1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions for working with the Flattened Device Tree data format 4 * 5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp 6 * benh@kernel.crashing.org 7 */ 8 9 #define pr_fmt(fmt) "OF: fdt: " fmt 10 11 #include <linux/crash_dump.h> 12 #include <linux/crc32.h> 13 #include <linux/kernel.h> 14 #include <linux/initrd.h> 15 #include <linux/memblock.h> 16 #include <linux/mutex.h> 17 #include <linux/of.h> 18 #include <linux/of_fdt.h> 19 #include <linux/of_reserved_mem.h> 20 #include <linux/sizes.h> 21 #include <linux/string.h> 22 #include <linux/errno.h> 23 #include <linux/slab.h> 24 #include <linux/libfdt.h> 25 #include <linux/debugfs.h> 26 #include <linux/serial_core.h> 27 #include <linux/sysfs.h> 28 #include <linux/random.h> 29 30 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ 31 #include <asm/page.h> 32 33 #include "of_private.h" 34 35 /* 36 * of_fdt_limit_memory - limit the number of regions in the /memory node 37 * @limit: maximum entries 38 * 39 * Adjust the flattened device tree to have at most 'limit' number of 40 * memory entries in the /memory node. This function may be called 41 * any time after initial_boot_param is set. 42 */ 43 void __init of_fdt_limit_memory(int limit) 44 { 45 int memory; 46 int len; 47 const void *val; 48 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 49 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 50 const __be32 *addr_prop; 51 const __be32 *size_prop; 52 int root_offset; 53 int cell_size; 54 55 root_offset = fdt_path_offset(initial_boot_params, "/"); 56 if (root_offset < 0) 57 return; 58 59 addr_prop = fdt_getprop(initial_boot_params, root_offset, 60 "#address-cells", NULL); 61 if (addr_prop) 62 nr_address_cells = fdt32_to_cpu(*addr_prop); 63 64 size_prop = fdt_getprop(initial_boot_params, root_offset, 65 "#size-cells", NULL); 66 if (size_prop) 67 nr_size_cells = fdt32_to_cpu(*size_prop); 68 69 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); 70 71 memory = fdt_path_offset(initial_boot_params, "/memory"); 72 if (memory > 0) { 73 val = fdt_getprop(initial_boot_params, memory, "reg", &len); 74 if (len > limit*cell_size) { 75 len = limit*cell_size; 76 pr_debug("Limiting number of entries to %d\n", limit); 77 fdt_setprop(initial_boot_params, memory, "reg", val, 78 len); 79 } 80 } 81 } 82 83 static bool of_fdt_device_is_available(const void *blob, unsigned long node) 84 { 85 const char *status = fdt_getprop(blob, node, "status", NULL); 86 87 if (!status) 88 return true; 89 90 if (!strcmp(status, "ok") || !strcmp(status, "okay")) 91 return true; 92 93 return false; 94 } 95 96 static void *unflatten_dt_alloc(void **mem, unsigned long size, 97 unsigned long align) 98 { 99 void *res; 100 101 *mem = PTR_ALIGN(*mem, align); 102 res = *mem; 103 *mem += size; 104 105 return res; 106 } 107 108 static void populate_properties(const void *blob, 109 int offset, 110 void **mem, 111 struct device_node *np, 112 const char *nodename, 113 bool dryrun) 114 { 115 struct property *pp, **pprev = NULL; 116 int cur; 117 bool has_name = false; 118 119 pprev = &np->properties; 120 for (cur = fdt_first_property_offset(blob, offset); 121 cur >= 0; 122 cur = fdt_next_property_offset(blob, cur)) { 123 const __be32 *val; 124 const char *pname; 125 u32 sz; 126 127 val = fdt_getprop_by_offset(blob, cur, &pname, &sz); 128 if (!val) { 129 pr_warn("Cannot locate property at 0x%x\n", cur); 130 continue; 131 } 132 133 if (!pname) { 134 pr_warn("Cannot find property name at 0x%x\n", cur); 135 continue; 136 } 137 138 if (!strcmp(pname, "name")) 139 has_name = true; 140 141 pp = unflatten_dt_alloc(mem, sizeof(struct property), 142 __alignof__(struct property)); 143 if (dryrun) 144 continue; 145 146 /* We accept flattened tree phandles either in 147 * ePAPR-style "phandle" properties, or the 148 * legacy "linux,phandle" properties. If both 149 * appear and have different values, things 150 * will get weird. Don't do that. 151 */ 152 if (!strcmp(pname, "phandle") || 153 !strcmp(pname, "linux,phandle")) { 154 if (!np->phandle) 155 np->phandle = be32_to_cpup(val); 156 } 157 158 /* And we process the "ibm,phandle" property 159 * used in pSeries dynamic device tree 160 * stuff 161 */ 162 if (!strcmp(pname, "ibm,phandle")) 163 np->phandle = be32_to_cpup(val); 164 165 pp->name = (char *)pname; 166 pp->length = sz; 167 pp->value = (__be32 *)val; 168 *pprev = pp; 169 pprev = &pp->next; 170 } 171 172 /* With version 0x10 we may not have the name property, 173 * recreate it here from the unit name if absent 174 */ 175 if (!has_name) { 176 const char *p = nodename, *ps = p, *pa = NULL; 177 int len; 178 179 while (*p) { 180 if ((*p) == '@') 181 pa = p; 182 else if ((*p) == '/') 183 ps = p + 1; 184 p++; 185 } 186 187 if (pa < ps) 188 pa = p; 189 len = (pa - ps) + 1; 190 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, 191 __alignof__(struct property)); 192 if (!dryrun) { 193 pp->name = "name"; 194 pp->length = len; 195 pp->value = pp + 1; 196 *pprev = pp; 197 memcpy(pp->value, ps, len - 1); 198 ((char *)pp->value)[len - 1] = 0; 199 pr_debug("fixed up name for %s -> %s\n", 200 nodename, (char *)pp->value); 201 } 202 } 203 } 204 205 static int populate_node(const void *blob, 206 int offset, 207 void **mem, 208 struct device_node *dad, 209 struct device_node **pnp, 210 bool dryrun) 211 { 212 struct device_node *np; 213 const char *pathp; 214 int len; 215 216 pathp = fdt_get_name(blob, offset, &len); 217 if (!pathp) { 218 *pnp = NULL; 219 return len; 220 } 221 222 len++; 223 224 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len, 225 __alignof__(struct device_node)); 226 if (!dryrun) { 227 char *fn; 228 of_node_init(np); 229 np->full_name = fn = ((char *)np) + sizeof(*np); 230 231 memcpy(fn, pathp, len); 232 233 if (dad != NULL) { 234 np->parent = dad; 235 np->sibling = dad->child; 236 dad->child = np; 237 } 238 } 239 240 populate_properties(blob, offset, mem, np, pathp, dryrun); 241 if (!dryrun) { 242 np->name = of_get_property(np, "name", NULL); 243 if (!np->name) 244 np->name = "<NULL>"; 245 } 246 247 *pnp = np; 248 return 0; 249 } 250 251 static void reverse_nodes(struct device_node *parent) 252 { 253 struct device_node *child, *next; 254 255 /* In-depth first */ 256 child = parent->child; 257 while (child) { 258 reverse_nodes(child); 259 260 child = child->sibling; 261 } 262 263 /* Reverse the nodes in the child list */ 264 child = parent->child; 265 parent->child = NULL; 266 while (child) { 267 next = child->sibling; 268 269 child->sibling = parent->child; 270 parent->child = child; 271 child = next; 272 } 273 } 274 275 /** 276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree 277 * @blob: The parent device tree blob 278 * @mem: Memory chunk to use for allocating device nodes and properties 279 * @dad: Parent struct device_node 280 * @nodepp: The device_node tree created by the call 281 * 282 * Return: The size of unflattened device tree or error code 283 */ 284 static int unflatten_dt_nodes(const void *blob, 285 void *mem, 286 struct device_node *dad, 287 struct device_node **nodepp) 288 { 289 struct device_node *root; 290 int offset = 0, depth = 0, initial_depth = 0; 291 #define FDT_MAX_DEPTH 64 292 struct device_node *nps[FDT_MAX_DEPTH]; 293 void *base = mem; 294 bool dryrun = !base; 295 int ret; 296 297 if (nodepp) 298 *nodepp = NULL; 299 300 /* 301 * We're unflattening device sub-tree if @dad is valid. There are 302 * possibly multiple nodes in the first level of depth. We need 303 * set @depth to 1 to make fdt_next_node() happy as it bails 304 * immediately when negative @depth is found. Otherwise, the device 305 * nodes except the first one won't be unflattened successfully. 306 */ 307 if (dad) 308 depth = initial_depth = 1; 309 310 root = dad; 311 nps[depth] = dad; 312 313 for (offset = 0; 314 offset >= 0 && depth >= initial_depth; 315 offset = fdt_next_node(blob, offset, &depth)) { 316 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1)) 317 continue; 318 319 if (!IS_ENABLED(CONFIG_OF_KOBJ) && 320 !of_fdt_device_is_available(blob, offset)) 321 continue; 322 323 ret = populate_node(blob, offset, &mem, nps[depth], 324 &nps[depth+1], dryrun); 325 if (ret < 0) 326 return ret; 327 328 if (!dryrun && nodepp && !*nodepp) 329 *nodepp = nps[depth+1]; 330 if (!dryrun && !root) 331 root = nps[depth+1]; 332 } 333 334 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { 335 pr_err("Error %d processing FDT\n", offset); 336 return -EINVAL; 337 } 338 339 /* 340 * Reverse the child list. Some drivers assumes node order matches .dts 341 * node order 342 */ 343 if (!dryrun) 344 reverse_nodes(root); 345 346 return mem - base; 347 } 348 349 /** 350 * __unflatten_device_tree - create tree of device_nodes from flat blob 351 * @blob: The blob to expand 352 * @dad: Parent device node 353 * @mynodes: The device_node tree created by the call 354 * @dt_alloc: An allocator that provides a virtual address to memory 355 * for the resulting tree 356 * @detached: if true set OF_DETACHED on @mynodes 357 * 358 * unflattens a device-tree, creating the tree of struct device_node. It also 359 * fills the "name" and "type" pointers of the nodes so the normal device-tree 360 * walking functions can be used. 361 * 362 * Return: NULL on failure or the memory chunk containing the unflattened 363 * device tree on success. 364 */ 365 void *__unflatten_device_tree(const void *blob, 366 struct device_node *dad, 367 struct device_node **mynodes, 368 void *(*dt_alloc)(u64 size, u64 align), 369 bool detached) 370 { 371 int size; 372 void *mem; 373 int ret; 374 375 if (mynodes) 376 *mynodes = NULL; 377 378 pr_debug(" -> unflatten_device_tree()\n"); 379 380 if (!blob) { 381 pr_debug("No device tree pointer\n"); 382 return NULL; 383 } 384 385 pr_debug("Unflattening device tree:\n"); 386 pr_debug("magic: %08x\n", fdt_magic(blob)); 387 pr_debug("size: %08x\n", fdt_totalsize(blob)); 388 pr_debug("version: %08x\n", fdt_version(blob)); 389 390 if (fdt_check_header(blob)) { 391 pr_err("Invalid device tree blob header\n"); 392 return NULL; 393 } 394 395 /* First pass, scan for size */ 396 size = unflatten_dt_nodes(blob, NULL, dad, NULL); 397 if (size <= 0) 398 return NULL; 399 400 size = ALIGN(size, 4); 401 pr_debug(" size is %d, allocating...\n", size); 402 403 /* Allocate memory for the expanded device tree */ 404 mem = dt_alloc(size + 4, __alignof__(struct device_node)); 405 if (!mem) 406 return NULL; 407 408 memset(mem, 0, size); 409 410 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); 411 412 pr_debug(" unflattening %p...\n", mem); 413 414 /* Second pass, do actual unflattening */ 415 ret = unflatten_dt_nodes(blob, mem, dad, mynodes); 416 417 if (be32_to_cpup(mem + size) != 0xdeadbeef) 418 pr_warn("End of tree marker overwritten: %08x\n", 419 be32_to_cpup(mem + size)); 420 421 if (ret <= 0) 422 return NULL; 423 424 if (detached && mynodes && *mynodes) { 425 of_node_set_flag(*mynodes, OF_DETACHED); 426 pr_debug("unflattened tree is detached\n"); 427 } 428 429 pr_debug(" <- unflatten_device_tree()\n"); 430 return mem; 431 } 432 433 static void *kernel_tree_alloc(u64 size, u64 align) 434 { 435 return kzalloc(size, GFP_KERNEL); 436 } 437 438 static DEFINE_MUTEX(of_fdt_unflatten_mutex); 439 440 /** 441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob 442 * @blob: Flat device tree blob 443 * @dad: Parent device node 444 * @mynodes: The device tree created by the call 445 * 446 * unflattens the device-tree passed by the firmware, creating the 447 * tree of struct device_node. It also fills the "name" and "type" 448 * pointers of the nodes so the normal device-tree walking functions 449 * can be used. 450 * 451 * Return: NULL on failure or the memory chunk containing the unflattened 452 * device tree on success. 453 */ 454 void *of_fdt_unflatten_tree(const unsigned long *blob, 455 struct device_node *dad, 456 struct device_node **mynodes) 457 { 458 void *mem; 459 460 mutex_lock(&of_fdt_unflatten_mutex); 461 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, 462 true); 463 mutex_unlock(&of_fdt_unflatten_mutex); 464 465 return mem; 466 } 467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); 468 469 /* Everything below here references initial_boot_params directly. */ 470 int __initdata dt_root_addr_cells; 471 int __initdata dt_root_size_cells; 472 473 void *initial_boot_params __ro_after_init; 474 475 #ifdef CONFIG_OF_EARLY_FLATTREE 476 477 static u32 of_fdt_crc32; 478 479 static int __init early_init_dt_reserve_memory(phys_addr_t base, 480 phys_addr_t size, bool nomap) 481 { 482 if (nomap) { 483 /* 484 * If the memory is already reserved (by another region), we 485 * should not allow it to be marked nomap, but don't worry 486 * if the region isn't memory as it won't be mapped. 487 */ 488 if (memblock_overlaps_region(&memblock.memory, base, size) && 489 memblock_is_region_reserved(base, size)) 490 return -EBUSY; 491 492 return memblock_mark_nomap(base, size); 493 } 494 return memblock_reserve(base, size); 495 } 496 497 /* 498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property 499 */ 500 static int __init __reserved_mem_reserve_reg(unsigned long node, 501 const char *uname) 502 { 503 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); 504 phys_addr_t base, size; 505 int len; 506 const __be32 *prop; 507 int first = 1; 508 bool nomap; 509 510 prop = of_get_flat_dt_prop(node, "reg", &len); 511 if (!prop) 512 return -ENOENT; 513 514 if (len && len % t_len != 0) { 515 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", 516 uname); 517 return -EINVAL; 518 } 519 520 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; 521 522 while (len >= t_len) { 523 base = dt_mem_next_cell(dt_root_addr_cells, &prop); 524 size = dt_mem_next_cell(dt_root_size_cells, &prop); 525 526 if (size && 527 early_init_dt_reserve_memory(base, size, nomap) == 0) 528 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n", 529 uname, &base, (unsigned long)(size / SZ_1M)); 530 else 531 pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n", 532 uname, &base, (unsigned long)(size / SZ_1M)); 533 534 len -= t_len; 535 if (first) { 536 fdt_reserved_mem_save_node(node, uname, base, size); 537 first = 0; 538 } 539 } 540 return 0; 541 } 542 543 /* 544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided 545 * in /reserved-memory matches the values supported by the current implementation, 546 * also check if ranges property has been provided 547 */ 548 static int __init __reserved_mem_check_root(unsigned long node) 549 { 550 const __be32 *prop; 551 552 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 553 if (!prop || be32_to_cpup(prop) != dt_root_size_cells) 554 return -EINVAL; 555 556 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 557 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) 558 return -EINVAL; 559 560 prop = of_get_flat_dt_prop(node, "ranges", NULL); 561 if (!prop) 562 return -EINVAL; 563 return 0; 564 } 565 566 /* 567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory 568 */ 569 static int __init fdt_scan_reserved_mem(void) 570 { 571 int node, child; 572 const void *fdt = initial_boot_params; 573 574 node = fdt_path_offset(fdt, "/reserved-memory"); 575 if (node < 0) 576 return -ENODEV; 577 578 if (__reserved_mem_check_root(node) != 0) { 579 pr_err("Reserved memory: unsupported node format, ignoring\n"); 580 return -EINVAL; 581 } 582 583 fdt_for_each_subnode(child, fdt, node) { 584 const char *uname; 585 int err; 586 587 if (!of_fdt_device_is_available(fdt, child)) 588 continue; 589 590 uname = fdt_get_name(fdt, child, NULL); 591 592 err = __reserved_mem_reserve_reg(child, uname); 593 if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) 594 fdt_reserved_mem_save_node(child, uname, 0, 0); 595 } 596 return 0; 597 } 598 599 /* 600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header 601 * 602 * This function reserves the memory occupied by an elf core header 603 * described in the device tree. This region contains all the 604 * information about primary kernel's core image and is used by a dump 605 * capture kernel to access the system memory on primary kernel. 606 */ 607 static void __init fdt_reserve_elfcorehdr(void) 608 { 609 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size) 610 return; 611 612 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 613 pr_warn("elfcorehdr is overlapped\n"); 614 return; 615 } 616 617 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 618 619 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n", 620 elfcorehdr_size >> 10, elfcorehdr_addr); 621 } 622 623 /** 624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions 625 * 626 * This function grabs memory from early allocator for device exclusive use 627 * defined in device tree structures. It should be called by arch specific code 628 * once the early allocator (i.e. memblock) has been fully activated. 629 */ 630 void __init early_init_fdt_scan_reserved_mem(void) 631 { 632 int n; 633 u64 base, size; 634 635 if (!initial_boot_params) 636 return; 637 638 fdt_scan_reserved_mem(); 639 fdt_reserve_elfcorehdr(); 640 641 /* Process header /memreserve/ fields */ 642 for (n = 0; ; n++) { 643 fdt_get_mem_rsv(initial_boot_params, n, &base, &size); 644 if (!size) 645 break; 646 memblock_reserve(base, size); 647 } 648 649 fdt_init_reserved_mem(); 650 } 651 652 /** 653 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob 654 */ 655 void __init early_init_fdt_reserve_self(void) 656 { 657 if (!initial_boot_params) 658 return; 659 660 /* Reserve the dtb region */ 661 memblock_reserve(__pa(initial_boot_params), 662 fdt_totalsize(initial_boot_params)); 663 } 664 665 /** 666 * of_scan_flat_dt - scan flattened tree blob and call callback on each. 667 * @it: callback function 668 * @data: context data pointer 669 * 670 * This function is used to scan the flattened device-tree, it is 671 * used to extract the memory information at boot before we can 672 * unflatten the tree 673 */ 674 int __init of_scan_flat_dt(int (*it)(unsigned long node, 675 const char *uname, int depth, 676 void *data), 677 void *data) 678 { 679 const void *blob = initial_boot_params; 680 const char *pathp; 681 int offset, rc = 0, depth = -1; 682 683 if (!blob) 684 return 0; 685 686 for (offset = fdt_next_node(blob, -1, &depth); 687 offset >= 0 && depth >= 0 && !rc; 688 offset = fdt_next_node(blob, offset, &depth)) { 689 690 pathp = fdt_get_name(blob, offset, NULL); 691 rc = it(offset, pathp, depth, data); 692 } 693 return rc; 694 } 695 696 /** 697 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. 698 * @parent: parent node 699 * @it: callback function 700 * @data: context data pointer 701 * 702 * This function is used to scan sub-nodes of a node. 703 */ 704 int __init of_scan_flat_dt_subnodes(unsigned long parent, 705 int (*it)(unsigned long node, 706 const char *uname, 707 void *data), 708 void *data) 709 { 710 const void *blob = initial_boot_params; 711 int node; 712 713 fdt_for_each_subnode(node, blob, parent) { 714 const char *pathp; 715 int rc; 716 717 pathp = fdt_get_name(blob, node, NULL); 718 rc = it(node, pathp, data); 719 if (rc) 720 return rc; 721 } 722 return 0; 723 } 724 725 /** 726 * of_get_flat_dt_subnode_by_name - get the subnode by given name 727 * 728 * @node: the parent node 729 * @uname: the name of subnode 730 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none 731 */ 732 733 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) 734 { 735 return fdt_subnode_offset(initial_boot_params, node, uname); 736 } 737 738 /* 739 * of_get_flat_dt_root - find the root node in the flat blob 740 */ 741 unsigned long __init of_get_flat_dt_root(void) 742 { 743 return 0; 744 } 745 746 /* 747 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr 748 * 749 * This function can be used within scan_flattened_dt callback to get 750 * access to properties 751 */ 752 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, 753 int *size) 754 { 755 return fdt_getprop(initial_boot_params, node, name, size); 756 } 757 758 /** 759 * of_fdt_is_compatible - Return true if given node from the given blob has 760 * compat in its compatible list 761 * @blob: A device tree blob 762 * @node: node to test 763 * @compat: compatible string to compare with compatible list. 764 * 765 * Return: a non-zero value on match with smaller values returned for more 766 * specific compatible values. 767 */ 768 static int of_fdt_is_compatible(const void *blob, 769 unsigned long node, const char *compat) 770 { 771 const char *cp; 772 int cplen; 773 unsigned long l, score = 0; 774 775 cp = fdt_getprop(blob, node, "compatible", &cplen); 776 if (cp == NULL) 777 return 0; 778 while (cplen > 0) { 779 score++; 780 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 781 return score; 782 l = strlen(cp) + 1; 783 cp += l; 784 cplen -= l; 785 } 786 787 return 0; 788 } 789 790 /** 791 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list 792 * @node: node to test 793 * @compat: compatible string to compare with compatible list. 794 */ 795 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) 796 { 797 return of_fdt_is_compatible(initial_boot_params, node, compat); 798 } 799 800 /* 801 * of_flat_dt_match - Return true if node matches a list of compatible values 802 */ 803 static int __init of_flat_dt_match(unsigned long node, const char *const *compat) 804 { 805 unsigned int tmp, score = 0; 806 807 if (!compat) 808 return 0; 809 810 while (*compat) { 811 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat); 812 if (tmp && (score == 0 || (tmp < score))) 813 score = tmp; 814 compat++; 815 } 816 817 return score; 818 } 819 820 /* 821 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle 822 */ 823 uint32_t __init of_get_flat_dt_phandle(unsigned long node) 824 { 825 return fdt_get_phandle(initial_boot_params, node); 826 } 827 828 const char * __init of_flat_dt_get_machine_name(void) 829 { 830 const char *name; 831 unsigned long dt_root = of_get_flat_dt_root(); 832 833 name = of_get_flat_dt_prop(dt_root, "model", NULL); 834 if (!name) 835 name = of_get_flat_dt_prop(dt_root, "compatible", NULL); 836 return name; 837 } 838 839 /** 840 * of_flat_dt_match_machine - Iterate match tables to find matching machine. 841 * 842 * @default_match: A machine specific ptr to return in case of no match. 843 * @get_next_compat: callback function to return next compatible match table. 844 * 845 * Iterate through machine match tables to find the best match for the machine 846 * compatible string in the FDT. 847 */ 848 const void * __init of_flat_dt_match_machine(const void *default_match, 849 const void * (*get_next_compat)(const char * const**)) 850 { 851 const void *data = NULL; 852 const void *best_data = default_match; 853 const char *const *compat; 854 unsigned long dt_root; 855 unsigned int best_score = ~1, score = 0; 856 857 dt_root = of_get_flat_dt_root(); 858 while ((data = get_next_compat(&compat))) { 859 score = of_flat_dt_match(dt_root, compat); 860 if (score > 0 && score < best_score) { 861 best_data = data; 862 best_score = score; 863 } 864 } 865 if (!best_data) { 866 const char *prop; 867 int size; 868 869 pr_err("\n unrecognized device tree list:\n[ "); 870 871 prop = of_get_flat_dt_prop(dt_root, "compatible", &size); 872 if (prop) { 873 while (size > 0) { 874 printk("'%s' ", prop); 875 size -= strlen(prop) + 1; 876 prop += strlen(prop) + 1; 877 } 878 } 879 printk("]\n\n"); 880 return NULL; 881 } 882 883 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); 884 885 return best_data; 886 } 887 888 static void __early_init_dt_declare_initrd(unsigned long start, 889 unsigned long end) 890 { 891 /* 892 * __va() is not yet available this early on some platforms. In that 893 * case, the platform uses phys_initrd_start/phys_initrd_size instead 894 * and does the VA conversion itself. 895 */ 896 if (!IS_ENABLED(CONFIG_ARM64) && 897 !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) { 898 initrd_start = (unsigned long)__va(start); 899 initrd_end = (unsigned long)__va(end); 900 initrd_below_start_ok = 1; 901 } 902 } 903 904 /** 905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree 906 * @node: reference to node containing initrd location ('chosen') 907 */ 908 static void __init early_init_dt_check_for_initrd(unsigned long node) 909 { 910 u64 start, end; 911 int len; 912 const __be32 *prop; 913 914 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD)) 915 return; 916 917 pr_debug("Looking for initrd properties... "); 918 919 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); 920 if (!prop) 921 return; 922 start = of_read_number(prop, len/4); 923 924 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); 925 if (!prop) 926 return; 927 end = of_read_number(prop, len/4); 928 if (start > end) 929 return; 930 931 __early_init_dt_declare_initrd(start, end); 932 phys_initrd_start = start; 933 phys_initrd_size = end - start; 934 935 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end); 936 } 937 938 /** 939 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat 940 * tree 941 * @node: reference to node containing elfcorehdr location ('chosen') 942 */ 943 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node) 944 { 945 const __be32 *prop; 946 int len; 947 948 if (!IS_ENABLED(CONFIG_CRASH_DUMP)) 949 return; 950 951 pr_debug("Looking for elfcorehdr property... "); 952 953 prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 954 if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells))) 955 return; 956 957 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop); 958 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop); 959 960 pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n", 961 elfcorehdr_addr, elfcorehdr_size); 962 } 963 964 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND; 965 966 /* 967 * The main usage of linux,usable-memory-range is for crash dump kernel. 968 * Originally, the number of usable-memory regions is one. Now there may 969 * be two regions, low region and high region. 970 * To make compatibility with existing user-space and older kdump, the low 971 * region is always the last range of linux,usable-memory-range if exist. 972 */ 973 #define MAX_USABLE_RANGES 2 974 975 /** 976 * early_init_dt_check_for_usable_mem_range - Decode usable memory range 977 * location from flat tree 978 */ 979 void __init early_init_dt_check_for_usable_mem_range(void) 980 { 981 struct memblock_region rgn[MAX_USABLE_RANGES] = {0}; 982 const __be32 *prop, *endp; 983 int len, i; 984 unsigned long node = chosen_node_offset; 985 986 if ((long)node < 0) 987 return; 988 989 pr_debug("Looking for usable-memory-range property... "); 990 991 prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 992 if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells))) 993 return; 994 995 endp = prop + (len / sizeof(__be32)); 996 for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) { 997 rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop); 998 rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop); 999 1000 pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n", 1001 i, &rgn[i].base, &rgn[i].size); 1002 } 1003 1004 memblock_cap_memory_range(rgn[0].base, rgn[0].size); 1005 for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++) 1006 memblock_add(rgn[i].base, rgn[i].size); 1007 } 1008 1009 #ifdef CONFIG_SERIAL_EARLYCON 1010 1011 int __init early_init_dt_scan_chosen_stdout(void) 1012 { 1013 int offset; 1014 const char *p, *q, *options = NULL; 1015 int l; 1016 const struct earlycon_id *match; 1017 const void *fdt = initial_boot_params; 1018 int ret; 1019 1020 offset = fdt_path_offset(fdt, "/chosen"); 1021 if (offset < 0) 1022 offset = fdt_path_offset(fdt, "/chosen@0"); 1023 if (offset < 0) 1024 return -ENOENT; 1025 1026 p = fdt_getprop(fdt, offset, "stdout-path", &l); 1027 if (!p) 1028 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); 1029 if (!p || !l) 1030 return -ENOENT; 1031 1032 q = strchrnul(p, ':'); 1033 if (*q != '\0') 1034 options = q + 1; 1035 l = q - p; 1036 1037 /* Get the node specified by stdout-path */ 1038 offset = fdt_path_offset_namelen(fdt, p, l); 1039 if (offset < 0) { 1040 pr_warn("earlycon: stdout-path %.*s not found\n", l, p); 1041 return 0; 1042 } 1043 1044 for (match = __earlycon_table; match < __earlycon_table_end; match++) { 1045 if (!match->compatible[0]) 1046 continue; 1047 1048 if (fdt_node_check_compatible(fdt, offset, match->compatible)) 1049 continue; 1050 1051 ret = of_setup_earlycon(match, offset, options); 1052 if (!ret || ret == -EALREADY) 1053 return 0; 1054 } 1055 return -ENODEV; 1056 } 1057 #endif 1058 1059 /* 1060 * early_init_dt_scan_root - fetch the top level address and size cells 1061 */ 1062 int __init early_init_dt_scan_root(void) 1063 { 1064 const __be32 *prop; 1065 const void *fdt = initial_boot_params; 1066 int node = fdt_path_offset(fdt, "/"); 1067 1068 if (node < 0) 1069 return -ENODEV; 1070 1071 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 1072 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 1073 1074 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 1075 if (prop) 1076 dt_root_size_cells = be32_to_cpup(prop); 1077 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); 1078 1079 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 1080 if (prop) 1081 dt_root_addr_cells = be32_to_cpup(prop); 1082 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); 1083 1084 return 0; 1085 } 1086 1087 u64 __init dt_mem_next_cell(int s, const __be32 **cellp) 1088 { 1089 const __be32 *p = *cellp; 1090 1091 *cellp = p + s; 1092 return of_read_number(p, s); 1093 } 1094 1095 /* 1096 * early_init_dt_scan_memory - Look for and parse memory nodes 1097 */ 1098 int __init early_init_dt_scan_memory(void) 1099 { 1100 int node, found_memory = 0; 1101 const void *fdt = initial_boot_params; 1102 1103 fdt_for_each_subnode(node, fdt, 0) { 1104 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 1105 const __be32 *reg, *endp; 1106 int l; 1107 bool hotpluggable; 1108 1109 /* We are scanning "memory" nodes only */ 1110 if (type == NULL || strcmp(type, "memory") != 0) 1111 continue; 1112 1113 if (!of_fdt_device_is_available(fdt, node)) 1114 continue; 1115 1116 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); 1117 if (reg == NULL) 1118 reg = of_get_flat_dt_prop(node, "reg", &l); 1119 if (reg == NULL) 1120 continue; 1121 1122 endp = reg + (l / sizeof(__be32)); 1123 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); 1124 1125 pr_debug("memory scan node %s, reg size %d,\n", 1126 fdt_get_name(fdt, node, NULL), l); 1127 1128 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { 1129 u64 base, size; 1130 1131 base = dt_mem_next_cell(dt_root_addr_cells, ®); 1132 size = dt_mem_next_cell(dt_root_size_cells, ®); 1133 1134 if (size == 0) 1135 continue; 1136 pr_debug(" - %llx, %llx\n", base, size); 1137 1138 early_init_dt_add_memory_arch(base, size); 1139 1140 found_memory = 1; 1141 1142 if (!hotpluggable) 1143 continue; 1144 1145 if (memblock_mark_hotplug(base, size)) 1146 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", 1147 base, base + size); 1148 } 1149 } 1150 return found_memory; 1151 } 1152 1153 int __init early_init_dt_scan_chosen(char *cmdline) 1154 { 1155 int l, node; 1156 const char *p; 1157 const void *rng_seed; 1158 const void *fdt = initial_boot_params; 1159 1160 node = fdt_path_offset(fdt, "/chosen"); 1161 if (node < 0) 1162 node = fdt_path_offset(fdt, "/chosen@0"); 1163 if (node < 0) 1164 /* Handle the cmdline config options even if no /chosen node */ 1165 goto handle_cmdline; 1166 1167 chosen_node_offset = node; 1168 1169 early_init_dt_check_for_initrd(node); 1170 early_init_dt_check_for_elfcorehdr(node); 1171 1172 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); 1173 if (rng_seed && l > 0) { 1174 add_bootloader_randomness(rng_seed, l); 1175 1176 /* try to clear seed so it won't be found. */ 1177 fdt_nop_property(initial_boot_params, node, "rng-seed"); 1178 1179 /* update CRC check value */ 1180 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1181 fdt_totalsize(initial_boot_params)); 1182 } 1183 1184 /* Retrieve command line */ 1185 p = of_get_flat_dt_prop(node, "bootargs", &l); 1186 if (p != NULL && l > 0) 1187 strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE)); 1188 1189 handle_cmdline: 1190 /* 1191 * CONFIG_CMDLINE is meant to be a default in case nothing else 1192 * managed to set the command line, unless CONFIG_CMDLINE_FORCE 1193 * is set in which case we override whatever was found earlier. 1194 */ 1195 #ifdef CONFIG_CMDLINE 1196 #if defined(CONFIG_CMDLINE_EXTEND) 1197 strlcat(cmdline, " ", COMMAND_LINE_SIZE); 1198 strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1199 #elif defined(CONFIG_CMDLINE_FORCE) 1200 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1201 #else 1202 /* No arguments from boot loader, use kernel's cmdl*/ 1203 if (!((char *)cmdline)[0]) 1204 strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1205 #endif 1206 #endif /* CONFIG_CMDLINE */ 1207 1208 pr_debug("Command line is: %s\n", (char *)cmdline); 1209 1210 return 0; 1211 } 1212 1213 #ifndef MIN_MEMBLOCK_ADDR 1214 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) 1215 #endif 1216 #ifndef MAX_MEMBLOCK_ADDR 1217 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) 1218 #endif 1219 1220 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) 1221 { 1222 const u64 phys_offset = MIN_MEMBLOCK_ADDR; 1223 1224 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { 1225 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1226 base, base + size); 1227 return; 1228 } 1229 1230 if (!PAGE_ALIGNED(base)) { 1231 size -= PAGE_SIZE - (base & ~PAGE_MASK); 1232 base = PAGE_ALIGN(base); 1233 } 1234 size &= PAGE_MASK; 1235 1236 if (base > MAX_MEMBLOCK_ADDR) { 1237 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1238 base, base + size); 1239 return; 1240 } 1241 1242 if (base + size - 1 > MAX_MEMBLOCK_ADDR) { 1243 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1244 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); 1245 size = MAX_MEMBLOCK_ADDR - base + 1; 1246 } 1247 1248 if (base + size < phys_offset) { 1249 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1250 base, base + size); 1251 return; 1252 } 1253 if (base < phys_offset) { 1254 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1255 base, phys_offset); 1256 size -= phys_offset - base; 1257 base = phys_offset; 1258 } 1259 memblock_add(base, size); 1260 } 1261 1262 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) 1263 { 1264 void *ptr = memblock_alloc(size, align); 1265 1266 if (!ptr) 1267 panic("%s: Failed to allocate %llu bytes align=0x%llx\n", 1268 __func__, size, align); 1269 1270 return ptr; 1271 } 1272 1273 bool __init early_init_dt_verify(void *params) 1274 { 1275 if (!params) 1276 return false; 1277 1278 /* check device tree validity */ 1279 if (fdt_check_header(params)) 1280 return false; 1281 1282 /* Setup flat device-tree pointer */ 1283 initial_boot_params = params; 1284 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1285 fdt_totalsize(initial_boot_params)); 1286 return true; 1287 } 1288 1289 1290 void __init early_init_dt_scan_nodes(void) 1291 { 1292 int rc; 1293 1294 /* Initialize {size,address}-cells info */ 1295 early_init_dt_scan_root(); 1296 1297 /* Retrieve various information from the /chosen node */ 1298 rc = early_init_dt_scan_chosen(boot_command_line); 1299 if (rc) 1300 pr_warn("No chosen node found, continuing without\n"); 1301 1302 /* Setup memory, calling early_init_dt_add_memory_arch */ 1303 early_init_dt_scan_memory(); 1304 1305 /* Handle linux,usable-memory-range property */ 1306 early_init_dt_check_for_usable_mem_range(); 1307 } 1308 1309 bool __init early_init_dt_scan(void *params) 1310 { 1311 bool status; 1312 1313 status = early_init_dt_verify(params); 1314 if (!status) 1315 return false; 1316 1317 early_init_dt_scan_nodes(); 1318 return true; 1319 } 1320 1321 /** 1322 * unflatten_device_tree - create tree of device_nodes from flat blob 1323 * 1324 * unflattens the device-tree passed by the firmware, creating the 1325 * tree of struct device_node. It also fills the "name" and "type" 1326 * pointers of the nodes so the normal device-tree walking functions 1327 * can be used. 1328 */ 1329 void __init unflatten_device_tree(void) 1330 { 1331 __unflatten_device_tree(initial_boot_params, NULL, &of_root, 1332 early_init_dt_alloc_memory_arch, false); 1333 1334 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ 1335 of_alias_scan(early_init_dt_alloc_memory_arch); 1336 1337 unittest_unflatten_overlay_base(); 1338 } 1339 1340 /** 1341 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob 1342 * 1343 * Copies and unflattens the device-tree passed by the firmware, creating the 1344 * tree of struct device_node. It also fills the "name" and "type" 1345 * pointers of the nodes so the normal device-tree walking functions 1346 * can be used. This should only be used when the FDT memory has not been 1347 * reserved such is the case when the FDT is built-in to the kernel init 1348 * section. If the FDT memory is reserved already then unflatten_device_tree 1349 * should be used instead. 1350 */ 1351 void __init unflatten_and_copy_device_tree(void) 1352 { 1353 int size; 1354 void *dt; 1355 1356 if (!initial_boot_params) { 1357 pr_warn("No valid device tree found, continuing without\n"); 1358 return; 1359 } 1360 1361 size = fdt_totalsize(initial_boot_params); 1362 dt = early_init_dt_alloc_memory_arch(size, 1363 roundup_pow_of_two(FDT_V17_SIZE)); 1364 1365 if (dt) { 1366 memcpy(dt, initial_boot_params, size); 1367 initial_boot_params = dt; 1368 } 1369 unflatten_device_tree(); 1370 } 1371 1372 #ifdef CONFIG_SYSFS 1373 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, 1374 struct bin_attribute *bin_attr, 1375 char *buf, loff_t off, size_t count) 1376 { 1377 memcpy(buf, initial_boot_params + off, count); 1378 return count; 1379 } 1380 1381 static int __init of_fdt_raw_init(void) 1382 { 1383 static struct bin_attribute of_fdt_raw_attr = 1384 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); 1385 1386 if (!initial_boot_params) 1387 return 0; 1388 1389 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, 1390 fdt_totalsize(initial_boot_params))) { 1391 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); 1392 return 0; 1393 } 1394 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); 1395 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); 1396 } 1397 late_initcall(of_fdt_raw_init); 1398 #endif 1399 1400 #endif /* CONFIG_OF_EARLY_FLATTREE */ 1401