unflatten_dt_nodes(const void *blob,
285 			      void *mem,
286 			      struct device_node *dad,
287 			      struct device_node **nodepp)
288 {
289 	struct device_node *root;
290 	int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH	64
292 	struct device_node *nps[FDT_MAX_DEPTH];
293 	void *base = mem;
294 	bool dryrun = !base;
295 	int ret;
296 
297 	if (nodepp)
298 		*nodepp = NULL;
299 
300 	/*
301 	 * We're unflattening device sub-tree if @dad is valid. There are
302 	 * possibly multiple nodes in the first level of depth. We need
303 	 * set @depth to 1 to make fdt_next_node() happy as it bails
304 	 * immediately when negative @depth is found. Otherwise, the device
305 	 * nodes except the first one won't be unflattened successfully.
306 	 */
307 	if (dad)
308 		depth = initial_depth = 1;
309 
310 	root = dad;
311 	nps[depth] = dad;
312 
313 	for (offset = 0;
314 	     offset >= 0 && depth >= initial_depth;
315 	     offset = fdt_next_node(blob, offset, &depth)) {
316 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
317 			continue;
318 
319 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 		    !of_fdt_device_is_available(blob, offset))
321 			continue;
322 
323 		ret = populate_node(blob, offset, &mem, nps[depth],
324 				   &nps[depth+1], dryrun);
325 		if (ret < 0)
326 			return ret;
327 
328 		if (!dryrun && nodepp && !*nodepp)
329 			*nodepp = nps[depth+1];
330 		if (!dryrun && !root)
331 			root = nps[depth+1];
332 	}
333 
334 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 		pr_err("Error %d processing FDT\n", offset);
336 		return -EINVAL;
337 	}
338 
339 	/*
340 	 * Reverse the child list. Some drivers assumes node order matches .dts
341 	 * node order
342 	 */
343 	if (!dryrun)
344 		reverse_nodes(root);
345 
346 	return mem - base;
347 }
348 
349 /**
350  * __unflatten_device_tree - create tree of device_nodes from flat blob
351  * @blob: The blob to expand
352  * @dad: Parent device node
353  * @mynodes: The device_node tree created by the call
354  * @dt_alloc: An allocator that provides a virtual address to memory
355  * for the resulting tree
356  * @detached: if true set OF_DETACHED on @mynodes
357  *
358  * unflattens a device-tree, creating the tree of struct device_node. It also
359  * fills the "name" and "type" pointers of the nodes so the normal device-tree
360  * walking functions can be used.
361  *
362  * Return: NULL on failure or the memory chunk containing the unflattened
363  * device tree on success.
364  */
365 void *__unflatten_device_tree(const void *blob,
366 			      struct device_node *dad,
367 			      struct device_node **mynodes,
368 			      void *(*dt_alloc)(u64 size, u64 align),
369 			      bool detached)
370 {
371 	int size;
372 	void *mem;
373 	int ret;
374 
375 	if (mynodes)
376 		*mynodes = NULL;
377 
378 	pr_debug(" -> unflatten_device_tree()\n");
379 
380 	if (!blob) {
381 		pr_debug("No device tree pointer\n");
382 		return NULL;
383 	}
384 
385 	pr_debug("Unflattening device tree:\n");
386 	pr_debug("magic: %08x\n", fdt_magic(blob));
387 	pr_debug("size: %08x\n", fdt_totalsize(blob));
388 	pr_debug("version: %08x\n", fdt_version(blob));
389 
390 	if (fdt_check_header(blob)) {
391 		pr_err("Invalid device tree blob header\n");
392 		return NULL;
393 	}
394 
395 	/* First pass, scan for size */
396 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 	if (size <= 0)
398 		return NULL;
399 
400 	size = ALIGN(size, 4);
401 	pr_debug("  size is %d, allocating...\n", size);
402 
403 	/* Allocate memory for the expanded device tree */
404 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 	if (!mem)
406 		return NULL;
407 
408 	memset(mem, 0, size);
409 
410 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411 
412 	pr_debug("  unflattening %p...\n", mem);
413 
414 	/* Second pass, do actual unflattening */
415 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416 
417 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 		pr_warn("End of tree marker overwritten: %08x\n",
419 			be32_to_cpup(mem + size));
420 
421 	if (ret <= 0)
422 		return NULL;
423 
424 	if (detached && mynodes && *mynodes) {
425 		of_node_set_flag(*mynodes, OF_DETACHED);
426 		pr_debug("unflattened tree is detached\n");
427 	}
428 
429 	pr_debug(" <- unflatten_device_tree()\n");
430 	return mem;
431 }
432 
433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 	return kzalloc(size, GFP_KERNEL);
436 }
437 
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439 
440 /**
441  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442  * @blob: Flat device tree blob
443  * @dad: Parent device node
444  * @mynodes: The device tree created by the call
445  *
446  * unflattens the device-tree passed by the firmware, creating the
447  * tree of struct device_node. It also fills the "name" and "type"
448  * pointers of the nodes so the normal device-tree walking functions
449  * can be used.
450  *
451  * Return: NULL on failure or the memory chunk containing the unflattened
452  * device tree on success.
453  */
454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 			    struct device_node *dad,
456 			    struct device_node **mynodes)
457 {
458 	void *mem;
459 
460 	mutex_lock(&of_fdt_unflatten_mutex);
461 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 				      true);
463 	mutex_unlock(&of_fdt_unflatten_mutex);
464 
465 	return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468 
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472 
473 void *initial_boot_params __ro_after_init;
474 
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476 
477 static u32 of_fdt_crc32;
478 
479 static int __init early_init_dt_reserve_memory_arch(phys_addr_t base,
480 					phys_addr_t size, bool nomap)
481 {
482 	if (nomap) {
483 		/*
484 		 * If the memory is already reserved (by another region), we
485 		 * should not allow it to be marked nomap.
486 		 */
487 		if (memblock_is_region_reserved(base, size))
488 			return -EBUSY;
489 
490 		return memblock_mark_nomap(base, size);
491 	}
492 	return memblock_reserve(base, size);
493 }
494 
495 /*
496  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
497  */
498 static int __init __reserved_mem_reserve_reg(unsigned long node,
499 					     const char *uname)
500 {
501 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
502 	phys_addr_t base, size;
503 	int len;
504 	const __be32 *prop;
505 	int first = 1;
506 	bool nomap;
507 
508 	prop = of_get_flat_dt_prop(node, "reg", &len);
509 	if (!prop)
510 		return -ENOENT;
511 
512 	if (len && len % t_len != 0) {
513 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
514 		       uname);
515 		return -EINVAL;
516 	}
517 
518 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
519 
520 	while (len >= t_len) {
521 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
522 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
523 
524 		if (size &&
525 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
526 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
527 				uname, &base, (unsigned long)(size / SZ_1M));
528 		else
529 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
530 				uname, &base, (unsigned long)(size / SZ_1M));
531 
532 		len -= t_len;
533 		if (first) {
534 			fdt_reserved_mem_save_node(node, uname, base, size);
535 			first = 0;
536 		}
537 	}
538 	return 0;
539 }
540 
541 /*
542  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
543  * in /reserved-memory matches the values supported by the current implementation,
544  * also check if ranges property has been provided
545  */
546 static int __init __reserved_mem_check_root(unsigned long node)
547 {
548 	const __be32 *prop;
549 
550 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
551 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
552 		return -EINVAL;
553 
554 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
555 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
556 		return -EINVAL;
557 
558 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
559 	if (!prop)
560 		return -EINVAL;
561 	return 0;
562 }
563 
564 /*
565  * __fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
566  */
567 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
568 					  int depth, void *data)
569 {
570 	static int found;
571 	int err;
572 
573 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
574 		if (__reserved_mem_check_root(node) != 0) {
575 			pr_err("Reserved memory: unsupported node format, ignoring\n");
576 			/* break scan */
577 			return 1;
578 		}
579 		found = 1;
580 		/* scan next node */
581 		return 0;
582 	} else if (!found) {
583 		/* scan next node */
584 		return 0;
585 	} else if (found && depth < 2) {
586 		/* scanning of /reserved-memory has been finished */
587 		return 1;
588 	}
589 
590 	if (!of_fdt_device_is_available(initial_boot_params, node))
591 		return 0;
592 
593 	err = __reserved_mem_reserve_reg(node, uname);
594 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
595 		fdt_reserved_mem_save_node(node, uname, 0, 0);
596 
597 	/* scan next node */
598 	return 0;
599 }
600 
601 /*
602  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
603  *
604  * This function reserves the memory occupied by an elf core header
605  * described in the device tree. This region contains all the
606  * information about primary kernel's core image and is used by a dump
607  * capture kernel to access the system memory on primary kernel.
608  */
609 static void __init fdt_reserve_elfcorehdr(void)
610 {
611 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
612 		return;
613 
614 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
615 		pr_warn("elfcorehdr is overlapped\n");
616 		return;
617 	}
618 
619 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
620 
621 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
622 		elfcorehdr_size >> 10, elfcorehdr_addr);
623 }
624 
625 /**
626  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
627  *
628  * This function grabs memory from early allocator for device exclusive use
629  * defined in device tree structures. It should be called by arch specific code
630  * once the early allocator (i.e. memblock) has been fully activated.
631  */
632 void __init early_init_fdt_scan_reserved_mem(void)
633 {
634 	int n;
635 	u64 base, size;
636 
637 	if (!initial_boot_params)
638 		return;
639 
640 	/* Process header /memreserve/ fields */
641 	for (n = 0; ; n++) {
642 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
643 		if (!size)
644 			break;
645 		early_init_dt_reserve_memory_arch(base, size, false);
646 	}
647 
648 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
649 	fdt_init_reserved_mem();
650 	fdt_reserve_elfcorehdr();
651 }
652 
653 /**
654  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
655  */
656 void __init early_init_fdt_reserve_self(void)
657 {
658 	if (!initial_boot_params)
659 		return;
660 
661 	/* Reserve the dtb region */
662 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
663 					  fdt_totalsize(initial_boot_params),
664 					  false);
665 }
666 
667 /**
668  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
669  * @it: callback function
670  * @data: context data pointer
671  *
672  * This function is used to scan the flattened device-tree, it is
673  * used to extract the memory information at boot before we can
674  * unflatten the tree
675  */
676 int __init of_scan_flat_dt(int (*it)(unsigned long node,
677 				     const char *uname, int depth,
678 				     void *data),
679 			   void *data)
680 {
681 	const void *blob = initial_boot_params;
682 	const char *pathp;
683 	int offset, rc = 0, depth = -1;
684 
685 	if (!blob)
686 		return 0;
687 
688 	for (offset = fdt_next_node(blob, -1, &depth);
689 	     offset >= 0 && depth >= 0 && !rc;
690 	     offset = fdt_next_node(blob, offset, &depth)) {
691 
692 		pathp = fdt_get_name(blob, offset, NULL);
693 		rc = it(offset, pathp, depth, data);
694 	}
695 	return rc;
696 }
697 
698 /**
699  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
700  * @parent: parent node
701  * @it: callback function
702  * @data: context data pointer
703  *
704  * This function is used to scan sub-nodes of a node.
705  */
706 int __init of_scan_flat_dt_subnodes(unsigned long parent,
707 				    int (*it)(unsigned long node,
708 					      const char *uname,
709 					      void *data),
710 				    void *data)
711 {
712 	const void *blob = initial_boot_params;
713 	int node;
714 
715 	fdt_for_each_subnode(node, blob, parent) {
716 		const char *pathp;
717 		int rc;
718 
719 		pathp = fdt_get_name(blob, node, NULL);
720 		rc = it(node, pathp, data);
721 		if (rc)
722 			return rc;
723 	}
724 	return 0;
725 }
726 
727 /**
728  * of_get_flat_dt_subnode_by_name - get the subnode by given name
729  *
730  * @node: the parent node
731  * @uname: the name of subnode
732  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
733  */
734 
735 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
736 {
737 	return fdt_subnode_offset(initial_boot_params, node, uname);
738 }
739 
740 /*
741  * of_get_flat_dt_root - find the root node in the flat blob
742  */
743 unsigned long __init of_get_flat_dt_root(void)
744 {
745 	return 0;
746 }
747 
748 /*
749  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
750  *
751  * This function can be used within scan_flattened_dt callback to get
752  * access to properties
753  */
754 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
755 				       int *size)
756 {
757 	return fdt_getprop(initial_boot_params, node, name, size);
758 }
759 
760 /**
761  * of_fdt_is_compatible - Return true if given node from the given blob has
762  * compat in its compatible list
763  * @blob: A device tree blob
764  * @node: node to test
765  * @compat: compatible string to compare with compatible list.
766  *
767  * Return: a non-zero value on match with smaller values returned for more
768  * specific compatible values.
769  */
770 static int of_fdt_is_compatible(const void *blob,
771 		      unsigned long node, const char *compat)
772 {
773 	const char *cp;
774 	int cplen;
775 	unsigned long l, score = 0;
776 
777 	cp = fdt_getprop(blob, node, "compatible", &cplen);
778 	if (cp == NULL)
779 		return 0;
780 	while (cplen > 0) {
781 		score++;
782 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
783 			return score;
784 		l = strlen(cp) + 1;
785 		cp += l;
786 		cplen -= l;
787 	}
788 
789 	return 0;
790 }
791 
792 /**
793  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
794  * @node: node to test
795  * @compat: compatible string to compare with compatible list.
796  */
797 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
798 {
799 	return of_fdt_is_compatible(initial_boot_params, node, compat);
800 }
801 
802 /*
803  * of_flat_dt_match - Return true if node matches a list of compatible values
804  */
805 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
806 {
807 	unsigned int tmp, score = 0;
808 
809 	if (!compat)
810 		return 0;
811 
812 	while (*compat) {
813 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
814 		if (tmp && (score == 0 || (tmp < score)))
815 			score = tmp;
816 		compat++;
817 	}
818 
819 	return score;
820 }
821 
822 /*
823  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
824  */
825 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
826 {
827 	return fdt_get_phandle(initial_boot_params, node);
828 }
829 
830 struct fdt_scan_status {
831 	const char *name;
832 	int namelen;
833 	int depth;
834 	int found;
835 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
836 	void *data;
837 };
838 
839 const char * __init of_flat_dt_get_machine_name(void)
840 {
841 	const char *name;
842 	unsigned long dt_root = of_get_flat_dt_root();
843 
844 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
845 	if (!name)
846 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
847 	return name;
848 }
849 
850 /**
851  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
852  *
853  * @default_match: A machine specific ptr to return in case of no match.
854  * @get_next_compat: callback function to return next compatible match table.
855  *
856  * Iterate through machine match tables to find the best match for the machine
857  * compatible string in the FDT.
858  */
859 const void * __init of_flat_dt_match_machine(const void *default_match,
860 		const void * (*get_next_compat)(const char * const**))
861 {
862 	const void *data = NULL;
863 	const void *best_data = default_match;
864 	const char *const *compat;
865 	unsigned long dt_root;
866 	unsigned int best_score = ~1, score = 0;
867 
868 	dt_root = of_get_flat_dt_root();
869 	while ((data = get_next_compat(&compat))) {
870 		score = of_flat_dt_match(dt_root, compat);
871 		if (score > 0 && score < best_score) {
872 			best_data = data;
873 			best_score = score;
874 		}
875 	}
876 	if (!best_data) {
877 		const char *prop;
878 		int size;
879 
880 		pr_err("\n unrecognized device tree list:\n[ ");
881 
882 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
883 		if (prop) {
884 			while (size > 0) {
885 				printk("'%s' ", prop);
886 				size -= strlen(prop) + 1;
887 				prop += strlen(prop) + 1;
888 			}
889 		}
890 		printk("]\n\n");
891 		return NULL;
892 	}
893 
894 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
895 
896 	return best_data;
897 }
898 
899 static void __early_init_dt_declare_initrd(unsigned long start,
900 					   unsigned long end)
901 {
902 	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
903 	 * enabled since __va() is called too early. ARM64 does make use
904 	 * of phys_initrd_start/phys_initrd_size so we can skip this
905 	 * conversion.
906 	 */
907 	if (!IS_ENABLED(CONFIG_ARM64)) {
908 		initrd_start = (unsigned long)__va(start);
909 		initrd_end = (unsigned long)__va(end);
910 		initrd_below_start_ok = 1;
911 	}
912 }
913 
914 /**
915  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
916  * @node: reference to node containing initrd location ('chosen')
917  */
918 static void __init early_init_dt_check_for_initrd(unsigned long node)
919 {
920 	u64 start, end;
921 	int len;
922 	const __be32 *prop;
923 
924 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
925 		return;
926 
927 	pr_debug("Looking for initrd properties... ");
928 
929 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
930 	if (!prop)
931 		return;
932 	start = of_read_number(prop, len/4);
933 
934 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
935 	if (!prop)
936 		return;
937 	end = of_read_number(prop, len/4);
938 
939 	__early_init_dt_declare_initrd(start, end);
940 	phys_initrd_start = start;
941 	phys_initrd_size = end - start;
942 
943 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
944 }
945 
946 /**
947  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
948  * tree
949  * @node: reference to node containing elfcorehdr location ('chosen')
950  */
951 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
952 {
953 	const __be32 *prop;
954 	int len;
955 
956 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
957 		return;
958 
959 	pr_debug("Looking for elfcorehdr property... ");
960 
961 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
962 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
963 		return;
964 
965 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
966 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
967 
968 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
969 		 elfcorehdr_addr, elfcorehdr_size);
970 }
971 
972 static phys_addr_t cap_mem_addr;
973 static phys_addr_t cap_mem_size;
974 
975 /**
976  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
977  * location from flat tree
978  * @node: reference to node containing usable memory range location ('chosen')
979  */
980 static void __init early_init_dt_check_for_usable_mem_range(unsigned long node)
981 {
982 	const __be32 *prop;
983 	int len;
984 
985 	pr_debug("Looking for usable-memory-range property... ");
986 
987 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
988 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
989 		return;
990 
991 	cap_mem_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
992 	cap_mem_size = dt_mem_next_cell(dt_root_size_cells, &prop);
993 
994 	pr_debug("cap_mem_start=%pa cap_mem_size=%pa\n", &cap_mem_addr,
995 		 &cap_mem_size);
996 }
997 
998 #ifdef CONFIG_SERIAL_EARLYCON
999 
1000 int __init early_init_dt_scan_chosen_stdout(void)
1001 {
1002 	int offset;
1003 	const char *p, *q, *options = NULL;
1004 	int l;
1005 	const struct earlycon_id *match;
1006 	const void *fdt = initial_boot_params;
1007 
1008 	offset = fdt_path_offset(fdt, "/chosen");
1009 	if (offset < 0)
1010 		offset = fdt_path_offset(fdt, "/chosen@0");
1011 	if (offset < 0)
1012 		return -ENOENT;
1013 
1014 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1015 	if (!p)
1016 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1017 	if (!p || !l)
1018 		return -ENOENT;
1019 
1020 	q = strchrnul(p, ':');
1021 	if (*q != '\0')
1022 		options = q + 1;
1023 	l = q - p;
1024 
1025 	/* Get the node specified by stdout-path */
1026 	offset = fdt_path_offset_namelen(fdt, p, l);
1027 	if (offset < 0) {
1028 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1029 		return 0;
1030 	}
1031 
1032 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1033 		if (!match->compatible[0])
1034 			continue;
1035 
1036 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1037 			continue;
1038 
1039 		if (of_setup_earlycon(match, offset, options) == 0)
1040 			return 0;
1041 	}
1042 	return -ENODEV;
1043 }
1044 #endif
1045 
1046 /*
1047  * early_init_dt_scan_root - fetch the top level address and size cells
1048  */
1049 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
1050 				   int depth, void *data)
1051 {
1052 	const __be32 *prop;
1053 
1054 	if (depth != 0)
1055 		return 0;
1056 
1057 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1058 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1059 
1060 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1061 	if (prop)
1062 		dt_root_size_cells = be32_to_cpup(prop);
1063 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1064 
1065 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1066 	if (prop)
1067 		dt_root_addr_cells = be32_to_cpup(prop);
1068 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1069 
1070 	/* break now */
1071 	return 1;
1072 }
1073 
1074 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1075 {
1076 	const __be32 *p = *cellp;
1077 
1078 	*cellp = p + s;
1079 	return of_read_number(p, s);
1080 }
1081 
1082 /*
1083  * early_init_dt_scan_memory - Look for and parse memory nodes
1084  */
1085 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1086 				     int depth, void *data)
1087 {
1088 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1089 	const __be32 *reg, *endp;
1090 	int l;
1091 	bool hotpluggable;
1092 
1093 	/* We are scanning "memory" nodes only */
1094 	if (type == NULL || strcmp(type, "memory") != 0)
1095 		return 0;
1096 
1097 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1098 	if (reg == NULL)
1099 		reg = of_get_flat_dt_prop(node, "reg", &l);
1100 	if (reg == NULL)
1101 		return 0;
1102 
1103 	endp = reg + (l / sizeof(__be32));
1104 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1105 
1106 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1107 
1108 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1109 		u64 base, size;
1110 
1111 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1112 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1113 
1114 		if (size == 0)
1115 			continue;
1116 		pr_debug(" - %llx, %llx\n", base, size);
1117 
1118 		early_init_dt_add_memory_arch(base, size);
1119 
1120 		if (!hotpluggable)
1121 			continue;
1122 
1123 		if (memblock_mark_hotplug(base, size))
1124 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1125 				base, base + size);
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1132 				     int depth, void *data)
1133 {
1134 	int l;
1135 	const char *p;
1136 	const void *rng_seed;
1137 
1138 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1139 
1140 	if (depth != 1 || !data ||
1141 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1142 		return 0;
1143 
1144 	early_init_dt_check_for_initrd(node);
1145 	early_init_dt_check_for_elfcorehdr(node);
1146 	early_init_dt_check_for_usable_mem_range(node);
1147 
1148 	/* Retrieve command line */
1149 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1150 	if (p != NULL && l > 0)
1151 		strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1152 
1153 	/*
1154 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1155 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1156 	 * is set in which case we override whatever was found earlier.
1157 	 */
1158 #ifdef CONFIG_CMDLINE
1159 #if defined(CONFIG_CMDLINE_EXTEND)
1160 	strlcat(data, " ", COMMAND_LINE_SIZE);
1161 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1162 #elif defined(CONFIG_CMDLINE_FORCE)
1163 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1164 #else
1165 	/* No arguments from boot loader, use kernel's  cmdl*/
1166 	if (!((char *)data)[0])
1167 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1168 #endif
1169 #endif /* CONFIG_CMDLINE */
1170 
1171 	pr_debug("Command line is: %s\n", (char *)data);
1172 
1173 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1174 	if (rng_seed && l > 0) {
1175 		add_bootloader_randomness(rng_seed, l);
1176 
1177 		/* try to clear seed so it won't be found. */
1178 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1179 
1180 		/* update CRC check value */
1181 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1182 				fdt_totalsize(initial_boot_params));
1183 	}
1184 
1185 	/* break now */
1186 	return 1;
1187 }
1188 
1189 #ifndef MIN_MEMBLOCK_ADDR
1190 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1191 #endif
1192 #ifndef MAX_MEMBLOCK_ADDR
1193 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1194 #endif
1195 
1196 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1197 {
1198 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1199 
1200 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1201 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1202 			base, base + size);
1203 		return;
1204 	}
1205 
1206 	if (!PAGE_ALIGNED(base)) {
1207 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1208 		base = PAGE_ALIGN(base);
1209 	}
1210 	size &= PAGE_MASK;
1211 
1212 	if (base > MAX_MEMBLOCK_ADDR) {
1213 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1214 			base, base + size);
1215 		return;
1216 	}
1217 
1218 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1219 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1220 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1221 		size = MAX_MEMBLOCK_ADDR - base + 1;
1222 	}
1223 
1224 	if (base + size < phys_offset) {
1225 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1226 			base, base + size);
1227 		return;
1228 	}
1229 	if (base < phys_offset) {
1230 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1231 			base, phys_offset);
1232 		size -= phys_offset - base;
1233 		base = phys_offset;
1234 	}
1235 	memblock_add(base, size);
1236 }
1237 
1238 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1239 {
1240 	void *ptr = memblock_alloc(size, align);
1241 
1242 	if (!ptr)
1243 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1244 		      __func__, size, align);
1245 
1246 	return ptr;
1247 }
1248 
1249 bool __init early_init_dt_verify(void *params)
1250 {
1251 	if (!params)
1252 		return false;
1253 
1254 	/* check device tree validity */
1255 	if (fdt_check_header(params))
1256 		return false;
1257 
1258 	/* Setup flat device-tree pointer */
1259 	initial_boot_params = params;
1260 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1261 				fdt_totalsize(initial_boot_params));
1262 	return true;
1263 }
1264 
1265 
1266 void __init early_init_dt_scan_nodes(void)
1267 {
1268 	int rc = 0;
1269 
1270 	/* Initialize {size,address}-cells info */
1271 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1272 
1273 	/* Retrieve various information from the /chosen node */
1274 	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1275 	if (!rc)
1276 		pr_warn("No chosen node found, continuing without\n");
1277 
1278 	/* Setup memory, calling early_init_dt_add_memory_arch */
1279 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1280 
1281 	/* Handle linux,usable-memory-range property */
1282 	memblock_cap_memory_range(cap_mem_addr, cap_mem_size);
1283 }
1284 
1285 bool __init early_init_dt_scan(void *params)
1286 {
1287 	bool status;
1288 
1289 	status = early_init_dt_verify(params);
1290 	if (!status)
1291 		return false;
1292 
1293 	early_init_dt_scan_nodes();
1294 	return true;
1295 }
1296 
1297 /**
1298  * unflatten_device_tree - create tree of device_nodes from flat blob
1299  *
1300  * unflattens the device-tree passed by the firmware, creating the
1301  * tree of struct device_node. It also fills the "name" and "type"
1302  * pointers of the nodes so the normal device-tree walking functions
1303  * can be used.
1304  */
1305 void __init unflatten_device_tree(void)
1306 {
1307 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1308 				early_init_dt_alloc_memory_arch, false);
1309 
1310 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1311 	of_alias_scan(early_init_dt_alloc_memory_arch);
1312 
1313 	unittest_unflatten_overlay_base();
1314 }
1315 
1316 /**
1317  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1318  *
1319  * Copies and unflattens the device-tree passed by the firmware, creating the
1320  * tree of struct device_node. It also fills the "name" and "type"
1321  * pointers of the nodes so the normal device-tree walking functions
1322  * can be used. This should only be used when the FDT memory has not been
1323  * reserved such is the case when the FDT is built-in to the kernel init
1324  * section. If the FDT memory is reserved already then unflatten_device_tree
1325  * should be used instead.
1326  */
1327 void __init unflatten_and_copy_device_tree(void)
1328 {
1329 	int size;
1330 	void *dt;
1331 
1332 	if (!initial_boot_params) {
1333 		pr_warn("No valid device tree found, continuing without\n");
1334 		return;
1335 	}
1336 
1337 	size = fdt_totalsize(initial_boot_params);
1338 	dt = early_init_dt_alloc_memory_arch(size,
1339 					     roundup_pow_of_two(FDT_V17_SIZE));
1340 
1341 	if (dt) {
1342 		memcpy(dt, initial_boot_params, size);
1343 		initial_boot_params = dt;
1344 	}
1345 	unflatten_device_tree();
1346 }
1347 
1348 #ifdef CONFIG_SYSFS
1349 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1350 			       struct bin_attribute *bin_attr,
1351 			       char *buf, loff_t off, size_t count)
1352 {
1353 	memcpy(buf, initial_boot_params + off, count);
1354 	return count;
1355 }
1356 
1357 static int __init of_fdt_raw_init(void)
1358 {
1359 	static struct bin_attribute of_fdt_raw_attr =
1360 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1361 
1362 	if (!initial_boot_params)
1363 		return 0;
1364 
1365 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1366 				     fdt_totalsize(initial_boot_params))) {
1367 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1368 		return 0;
1369 	}
1370 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1371 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1372 }
1373 late_initcall(of_fdt_raw_init);
1374 #endif
1375 
1376 #endif /* CONFIG_OF_EARLY_FLATTREE */
1377