1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions for working with the Flattened Device Tree data format 4 * 5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp 6 * benh@kernel.crashing.org 7 */ 8 9 #define pr_fmt(fmt) "OF: fdt: " fmt 10 11 #include <linux/crc32.h> 12 #include <linux/kernel.h> 13 #include <linux/initrd.h> 14 #include <linux/memblock.h> 15 #include <linux/mutex.h> 16 #include <linux/of.h> 17 #include <linux/of_fdt.h> 18 #include <linux/of_reserved_mem.h> 19 #include <linux/sizes.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/libfdt.h> 24 #include <linux/debugfs.h> 25 #include <linux/serial_core.h> 26 #include <linux/sysfs.h> 27 #include <linux/random.h> 28 29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ 30 #include <asm/page.h> 31 32 #include "of_private.h" 33 34 /* 35 * of_fdt_limit_memory - limit the number of regions in the /memory node 36 * @limit: maximum entries 37 * 38 * Adjust the flattened device tree to have at most 'limit' number of 39 * memory entries in the /memory node. This function may be called 40 * any time after initial_boot_param is set. 41 */ 42 void __init of_fdt_limit_memory(int limit) 43 { 44 int memory; 45 int len; 46 const void *val; 47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 49 const __be32 *addr_prop; 50 const __be32 *size_prop; 51 int root_offset; 52 int cell_size; 53 54 root_offset = fdt_path_offset(initial_boot_params, "/"); 55 if (root_offset < 0) 56 return; 57 58 addr_prop = fdt_getprop(initial_boot_params, root_offset, 59 "#address-cells", NULL); 60 if (addr_prop) 61 nr_address_cells = fdt32_to_cpu(*addr_prop); 62 63 size_prop = fdt_getprop(initial_boot_params, root_offset, 64 "#size-cells", NULL); 65 if (size_prop) 66 nr_size_cells = fdt32_to_cpu(*size_prop); 67 68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); 69 70 memory = fdt_path_offset(initial_boot_params, "/memory"); 71 if (memory > 0) { 72 val = fdt_getprop(initial_boot_params, memory, "reg", &len); 73 if (len > limit*cell_size) { 74 len = limit*cell_size; 75 pr_debug("Limiting number of entries to %d\n", limit); 76 fdt_setprop(initial_boot_params, memory, "reg", val, 77 len); 78 } 79 } 80 } 81 82 static bool of_fdt_device_is_available(const void *blob, unsigned long node) 83 { 84 const char *status = fdt_getprop(blob, node, "status", NULL); 85 86 if (!status) 87 return true; 88 89 if (!strcmp(status, "ok") || !strcmp(status, "okay")) 90 return true; 91 92 return false; 93 } 94 95 static void *unflatten_dt_alloc(void **mem, unsigned long size, 96 unsigned long align) 97 { 98 void *res; 99 100 *mem = PTR_ALIGN(*mem, align); 101 res = *mem; 102 *mem += size; 103 104 return res; 105 } 106 107 static void populate_properties(const void *blob, 108 int offset, 109 void **mem, 110 struct device_node *np, 111 const char *nodename, 112 bool dryrun) 113 { 114 struct property *pp, **pprev = NULL; 115 int cur; 116 bool has_name = false; 117 118 pprev = &np->properties; 119 for (cur = fdt_first_property_offset(blob, offset); 120 cur >= 0; 121 cur = fdt_next_property_offset(blob, cur)) { 122 const __be32 *val; 123 const char *pname; 124 u32 sz; 125 126 val = fdt_getprop_by_offset(blob, cur, &pname, &sz); 127 if (!val) { 128 pr_warn("Cannot locate property at 0x%x\n", cur); 129 continue; 130 } 131 132 if (!pname) { 133 pr_warn("Cannot find property name at 0x%x\n", cur); 134 continue; 135 } 136 137 if (!strcmp(pname, "name")) 138 has_name = true; 139 140 pp = unflatten_dt_alloc(mem, sizeof(struct property), 141 __alignof__(struct property)); 142 if (dryrun) 143 continue; 144 145 /* We accept flattened tree phandles either in 146 * ePAPR-style "phandle" properties, or the 147 * legacy "linux,phandle" properties. If both 148 * appear and have different values, things 149 * will get weird. Don't do that. 150 */ 151 if (!strcmp(pname, "phandle") || 152 !strcmp(pname, "linux,phandle")) { 153 if (!np->phandle) 154 np->phandle = be32_to_cpup(val); 155 } 156 157 /* And we process the "ibm,phandle" property 158 * used in pSeries dynamic device tree 159 * stuff 160 */ 161 if (!strcmp(pname, "ibm,phandle")) 162 np->phandle = be32_to_cpup(val); 163 164 pp->name = (char *)pname; 165 pp->length = sz; 166 pp->value = (__be32 *)val; 167 *pprev = pp; 168 pprev = &pp->next; 169 } 170 171 /* With version 0x10 we may not have the name property, 172 * recreate it here from the unit name if absent 173 */ 174 if (!has_name) { 175 const char *p = nodename, *ps = p, *pa = NULL; 176 int len; 177 178 while (*p) { 179 if ((*p) == '@') 180 pa = p; 181 else if ((*p) == '/') 182 ps = p + 1; 183 p++; 184 } 185 186 if (pa < ps) 187 pa = p; 188 len = (pa - ps) + 1; 189 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, 190 __alignof__(struct property)); 191 if (!dryrun) { 192 pp->name = "name"; 193 pp->length = len; 194 pp->value = pp + 1; 195 *pprev = pp; 196 pprev = &pp->next; 197 memcpy(pp->value, ps, len - 1); 198 ((char *)pp->value)[len - 1] = 0; 199 pr_debug("fixed up name for %s -> %s\n", 200 nodename, (char *)pp->value); 201 } 202 } 203 204 if (!dryrun) 205 *pprev = NULL; 206 } 207 208 static bool populate_node(const void *blob, 209 int offset, 210 void **mem, 211 struct device_node *dad, 212 struct device_node **pnp, 213 bool dryrun) 214 { 215 struct device_node *np; 216 const char *pathp; 217 unsigned int l, allocl; 218 219 pathp = fdt_get_name(blob, offset, &l); 220 if (!pathp) { 221 *pnp = NULL; 222 return false; 223 } 224 225 allocl = ++l; 226 227 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl, 228 __alignof__(struct device_node)); 229 if (!dryrun) { 230 char *fn; 231 of_node_init(np); 232 np->full_name = fn = ((char *)np) + sizeof(*np); 233 234 memcpy(fn, pathp, l); 235 236 if (dad != NULL) { 237 np->parent = dad; 238 np->sibling = dad->child; 239 dad->child = np; 240 } 241 } 242 243 populate_properties(blob, offset, mem, np, pathp, dryrun); 244 if (!dryrun) { 245 np->name = of_get_property(np, "name", NULL); 246 if (!np->name) 247 np->name = "<NULL>"; 248 } 249 250 *pnp = np; 251 return true; 252 } 253 254 static void reverse_nodes(struct device_node *parent) 255 { 256 struct device_node *child, *next; 257 258 /* In-depth first */ 259 child = parent->child; 260 while (child) { 261 reverse_nodes(child); 262 263 child = child->sibling; 264 } 265 266 /* Reverse the nodes in the child list */ 267 child = parent->child; 268 parent->child = NULL; 269 while (child) { 270 next = child->sibling; 271 272 child->sibling = parent->child; 273 parent->child = child; 274 child = next; 275 } 276 } 277 278 /** 279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree 280 * @blob: The parent device tree blob 281 * @mem: Memory chunk to use for allocating device nodes and properties 282 * @dad: Parent struct device_node 283 * @nodepp: The device_node tree created by the call 284 * 285 * It returns the size of unflattened device tree or error code 286 */ 287 static int unflatten_dt_nodes(const void *blob, 288 void *mem, 289 struct device_node *dad, 290 struct device_node **nodepp) 291 { 292 struct device_node *root; 293 int offset = 0, depth = 0, initial_depth = 0; 294 #define FDT_MAX_DEPTH 64 295 struct device_node *nps[FDT_MAX_DEPTH]; 296 void *base = mem; 297 bool dryrun = !base; 298 299 if (nodepp) 300 *nodepp = NULL; 301 302 /* 303 * We're unflattening device sub-tree if @dad is valid. There are 304 * possibly multiple nodes in the first level of depth. We need 305 * set @depth to 1 to make fdt_next_node() happy as it bails 306 * immediately when negative @depth is found. Otherwise, the device 307 * nodes except the first one won't be unflattened successfully. 308 */ 309 if (dad) 310 depth = initial_depth = 1; 311 312 root = dad; 313 nps[depth] = dad; 314 315 for (offset = 0; 316 offset >= 0 && depth >= initial_depth; 317 offset = fdt_next_node(blob, offset, &depth)) { 318 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH)) 319 continue; 320 321 if (!IS_ENABLED(CONFIG_OF_KOBJ) && 322 !of_fdt_device_is_available(blob, offset)) 323 continue; 324 325 if (!populate_node(blob, offset, &mem, nps[depth], 326 &nps[depth+1], dryrun)) 327 return mem - base; 328 329 if (!dryrun && nodepp && !*nodepp) 330 *nodepp = nps[depth+1]; 331 if (!dryrun && !root) 332 root = nps[depth+1]; 333 } 334 335 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { 336 pr_err("Error %d processing FDT\n", offset); 337 return -EINVAL; 338 } 339 340 /* 341 * Reverse the child list. Some drivers assumes node order matches .dts 342 * node order 343 */ 344 if (!dryrun) 345 reverse_nodes(root); 346 347 return mem - base; 348 } 349 350 /** 351 * __unflatten_device_tree - create tree of device_nodes from flat blob 352 * 353 * unflattens a device-tree, creating the 354 * tree of struct device_node. It also fills the "name" and "type" 355 * pointers of the nodes so the normal device-tree walking functions 356 * can be used. 357 * @blob: The blob to expand 358 * @dad: Parent device node 359 * @mynodes: The device_node tree created by the call 360 * @dt_alloc: An allocator that provides a virtual address to memory 361 * for the resulting tree 362 * @detached: if true set OF_DETACHED on @mynodes 363 * 364 * Returns NULL on failure or the memory chunk containing the unflattened 365 * device tree on success. 366 */ 367 void *__unflatten_device_tree(const void *blob, 368 struct device_node *dad, 369 struct device_node **mynodes, 370 void *(*dt_alloc)(u64 size, u64 align), 371 bool detached) 372 { 373 int size; 374 void *mem; 375 376 pr_debug(" -> unflatten_device_tree()\n"); 377 378 if (!blob) { 379 pr_debug("No device tree pointer\n"); 380 return NULL; 381 } 382 383 pr_debug("Unflattening device tree:\n"); 384 pr_debug("magic: %08x\n", fdt_magic(blob)); 385 pr_debug("size: %08x\n", fdt_totalsize(blob)); 386 pr_debug("version: %08x\n", fdt_version(blob)); 387 388 if (fdt_check_header(blob)) { 389 pr_err("Invalid device tree blob header\n"); 390 return NULL; 391 } 392 393 /* First pass, scan for size */ 394 size = unflatten_dt_nodes(blob, NULL, dad, NULL); 395 if (size < 0) 396 return NULL; 397 398 size = ALIGN(size, 4); 399 pr_debug(" size is %d, allocating...\n", size); 400 401 /* Allocate memory for the expanded device tree */ 402 mem = dt_alloc(size + 4, __alignof__(struct device_node)); 403 if (!mem) 404 return NULL; 405 406 memset(mem, 0, size); 407 408 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); 409 410 pr_debug(" unflattening %p...\n", mem); 411 412 /* Second pass, do actual unflattening */ 413 unflatten_dt_nodes(blob, mem, dad, mynodes); 414 if (be32_to_cpup(mem + size) != 0xdeadbeef) 415 pr_warning("End of tree marker overwritten: %08x\n", 416 be32_to_cpup(mem + size)); 417 418 if (detached && mynodes) { 419 of_node_set_flag(*mynodes, OF_DETACHED); 420 pr_debug("unflattened tree is detached\n"); 421 } 422 423 pr_debug(" <- unflatten_device_tree()\n"); 424 return mem; 425 } 426 427 static void *kernel_tree_alloc(u64 size, u64 align) 428 { 429 return kzalloc(size, GFP_KERNEL); 430 } 431 432 static DEFINE_MUTEX(of_fdt_unflatten_mutex); 433 434 /** 435 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob 436 * @blob: Flat device tree blob 437 * @dad: Parent device node 438 * @mynodes: The device tree created by the call 439 * 440 * unflattens the device-tree passed by the firmware, creating the 441 * tree of struct device_node. It also fills the "name" and "type" 442 * pointers of the nodes so the normal device-tree walking functions 443 * can be used. 444 * 445 * Returns NULL on failure or the memory chunk containing the unflattened 446 * device tree on success. 447 */ 448 void *of_fdt_unflatten_tree(const unsigned long *blob, 449 struct device_node *dad, 450 struct device_node **mynodes) 451 { 452 void *mem; 453 454 mutex_lock(&of_fdt_unflatten_mutex); 455 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, 456 true); 457 mutex_unlock(&of_fdt_unflatten_mutex); 458 459 return mem; 460 } 461 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); 462 463 /* Everything below here references initial_boot_params directly. */ 464 int __initdata dt_root_addr_cells; 465 int __initdata dt_root_size_cells; 466 467 void *initial_boot_params __ro_after_init; 468 469 #ifdef CONFIG_OF_EARLY_FLATTREE 470 471 static u32 of_fdt_crc32; 472 473 /** 474 * res_mem_reserve_reg() - reserve all memory described in 'reg' property 475 */ 476 static int __init __reserved_mem_reserve_reg(unsigned long node, 477 const char *uname) 478 { 479 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); 480 phys_addr_t base, size; 481 int len; 482 const __be32 *prop; 483 int first = 1; 484 bool nomap; 485 486 prop = of_get_flat_dt_prop(node, "reg", &len); 487 if (!prop) 488 return -ENOENT; 489 490 if (len && len % t_len != 0) { 491 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", 492 uname); 493 return -EINVAL; 494 } 495 496 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; 497 498 while (len >= t_len) { 499 base = dt_mem_next_cell(dt_root_addr_cells, &prop); 500 size = dt_mem_next_cell(dt_root_size_cells, &prop); 501 502 if (size && 503 early_init_dt_reserve_memory_arch(base, size, nomap) == 0) 504 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n", 505 uname, &base, (unsigned long)size / SZ_1M); 506 else 507 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n", 508 uname, &base, (unsigned long)size / SZ_1M); 509 510 len -= t_len; 511 if (first) { 512 fdt_reserved_mem_save_node(node, uname, base, size); 513 first = 0; 514 } 515 } 516 return 0; 517 } 518 519 /** 520 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided 521 * in /reserved-memory matches the values supported by the current implementation, 522 * also check if ranges property has been provided 523 */ 524 static int __init __reserved_mem_check_root(unsigned long node) 525 { 526 const __be32 *prop; 527 528 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 529 if (!prop || be32_to_cpup(prop) != dt_root_size_cells) 530 return -EINVAL; 531 532 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 533 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) 534 return -EINVAL; 535 536 prop = of_get_flat_dt_prop(node, "ranges", NULL); 537 if (!prop) 538 return -EINVAL; 539 return 0; 540 } 541 542 /** 543 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory 544 */ 545 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname, 546 int depth, void *data) 547 { 548 static int found; 549 int err; 550 551 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) { 552 if (__reserved_mem_check_root(node) != 0) { 553 pr_err("Reserved memory: unsupported node format, ignoring\n"); 554 /* break scan */ 555 return 1; 556 } 557 found = 1; 558 /* scan next node */ 559 return 0; 560 } else if (!found) { 561 /* scan next node */ 562 return 0; 563 } else if (found && depth < 2) { 564 /* scanning of /reserved-memory has been finished */ 565 return 1; 566 } 567 568 if (!of_fdt_device_is_available(initial_boot_params, node)) 569 return 0; 570 571 err = __reserved_mem_reserve_reg(node, uname); 572 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL)) 573 fdt_reserved_mem_save_node(node, uname, 0, 0); 574 575 /* scan next node */ 576 return 0; 577 } 578 579 /** 580 * early_init_fdt_scan_reserved_mem() - create reserved memory regions 581 * 582 * This function grabs memory from early allocator for device exclusive use 583 * defined in device tree structures. It should be called by arch specific code 584 * once the early allocator (i.e. memblock) has been fully activated. 585 */ 586 void __init early_init_fdt_scan_reserved_mem(void) 587 { 588 int n; 589 u64 base, size; 590 591 if (!initial_boot_params) 592 return; 593 594 /* Process header /memreserve/ fields */ 595 for (n = 0; ; n++) { 596 fdt_get_mem_rsv(initial_boot_params, n, &base, &size); 597 if (!size) 598 break; 599 early_init_dt_reserve_memory_arch(base, size, false); 600 } 601 602 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL); 603 fdt_init_reserved_mem(); 604 } 605 606 /** 607 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob 608 */ 609 void __init early_init_fdt_reserve_self(void) 610 { 611 if (!initial_boot_params) 612 return; 613 614 /* Reserve the dtb region */ 615 early_init_dt_reserve_memory_arch(__pa(initial_boot_params), 616 fdt_totalsize(initial_boot_params), 617 false); 618 } 619 620 /** 621 * of_scan_flat_dt - scan flattened tree blob and call callback on each. 622 * @it: callback function 623 * @data: context data pointer 624 * 625 * This function is used to scan the flattened device-tree, it is 626 * used to extract the memory information at boot before we can 627 * unflatten the tree 628 */ 629 int __init of_scan_flat_dt(int (*it)(unsigned long node, 630 const char *uname, int depth, 631 void *data), 632 void *data) 633 { 634 const void *blob = initial_boot_params; 635 const char *pathp; 636 int offset, rc = 0, depth = -1; 637 638 if (!blob) 639 return 0; 640 641 for (offset = fdt_next_node(blob, -1, &depth); 642 offset >= 0 && depth >= 0 && !rc; 643 offset = fdt_next_node(blob, offset, &depth)) { 644 645 pathp = fdt_get_name(blob, offset, NULL); 646 if (*pathp == '/') 647 pathp = kbasename(pathp); 648 rc = it(offset, pathp, depth, data); 649 } 650 return rc; 651 } 652 653 /** 654 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. 655 * @it: callback function 656 * @data: context data pointer 657 * 658 * This function is used to scan sub-nodes of a node. 659 */ 660 int __init of_scan_flat_dt_subnodes(unsigned long parent, 661 int (*it)(unsigned long node, 662 const char *uname, 663 void *data), 664 void *data) 665 { 666 const void *blob = initial_boot_params; 667 int node; 668 669 fdt_for_each_subnode(node, blob, parent) { 670 const char *pathp; 671 int rc; 672 673 pathp = fdt_get_name(blob, node, NULL); 674 if (*pathp == '/') 675 pathp = kbasename(pathp); 676 rc = it(node, pathp, data); 677 if (rc) 678 return rc; 679 } 680 return 0; 681 } 682 683 /** 684 * of_get_flat_dt_subnode_by_name - get the subnode by given name 685 * 686 * @node: the parent node 687 * @uname: the name of subnode 688 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none 689 */ 690 691 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) 692 { 693 return fdt_subnode_offset(initial_boot_params, node, uname); 694 } 695 696 /** 697 * of_get_flat_dt_root - find the root node in the flat blob 698 */ 699 unsigned long __init of_get_flat_dt_root(void) 700 { 701 return 0; 702 } 703 704 /** 705 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr 706 * 707 * This function can be used within scan_flattened_dt callback to get 708 * access to properties 709 */ 710 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, 711 int *size) 712 { 713 return fdt_getprop(initial_boot_params, node, name, size); 714 } 715 716 /** 717 * of_fdt_is_compatible - Return true if given node from the given blob has 718 * compat in its compatible list 719 * @blob: A device tree blob 720 * @node: node to test 721 * @compat: compatible string to compare with compatible list. 722 * 723 * On match, returns a non-zero value with smaller values returned for more 724 * specific compatible values. 725 */ 726 static int of_fdt_is_compatible(const void *blob, 727 unsigned long node, const char *compat) 728 { 729 const char *cp; 730 int cplen; 731 unsigned long l, score = 0; 732 733 cp = fdt_getprop(blob, node, "compatible", &cplen); 734 if (cp == NULL) 735 return 0; 736 while (cplen > 0) { 737 score++; 738 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 739 return score; 740 l = strlen(cp) + 1; 741 cp += l; 742 cplen -= l; 743 } 744 745 return 0; 746 } 747 748 /** 749 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list 750 * @node: node to test 751 * @compat: compatible string to compare with compatible list. 752 */ 753 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) 754 { 755 return of_fdt_is_compatible(initial_boot_params, node, compat); 756 } 757 758 /** 759 * of_flat_dt_match - Return true if node matches a list of compatible values 760 */ 761 static int __init of_flat_dt_match(unsigned long node, const char *const *compat) 762 { 763 unsigned int tmp, score = 0; 764 765 if (!compat) 766 return 0; 767 768 while (*compat) { 769 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat); 770 if (tmp && (score == 0 || (tmp < score))) 771 score = tmp; 772 compat++; 773 } 774 775 return score; 776 } 777 778 /** 779 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle 780 */ 781 uint32_t __init of_get_flat_dt_phandle(unsigned long node) 782 { 783 return fdt_get_phandle(initial_boot_params, node); 784 } 785 786 struct fdt_scan_status { 787 const char *name; 788 int namelen; 789 int depth; 790 int found; 791 int (*iterator)(unsigned long node, const char *uname, int depth, void *data); 792 void *data; 793 }; 794 795 const char * __init of_flat_dt_get_machine_name(void) 796 { 797 const char *name; 798 unsigned long dt_root = of_get_flat_dt_root(); 799 800 name = of_get_flat_dt_prop(dt_root, "model", NULL); 801 if (!name) 802 name = of_get_flat_dt_prop(dt_root, "compatible", NULL); 803 return name; 804 } 805 806 /** 807 * of_flat_dt_match_machine - Iterate match tables to find matching machine. 808 * 809 * @default_match: A machine specific ptr to return in case of no match. 810 * @get_next_compat: callback function to return next compatible match table. 811 * 812 * Iterate through machine match tables to find the best match for the machine 813 * compatible string in the FDT. 814 */ 815 const void * __init of_flat_dt_match_machine(const void *default_match, 816 const void * (*get_next_compat)(const char * const**)) 817 { 818 const void *data = NULL; 819 const void *best_data = default_match; 820 const char *const *compat; 821 unsigned long dt_root; 822 unsigned int best_score = ~1, score = 0; 823 824 dt_root = of_get_flat_dt_root(); 825 while ((data = get_next_compat(&compat))) { 826 score = of_flat_dt_match(dt_root, compat); 827 if (score > 0 && score < best_score) { 828 best_data = data; 829 best_score = score; 830 } 831 } 832 if (!best_data) { 833 const char *prop; 834 int size; 835 836 pr_err("\n unrecognized device tree list:\n[ "); 837 838 prop = of_get_flat_dt_prop(dt_root, "compatible", &size); 839 if (prop) { 840 while (size > 0) { 841 printk("'%s' ", prop); 842 size -= strlen(prop) + 1; 843 prop += strlen(prop) + 1; 844 } 845 } 846 printk("]\n\n"); 847 return NULL; 848 } 849 850 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); 851 852 return best_data; 853 } 854 855 #ifdef CONFIG_BLK_DEV_INITRD 856 static void __early_init_dt_declare_initrd(unsigned long start, 857 unsigned long end) 858 { 859 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is 860 * enabled since __va() is called too early. ARM64 does make use 861 * of phys_initrd_start/phys_initrd_size so we can skip this 862 * conversion. 863 */ 864 if (!IS_ENABLED(CONFIG_ARM64)) { 865 initrd_start = (unsigned long)__va(start); 866 initrd_end = (unsigned long)__va(end); 867 initrd_below_start_ok = 1; 868 } 869 } 870 871 /** 872 * early_init_dt_check_for_initrd - Decode initrd location from flat tree 873 * @node: reference to node containing initrd location ('chosen') 874 */ 875 static void __init early_init_dt_check_for_initrd(unsigned long node) 876 { 877 u64 start, end; 878 int len; 879 const __be32 *prop; 880 881 pr_debug("Looking for initrd properties... "); 882 883 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); 884 if (!prop) 885 return; 886 start = of_read_number(prop, len/4); 887 888 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); 889 if (!prop) 890 return; 891 end = of_read_number(prop, len/4); 892 893 __early_init_dt_declare_initrd(start, end); 894 phys_initrd_start = start; 895 phys_initrd_size = end - start; 896 897 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", 898 (unsigned long long)start, (unsigned long long)end); 899 } 900 #else 901 static inline void early_init_dt_check_for_initrd(unsigned long node) 902 { 903 } 904 #endif /* CONFIG_BLK_DEV_INITRD */ 905 906 #ifdef CONFIG_SERIAL_EARLYCON 907 908 int __init early_init_dt_scan_chosen_stdout(void) 909 { 910 int offset; 911 const char *p, *q, *options = NULL; 912 int l; 913 const struct earlycon_id **p_match; 914 const void *fdt = initial_boot_params; 915 916 offset = fdt_path_offset(fdt, "/chosen"); 917 if (offset < 0) 918 offset = fdt_path_offset(fdt, "/chosen@0"); 919 if (offset < 0) 920 return -ENOENT; 921 922 p = fdt_getprop(fdt, offset, "stdout-path", &l); 923 if (!p) 924 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); 925 if (!p || !l) 926 return -ENOENT; 927 928 q = strchrnul(p, ':'); 929 if (*q != '\0') 930 options = q + 1; 931 l = q - p; 932 933 /* Get the node specified by stdout-path */ 934 offset = fdt_path_offset_namelen(fdt, p, l); 935 if (offset < 0) { 936 pr_warn("earlycon: stdout-path %.*s not found\n", l, p); 937 return 0; 938 } 939 940 for (p_match = __earlycon_table; p_match < __earlycon_table_end; 941 p_match++) { 942 const struct earlycon_id *match = *p_match; 943 944 if (!match->compatible[0]) 945 continue; 946 947 if (fdt_node_check_compatible(fdt, offset, match->compatible)) 948 continue; 949 950 of_setup_earlycon(match, offset, options); 951 return 0; 952 } 953 return -ENODEV; 954 } 955 #endif 956 957 /** 958 * early_init_dt_scan_root - fetch the top level address and size cells 959 */ 960 int __init early_init_dt_scan_root(unsigned long node, const char *uname, 961 int depth, void *data) 962 { 963 const __be32 *prop; 964 965 if (depth != 0) 966 return 0; 967 968 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 969 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 970 971 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 972 if (prop) 973 dt_root_size_cells = be32_to_cpup(prop); 974 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); 975 976 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 977 if (prop) 978 dt_root_addr_cells = be32_to_cpup(prop); 979 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); 980 981 /* break now */ 982 return 1; 983 } 984 985 u64 __init dt_mem_next_cell(int s, const __be32 **cellp) 986 { 987 const __be32 *p = *cellp; 988 989 *cellp = p + s; 990 return of_read_number(p, s); 991 } 992 993 /** 994 * early_init_dt_scan_memory - Look for and parse memory nodes 995 */ 996 int __init early_init_dt_scan_memory(unsigned long node, const char *uname, 997 int depth, void *data) 998 { 999 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 1000 const __be32 *reg, *endp; 1001 int l; 1002 bool hotpluggable; 1003 1004 /* We are scanning "memory" nodes only */ 1005 if (type == NULL || strcmp(type, "memory") != 0) 1006 return 0; 1007 1008 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); 1009 if (reg == NULL) 1010 reg = of_get_flat_dt_prop(node, "reg", &l); 1011 if (reg == NULL) 1012 return 0; 1013 1014 endp = reg + (l / sizeof(__be32)); 1015 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); 1016 1017 pr_debug("memory scan node %s, reg size %d,\n", uname, l); 1018 1019 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { 1020 u64 base, size; 1021 1022 base = dt_mem_next_cell(dt_root_addr_cells, ®); 1023 size = dt_mem_next_cell(dt_root_size_cells, ®); 1024 1025 if (size == 0) 1026 continue; 1027 pr_debug(" - %llx , %llx\n", (unsigned long long)base, 1028 (unsigned long long)size); 1029 1030 early_init_dt_add_memory_arch(base, size); 1031 1032 if (!hotpluggable) 1033 continue; 1034 1035 if (early_init_dt_mark_hotplug_memory_arch(base, size)) 1036 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", 1037 base, base + size); 1038 } 1039 1040 return 0; 1041 } 1042 1043 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, 1044 int depth, void *data) 1045 { 1046 int l; 1047 const char *p; 1048 const void *rng_seed; 1049 1050 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); 1051 1052 if (depth != 1 || !data || 1053 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) 1054 return 0; 1055 1056 early_init_dt_check_for_initrd(node); 1057 1058 /* Retrieve command line */ 1059 p = of_get_flat_dt_prop(node, "bootargs", &l); 1060 if (p != NULL && l > 0) 1061 strlcpy(data, p, min(l, COMMAND_LINE_SIZE)); 1062 1063 /* 1064 * CONFIG_CMDLINE is meant to be a default in case nothing else 1065 * managed to set the command line, unless CONFIG_CMDLINE_FORCE 1066 * is set in which case we override whatever was found earlier. 1067 */ 1068 #ifdef CONFIG_CMDLINE 1069 #if defined(CONFIG_CMDLINE_EXTEND) 1070 strlcat(data, " ", COMMAND_LINE_SIZE); 1071 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1072 #elif defined(CONFIG_CMDLINE_FORCE) 1073 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1074 #else 1075 /* No arguments from boot loader, use kernel's cmdl*/ 1076 if (!((char *)data)[0]) 1077 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1078 #endif 1079 #endif /* CONFIG_CMDLINE */ 1080 1081 pr_debug("Command line is: %s\n", (char*)data); 1082 1083 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); 1084 if (rng_seed && l > 0) { 1085 add_bootloader_randomness(rng_seed, l); 1086 1087 /* try to clear seed so it won't be found. */ 1088 fdt_nop_property(initial_boot_params, node, "rng-seed"); 1089 1090 /* update CRC check value */ 1091 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1092 fdt_totalsize(initial_boot_params)); 1093 } 1094 1095 /* break now */ 1096 return 1; 1097 } 1098 1099 #ifndef MIN_MEMBLOCK_ADDR 1100 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) 1101 #endif 1102 #ifndef MAX_MEMBLOCK_ADDR 1103 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) 1104 #endif 1105 1106 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) 1107 { 1108 const u64 phys_offset = MIN_MEMBLOCK_ADDR; 1109 1110 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { 1111 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1112 base, base + size); 1113 return; 1114 } 1115 1116 if (!PAGE_ALIGNED(base)) { 1117 size -= PAGE_SIZE - (base & ~PAGE_MASK); 1118 base = PAGE_ALIGN(base); 1119 } 1120 size &= PAGE_MASK; 1121 1122 if (base > MAX_MEMBLOCK_ADDR) { 1123 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n", 1124 base, base + size); 1125 return; 1126 } 1127 1128 if (base + size - 1 > MAX_MEMBLOCK_ADDR) { 1129 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n", 1130 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); 1131 size = MAX_MEMBLOCK_ADDR - base + 1; 1132 } 1133 1134 if (base + size < phys_offset) { 1135 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n", 1136 base, base + size); 1137 return; 1138 } 1139 if (base < phys_offset) { 1140 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n", 1141 base, phys_offset); 1142 size -= phys_offset - base; 1143 base = phys_offset; 1144 } 1145 memblock_add(base, size); 1146 } 1147 1148 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size) 1149 { 1150 return memblock_mark_hotplug(base, size); 1151 } 1152 1153 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base, 1154 phys_addr_t size, bool nomap) 1155 { 1156 if (nomap) 1157 return memblock_remove(base, size); 1158 return memblock_reserve(base, size); 1159 } 1160 1161 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) 1162 { 1163 void *ptr = memblock_alloc(size, align); 1164 1165 if (!ptr) 1166 panic("%s: Failed to allocate %llu bytes align=0x%llx\n", 1167 __func__, size, align); 1168 1169 return ptr; 1170 } 1171 1172 bool __init early_init_dt_verify(void *params) 1173 { 1174 if (!params) 1175 return false; 1176 1177 /* check device tree validity */ 1178 if (fdt_check_header(params)) 1179 return false; 1180 1181 /* Setup flat device-tree pointer */ 1182 initial_boot_params = params; 1183 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1184 fdt_totalsize(initial_boot_params)); 1185 return true; 1186 } 1187 1188 1189 void __init early_init_dt_scan_nodes(void) 1190 { 1191 int rc = 0; 1192 1193 /* Retrieve various information from the /chosen node */ 1194 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); 1195 if (!rc) 1196 pr_warn("No chosen node found, continuing without\n"); 1197 1198 /* Initialize {size,address}-cells info */ 1199 of_scan_flat_dt(early_init_dt_scan_root, NULL); 1200 1201 /* Setup memory, calling early_init_dt_add_memory_arch */ 1202 of_scan_flat_dt(early_init_dt_scan_memory, NULL); 1203 } 1204 1205 bool __init early_init_dt_scan(void *params) 1206 { 1207 bool status; 1208 1209 status = early_init_dt_verify(params); 1210 if (!status) 1211 return false; 1212 1213 early_init_dt_scan_nodes(); 1214 return true; 1215 } 1216 1217 /** 1218 * unflatten_device_tree - create tree of device_nodes from flat blob 1219 * 1220 * unflattens the device-tree passed by the firmware, creating the 1221 * tree of struct device_node. It also fills the "name" and "type" 1222 * pointers of the nodes so the normal device-tree walking functions 1223 * can be used. 1224 */ 1225 void __init unflatten_device_tree(void) 1226 { 1227 __unflatten_device_tree(initial_boot_params, NULL, &of_root, 1228 early_init_dt_alloc_memory_arch, false); 1229 1230 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ 1231 of_alias_scan(early_init_dt_alloc_memory_arch); 1232 1233 unittest_unflatten_overlay_base(); 1234 } 1235 1236 /** 1237 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob 1238 * 1239 * Copies and unflattens the device-tree passed by the firmware, creating the 1240 * tree of struct device_node. It also fills the "name" and "type" 1241 * pointers of the nodes so the normal device-tree walking functions 1242 * can be used. This should only be used when the FDT memory has not been 1243 * reserved such is the case when the FDT is built-in to the kernel init 1244 * section. If the FDT memory is reserved already then unflatten_device_tree 1245 * should be used instead. 1246 */ 1247 void __init unflatten_and_copy_device_tree(void) 1248 { 1249 int size; 1250 void *dt; 1251 1252 if (!initial_boot_params) { 1253 pr_warn("No valid device tree found, continuing without\n"); 1254 return; 1255 } 1256 1257 size = fdt_totalsize(initial_boot_params); 1258 dt = early_init_dt_alloc_memory_arch(size, 1259 roundup_pow_of_two(FDT_V17_SIZE)); 1260 1261 if (dt) { 1262 memcpy(dt, initial_boot_params, size); 1263 initial_boot_params = dt; 1264 } 1265 unflatten_device_tree(); 1266 } 1267 1268 #ifdef CONFIG_SYSFS 1269 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, 1270 struct bin_attribute *bin_attr, 1271 char *buf, loff_t off, size_t count) 1272 { 1273 memcpy(buf, initial_boot_params + off, count); 1274 return count; 1275 } 1276 1277 static int __init of_fdt_raw_init(void) 1278 { 1279 static struct bin_attribute of_fdt_raw_attr = 1280 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); 1281 1282 if (!initial_boot_params) 1283 return 0; 1284 1285 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, 1286 fdt_totalsize(initial_boot_params))) { 1287 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); 1288 return 0; 1289 } 1290 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); 1291 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); 1292 } 1293 late_initcall(of_fdt_raw_init); 1294 #endif 1295 1296 #endif /* CONFIG_OF_EARLY_FLATTREE */ 1297