1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions for working with the Flattened Device Tree data format 4 * 5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp 6 * benh@kernel.crashing.org 7 */ 8 9 #define pr_fmt(fmt) "OF: fdt: " fmt 10 11 #include <linux/crash_dump.h> 12 #include <linux/crc32.h> 13 #include <linux/kernel.h> 14 #include <linux/initrd.h> 15 #include <linux/memblock.h> 16 #include <linux/mutex.h> 17 #include <linux/of.h> 18 #include <linux/of_fdt.h> 19 #include <linux/of_reserved_mem.h> 20 #include <linux/sizes.h> 21 #include <linux/string.h> 22 #include <linux/errno.h> 23 #include <linux/slab.h> 24 #include <linux/libfdt.h> 25 #include <linux/debugfs.h> 26 #include <linux/serial_core.h> 27 #include <linux/sysfs.h> 28 #include <linux/random.h> 29 30 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ 31 #include <asm/page.h> 32 33 #include "of_private.h" 34 35 /* 36 * of_fdt_limit_memory - limit the number of regions in the /memory node 37 * @limit: maximum entries 38 * 39 * Adjust the flattened device tree to have at most 'limit' number of 40 * memory entries in the /memory node. This function may be called 41 * any time after initial_boot_param is set. 42 */ 43 void __init of_fdt_limit_memory(int limit) 44 { 45 int memory; 46 int len; 47 const void *val; 48 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 49 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 50 const __be32 *addr_prop; 51 const __be32 *size_prop; 52 int root_offset; 53 int cell_size; 54 55 root_offset = fdt_path_offset(initial_boot_params, "/"); 56 if (root_offset < 0) 57 return; 58 59 addr_prop = fdt_getprop(initial_boot_params, root_offset, 60 "#address-cells", NULL); 61 if (addr_prop) 62 nr_address_cells = fdt32_to_cpu(*addr_prop); 63 64 size_prop = fdt_getprop(initial_boot_params, root_offset, 65 "#size-cells", NULL); 66 if (size_prop) 67 nr_size_cells = fdt32_to_cpu(*size_prop); 68 69 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); 70 71 memory = fdt_path_offset(initial_boot_params, "/memory"); 72 if (memory > 0) { 73 val = fdt_getprop(initial_boot_params, memory, "reg", &len); 74 if (len > limit*cell_size) { 75 len = limit*cell_size; 76 pr_debug("Limiting number of entries to %d\n", limit); 77 fdt_setprop(initial_boot_params, memory, "reg", val, 78 len); 79 } 80 } 81 } 82 83 static bool of_fdt_device_is_available(const void *blob, unsigned long node) 84 { 85 const char *status = fdt_getprop(blob, node, "status", NULL); 86 87 if (!status) 88 return true; 89 90 if (!strcmp(status, "ok") || !strcmp(status, "okay")) 91 return true; 92 93 return false; 94 } 95 96 static void *unflatten_dt_alloc(void **mem, unsigned long size, 97 unsigned long align) 98 { 99 void *res; 100 101 *mem = PTR_ALIGN(*mem, align); 102 res = *mem; 103 *mem += size; 104 105 return res; 106 } 107 108 static void populate_properties(const void *blob, 109 int offset, 110 void **mem, 111 struct device_node *np, 112 const char *nodename, 113 bool dryrun) 114 { 115 struct property *pp, **pprev = NULL; 116 int cur; 117 bool has_name = false; 118 119 pprev = &np->properties; 120 for (cur = fdt_first_property_offset(blob, offset); 121 cur >= 0; 122 cur = fdt_next_property_offset(blob, cur)) { 123 const __be32 *val; 124 const char *pname; 125 u32 sz; 126 127 val = fdt_getprop_by_offset(blob, cur, &pname, &sz); 128 if (!val) { 129 pr_warn("Cannot locate property at 0x%x\n", cur); 130 continue; 131 } 132 133 if (!pname) { 134 pr_warn("Cannot find property name at 0x%x\n", cur); 135 continue; 136 } 137 138 if (!strcmp(pname, "name")) 139 has_name = true; 140 141 pp = unflatten_dt_alloc(mem, sizeof(struct property), 142 __alignof__(struct property)); 143 if (dryrun) 144 continue; 145 146 /* We accept flattened tree phandles either in 147 * ePAPR-style "phandle" properties, or the 148 * legacy "linux,phandle" properties. If both 149 * appear and have different values, things 150 * will get weird. Don't do that. 151 */ 152 if (!strcmp(pname, "phandle") || 153 !strcmp(pname, "linux,phandle")) { 154 if (!np->phandle) 155 np->phandle = be32_to_cpup(val); 156 } 157 158 /* And we process the "ibm,phandle" property 159 * used in pSeries dynamic device tree 160 * stuff 161 */ 162 if (!strcmp(pname, "ibm,phandle")) 163 np->phandle = be32_to_cpup(val); 164 165 pp->name = (char *)pname; 166 pp->length = sz; 167 pp->value = (__be32 *)val; 168 *pprev = pp; 169 pprev = &pp->next; 170 } 171 172 /* With version 0x10 we may not have the name property, 173 * recreate it here from the unit name if absent 174 */ 175 if (!has_name) { 176 const char *p = nodename, *ps = p, *pa = NULL; 177 int len; 178 179 while (*p) { 180 if ((*p) == '@') 181 pa = p; 182 else if ((*p) == '/') 183 ps = p + 1; 184 p++; 185 } 186 187 if (pa < ps) 188 pa = p; 189 len = (pa - ps) + 1; 190 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, 191 __alignof__(struct property)); 192 if (!dryrun) { 193 pp->name = "name"; 194 pp->length = len; 195 pp->value = pp + 1; 196 *pprev = pp; 197 memcpy(pp->value, ps, len - 1); 198 ((char *)pp->value)[len - 1] = 0; 199 pr_debug("fixed up name for %s -> %s\n", 200 nodename, (char *)pp->value); 201 } 202 } 203 } 204 205 static int populate_node(const void *blob, 206 int offset, 207 void **mem, 208 struct device_node *dad, 209 struct device_node **pnp, 210 bool dryrun) 211 { 212 struct device_node *np; 213 const char *pathp; 214 int len; 215 216 pathp = fdt_get_name(blob, offset, &len); 217 if (!pathp) { 218 *pnp = NULL; 219 return len; 220 } 221 222 len++; 223 224 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len, 225 __alignof__(struct device_node)); 226 if (!dryrun) { 227 char *fn; 228 of_node_init(np); 229 np->full_name = fn = ((char *)np) + sizeof(*np); 230 231 memcpy(fn, pathp, len); 232 233 if (dad != NULL) { 234 np->parent = dad; 235 np->sibling = dad->child; 236 dad->child = np; 237 } 238 } 239 240 populate_properties(blob, offset, mem, np, pathp, dryrun); 241 if (!dryrun) { 242 np->name = of_get_property(np, "name", NULL); 243 if (!np->name) 244 np->name = "<NULL>"; 245 } 246 247 *pnp = np; 248 return 0; 249 } 250 251 static void reverse_nodes(struct device_node *parent) 252 { 253 struct device_node *child, *next; 254 255 /* In-depth first */ 256 child = parent->child; 257 while (child) { 258 reverse_nodes(child); 259 260 child = child->sibling; 261 } 262 263 /* Reverse the nodes in the child list */ 264 child = parent->child; 265 parent->child = NULL; 266 while (child) { 267 next = child->sibling; 268 269 child->sibling = parent->child; 270 parent->child = child; 271 child = next; 272 } 273 } 274 275 /** 276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree 277 * @blob: The parent device tree blob 278 * @mem: Memory chunk to use for allocating device nodes and properties 279 * @dad: Parent struct device_node 280 * @nodepp: The device_node tree created by the call 281 * 282 * Return: The size of unflattened device tree or error code 283 */ 284 static int unflatten_dt_nodes(const void *blob, 285 void *mem, 286 struct device_node *dad, 287 struct device_node **nodepp) 288 { 289 struct device_node *root; 290 int offset = 0, depth = 0, initial_depth = 0; 291 #define FDT_MAX_DEPTH 64 292 struct device_node *nps[FDT_MAX_DEPTH]; 293 void *base = mem; 294 bool dryrun = !base; 295 int ret; 296 297 if (nodepp) 298 *nodepp = NULL; 299 300 /* 301 * We're unflattening device sub-tree if @dad is valid. There are 302 * possibly multiple nodes in the first level of depth. We need 303 * set @depth to 1 to make fdt_next_node() happy as it bails 304 * immediately when negative @depth is found. Otherwise, the device 305 * nodes except the first one won't be unflattened successfully. 306 */ 307 if (dad) 308 depth = initial_depth = 1; 309 310 root = dad; 311 nps[depth] = dad; 312 313 for (offset = 0; 314 offset >= 0 && depth >= initial_depth; 315 offset = fdt_next_node(blob, offset, &depth)) { 316 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1)) 317 continue; 318 319 if (!IS_ENABLED(CONFIG_OF_KOBJ) && 320 !of_fdt_device_is_available(blob, offset)) 321 continue; 322 323 ret = populate_node(blob, offset, &mem, nps[depth], 324 &nps[depth+1], dryrun); 325 if (ret < 0) 326 return ret; 327 328 if (!dryrun && nodepp && !*nodepp) 329 *nodepp = nps[depth+1]; 330 if (!dryrun && !root) 331 root = nps[depth+1]; 332 } 333 334 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { 335 pr_err("Error %d processing FDT\n", offset); 336 return -EINVAL; 337 } 338 339 /* 340 * Reverse the child list. Some drivers assumes node order matches .dts 341 * node order 342 */ 343 if (!dryrun) 344 reverse_nodes(root); 345 346 return mem - base; 347 } 348 349 /** 350 * __unflatten_device_tree - create tree of device_nodes from flat blob 351 * @blob: The blob to expand 352 * @dad: Parent device node 353 * @mynodes: The device_node tree created by the call 354 * @dt_alloc: An allocator that provides a virtual address to memory 355 * for the resulting tree 356 * @detached: if true set OF_DETACHED on @mynodes 357 * 358 * unflattens a device-tree, creating the tree of struct device_node. It also 359 * fills the "name" and "type" pointers of the nodes so the normal device-tree 360 * walking functions can be used. 361 * 362 * Return: NULL on failure or the memory chunk containing the unflattened 363 * device tree on success. 364 */ 365 void *__unflatten_device_tree(const void *blob, 366 struct device_node *dad, 367 struct device_node **mynodes, 368 void *(*dt_alloc)(u64 size, u64 align), 369 bool detached) 370 { 371 int size; 372 void *mem; 373 int ret; 374 375 if (mynodes) 376 *mynodes = NULL; 377 378 pr_debug(" -> unflatten_device_tree()\n"); 379 380 if (!blob) { 381 pr_debug("No device tree pointer\n"); 382 return NULL; 383 } 384 385 pr_debug("Unflattening device tree:\n"); 386 pr_debug("magic: %08x\n", fdt_magic(blob)); 387 pr_debug("size: %08x\n", fdt_totalsize(blob)); 388 pr_debug("version: %08x\n", fdt_version(blob)); 389 390 if (fdt_check_header(blob)) { 391 pr_err("Invalid device tree blob header\n"); 392 return NULL; 393 } 394 395 /* First pass, scan for size */ 396 size = unflatten_dt_nodes(blob, NULL, dad, NULL); 397 if (size <= 0) 398 return NULL; 399 400 size = ALIGN(size, 4); 401 pr_debug(" size is %d, allocating...\n", size); 402 403 /* Allocate memory for the expanded device tree */ 404 mem = dt_alloc(size + 4, __alignof__(struct device_node)); 405 if (!mem) 406 return NULL; 407 408 memset(mem, 0, size); 409 410 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); 411 412 pr_debug(" unflattening %p...\n", mem); 413 414 /* Second pass, do actual unflattening */ 415 ret = unflatten_dt_nodes(blob, mem, dad, mynodes); 416 417 if (be32_to_cpup(mem + size) != 0xdeadbeef) 418 pr_warn("End of tree marker overwritten: %08x\n", 419 be32_to_cpup(mem + size)); 420 421 if (ret <= 0) 422 return NULL; 423 424 if (detached && mynodes && *mynodes) { 425 of_node_set_flag(*mynodes, OF_DETACHED); 426 pr_debug("unflattened tree is detached\n"); 427 } 428 429 pr_debug(" <- unflatten_device_tree()\n"); 430 return mem; 431 } 432 433 static void *kernel_tree_alloc(u64 size, u64 align) 434 { 435 return kzalloc(size, GFP_KERNEL); 436 } 437 438 static DEFINE_MUTEX(of_fdt_unflatten_mutex); 439 440 /** 441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob 442 * @blob: Flat device tree blob 443 * @dad: Parent device node 444 * @mynodes: The device tree created by the call 445 * 446 * unflattens the device-tree passed by the firmware, creating the 447 * tree of struct device_node. It also fills the "name" and "type" 448 * pointers of the nodes so the normal device-tree walking functions 449 * can be used. 450 * 451 * Return: NULL on failure or the memory chunk containing the unflattened 452 * device tree on success. 453 */ 454 void *of_fdt_unflatten_tree(const unsigned long *blob, 455 struct device_node *dad, 456 struct device_node **mynodes) 457 { 458 void *mem; 459 460 mutex_lock(&of_fdt_unflatten_mutex); 461 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, 462 true); 463 mutex_unlock(&of_fdt_unflatten_mutex); 464 465 return mem; 466 } 467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); 468 469 /* Everything below here references initial_boot_params directly. */ 470 int __initdata dt_root_addr_cells; 471 int __initdata dt_root_size_cells; 472 473 void *initial_boot_params __ro_after_init; 474 phys_addr_t initial_boot_params_pa __ro_after_init; 475 476 #ifdef CONFIG_OF_EARLY_FLATTREE 477 478 static u32 of_fdt_crc32; 479 480 static int __init early_init_dt_reserve_memory(phys_addr_t base, 481 phys_addr_t size, bool nomap) 482 { 483 if (nomap) { 484 /* 485 * If the memory is already reserved (by another region), we 486 * should not allow it to be marked nomap, but don't worry 487 * if the region isn't memory as it won't be mapped. 488 */ 489 if (memblock_overlaps_region(&memblock.memory, base, size) && 490 memblock_is_region_reserved(base, size)) 491 return -EBUSY; 492 493 return memblock_mark_nomap(base, size); 494 } 495 return memblock_reserve(base, size); 496 } 497 498 /* 499 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property 500 */ 501 static int __init __reserved_mem_reserve_reg(unsigned long node, 502 const char *uname) 503 { 504 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); 505 phys_addr_t base, size; 506 int len; 507 const __be32 *prop; 508 int first = 1; 509 bool nomap; 510 511 prop = of_get_flat_dt_prop(node, "reg", &len); 512 if (!prop) 513 return -ENOENT; 514 515 if (len && len % t_len != 0) { 516 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", 517 uname); 518 return -EINVAL; 519 } 520 521 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; 522 523 while (len >= t_len) { 524 base = dt_mem_next_cell(dt_root_addr_cells, &prop); 525 size = dt_mem_next_cell(dt_root_size_cells, &prop); 526 527 if (size && 528 early_init_dt_reserve_memory(base, size, nomap) == 0) 529 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n", 530 uname, &base, (unsigned long)(size / SZ_1M)); 531 else 532 pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n", 533 uname, &base, (unsigned long)(size / SZ_1M)); 534 535 len -= t_len; 536 if (first) { 537 fdt_reserved_mem_save_node(node, uname, base, size); 538 first = 0; 539 } 540 } 541 return 0; 542 } 543 544 /* 545 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided 546 * in /reserved-memory matches the values supported by the current implementation, 547 * also check if ranges property has been provided 548 */ 549 static int __init __reserved_mem_check_root(unsigned long node) 550 { 551 const __be32 *prop; 552 553 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 554 if (!prop || be32_to_cpup(prop) != dt_root_size_cells) 555 return -EINVAL; 556 557 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 558 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) 559 return -EINVAL; 560 561 prop = of_get_flat_dt_prop(node, "ranges", NULL); 562 if (!prop) 563 return -EINVAL; 564 return 0; 565 } 566 567 /* 568 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory 569 */ 570 static int __init fdt_scan_reserved_mem(void) 571 { 572 int node, child; 573 const void *fdt = initial_boot_params; 574 575 node = fdt_path_offset(fdt, "/reserved-memory"); 576 if (node < 0) 577 return -ENODEV; 578 579 if (__reserved_mem_check_root(node) != 0) { 580 pr_err("Reserved memory: unsupported node format, ignoring\n"); 581 return -EINVAL; 582 } 583 584 fdt_for_each_subnode(child, fdt, node) { 585 const char *uname; 586 int err; 587 588 if (!of_fdt_device_is_available(fdt, child)) 589 continue; 590 591 uname = fdt_get_name(fdt, child, NULL); 592 593 err = __reserved_mem_reserve_reg(child, uname); 594 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) 595 fdt_reserved_mem_save_node(child, uname, 0, 0); 596 } 597 return 0; 598 } 599 600 /* 601 * fdt_reserve_elfcorehdr() - reserves memory for elf core header 602 * 603 * This function reserves the memory occupied by an elf core header 604 * described in the device tree. This region contains all the 605 * information about primary kernel's core image and is used by a dump 606 * capture kernel to access the system memory on primary kernel. 607 */ 608 static void __init fdt_reserve_elfcorehdr(void) 609 { 610 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size) 611 return; 612 613 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 614 pr_warn("elfcorehdr is overlapped\n"); 615 return; 616 } 617 618 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 619 620 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n", 621 elfcorehdr_size >> 10, elfcorehdr_addr); 622 } 623 624 /** 625 * early_init_fdt_scan_reserved_mem() - create reserved memory regions 626 * 627 * This function grabs memory from early allocator for device exclusive use 628 * defined in device tree structures. It should be called by arch specific code 629 * once the early allocator (i.e. memblock) has been fully activated. 630 */ 631 void __init early_init_fdt_scan_reserved_mem(void) 632 { 633 int n; 634 u64 base, size; 635 636 if (!initial_boot_params) 637 return; 638 639 fdt_scan_reserved_mem(); 640 fdt_reserve_elfcorehdr(); 641 642 /* Process header /memreserve/ fields */ 643 for (n = 0; ; n++) { 644 fdt_get_mem_rsv(initial_boot_params, n, &base, &size); 645 if (!size) 646 break; 647 memblock_reserve(base, size); 648 } 649 650 fdt_init_reserved_mem(); 651 } 652 653 /** 654 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob 655 */ 656 void __init early_init_fdt_reserve_self(void) 657 { 658 if (!initial_boot_params) 659 return; 660 661 /* Reserve the dtb region */ 662 memblock_reserve(__pa(initial_boot_params), 663 fdt_totalsize(initial_boot_params)); 664 } 665 666 /** 667 * of_scan_flat_dt - scan flattened tree blob and call callback on each. 668 * @it: callback function 669 * @data: context data pointer 670 * 671 * This function is used to scan the flattened device-tree, it is 672 * used to extract the memory information at boot before we can 673 * unflatten the tree 674 */ 675 int __init of_scan_flat_dt(int (*it)(unsigned long node, 676 const char *uname, int depth, 677 void *data), 678 void *data) 679 { 680 const void *blob = initial_boot_params; 681 const char *pathp; 682 int offset, rc = 0, depth = -1; 683 684 if (!blob) 685 return 0; 686 687 for (offset = fdt_next_node(blob, -1, &depth); 688 offset >= 0 && depth >= 0 && !rc; 689 offset = fdt_next_node(blob, offset, &depth)) { 690 691 pathp = fdt_get_name(blob, offset, NULL); 692 rc = it(offset, pathp, depth, data); 693 } 694 return rc; 695 } 696 697 /** 698 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. 699 * @parent: parent node 700 * @it: callback function 701 * @data: context data pointer 702 * 703 * This function is used to scan sub-nodes of a node. 704 */ 705 int __init of_scan_flat_dt_subnodes(unsigned long parent, 706 int (*it)(unsigned long node, 707 const char *uname, 708 void *data), 709 void *data) 710 { 711 const void *blob = initial_boot_params; 712 int node; 713 714 fdt_for_each_subnode(node, blob, parent) { 715 const char *pathp; 716 int rc; 717 718 pathp = fdt_get_name(blob, node, NULL); 719 rc = it(node, pathp, data); 720 if (rc) 721 return rc; 722 } 723 return 0; 724 } 725 726 /** 727 * of_get_flat_dt_subnode_by_name - get the subnode by given name 728 * 729 * @node: the parent node 730 * @uname: the name of subnode 731 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none 732 */ 733 734 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) 735 { 736 return fdt_subnode_offset(initial_boot_params, node, uname); 737 } 738 739 /* 740 * of_get_flat_dt_root - find the root node in the flat blob 741 */ 742 unsigned long __init of_get_flat_dt_root(void) 743 { 744 return 0; 745 } 746 747 /* 748 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr 749 * 750 * This function can be used within scan_flattened_dt callback to get 751 * access to properties 752 */ 753 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, 754 int *size) 755 { 756 return fdt_getprop(initial_boot_params, node, name, size); 757 } 758 759 /** 760 * of_fdt_is_compatible - Return true if given node from the given blob has 761 * compat in its compatible list 762 * @blob: A device tree blob 763 * @node: node to test 764 * @compat: compatible string to compare with compatible list. 765 * 766 * Return: a non-zero value on match with smaller values returned for more 767 * specific compatible values. 768 */ 769 static int of_fdt_is_compatible(const void *blob, 770 unsigned long node, const char *compat) 771 { 772 const char *cp; 773 int cplen; 774 unsigned long l, score = 0; 775 776 cp = fdt_getprop(blob, node, "compatible", &cplen); 777 if (cp == NULL) 778 return 0; 779 while (cplen > 0) { 780 score++; 781 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 782 return score; 783 l = strlen(cp) + 1; 784 cp += l; 785 cplen -= l; 786 } 787 788 return 0; 789 } 790 791 /** 792 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list 793 * @node: node to test 794 * @compat: compatible string to compare with compatible list. 795 */ 796 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) 797 { 798 return of_fdt_is_compatible(initial_boot_params, node, compat); 799 } 800 801 /* 802 * of_flat_dt_match - Return true if node matches a list of compatible values 803 */ 804 static int __init of_flat_dt_match(unsigned long node, const char *const *compat) 805 { 806 unsigned int tmp, score = 0; 807 808 if (!compat) 809 return 0; 810 811 while (*compat) { 812 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat); 813 if (tmp && (score == 0 || (tmp < score))) 814 score = tmp; 815 compat++; 816 } 817 818 return score; 819 } 820 821 /* 822 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle 823 */ 824 uint32_t __init of_get_flat_dt_phandle(unsigned long node) 825 { 826 return fdt_get_phandle(initial_boot_params, node); 827 } 828 829 const char * __init of_flat_dt_get_machine_name(void) 830 { 831 const char *name; 832 unsigned long dt_root = of_get_flat_dt_root(); 833 834 name = of_get_flat_dt_prop(dt_root, "model", NULL); 835 if (!name) 836 name = of_get_flat_dt_prop(dt_root, "compatible", NULL); 837 return name; 838 } 839 840 /** 841 * of_flat_dt_match_machine - Iterate match tables to find matching machine. 842 * 843 * @default_match: A machine specific ptr to return in case of no match. 844 * @get_next_compat: callback function to return next compatible match table. 845 * 846 * Iterate through machine match tables to find the best match for the machine 847 * compatible string in the FDT. 848 */ 849 const void * __init of_flat_dt_match_machine(const void *default_match, 850 const void * (*get_next_compat)(const char * const**)) 851 { 852 const void *data = NULL; 853 const void *best_data = default_match; 854 const char *const *compat; 855 unsigned long dt_root; 856 unsigned int best_score = ~1, score = 0; 857 858 dt_root = of_get_flat_dt_root(); 859 while ((data = get_next_compat(&compat))) { 860 score = of_flat_dt_match(dt_root, compat); 861 if (score > 0 && score < best_score) { 862 best_data = data; 863 best_score = score; 864 } 865 } 866 if (!best_data) { 867 const char *prop; 868 int size; 869 870 pr_err("\n unrecognized device tree list:\n[ "); 871 872 prop = of_get_flat_dt_prop(dt_root, "compatible", &size); 873 if (prop) { 874 while (size > 0) { 875 printk("'%s' ", prop); 876 size -= strlen(prop) + 1; 877 prop += strlen(prop) + 1; 878 } 879 } 880 printk("]\n\n"); 881 return NULL; 882 } 883 884 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); 885 886 return best_data; 887 } 888 889 static void __early_init_dt_declare_initrd(unsigned long start, 890 unsigned long end) 891 { 892 /* 893 * __va() is not yet available this early on some platforms. In that 894 * case, the platform uses phys_initrd_start/phys_initrd_size instead 895 * and does the VA conversion itself. 896 */ 897 if (!IS_ENABLED(CONFIG_ARM64) && 898 !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) { 899 initrd_start = (unsigned long)__va(start); 900 initrd_end = (unsigned long)__va(end); 901 initrd_below_start_ok = 1; 902 } 903 } 904 905 /** 906 * early_init_dt_check_for_initrd - Decode initrd location from flat tree 907 * @node: reference to node containing initrd location ('chosen') 908 */ 909 static void __init early_init_dt_check_for_initrd(unsigned long node) 910 { 911 u64 start, end; 912 int len; 913 const __be32 *prop; 914 915 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD)) 916 return; 917 918 pr_debug("Looking for initrd properties... "); 919 920 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); 921 if (!prop) 922 return; 923 start = of_read_number(prop, len/4); 924 925 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); 926 if (!prop) 927 return; 928 end = of_read_number(prop, len/4); 929 if (start > end) 930 return; 931 932 __early_init_dt_declare_initrd(start, end); 933 phys_initrd_start = start; 934 phys_initrd_size = end - start; 935 936 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end); 937 } 938 939 /** 940 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat 941 * tree 942 * @node: reference to node containing elfcorehdr location ('chosen') 943 */ 944 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node) 945 { 946 const __be32 *prop; 947 int len; 948 949 if (!IS_ENABLED(CONFIG_CRASH_DUMP)) 950 return; 951 952 pr_debug("Looking for elfcorehdr property... "); 953 954 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 955 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells))) 956 return; 957 958 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop); 959 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop); 960 961 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n", 962 elfcorehdr_addr, elfcorehdr_size); 963 } 964 965 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND; 966 967 /* 968 * The main usage of linux,usable-memory-range is for crash dump kernel. 969 * Originally, the number of usable-memory regions is one. Now there may 970 * be two regions, low region and high region. 971 * To make compatibility with existing user-space and older kdump, the low 972 * region is always the last range of linux,usable-memory-range if exist. 973 */ 974 #define MAX_USABLE_RANGES 2 975 976 /** 977 * early_init_dt_check_for_usable_mem_range - Decode usable memory range 978 * location from flat tree 979 */ 980 void __init early_init_dt_check_for_usable_mem_range(void) 981 { 982 struct memblock_region rgn[MAX_USABLE_RANGES] = {0}; 983 const __be32 *prop, *endp; 984 int len, i; 985 unsigned long node = chosen_node_offset; 986 987 if ((long)node < 0) 988 return; 989 990 pr_debug("Looking for usable-memory-range property... "); 991 992 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 993 if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells))) 994 return; 995 996 endp = prop + (len / sizeof(__be32)); 997 for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) { 998 rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop); 999 rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop); 1000 1001 pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n", 1002 i, &rgn[i].base, &rgn[i].size); 1003 } 1004 1005 memblock_cap_memory_range(rgn[0].base, rgn[0].size); 1006 for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++) 1007 memblock_add(rgn[i].base, rgn[i].size); 1008 } 1009 1010 #ifdef CONFIG_SERIAL_EARLYCON 1011 1012 int __init early_init_dt_scan_chosen_stdout(void) 1013 { 1014 int offset; 1015 const char *p, *q, *options = NULL; 1016 int l; 1017 const struct earlycon_id *match; 1018 const void *fdt = initial_boot_params; 1019 int ret; 1020 1021 offset = fdt_path_offset(fdt, "/chosen"); 1022 if (offset < 0) 1023 offset = fdt_path_offset(fdt, "/chosen@0"); 1024 if (offset < 0) 1025 return -ENOENT; 1026 1027 p = fdt_getprop(fdt, offset, "stdout-path", &l); 1028 if (!p) 1029 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); 1030 if (!p || !l) 1031 return -ENOENT; 1032 1033 q = strchrnul(p, ':'); 1034 if (*q != '\0') 1035 options = q + 1; 1036 l = q - p; 1037 1038 /* Get the node specified by stdout-path */ 1039 offset = fdt_path_offset_namelen(fdt, p, l); 1040 if (offset < 0) { 1041 pr_warn("earlycon: stdout-path %.*s not found\n", l, p); 1042 return 0; 1043 } 1044 1045 for (match = __earlycon_table; match < __earlycon_table_end; match++) { 1046 if (!match->compatible[0]) 1047 continue; 1048 1049 if (fdt_node_check_compatible(fdt, offset, match->compatible)) 1050 continue; 1051 1052 ret = of_setup_earlycon(match, offset, options); 1053 if (!ret || ret == -EALREADY) 1054 return 0; 1055 } 1056 return -ENODEV; 1057 } 1058 #endif 1059 1060 /* 1061 * early_init_dt_scan_root - fetch the top level address and size cells 1062 */ 1063 int __init early_init_dt_scan_root(void) 1064 { 1065 const __be32 *prop; 1066 const void *fdt = initial_boot_params; 1067 int node = fdt_path_offset(fdt, "/"); 1068 1069 if (node < 0) 1070 return -ENODEV; 1071 1072 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 1073 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 1074 1075 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 1076 if (prop) 1077 dt_root_size_cells = be32_to_cpup(prop); 1078 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); 1079 1080 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 1081 if (prop) 1082 dt_root_addr_cells = be32_to_cpup(prop); 1083 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); 1084 1085 return 0; 1086 } 1087 1088 u64 __init dt_mem_next_cell(int s, const __be32 **cellp) 1089 { 1090 const __be32 *p = *cellp; 1091 1092 *cellp = p + s; 1093 return of_read_number(p, s); 1094 } 1095 1096 /* 1097 * early_init_dt_scan_memory - Look for and parse memory nodes 1098 */ 1099 int __init early_init_dt_scan_memory(void) 1100 { 1101 int node, found_memory = 0; 1102 const void *fdt = initial_boot_params; 1103 1104 fdt_for_each_subnode(node, fdt, 0) { 1105 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 1106 const __be32 *reg, *endp; 1107 int l; 1108 bool hotpluggable; 1109 1110 /* We are scanning "memory" nodes only */ 1111 if (type == NULL || strcmp(type, "memory") != 0) 1112 continue; 1113 1114 if (!of_fdt_device_is_available(fdt, node)) 1115 continue; 1116 1117 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); 1118 if (reg == NULL) 1119 reg = of_get_flat_dt_prop(node, "reg", &l); 1120 if (reg == NULL) 1121 continue; 1122 1123 endp = reg + (l / sizeof(__be32)); 1124 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); 1125 1126 pr_debug("memory scan node %s, reg size %d,\n", 1127 fdt_get_name(fdt, node, NULL), l); 1128 1129 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { 1130 u64 base, size; 1131 1132 base = dt_mem_next_cell(dt_root_addr_cells, ®); 1133 size = dt_mem_next_cell(dt_root_size_cells, ®); 1134 1135 if (size == 0) 1136 continue; 1137 pr_debug(" - %llx, %llx\n", base, size); 1138 1139 early_init_dt_add_memory_arch(base, size); 1140 1141 found_memory = 1; 1142 1143 if (!hotpluggable) 1144 continue; 1145 1146 if (memblock_mark_hotplug(base, size)) 1147 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", 1148 base, base + size); 1149 } 1150 } 1151 return found_memory; 1152 } 1153 1154 int __init early_init_dt_scan_chosen(char *cmdline) 1155 { 1156 int l, node; 1157 const char *p; 1158 const void *rng_seed; 1159 const void *fdt = initial_boot_params; 1160 1161 node = fdt_path_offset(fdt, "/chosen"); 1162 if (node < 0) 1163 node = fdt_path_offset(fdt, "/chosen@0"); 1164 if (node < 0) 1165 /* Handle the cmdline config options even if no /chosen node */ 1166 goto handle_cmdline; 1167 1168 chosen_node_offset = node; 1169 1170 early_init_dt_check_for_initrd(node); 1171 early_init_dt_check_for_elfcorehdr(node); 1172 1173 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); 1174 if (rng_seed && l > 0) { 1175 add_bootloader_randomness(rng_seed, l); 1176 1177 /* try to clear seed so it won't be found. */ 1178 fdt_nop_property(initial_boot_params, node, "rng-seed"); 1179 1180 /* update CRC check value */ 1181 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1182 fdt_totalsize(initial_boot_params)); 1183 } 1184 1185 /* Retrieve command line */ 1186 p = of_get_flat_dt_prop(node, "bootargs", &l); 1187 if (p != NULL && l > 0) 1188 strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE)); 1189 1190 handle_cmdline: 1191 /* 1192 * CONFIG_CMDLINE is meant to be a default in case nothing else 1193 * managed to set the command line, unless CONFIG_CMDLINE_FORCE 1194 * is set in which case we override whatever was found earlier. 1195 */ 1196 #ifdef CONFIG_CMDLINE 1197 #if defined(CONFIG_CMDLINE_EXTEND) 1198 strlcat(cmdline, " ", COMMAND_LINE_SIZE); 1199 strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1200 #elif defined(CONFIG_CMDLINE_FORCE) 1201 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1202 #else 1203 /* No arguments from boot loader, use kernel's cmdl*/ 1204 if (!((char *)cmdline)[0]) 1205 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1206 #endif 1207 #endif /* CONFIG_CMDLINE */ 1208 1209 pr_debug("Command line is: %s\n", (char *)cmdline); 1210 1211 return 0; 1212 } 1213 1214 #ifndef MIN_MEMBLOCK_ADDR 1215 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) 1216 #endif 1217 #ifndef MAX_MEMBLOCK_ADDR 1218 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) 1219 #endif 1220 1221 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) 1222 { 1223 const u64 phys_offset = MIN_MEMBLOCK_ADDR; 1224 1225 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { 1226 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1227 base, base + size); 1228 return; 1229 } 1230 1231 if (!PAGE_ALIGNED(base)) { 1232 size -= PAGE_SIZE - (base & ~PAGE_MASK); 1233 base = PAGE_ALIGN(base); 1234 } 1235 size &= PAGE_MASK; 1236 1237 if (base > MAX_MEMBLOCK_ADDR) { 1238 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1239 base, base + size); 1240 return; 1241 } 1242 1243 if (base + size - 1 > MAX_MEMBLOCK_ADDR) { 1244 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1245 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); 1246 size = MAX_MEMBLOCK_ADDR - base + 1; 1247 } 1248 1249 if (base + size < phys_offset) { 1250 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1251 base, base + size); 1252 return; 1253 } 1254 if (base < phys_offset) { 1255 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1256 base, phys_offset); 1257 size -= phys_offset - base; 1258 base = phys_offset; 1259 } 1260 memblock_add(base, size); 1261 } 1262 1263 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) 1264 { 1265 void *ptr = memblock_alloc(size, align); 1266 1267 if (!ptr) 1268 panic("%s: Failed to allocate %llu bytes align=0x%llx\n", 1269 __func__, size, align); 1270 1271 return ptr; 1272 } 1273 1274 bool __init early_init_dt_verify(void *dt_virt, phys_addr_t dt_phys) 1275 { 1276 if (!dt_virt) 1277 return false; 1278 1279 /* check device tree validity */ 1280 if (fdt_check_header(dt_virt)) 1281 return false; 1282 1283 /* Setup flat device-tree pointer */ 1284 initial_boot_params = dt_virt; 1285 initial_boot_params_pa = dt_phys; 1286 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1287 fdt_totalsize(initial_boot_params)); 1288 return true; 1289 } 1290 1291 1292 void __init early_init_dt_scan_nodes(void) 1293 { 1294 int rc; 1295 1296 /* Initialize {size,address}-cells info */ 1297 early_init_dt_scan_root(); 1298 1299 /* Retrieve various information from the /chosen node */ 1300 rc = early_init_dt_scan_chosen(boot_command_line); 1301 if (rc) 1302 pr_warn("No chosen node found, continuing without\n"); 1303 1304 /* Setup memory, calling early_init_dt_add_memory_arch */ 1305 early_init_dt_scan_memory(); 1306 1307 /* Handle linux,usable-memory-range property */ 1308 early_init_dt_check_for_usable_mem_range(); 1309 } 1310 1311 bool __init early_init_dt_scan(void *dt_virt, phys_addr_t dt_phys) 1312 { 1313 bool status; 1314 1315 status = early_init_dt_verify(dt_virt, dt_phys); 1316 if (!status) 1317 return false; 1318 1319 early_init_dt_scan_nodes(); 1320 return true; 1321 } 1322 1323 /** 1324 * unflatten_device_tree - create tree of device_nodes from flat blob 1325 * 1326 * unflattens the device-tree passed by the firmware, creating the 1327 * tree of struct device_node. It also fills the "name" and "type" 1328 * pointers of the nodes so the normal device-tree walking functions 1329 * can be used. 1330 */ 1331 void __init unflatten_device_tree(void) 1332 { 1333 __unflatten_device_tree(initial_boot_params, NULL, &of_root, 1334 early_init_dt_alloc_memory_arch, false); 1335 1336 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ 1337 of_alias_scan(early_init_dt_alloc_memory_arch); 1338 1339 unittest_unflatten_overlay_base(); 1340 } 1341 1342 /** 1343 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob 1344 * 1345 * Copies and unflattens the device-tree passed by the firmware, creating the 1346 * tree of struct device_node. It also fills the "name" and "type" 1347 * pointers of the nodes so the normal device-tree walking functions 1348 * can be used. This should only be used when the FDT memory has not been 1349 * reserved such is the case when the FDT is built-in to the kernel init 1350 * section. If the FDT memory is reserved already then unflatten_device_tree 1351 * should be used instead. 1352 */ 1353 void __init unflatten_and_copy_device_tree(void) 1354 { 1355 int size; 1356 void *dt; 1357 1358 if (!initial_boot_params) { 1359 pr_warn("No valid device tree found, continuing without\n"); 1360 return; 1361 } 1362 1363 size = fdt_totalsize(initial_boot_params); 1364 dt = early_init_dt_alloc_memory_arch(size, 1365 roundup_pow_of_two(FDT_V17_SIZE)); 1366 1367 if (dt) { 1368 memcpy(dt, initial_boot_params, size); 1369 initial_boot_params = dt; 1370 } 1371 unflatten_device_tree(); 1372 } 1373 1374 #ifdef CONFIG_SYSFS 1375 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, 1376 struct bin_attribute *bin_attr, 1377 char *buf, loff_t off, size_t count) 1378 { 1379 memcpy(buf, initial_boot_params + off, count); 1380 return count; 1381 } 1382 1383 static int __init of_fdt_raw_init(void) 1384 { 1385 static struct bin_attribute of_fdt_raw_attr = 1386 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); 1387 1388 if (!initial_boot_params) 1389 return 0; 1390 1391 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, 1392 fdt_totalsize(initial_boot_params))) { 1393 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); 1394 return 0; 1395 } 1396 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); 1397 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); 1398 } 1399 late_initcall(of_fdt_raw_init); 1400 #endif 1401 1402 #endif /* CONFIG_OF_EARLY_FLATTREE */ 1403