xref: /openbmc/linux/drivers/of/fdt.c (revision 77a87824)
1 /*
2  * Functions for working with the Flattened Device Tree data format
3  *
4  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5  * benh@kernel.crashing.org
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"OF: fdt:" fmt
13 
14 #include <linux/crc32.h>
15 #include <linux/kernel.h>
16 #include <linux/initrd.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_fdt.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sizes.h>
23 #include <linux/string.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/libfdt.h>
27 #include <linux/debugfs.h>
28 #include <linux/serial_core.h>
29 #include <linux/sysfs.h>
30 
31 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
32 #include <asm/page.h>
33 
34 /*
35  * of_fdt_limit_memory - limit the number of regions in the /memory node
36  * @limit: maximum entries
37  *
38  * Adjust the flattened device tree to have at most 'limit' number of
39  * memory entries in the /memory node. This function may be called
40  * any time after initial_boot_param is set.
41  */
42 void of_fdt_limit_memory(int limit)
43 {
44 	int memory;
45 	int len;
46 	const void *val;
47 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 	const uint32_t *addr_prop;
50 	const uint32_t *size_prop;
51 	int root_offset;
52 	int cell_size;
53 
54 	root_offset = fdt_path_offset(initial_boot_params, "/");
55 	if (root_offset < 0)
56 		return;
57 
58 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 				"#address-cells", NULL);
60 	if (addr_prop)
61 		nr_address_cells = fdt32_to_cpu(*addr_prop);
62 
63 	size_prop = fdt_getprop(initial_boot_params, root_offset,
64 				"#size-cells", NULL);
65 	if (size_prop)
66 		nr_size_cells = fdt32_to_cpu(*size_prop);
67 
68 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69 
70 	memory = fdt_path_offset(initial_boot_params, "/memory");
71 	if (memory > 0) {
72 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 		if (len > limit*cell_size) {
74 			len = limit*cell_size;
75 			pr_debug("Limiting number of entries to %d\n", limit);
76 			fdt_setprop(initial_boot_params, memory, "reg", val,
77 					len);
78 		}
79 	}
80 }
81 
82 /**
83  * of_fdt_is_compatible - Return true if given node from the given blob has
84  * compat in its compatible list
85  * @blob: A device tree blob
86  * @node: node to test
87  * @compat: compatible string to compare with compatible list.
88  *
89  * On match, returns a non-zero value with smaller values returned for more
90  * specific compatible values.
91  */
92 int of_fdt_is_compatible(const void *blob,
93 		      unsigned long node, const char *compat)
94 {
95 	const char *cp;
96 	int cplen;
97 	unsigned long l, score = 0;
98 
99 	cp = fdt_getprop(blob, node, "compatible", &cplen);
100 	if (cp == NULL)
101 		return 0;
102 	while (cplen > 0) {
103 		score++;
104 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
105 			return score;
106 		l = strlen(cp) + 1;
107 		cp += l;
108 		cplen -= l;
109 	}
110 
111 	return 0;
112 }
113 
114 /**
115  * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
116  * @blob: A device tree blob
117  * @node: node to test
118  *
119  * Returns true if the node has a "big-endian" property, or if the kernel
120  * was compiled for BE *and* the node has a "native-endian" property.
121  * Returns false otherwise.
122  */
123 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
124 {
125 	if (fdt_getprop(blob, node, "big-endian", NULL))
126 		return true;
127 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
128 	    fdt_getprop(blob, node, "native-endian", NULL))
129 		return true;
130 	return false;
131 }
132 
133 /**
134  * of_fdt_match - Return true if node matches a list of compatible values
135  */
136 int of_fdt_match(const void *blob, unsigned long node,
137                  const char *const *compat)
138 {
139 	unsigned int tmp, score = 0;
140 
141 	if (!compat)
142 		return 0;
143 
144 	while (*compat) {
145 		tmp = of_fdt_is_compatible(blob, node, *compat);
146 		if (tmp && (score == 0 || (tmp < score)))
147 			score = tmp;
148 		compat++;
149 	}
150 
151 	return score;
152 }
153 
154 static void *unflatten_dt_alloc(void **mem, unsigned long size,
155 				       unsigned long align)
156 {
157 	void *res;
158 
159 	*mem = PTR_ALIGN(*mem, align);
160 	res = *mem;
161 	*mem += size;
162 
163 	return res;
164 }
165 
166 static void populate_properties(const void *blob,
167 				int offset,
168 				void **mem,
169 				struct device_node *np,
170 				const char *nodename,
171 				bool dryrun)
172 {
173 	struct property *pp, **pprev = NULL;
174 	int cur;
175 	bool has_name = false;
176 
177 	pprev = &np->properties;
178 	for (cur = fdt_first_property_offset(blob, offset);
179 	     cur >= 0;
180 	     cur = fdt_next_property_offset(blob, cur)) {
181 		const __be32 *val;
182 		const char *pname;
183 		u32 sz;
184 
185 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
186 		if (!val) {
187 			pr_warn("Cannot locate property at 0x%x\n", cur);
188 			continue;
189 		}
190 
191 		if (!pname) {
192 			pr_warn("Cannot find property name at 0x%x\n", cur);
193 			continue;
194 		}
195 
196 		if (!strcmp(pname, "name"))
197 			has_name = true;
198 
199 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
200 					__alignof__(struct property));
201 		if (dryrun)
202 			continue;
203 
204 		/* We accept flattened tree phandles either in
205 		 * ePAPR-style "phandle" properties, or the
206 		 * legacy "linux,phandle" properties.  If both
207 		 * appear and have different values, things
208 		 * will get weird. Don't do that.
209 		 */
210 		if (!strcmp(pname, "phandle") ||
211 		    !strcmp(pname, "linux,phandle")) {
212 			if (!np->phandle)
213 				np->phandle = be32_to_cpup(val);
214 		}
215 
216 		/* And we process the "ibm,phandle" property
217 		 * used in pSeries dynamic device tree
218 		 * stuff
219 		 */
220 		if (!strcmp(pname, "ibm,phandle"))
221 			np->phandle = be32_to_cpup(val);
222 
223 		pp->name   = (char *)pname;
224 		pp->length = sz;
225 		pp->value  = (__be32 *)val;
226 		*pprev     = pp;
227 		pprev      = &pp->next;
228 	}
229 
230 	/* With version 0x10 we may not have the name property,
231 	 * recreate it here from the unit name if absent
232 	 */
233 	if (!has_name) {
234 		const char *p = nodename, *ps = p, *pa = NULL;
235 		int len;
236 
237 		while (*p) {
238 			if ((*p) == '@')
239 				pa = p;
240 			else if ((*p) == '/')
241 				ps = p + 1;
242 			p++;
243 		}
244 
245 		if (pa < ps)
246 			pa = p;
247 		len = (pa - ps) + 1;
248 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
249 					__alignof__(struct property));
250 		if (!dryrun) {
251 			pp->name   = "name";
252 			pp->length = len;
253 			pp->value  = pp + 1;
254 			*pprev     = pp;
255 			pprev      = &pp->next;
256 			memcpy(pp->value, ps, len - 1);
257 			((char *)pp->value)[len - 1] = 0;
258 			pr_debug("fixed up name for %s -> %s\n",
259 				 nodename, (char *)pp->value);
260 		}
261 	}
262 
263 	if (!dryrun)
264 		*pprev = NULL;
265 }
266 
267 static unsigned int populate_node(const void *blob,
268 				  int offset,
269 				  void **mem,
270 				  struct device_node *dad,
271 				  unsigned int fpsize,
272 				  struct device_node **pnp,
273 				  bool dryrun)
274 {
275 	struct device_node *np;
276 	const char *pathp;
277 	unsigned int l, allocl;
278 	int new_format = 0;
279 
280 	pathp = fdt_get_name(blob, offset, &l);
281 	if (!pathp) {
282 		*pnp = NULL;
283 		return 0;
284 	}
285 
286 	allocl = ++l;
287 
288 	/* version 0x10 has a more compact unit name here instead of the full
289 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
290 	 * it later. We detect this because the first character of the name is
291 	 * not '/'.
292 	 */
293 	if ((*pathp) != '/') {
294 		new_format = 1;
295 		if (fpsize == 0) {
296 			/* root node: special case. fpsize accounts for path
297 			 * plus terminating zero. root node only has '/', so
298 			 * fpsize should be 2, but we want to avoid the first
299 			 * level nodes to have two '/' so we use fpsize 1 here
300 			 */
301 			fpsize = 1;
302 			allocl = 2;
303 			l = 1;
304 			pathp = "";
305 		} else {
306 			/* account for '/' and path size minus terminal 0
307 			 * already in 'l'
308 			 */
309 			fpsize += l;
310 			allocl = fpsize;
311 		}
312 	}
313 
314 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
315 				__alignof__(struct device_node));
316 	if (!dryrun) {
317 		char *fn;
318 		of_node_init(np);
319 		np->full_name = fn = ((char *)np) + sizeof(*np);
320 		if (new_format) {
321 			/* rebuild full path for new format */
322 			if (dad && dad->parent) {
323 				strcpy(fn, dad->full_name);
324 #ifdef DEBUG
325 				if ((strlen(fn) + l + 1) != allocl) {
326 					pr_debug("%s: p: %d, l: %d, a: %d\n",
327 						pathp, (int)strlen(fn),
328 						l, allocl);
329 				}
330 #endif
331 				fn += strlen(fn);
332 			}
333 			*(fn++) = '/';
334 		}
335 		memcpy(fn, pathp, l);
336 
337 		if (dad != NULL) {
338 			np->parent = dad;
339 			np->sibling = dad->child;
340 			dad->child = np;
341 		}
342 	}
343 
344 	populate_properties(blob, offset, mem, np, pathp, dryrun);
345 	if (!dryrun) {
346 		np->name = of_get_property(np, "name", NULL);
347 		np->type = of_get_property(np, "device_type", NULL);
348 
349 		if (!np->name)
350 			np->name = "<NULL>";
351 		if (!np->type)
352 			np->type = "<NULL>";
353 	}
354 
355 	*pnp = np;
356 	return fpsize;
357 }
358 
359 static void reverse_nodes(struct device_node *parent)
360 {
361 	struct device_node *child, *next;
362 
363 	/* In-depth first */
364 	child = parent->child;
365 	while (child) {
366 		reverse_nodes(child);
367 
368 		child = child->sibling;
369 	}
370 
371 	/* Reverse the nodes in the child list */
372 	child = parent->child;
373 	parent->child = NULL;
374 	while (child) {
375 		next = child->sibling;
376 
377 		child->sibling = parent->child;
378 		parent->child = child;
379 		child = next;
380 	}
381 }
382 
383 /**
384  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
385  * @blob: The parent device tree blob
386  * @mem: Memory chunk to use for allocating device nodes and properties
387  * @dad: Parent struct device_node
388  * @nodepp: The device_node tree created by the call
389  *
390  * It returns the size of unflattened device tree or error code
391  */
392 static int unflatten_dt_nodes(const void *blob,
393 			      void *mem,
394 			      struct device_node *dad,
395 			      struct device_node **nodepp)
396 {
397 	struct device_node *root;
398 	int offset = 0, depth = 0, initial_depth = 0;
399 #define FDT_MAX_DEPTH	64
400 	unsigned int fpsizes[FDT_MAX_DEPTH];
401 	struct device_node *nps[FDT_MAX_DEPTH];
402 	void *base = mem;
403 	bool dryrun = !base;
404 
405 	if (nodepp)
406 		*nodepp = NULL;
407 
408 	/*
409 	 * We're unflattening device sub-tree if @dad is valid. There are
410 	 * possibly multiple nodes in the first level of depth. We need
411 	 * set @depth to 1 to make fdt_next_node() happy as it bails
412 	 * immediately when negative @depth is found. Otherwise, the device
413 	 * nodes except the first one won't be unflattened successfully.
414 	 */
415 	if (dad)
416 		depth = initial_depth = 1;
417 
418 	root = dad;
419 	fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
420 	nps[depth] = dad;
421 
422 	for (offset = 0;
423 	     offset >= 0 && depth >= initial_depth;
424 	     offset = fdt_next_node(blob, offset, &depth)) {
425 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
426 			continue;
427 
428 		fpsizes[depth+1] = populate_node(blob, offset, &mem,
429 						 nps[depth],
430 						 fpsizes[depth],
431 						 &nps[depth+1], dryrun);
432 		if (!fpsizes[depth+1])
433 			return mem - base;
434 
435 		if (!dryrun && nodepp && !*nodepp)
436 			*nodepp = nps[depth+1];
437 		if (!dryrun && !root)
438 			root = nps[depth+1];
439 	}
440 
441 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
442 		pr_err("Error %d processing FDT\n", offset);
443 		return -EINVAL;
444 	}
445 
446 	/*
447 	 * Reverse the child list. Some drivers assumes node order matches .dts
448 	 * node order
449 	 */
450 	if (!dryrun)
451 		reverse_nodes(root);
452 
453 	return mem - base;
454 }
455 
456 /**
457  * __unflatten_device_tree - create tree of device_nodes from flat blob
458  *
459  * unflattens a device-tree, creating the
460  * tree of struct device_node. It also fills the "name" and "type"
461  * pointers of the nodes so the normal device-tree walking functions
462  * can be used.
463  * @blob: The blob to expand
464  * @dad: Parent device node
465  * @mynodes: The device_node tree created by the call
466  * @dt_alloc: An allocator that provides a virtual address to memory
467  * for the resulting tree
468  *
469  * Returns NULL on failure or the memory chunk containing the unflattened
470  * device tree on success.
471  */
472 static void *__unflatten_device_tree(const void *blob,
473 				     struct device_node *dad,
474 				     struct device_node **mynodes,
475 				     void *(*dt_alloc)(u64 size, u64 align),
476 				     bool detached)
477 {
478 	int size;
479 	void *mem;
480 
481 	pr_debug(" -> unflatten_device_tree()\n");
482 
483 	if (!blob) {
484 		pr_debug("No device tree pointer\n");
485 		return NULL;
486 	}
487 
488 	pr_debug("Unflattening device tree:\n");
489 	pr_debug("magic: %08x\n", fdt_magic(blob));
490 	pr_debug("size: %08x\n", fdt_totalsize(blob));
491 	pr_debug("version: %08x\n", fdt_version(blob));
492 
493 	if (fdt_check_header(blob)) {
494 		pr_err("Invalid device tree blob header\n");
495 		return NULL;
496 	}
497 
498 	/* First pass, scan for size */
499 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
500 	if (size < 0)
501 		return NULL;
502 
503 	size = ALIGN(size, 4);
504 	pr_debug("  size is %d, allocating...\n", size);
505 
506 	/* Allocate memory for the expanded device tree */
507 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
508 	memset(mem, 0, size);
509 
510 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
511 
512 	pr_debug("  unflattening %p...\n", mem);
513 
514 	/* Second pass, do actual unflattening */
515 	unflatten_dt_nodes(blob, mem, dad, mynodes);
516 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
517 		pr_warning("End of tree marker overwritten: %08x\n",
518 			   be32_to_cpup(mem + size));
519 
520 	if (detached) {
521 		of_node_set_flag(*mynodes, OF_DETACHED);
522 		pr_debug("unflattened tree is detached\n");
523 	}
524 
525 	pr_debug(" <- unflatten_device_tree()\n");
526 	return mem;
527 }
528 
529 static void *kernel_tree_alloc(u64 size, u64 align)
530 {
531 	return kzalloc(size, GFP_KERNEL);
532 }
533 
534 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
535 
536 /**
537  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
538  * @blob: Flat device tree blob
539  * @dad: Parent device node
540  * @mynodes: The device tree created by the call
541  *
542  * unflattens the device-tree passed by the firmware, creating the
543  * tree of struct device_node. It also fills the "name" and "type"
544  * pointers of the nodes so the normal device-tree walking functions
545  * can be used.
546  *
547  * Returns NULL on failure or the memory chunk containing the unflattened
548  * device tree on success.
549  */
550 void *of_fdt_unflatten_tree(const unsigned long *blob,
551 			    struct device_node *dad,
552 			    struct device_node **mynodes)
553 {
554 	void *mem;
555 
556 	mutex_lock(&of_fdt_unflatten_mutex);
557 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
558 				      true);
559 	mutex_unlock(&of_fdt_unflatten_mutex);
560 
561 	return mem;
562 }
563 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
564 
565 /* Everything below here references initial_boot_params directly. */
566 int __initdata dt_root_addr_cells;
567 int __initdata dt_root_size_cells;
568 
569 void *initial_boot_params;
570 
571 #ifdef CONFIG_OF_EARLY_FLATTREE
572 
573 static u32 of_fdt_crc32;
574 
575 /**
576  * res_mem_reserve_reg() - reserve all memory described in 'reg' property
577  */
578 static int __init __reserved_mem_reserve_reg(unsigned long node,
579 					     const char *uname)
580 {
581 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
582 	phys_addr_t base, size;
583 	int len;
584 	const __be32 *prop;
585 	int nomap, first = 1;
586 
587 	prop = of_get_flat_dt_prop(node, "reg", &len);
588 	if (!prop)
589 		return -ENOENT;
590 
591 	if (len && len % t_len != 0) {
592 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
593 		       uname);
594 		return -EINVAL;
595 	}
596 
597 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
598 
599 	while (len >= t_len) {
600 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
601 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
602 
603 		if (size &&
604 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
605 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
606 				uname, &base, (unsigned long)size / SZ_1M);
607 		else
608 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
609 				uname, &base, (unsigned long)size / SZ_1M);
610 
611 		len -= t_len;
612 		if (first) {
613 			fdt_reserved_mem_save_node(node, uname, base, size);
614 			first = 0;
615 		}
616 	}
617 	return 0;
618 }
619 
620 /**
621  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
622  * in /reserved-memory matches the values supported by the current implementation,
623  * also check if ranges property has been provided
624  */
625 static int __init __reserved_mem_check_root(unsigned long node)
626 {
627 	const __be32 *prop;
628 
629 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
630 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
631 		return -EINVAL;
632 
633 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
634 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
635 		return -EINVAL;
636 
637 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
638 	if (!prop)
639 		return -EINVAL;
640 	return 0;
641 }
642 
643 /**
644  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
645  */
646 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
647 					  int depth, void *data)
648 {
649 	static int found;
650 	const char *status;
651 	int err;
652 
653 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
654 		if (__reserved_mem_check_root(node) != 0) {
655 			pr_err("Reserved memory: unsupported node format, ignoring\n");
656 			/* break scan */
657 			return 1;
658 		}
659 		found = 1;
660 		/* scan next node */
661 		return 0;
662 	} else if (!found) {
663 		/* scan next node */
664 		return 0;
665 	} else if (found && depth < 2) {
666 		/* scanning of /reserved-memory has been finished */
667 		return 1;
668 	}
669 
670 	status = of_get_flat_dt_prop(node, "status", NULL);
671 	if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
672 		return 0;
673 
674 	err = __reserved_mem_reserve_reg(node, uname);
675 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
676 		fdt_reserved_mem_save_node(node, uname, 0, 0);
677 
678 	/* scan next node */
679 	return 0;
680 }
681 
682 /**
683  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
684  *
685  * This function grabs memory from early allocator for device exclusive use
686  * defined in device tree structures. It should be called by arch specific code
687  * once the early allocator (i.e. memblock) has been fully activated.
688  */
689 void __init early_init_fdt_scan_reserved_mem(void)
690 {
691 	int n;
692 	u64 base, size;
693 
694 	if (!initial_boot_params)
695 		return;
696 
697 	/* Process header /memreserve/ fields */
698 	for (n = 0; ; n++) {
699 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
700 		if (!size)
701 			break;
702 		early_init_dt_reserve_memory_arch(base, size, 0);
703 	}
704 
705 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
706 	fdt_init_reserved_mem();
707 }
708 
709 /**
710  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
711  */
712 void __init early_init_fdt_reserve_self(void)
713 {
714 	if (!initial_boot_params)
715 		return;
716 
717 	/* Reserve the dtb region */
718 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
719 					  fdt_totalsize(initial_boot_params),
720 					  0);
721 }
722 
723 /**
724  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
725  * @it: callback function
726  * @data: context data pointer
727  *
728  * This function is used to scan the flattened device-tree, it is
729  * used to extract the memory information at boot before we can
730  * unflatten the tree
731  */
732 int __init of_scan_flat_dt(int (*it)(unsigned long node,
733 				     const char *uname, int depth,
734 				     void *data),
735 			   void *data)
736 {
737 	const void *blob = initial_boot_params;
738 	const char *pathp;
739 	int offset, rc = 0, depth = -1;
740 
741         for (offset = fdt_next_node(blob, -1, &depth);
742              offset >= 0 && depth >= 0 && !rc;
743              offset = fdt_next_node(blob, offset, &depth)) {
744 
745 		pathp = fdt_get_name(blob, offset, NULL);
746 		if (*pathp == '/')
747 			pathp = kbasename(pathp);
748 		rc = it(offset, pathp, depth, data);
749 	}
750 	return rc;
751 }
752 
753 /**
754  * of_get_flat_dt_subnode_by_name - get the subnode by given name
755  *
756  * @node: the parent node
757  * @uname: the name of subnode
758  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
759  */
760 
761 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
762 {
763 	return fdt_subnode_offset(initial_boot_params, node, uname);
764 }
765 
766 /**
767  * of_get_flat_dt_root - find the root node in the flat blob
768  */
769 unsigned long __init of_get_flat_dt_root(void)
770 {
771 	return 0;
772 }
773 
774 /**
775  * of_get_flat_dt_size - Return the total size of the FDT
776  */
777 int __init of_get_flat_dt_size(void)
778 {
779 	return fdt_totalsize(initial_boot_params);
780 }
781 
782 /**
783  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
784  *
785  * This function can be used within scan_flattened_dt callback to get
786  * access to properties
787  */
788 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
789 				       int *size)
790 {
791 	return fdt_getprop(initial_boot_params, node, name, size);
792 }
793 
794 /**
795  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
796  * @node: node to test
797  * @compat: compatible string to compare with compatible list.
798  */
799 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
800 {
801 	return of_fdt_is_compatible(initial_boot_params, node, compat);
802 }
803 
804 /**
805  * of_flat_dt_match - Return true if node matches a list of compatible values
806  */
807 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
808 {
809 	return of_fdt_match(initial_boot_params, node, compat);
810 }
811 
812 struct fdt_scan_status {
813 	const char *name;
814 	int namelen;
815 	int depth;
816 	int found;
817 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
818 	void *data;
819 };
820 
821 const char * __init of_flat_dt_get_machine_name(void)
822 {
823 	const char *name;
824 	unsigned long dt_root = of_get_flat_dt_root();
825 
826 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
827 	if (!name)
828 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
829 	return name;
830 }
831 
832 /**
833  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
834  *
835  * @default_match: A machine specific ptr to return in case of no match.
836  * @get_next_compat: callback function to return next compatible match table.
837  *
838  * Iterate through machine match tables to find the best match for the machine
839  * compatible string in the FDT.
840  */
841 const void * __init of_flat_dt_match_machine(const void *default_match,
842 		const void * (*get_next_compat)(const char * const**))
843 {
844 	const void *data = NULL;
845 	const void *best_data = default_match;
846 	const char *const *compat;
847 	unsigned long dt_root;
848 	unsigned int best_score = ~1, score = 0;
849 
850 	dt_root = of_get_flat_dt_root();
851 	while ((data = get_next_compat(&compat))) {
852 		score = of_flat_dt_match(dt_root, compat);
853 		if (score > 0 && score < best_score) {
854 			best_data = data;
855 			best_score = score;
856 		}
857 	}
858 	if (!best_data) {
859 		const char *prop;
860 		int size;
861 
862 		pr_err("\n unrecognized device tree list:\n[ ");
863 
864 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
865 		if (prop) {
866 			while (size > 0) {
867 				printk("'%s' ", prop);
868 				size -= strlen(prop) + 1;
869 				prop += strlen(prop) + 1;
870 			}
871 		}
872 		printk("]\n\n");
873 		return NULL;
874 	}
875 
876 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
877 
878 	return best_data;
879 }
880 
881 #ifdef CONFIG_BLK_DEV_INITRD
882 #ifndef __early_init_dt_declare_initrd
883 static void __early_init_dt_declare_initrd(unsigned long start,
884 					   unsigned long end)
885 {
886 	initrd_start = (unsigned long)__va(start);
887 	initrd_end = (unsigned long)__va(end);
888 	initrd_below_start_ok = 1;
889 }
890 #endif
891 
892 /**
893  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
894  * @node: reference to node containing initrd location ('chosen')
895  */
896 static void __init early_init_dt_check_for_initrd(unsigned long node)
897 {
898 	u64 start, end;
899 	int len;
900 	const __be32 *prop;
901 
902 	pr_debug("Looking for initrd properties... ");
903 
904 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
905 	if (!prop)
906 		return;
907 	start = of_read_number(prop, len/4);
908 
909 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
910 	if (!prop)
911 		return;
912 	end = of_read_number(prop, len/4);
913 
914 	__early_init_dt_declare_initrd(start, end);
915 
916 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
917 		 (unsigned long long)start, (unsigned long long)end);
918 }
919 #else
920 static inline void early_init_dt_check_for_initrd(unsigned long node)
921 {
922 }
923 #endif /* CONFIG_BLK_DEV_INITRD */
924 
925 #ifdef CONFIG_SERIAL_EARLYCON
926 
927 static int __init early_init_dt_scan_chosen_serial(void)
928 {
929 	int offset;
930 	const char *p, *q, *options = NULL;
931 	int l;
932 	const struct earlycon_id *match;
933 	const void *fdt = initial_boot_params;
934 
935 	offset = fdt_path_offset(fdt, "/chosen");
936 	if (offset < 0)
937 		offset = fdt_path_offset(fdt, "/chosen@0");
938 	if (offset < 0)
939 		return -ENOENT;
940 
941 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
942 	if (!p)
943 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
944 	if (!p || !l)
945 		return -ENOENT;
946 
947 	q = strchrnul(p, ':');
948 	if (*q != '\0')
949 		options = q + 1;
950 	l = q - p;
951 
952 	/* Get the node specified by stdout-path */
953 	offset = fdt_path_offset_namelen(fdt, p, l);
954 	if (offset < 0) {
955 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
956 		return 0;
957 	}
958 
959 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
960 		if (!match->compatible[0])
961 			continue;
962 
963 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
964 			continue;
965 
966 		of_setup_earlycon(match, offset, options);
967 		return 0;
968 	}
969 	return -ENODEV;
970 }
971 
972 static int __init setup_of_earlycon(char *buf)
973 {
974 	if (buf)
975 		return 0;
976 
977 	return early_init_dt_scan_chosen_serial();
978 }
979 early_param("earlycon", setup_of_earlycon);
980 #endif
981 
982 /**
983  * early_init_dt_scan_root - fetch the top level address and size cells
984  */
985 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
986 				   int depth, void *data)
987 {
988 	const __be32 *prop;
989 
990 	if (depth != 0)
991 		return 0;
992 
993 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
994 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
995 
996 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
997 	if (prop)
998 		dt_root_size_cells = be32_to_cpup(prop);
999 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1000 
1001 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1002 	if (prop)
1003 		dt_root_addr_cells = be32_to_cpup(prop);
1004 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1005 
1006 	/* break now */
1007 	return 1;
1008 }
1009 
1010 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1011 {
1012 	const __be32 *p = *cellp;
1013 
1014 	*cellp = p + s;
1015 	return of_read_number(p, s);
1016 }
1017 
1018 /**
1019  * early_init_dt_scan_memory - Look for an parse memory nodes
1020  */
1021 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1022 				     int depth, void *data)
1023 {
1024 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1025 	const __be32 *reg, *endp;
1026 	int l;
1027 
1028 	/* We are scanning "memory" nodes only */
1029 	if (type == NULL) {
1030 		/*
1031 		 * The longtrail doesn't have a device_type on the
1032 		 * /memory node, so look for the node called /memory@0.
1033 		 */
1034 		if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1035 			return 0;
1036 	} else if (strcmp(type, "memory") != 0)
1037 		return 0;
1038 
1039 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1040 	if (reg == NULL)
1041 		reg = of_get_flat_dt_prop(node, "reg", &l);
1042 	if (reg == NULL)
1043 		return 0;
1044 
1045 	endp = reg + (l / sizeof(__be32));
1046 
1047 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1048 
1049 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1050 		u64 base, size;
1051 
1052 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1053 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1054 
1055 		if (size == 0)
1056 			continue;
1057 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1058 		    (unsigned long long)size);
1059 
1060 		early_init_dt_add_memory_arch(base, size);
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1067 				     int depth, void *data)
1068 {
1069 	int l;
1070 	const char *p;
1071 
1072 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1073 
1074 	if (depth != 1 || !data ||
1075 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1076 		return 0;
1077 
1078 	early_init_dt_check_for_initrd(node);
1079 
1080 	/* Retrieve command line */
1081 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1082 	if (p != NULL && l > 0)
1083 		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1084 
1085 	/*
1086 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1087 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1088 	 * is set in which case we override whatever was found earlier.
1089 	 */
1090 #ifdef CONFIG_CMDLINE
1091 #if defined(CONFIG_CMDLINE_EXTEND)
1092 	strlcat(data, " ", COMMAND_LINE_SIZE);
1093 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1094 #elif defined(CONFIG_CMDLINE_FORCE)
1095 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1096 #else
1097 	/* No arguments from boot loader, use kernel's  cmdl*/
1098 	if (!((char *)data)[0])
1099 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1100 #endif
1101 #endif /* CONFIG_CMDLINE */
1102 
1103 	pr_debug("Command line is: %s\n", (char*)data);
1104 
1105 	/* break now */
1106 	return 1;
1107 }
1108 
1109 #ifdef CONFIG_HAVE_MEMBLOCK
1110 #ifndef MIN_MEMBLOCK_ADDR
1111 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1112 #endif
1113 #ifndef MAX_MEMBLOCK_ADDR
1114 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1115 #endif
1116 
1117 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1118 {
1119 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1120 
1121 	if (!PAGE_ALIGNED(base)) {
1122 		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1123 			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1124 				base, base + size);
1125 			return;
1126 		}
1127 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1128 		base = PAGE_ALIGN(base);
1129 	}
1130 	size &= PAGE_MASK;
1131 
1132 	if (base > MAX_MEMBLOCK_ADDR) {
1133 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1134 				base, base + size);
1135 		return;
1136 	}
1137 
1138 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1139 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1140 				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1141 		size = MAX_MEMBLOCK_ADDR - base + 1;
1142 	}
1143 
1144 	if (base + size < phys_offset) {
1145 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1146 			   base, base + size);
1147 		return;
1148 	}
1149 	if (base < phys_offset) {
1150 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1151 			   base, phys_offset);
1152 		size -= phys_offset - base;
1153 		base = phys_offset;
1154 	}
1155 	memblock_add(base, size);
1156 }
1157 
1158 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1159 					phys_addr_t size, bool nomap)
1160 {
1161 	if (nomap)
1162 		return memblock_remove(base, size);
1163 	return memblock_reserve(base, size);
1164 }
1165 
1166 /*
1167  * called from unflatten_device_tree() to bootstrap devicetree itself
1168  * Architectures can override this definition if memblock isn't used
1169  */
1170 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1171 {
1172 	return __va(memblock_alloc(size, align));
1173 }
1174 #else
1175 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1176 {
1177 	WARN_ON(1);
1178 }
1179 
1180 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1181 					phys_addr_t size, bool nomap)
1182 {
1183 	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1184 		  &base, &size, nomap ? " (nomap)" : "");
1185 	return -ENOSYS;
1186 }
1187 
1188 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1189 {
1190 	WARN_ON(1);
1191 	return NULL;
1192 }
1193 #endif
1194 
1195 bool __init early_init_dt_verify(void *params)
1196 {
1197 	if (!params)
1198 		return false;
1199 
1200 	/* check device tree validity */
1201 	if (fdt_check_header(params))
1202 		return false;
1203 
1204 	/* Setup flat device-tree pointer */
1205 	initial_boot_params = params;
1206 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1207 				fdt_totalsize(initial_boot_params));
1208 	return true;
1209 }
1210 
1211 
1212 void __init early_init_dt_scan_nodes(void)
1213 {
1214 	/* Retrieve various information from the /chosen node */
1215 	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1216 
1217 	/* Initialize {size,address}-cells info */
1218 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1219 
1220 	/* Setup memory, calling early_init_dt_add_memory_arch */
1221 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1222 }
1223 
1224 bool __init early_init_dt_scan(void *params)
1225 {
1226 	bool status;
1227 
1228 	status = early_init_dt_verify(params);
1229 	if (!status)
1230 		return false;
1231 
1232 	early_init_dt_scan_nodes();
1233 	return true;
1234 }
1235 
1236 /**
1237  * unflatten_device_tree - create tree of device_nodes from flat blob
1238  *
1239  * unflattens the device-tree passed by the firmware, creating the
1240  * tree of struct device_node. It also fills the "name" and "type"
1241  * pointers of the nodes so the normal device-tree walking functions
1242  * can be used.
1243  */
1244 void __init unflatten_device_tree(void)
1245 {
1246 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1247 				early_init_dt_alloc_memory_arch, false);
1248 
1249 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1250 	of_alias_scan(early_init_dt_alloc_memory_arch);
1251 }
1252 
1253 /**
1254  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1255  *
1256  * Copies and unflattens the device-tree passed by the firmware, creating the
1257  * tree of struct device_node. It also fills the "name" and "type"
1258  * pointers of the nodes so the normal device-tree walking functions
1259  * can be used. This should only be used when the FDT memory has not been
1260  * reserved such is the case when the FDT is built-in to the kernel init
1261  * section. If the FDT memory is reserved already then unflatten_device_tree
1262  * should be used instead.
1263  */
1264 void __init unflatten_and_copy_device_tree(void)
1265 {
1266 	int size;
1267 	void *dt;
1268 
1269 	if (!initial_boot_params) {
1270 		pr_warn("No valid device tree found, continuing without\n");
1271 		return;
1272 	}
1273 
1274 	size = fdt_totalsize(initial_boot_params);
1275 	dt = early_init_dt_alloc_memory_arch(size,
1276 					     roundup_pow_of_two(FDT_V17_SIZE));
1277 
1278 	if (dt) {
1279 		memcpy(dt, initial_boot_params, size);
1280 		initial_boot_params = dt;
1281 	}
1282 	unflatten_device_tree();
1283 }
1284 
1285 #ifdef CONFIG_SYSFS
1286 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1287 			       struct bin_attribute *bin_attr,
1288 			       char *buf, loff_t off, size_t count)
1289 {
1290 	memcpy(buf, initial_boot_params + off, count);
1291 	return count;
1292 }
1293 
1294 static int __init of_fdt_raw_init(void)
1295 {
1296 	static struct bin_attribute of_fdt_raw_attr =
1297 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1298 
1299 	if (!initial_boot_params)
1300 		return 0;
1301 
1302 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1303 				     fdt_totalsize(initial_boot_params))) {
1304 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1305 		return 0;
1306 	}
1307 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1308 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1309 }
1310 late_initcall(of_fdt_raw_init);
1311 #endif
1312 
1313 #endif /* CONFIG_OF_EARLY_FLATTREE */
1314