xref: /openbmc/linux/drivers/of/fdt.c (revision 1c2dd16a)
1 /*
2  * Functions for working with the Flattened Device Tree data format
3  *
4  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5  * benh@kernel.crashing.org
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"OF: fdt: " fmt
13 
14 #include <linux/crc32.h>
15 #include <linux/kernel.h>
16 #include <linux/initrd.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_fdt.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sizes.h>
23 #include <linux/string.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/libfdt.h>
27 #include <linux/debugfs.h>
28 #include <linux/serial_core.h>
29 #include <linux/sysfs.h>
30 
31 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
32 #include <asm/page.h>
33 
34 /*
35  * of_fdt_limit_memory - limit the number of regions in the /memory node
36  * @limit: maximum entries
37  *
38  * Adjust the flattened device tree to have at most 'limit' number of
39  * memory entries in the /memory node. This function may be called
40  * any time after initial_boot_param is set.
41  */
42 void of_fdt_limit_memory(int limit)
43 {
44 	int memory;
45 	int len;
46 	const void *val;
47 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 	const uint32_t *addr_prop;
50 	const uint32_t *size_prop;
51 	int root_offset;
52 	int cell_size;
53 
54 	root_offset = fdt_path_offset(initial_boot_params, "/");
55 	if (root_offset < 0)
56 		return;
57 
58 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 				"#address-cells", NULL);
60 	if (addr_prop)
61 		nr_address_cells = fdt32_to_cpu(*addr_prop);
62 
63 	size_prop = fdt_getprop(initial_boot_params, root_offset,
64 				"#size-cells", NULL);
65 	if (size_prop)
66 		nr_size_cells = fdt32_to_cpu(*size_prop);
67 
68 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69 
70 	memory = fdt_path_offset(initial_boot_params, "/memory");
71 	if (memory > 0) {
72 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 		if (len > limit*cell_size) {
74 			len = limit*cell_size;
75 			pr_debug("Limiting number of entries to %d\n", limit);
76 			fdt_setprop(initial_boot_params, memory, "reg", val,
77 					len);
78 		}
79 	}
80 }
81 
82 /**
83  * of_fdt_is_compatible - Return true if given node from the given blob has
84  * compat in its compatible list
85  * @blob: A device tree blob
86  * @node: node to test
87  * @compat: compatible string to compare with compatible list.
88  *
89  * On match, returns a non-zero value with smaller values returned for more
90  * specific compatible values.
91  */
92 int of_fdt_is_compatible(const void *blob,
93 		      unsigned long node, const char *compat)
94 {
95 	const char *cp;
96 	int cplen;
97 	unsigned long l, score = 0;
98 
99 	cp = fdt_getprop(blob, node, "compatible", &cplen);
100 	if (cp == NULL)
101 		return 0;
102 	while (cplen > 0) {
103 		score++;
104 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
105 			return score;
106 		l = strlen(cp) + 1;
107 		cp += l;
108 		cplen -= l;
109 	}
110 
111 	return 0;
112 }
113 
114 /**
115  * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
116  * @blob: A device tree blob
117  * @node: node to test
118  *
119  * Returns true if the node has a "big-endian" property, or if the kernel
120  * was compiled for BE *and* the node has a "native-endian" property.
121  * Returns false otherwise.
122  */
123 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
124 {
125 	if (fdt_getprop(blob, node, "big-endian", NULL))
126 		return true;
127 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
128 	    fdt_getprop(blob, node, "native-endian", NULL))
129 		return true;
130 	return false;
131 }
132 
133 /**
134  * of_fdt_match - Return true if node matches a list of compatible values
135  */
136 int of_fdt_match(const void *blob, unsigned long node,
137                  const char *const *compat)
138 {
139 	unsigned int tmp, score = 0;
140 
141 	if (!compat)
142 		return 0;
143 
144 	while (*compat) {
145 		tmp = of_fdt_is_compatible(blob, node, *compat);
146 		if (tmp && (score == 0 || (tmp < score)))
147 			score = tmp;
148 		compat++;
149 	}
150 
151 	return score;
152 }
153 
154 static void *unflatten_dt_alloc(void **mem, unsigned long size,
155 				       unsigned long align)
156 {
157 	void *res;
158 
159 	*mem = PTR_ALIGN(*mem, align);
160 	res = *mem;
161 	*mem += size;
162 
163 	return res;
164 }
165 
166 static void populate_properties(const void *blob,
167 				int offset,
168 				void **mem,
169 				struct device_node *np,
170 				const char *nodename,
171 				bool dryrun)
172 {
173 	struct property *pp, **pprev = NULL;
174 	int cur;
175 	bool has_name = false;
176 
177 	pprev = &np->properties;
178 	for (cur = fdt_first_property_offset(blob, offset);
179 	     cur >= 0;
180 	     cur = fdt_next_property_offset(blob, cur)) {
181 		const __be32 *val;
182 		const char *pname;
183 		u32 sz;
184 
185 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
186 		if (!val) {
187 			pr_warn("Cannot locate property at 0x%x\n", cur);
188 			continue;
189 		}
190 
191 		if (!pname) {
192 			pr_warn("Cannot find property name at 0x%x\n", cur);
193 			continue;
194 		}
195 
196 		if (!strcmp(pname, "name"))
197 			has_name = true;
198 
199 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
200 					__alignof__(struct property));
201 		if (dryrun)
202 			continue;
203 
204 		/* We accept flattened tree phandles either in
205 		 * ePAPR-style "phandle" properties, or the
206 		 * legacy "linux,phandle" properties.  If both
207 		 * appear and have different values, things
208 		 * will get weird. Don't do that.
209 		 */
210 		if (!strcmp(pname, "phandle") ||
211 		    !strcmp(pname, "linux,phandle")) {
212 			if (!np->phandle)
213 				np->phandle = be32_to_cpup(val);
214 		}
215 
216 		/* And we process the "ibm,phandle" property
217 		 * used in pSeries dynamic device tree
218 		 * stuff
219 		 */
220 		if (!strcmp(pname, "ibm,phandle"))
221 			np->phandle = be32_to_cpup(val);
222 
223 		pp->name   = (char *)pname;
224 		pp->length = sz;
225 		pp->value  = (__be32 *)val;
226 		*pprev     = pp;
227 		pprev      = &pp->next;
228 	}
229 
230 	/* With version 0x10 we may not have the name property,
231 	 * recreate it here from the unit name if absent
232 	 */
233 	if (!has_name) {
234 		const char *p = nodename, *ps = p, *pa = NULL;
235 		int len;
236 
237 		while (*p) {
238 			if ((*p) == '@')
239 				pa = p;
240 			else if ((*p) == '/')
241 				ps = p + 1;
242 			p++;
243 		}
244 
245 		if (pa < ps)
246 			pa = p;
247 		len = (pa - ps) + 1;
248 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
249 					__alignof__(struct property));
250 		if (!dryrun) {
251 			pp->name   = "name";
252 			pp->length = len;
253 			pp->value  = pp + 1;
254 			*pprev     = pp;
255 			pprev      = &pp->next;
256 			memcpy(pp->value, ps, len - 1);
257 			((char *)pp->value)[len - 1] = 0;
258 			pr_debug("fixed up name for %s -> %s\n",
259 				 nodename, (char *)pp->value);
260 		}
261 	}
262 
263 	if (!dryrun)
264 		*pprev = NULL;
265 }
266 
267 static unsigned int populate_node(const void *blob,
268 				  int offset,
269 				  void **mem,
270 				  struct device_node *dad,
271 				  unsigned int fpsize,
272 				  struct device_node **pnp,
273 				  bool dryrun)
274 {
275 	struct device_node *np;
276 	const char *pathp;
277 	unsigned int l, allocl;
278 	int new_format = 0;
279 
280 	pathp = fdt_get_name(blob, offset, &l);
281 	if (!pathp) {
282 		*pnp = NULL;
283 		return 0;
284 	}
285 
286 	allocl = ++l;
287 
288 	/* version 0x10 has a more compact unit name here instead of the full
289 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
290 	 * it later. We detect this because the first character of the name is
291 	 * not '/'.
292 	 */
293 	if ((*pathp) != '/') {
294 		new_format = 1;
295 		if (fpsize == 0) {
296 			/* root node: special case. fpsize accounts for path
297 			 * plus terminating zero. root node only has '/', so
298 			 * fpsize should be 2, but we want to avoid the first
299 			 * level nodes to have two '/' so we use fpsize 1 here
300 			 */
301 			fpsize = 1;
302 			allocl = 2;
303 			l = 1;
304 			pathp = "";
305 		} else {
306 			/* account for '/' and path size minus terminal 0
307 			 * already in 'l'
308 			 */
309 			fpsize += l;
310 			allocl = fpsize;
311 		}
312 	}
313 
314 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
315 				__alignof__(struct device_node));
316 	if (!dryrun) {
317 		char *fn;
318 		of_node_init(np);
319 		np->full_name = fn = ((char *)np) + sizeof(*np);
320 		if (new_format) {
321 			/* rebuild full path for new format */
322 			if (dad && dad->parent) {
323 				strcpy(fn, dad->full_name);
324 #ifdef DEBUG
325 				if ((strlen(fn) + l + 1) != allocl) {
326 					pr_debug("%s: p: %d, l: %d, a: %d\n",
327 						pathp, (int)strlen(fn),
328 						l, allocl);
329 				}
330 #endif
331 				fn += strlen(fn);
332 			}
333 			*(fn++) = '/';
334 		}
335 		memcpy(fn, pathp, l);
336 
337 		if (dad != NULL) {
338 			np->parent = dad;
339 			np->sibling = dad->child;
340 			dad->child = np;
341 		}
342 	}
343 
344 	populate_properties(blob, offset, mem, np, pathp, dryrun);
345 	if (!dryrun) {
346 		np->name = of_get_property(np, "name", NULL);
347 		np->type = of_get_property(np, "device_type", NULL);
348 
349 		if (!np->name)
350 			np->name = "<NULL>";
351 		if (!np->type)
352 			np->type = "<NULL>";
353 	}
354 
355 	*pnp = np;
356 	return fpsize;
357 }
358 
359 static void reverse_nodes(struct device_node *parent)
360 {
361 	struct device_node *child, *next;
362 
363 	/* In-depth first */
364 	child = parent->child;
365 	while (child) {
366 		reverse_nodes(child);
367 
368 		child = child->sibling;
369 	}
370 
371 	/* Reverse the nodes in the child list */
372 	child = parent->child;
373 	parent->child = NULL;
374 	while (child) {
375 		next = child->sibling;
376 
377 		child->sibling = parent->child;
378 		parent->child = child;
379 		child = next;
380 	}
381 }
382 
383 /**
384  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
385  * @blob: The parent device tree blob
386  * @mem: Memory chunk to use for allocating device nodes and properties
387  * @dad: Parent struct device_node
388  * @nodepp: The device_node tree created by the call
389  *
390  * It returns the size of unflattened device tree or error code
391  */
392 static int unflatten_dt_nodes(const void *blob,
393 			      void *mem,
394 			      struct device_node *dad,
395 			      struct device_node **nodepp)
396 {
397 	struct device_node *root;
398 	int offset = 0, depth = 0, initial_depth = 0;
399 #define FDT_MAX_DEPTH	64
400 	unsigned int fpsizes[FDT_MAX_DEPTH];
401 	struct device_node *nps[FDT_MAX_DEPTH];
402 	void *base = mem;
403 	bool dryrun = !base;
404 
405 	if (nodepp)
406 		*nodepp = NULL;
407 
408 	/*
409 	 * We're unflattening device sub-tree if @dad is valid. There are
410 	 * possibly multiple nodes in the first level of depth. We need
411 	 * set @depth to 1 to make fdt_next_node() happy as it bails
412 	 * immediately when negative @depth is found. Otherwise, the device
413 	 * nodes except the first one won't be unflattened successfully.
414 	 */
415 	if (dad)
416 		depth = initial_depth = 1;
417 
418 	root = dad;
419 	fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
420 	nps[depth] = dad;
421 
422 	for (offset = 0;
423 	     offset >= 0 && depth >= initial_depth;
424 	     offset = fdt_next_node(blob, offset, &depth)) {
425 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
426 			continue;
427 
428 		fpsizes[depth+1] = populate_node(blob, offset, &mem,
429 						 nps[depth],
430 						 fpsizes[depth],
431 						 &nps[depth+1], dryrun);
432 		if (!fpsizes[depth+1])
433 			return mem - base;
434 
435 		if (!dryrun && nodepp && !*nodepp)
436 			*nodepp = nps[depth+1];
437 		if (!dryrun && !root)
438 			root = nps[depth+1];
439 	}
440 
441 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
442 		pr_err("Error %d processing FDT\n", offset);
443 		return -EINVAL;
444 	}
445 
446 	/*
447 	 * Reverse the child list. Some drivers assumes node order matches .dts
448 	 * node order
449 	 */
450 	if (!dryrun)
451 		reverse_nodes(root);
452 
453 	return mem - base;
454 }
455 
456 /**
457  * __unflatten_device_tree - create tree of device_nodes from flat blob
458  *
459  * unflattens a device-tree, creating the
460  * tree of struct device_node. It also fills the "name" and "type"
461  * pointers of the nodes so the normal device-tree walking functions
462  * can be used.
463  * @blob: The blob to expand
464  * @dad: Parent device node
465  * @mynodes: The device_node tree created by the call
466  * @dt_alloc: An allocator that provides a virtual address to memory
467  * for the resulting tree
468  *
469  * Returns NULL on failure or the memory chunk containing the unflattened
470  * device tree on success.
471  */
472 static void *__unflatten_device_tree(const void *blob,
473 				     struct device_node *dad,
474 				     struct device_node **mynodes,
475 				     void *(*dt_alloc)(u64 size, u64 align),
476 				     bool detached)
477 {
478 	int size;
479 	void *mem;
480 
481 	pr_debug(" -> unflatten_device_tree()\n");
482 
483 	if (!blob) {
484 		pr_debug("No device tree pointer\n");
485 		return NULL;
486 	}
487 
488 	pr_debug("Unflattening device tree:\n");
489 	pr_debug("magic: %08x\n", fdt_magic(blob));
490 	pr_debug("size: %08x\n", fdt_totalsize(blob));
491 	pr_debug("version: %08x\n", fdt_version(blob));
492 
493 	if (fdt_check_header(blob)) {
494 		pr_err("Invalid device tree blob header\n");
495 		return NULL;
496 	}
497 
498 	/* First pass, scan for size */
499 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
500 	if (size < 0)
501 		return NULL;
502 
503 	size = ALIGN(size, 4);
504 	pr_debug("  size is %d, allocating...\n", size);
505 
506 	/* Allocate memory for the expanded device tree */
507 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
508 	memset(mem, 0, size);
509 
510 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
511 
512 	pr_debug("  unflattening %p...\n", mem);
513 
514 	/* Second pass, do actual unflattening */
515 	unflatten_dt_nodes(blob, mem, dad, mynodes);
516 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
517 		pr_warning("End of tree marker overwritten: %08x\n",
518 			   be32_to_cpup(mem + size));
519 
520 	if (detached && mynodes) {
521 		of_node_set_flag(*mynodes, OF_DETACHED);
522 		pr_debug("unflattened tree is detached\n");
523 	}
524 
525 	pr_debug(" <- unflatten_device_tree()\n");
526 	return mem;
527 }
528 
529 static void *kernel_tree_alloc(u64 size, u64 align)
530 {
531 	return kzalloc(size, GFP_KERNEL);
532 }
533 
534 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
535 
536 /**
537  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
538  * @blob: Flat device tree blob
539  * @dad: Parent device node
540  * @mynodes: The device tree created by the call
541  *
542  * unflattens the device-tree passed by the firmware, creating the
543  * tree of struct device_node. It also fills the "name" and "type"
544  * pointers of the nodes so the normal device-tree walking functions
545  * can be used.
546  *
547  * Returns NULL on failure or the memory chunk containing the unflattened
548  * device tree on success.
549  */
550 void *of_fdt_unflatten_tree(const unsigned long *blob,
551 			    struct device_node *dad,
552 			    struct device_node **mynodes)
553 {
554 	void *mem;
555 
556 	mutex_lock(&of_fdt_unflatten_mutex);
557 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
558 				      true);
559 	mutex_unlock(&of_fdt_unflatten_mutex);
560 
561 	return mem;
562 }
563 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
564 
565 /* Everything below here references initial_boot_params directly. */
566 int __initdata dt_root_addr_cells;
567 int __initdata dt_root_size_cells;
568 
569 void *initial_boot_params;
570 
571 #ifdef CONFIG_OF_EARLY_FLATTREE
572 
573 static u32 of_fdt_crc32;
574 
575 /**
576  * res_mem_reserve_reg() - reserve all memory described in 'reg' property
577  */
578 static int __init __reserved_mem_reserve_reg(unsigned long node,
579 					     const char *uname)
580 {
581 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
582 	phys_addr_t base, size;
583 	int len;
584 	const __be32 *prop;
585 	int nomap, first = 1;
586 
587 	prop = of_get_flat_dt_prop(node, "reg", &len);
588 	if (!prop)
589 		return -ENOENT;
590 
591 	if (len && len % t_len != 0) {
592 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
593 		       uname);
594 		return -EINVAL;
595 	}
596 
597 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
598 
599 	while (len >= t_len) {
600 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
601 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
602 
603 		if (size &&
604 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
605 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
606 				uname, &base, (unsigned long)size / SZ_1M);
607 		else
608 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
609 				uname, &base, (unsigned long)size / SZ_1M);
610 
611 		len -= t_len;
612 		if (first) {
613 			fdt_reserved_mem_save_node(node, uname, base, size);
614 			first = 0;
615 		}
616 	}
617 	return 0;
618 }
619 
620 /**
621  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
622  * in /reserved-memory matches the values supported by the current implementation,
623  * also check if ranges property has been provided
624  */
625 static int __init __reserved_mem_check_root(unsigned long node)
626 {
627 	const __be32 *prop;
628 
629 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
630 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
631 		return -EINVAL;
632 
633 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
634 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
635 		return -EINVAL;
636 
637 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
638 	if (!prop)
639 		return -EINVAL;
640 	return 0;
641 }
642 
643 /**
644  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
645  */
646 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
647 					  int depth, void *data)
648 {
649 	static int found;
650 	const char *status;
651 	int err;
652 
653 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
654 		if (__reserved_mem_check_root(node) != 0) {
655 			pr_err("Reserved memory: unsupported node format, ignoring\n");
656 			/* break scan */
657 			return 1;
658 		}
659 		found = 1;
660 		/* scan next node */
661 		return 0;
662 	} else if (!found) {
663 		/* scan next node */
664 		return 0;
665 	} else if (found && depth < 2) {
666 		/* scanning of /reserved-memory has been finished */
667 		return 1;
668 	}
669 
670 	status = of_get_flat_dt_prop(node, "status", NULL);
671 	if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
672 		return 0;
673 
674 	err = __reserved_mem_reserve_reg(node, uname);
675 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
676 		fdt_reserved_mem_save_node(node, uname, 0, 0);
677 
678 	/* scan next node */
679 	return 0;
680 }
681 
682 /**
683  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
684  *
685  * This function grabs memory from early allocator for device exclusive use
686  * defined in device tree structures. It should be called by arch specific code
687  * once the early allocator (i.e. memblock) has been fully activated.
688  */
689 void __init early_init_fdt_scan_reserved_mem(void)
690 {
691 	int n;
692 	u64 base, size;
693 
694 	if (!initial_boot_params)
695 		return;
696 
697 	/* Process header /memreserve/ fields */
698 	for (n = 0; ; n++) {
699 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
700 		if (!size)
701 			break;
702 		early_init_dt_reserve_memory_arch(base, size, 0);
703 	}
704 
705 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
706 	fdt_init_reserved_mem();
707 }
708 
709 /**
710  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
711  */
712 void __init early_init_fdt_reserve_self(void)
713 {
714 	if (!initial_boot_params)
715 		return;
716 
717 	/* Reserve the dtb region */
718 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
719 					  fdt_totalsize(initial_boot_params),
720 					  0);
721 }
722 
723 /**
724  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
725  * @it: callback function
726  * @data: context data pointer
727  *
728  * This function is used to scan the flattened device-tree, it is
729  * used to extract the memory information at boot before we can
730  * unflatten the tree
731  */
732 int __init of_scan_flat_dt(int (*it)(unsigned long node,
733 				     const char *uname, int depth,
734 				     void *data),
735 			   void *data)
736 {
737 	const void *blob = initial_boot_params;
738 	const char *pathp;
739 	int offset, rc = 0, depth = -1;
740 
741 	if (!blob)
742 		return 0;
743 
744 	for (offset = fdt_next_node(blob, -1, &depth);
745 	     offset >= 0 && depth >= 0 && !rc;
746 	     offset = fdt_next_node(blob, offset, &depth)) {
747 
748 		pathp = fdt_get_name(blob, offset, NULL);
749 		if (*pathp == '/')
750 			pathp = kbasename(pathp);
751 		rc = it(offset, pathp, depth, data);
752 	}
753 	return rc;
754 }
755 
756 /**
757  * of_get_flat_dt_subnode_by_name - get the subnode by given name
758  *
759  * @node: the parent node
760  * @uname: the name of subnode
761  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
762  */
763 
764 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
765 {
766 	return fdt_subnode_offset(initial_boot_params, node, uname);
767 }
768 
769 /**
770  * of_get_flat_dt_root - find the root node in the flat blob
771  */
772 unsigned long __init of_get_flat_dt_root(void)
773 {
774 	return 0;
775 }
776 
777 /**
778  * of_get_flat_dt_size - Return the total size of the FDT
779  */
780 int __init of_get_flat_dt_size(void)
781 {
782 	return fdt_totalsize(initial_boot_params);
783 }
784 
785 /**
786  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
787  *
788  * This function can be used within scan_flattened_dt callback to get
789  * access to properties
790  */
791 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
792 				       int *size)
793 {
794 	return fdt_getprop(initial_boot_params, node, name, size);
795 }
796 
797 /**
798  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
799  * @node: node to test
800  * @compat: compatible string to compare with compatible list.
801  */
802 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
803 {
804 	return of_fdt_is_compatible(initial_boot_params, node, compat);
805 }
806 
807 /**
808  * of_flat_dt_match - Return true if node matches a list of compatible values
809  */
810 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
811 {
812 	return of_fdt_match(initial_boot_params, node, compat);
813 }
814 
815 struct fdt_scan_status {
816 	const char *name;
817 	int namelen;
818 	int depth;
819 	int found;
820 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
821 	void *data;
822 };
823 
824 const char * __init of_flat_dt_get_machine_name(void)
825 {
826 	const char *name;
827 	unsigned long dt_root = of_get_flat_dt_root();
828 
829 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
830 	if (!name)
831 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
832 	return name;
833 }
834 
835 /**
836  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
837  *
838  * @default_match: A machine specific ptr to return in case of no match.
839  * @get_next_compat: callback function to return next compatible match table.
840  *
841  * Iterate through machine match tables to find the best match for the machine
842  * compatible string in the FDT.
843  */
844 const void * __init of_flat_dt_match_machine(const void *default_match,
845 		const void * (*get_next_compat)(const char * const**))
846 {
847 	const void *data = NULL;
848 	const void *best_data = default_match;
849 	const char *const *compat;
850 	unsigned long dt_root;
851 	unsigned int best_score = ~1, score = 0;
852 
853 	dt_root = of_get_flat_dt_root();
854 	while ((data = get_next_compat(&compat))) {
855 		score = of_flat_dt_match(dt_root, compat);
856 		if (score > 0 && score < best_score) {
857 			best_data = data;
858 			best_score = score;
859 		}
860 	}
861 	if (!best_data) {
862 		const char *prop;
863 		int size;
864 
865 		pr_err("\n unrecognized device tree list:\n[ ");
866 
867 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
868 		if (prop) {
869 			while (size > 0) {
870 				printk("'%s' ", prop);
871 				size -= strlen(prop) + 1;
872 				prop += strlen(prop) + 1;
873 			}
874 		}
875 		printk("]\n\n");
876 		return NULL;
877 	}
878 
879 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
880 
881 	return best_data;
882 }
883 
884 #ifdef CONFIG_BLK_DEV_INITRD
885 #ifndef __early_init_dt_declare_initrd
886 static void __early_init_dt_declare_initrd(unsigned long start,
887 					   unsigned long end)
888 {
889 	initrd_start = (unsigned long)__va(start);
890 	initrd_end = (unsigned long)__va(end);
891 	initrd_below_start_ok = 1;
892 }
893 #endif
894 
895 /**
896  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
897  * @node: reference to node containing initrd location ('chosen')
898  */
899 static void __init early_init_dt_check_for_initrd(unsigned long node)
900 {
901 	u64 start, end;
902 	int len;
903 	const __be32 *prop;
904 
905 	pr_debug("Looking for initrd properties... ");
906 
907 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
908 	if (!prop)
909 		return;
910 	start = of_read_number(prop, len/4);
911 
912 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
913 	if (!prop)
914 		return;
915 	end = of_read_number(prop, len/4);
916 
917 	__early_init_dt_declare_initrd(start, end);
918 
919 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
920 		 (unsigned long long)start, (unsigned long long)end);
921 }
922 #else
923 static inline void early_init_dt_check_for_initrd(unsigned long node)
924 {
925 }
926 #endif /* CONFIG_BLK_DEV_INITRD */
927 
928 #ifdef CONFIG_SERIAL_EARLYCON
929 
930 int __init early_init_dt_scan_chosen_stdout(void)
931 {
932 	int offset;
933 	const char *p, *q, *options = NULL;
934 	int l;
935 	const struct earlycon_id *match;
936 	const void *fdt = initial_boot_params;
937 
938 	offset = fdt_path_offset(fdt, "/chosen");
939 	if (offset < 0)
940 		offset = fdt_path_offset(fdt, "/chosen@0");
941 	if (offset < 0)
942 		return -ENOENT;
943 
944 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
945 	if (!p)
946 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
947 	if (!p || !l)
948 		return -ENOENT;
949 
950 	q = strchrnul(p, ':');
951 	if (*q != '\0')
952 		options = q + 1;
953 	l = q - p;
954 
955 	/* Get the node specified by stdout-path */
956 	offset = fdt_path_offset_namelen(fdt, p, l);
957 	if (offset < 0) {
958 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
959 		return 0;
960 	}
961 
962 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
963 		if (!match->compatible[0])
964 			continue;
965 
966 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
967 			continue;
968 
969 		of_setup_earlycon(match, offset, options);
970 		return 0;
971 	}
972 	return -ENODEV;
973 }
974 #endif
975 
976 /**
977  * early_init_dt_scan_root - fetch the top level address and size cells
978  */
979 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
980 				   int depth, void *data)
981 {
982 	const __be32 *prop;
983 
984 	if (depth != 0)
985 		return 0;
986 
987 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
988 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
989 
990 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
991 	if (prop)
992 		dt_root_size_cells = be32_to_cpup(prop);
993 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
994 
995 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
996 	if (prop)
997 		dt_root_addr_cells = be32_to_cpup(prop);
998 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
999 
1000 	/* break now */
1001 	return 1;
1002 }
1003 
1004 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1005 {
1006 	const __be32 *p = *cellp;
1007 
1008 	*cellp = p + s;
1009 	return of_read_number(p, s);
1010 }
1011 
1012 /**
1013  * early_init_dt_scan_memory - Look for an parse memory nodes
1014  */
1015 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1016 				     int depth, void *data)
1017 {
1018 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1019 	const __be32 *reg, *endp;
1020 	int l;
1021 	bool hotpluggable;
1022 
1023 	/* We are scanning "memory" nodes only */
1024 	if (type == NULL) {
1025 		/*
1026 		 * The longtrail doesn't have a device_type on the
1027 		 * /memory node, so look for the node called /memory@0.
1028 		 */
1029 		if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1030 			return 0;
1031 	} else if (strcmp(type, "memory") != 0)
1032 		return 0;
1033 
1034 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1035 	if (reg == NULL)
1036 		reg = of_get_flat_dt_prop(node, "reg", &l);
1037 	if (reg == NULL)
1038 		return 0;
1039 
1040 	endp = reg + (l / sizeof(__be32));
1041 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1042 
1043 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1044 
1045 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1046 		u64 base, size;
1047 
1048 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1049 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1050 
1051 		if (size == 0)
1052 			continue;
1053 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1054 		    (unsigned long long)size);
1055 
1056 		early_init_dt_add_memory_arch(base, size);
1057 
1058 		if (!hotpluggable)
1059 			continue;
1060 
1061 		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1062 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1063 				base, base + size);
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1070 				     int depth, void *data)
1071 {
1072 	int l;
1073 	const char *p;
1074 
1075 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1076 
1077 	if (depth != 1 || !data ||
1078 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1079 		return 0;
1080 
1081 	early_init_dt_check_for_initrd(node);
1082 
1083 	/* Retrieve command line */
1084 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1085 	if (p != NULL && l > 0)
1086 		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1087 
1088 	/*
1089 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1090 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1091 	 * is set in which case we override whatever was found earlier.
1092 	 */
1093 #ifdef CONFIG_CMDLINE
1094 #if defined(CONFIG_CMDLINE_EXTEND)
1095 	strlcat(data, " ", COMMAND_LINE_SIZE);
1096 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1097 #elif defined(CONFIG_CMDLINE_FORCE)
1098 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1099 #else
1100 	/* No arguments from boot loader, use kernel's  cmdl*/
1101 	if (!((char *)data)[0])
1102 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1103 #endif
1104 #endif /* CONFIG_CMDLINE */
1105 
1106 	pr_debug("Command line is: %s\n", (char*)data);
1107 
1108 	/* break now */
1109 	return 1;
1110 }
1111 
1112 #ifdef CONFIG_HAVE_MEMBLOCK
1113 #ifndef MIN_MEMBLOCK_ADDR
1114 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1115 #endif
1116 #ifndef MAX_MEMBLOCK_ADDR
1117 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1118 #endif
1119 
1120 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1121 {
1122 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1123 
1124 	if (!PAGE_ALIGNED(base)) {
1125 		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1126 			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1127 				base, base + size);
1128 			return;
1129 		}
1130 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1131 		base = PAGE_ALIGN(base);
1132 	}
1133 	size &= PAGE_MASK;
1134 
1135 	if (base > MAX_MEMBLOCK_ADDR) {
1136 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1137 				base, base + size);
1138 		return;
1139 	}
1140 
1141 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1142 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1143 				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1144 		size = MAX_MEMBLOCK_ADDR - base + 1;
1145 	}
1146 
1147 	if (base + size < phys_offset) {
1148 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1149 			   base, base + size);
1150 		return;
1151 	}
1152 	if (base < phys_offset) {
1153 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1154 			   base, phys_offset);
1155 		size -= phys_offset - base;
1156 		base = phys_offset;
1157 	}
1158 	memblock_add(base, size);
1159 }
1160 
1161 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1162 {
1163 	return memblock_mark_hotplug(base, size);
1164 }
1165 
1166 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1167 					phys_addr_t size, bool nomap)
1168 {
1169 	if (nomap)
1170 		return memblock_remove(base, size);
1171 	return memblock_reserve(base, size);
1172 }
1173 
1174 /*
1175  * called from unflatten_device_tree() to bootstrap devicetree itself
1176  * Architectures can override this definition if memblock isn't used
1177  */
1178 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1179 {
1180 	return __va(memblock_alloc(size, align));
1181 }
1182 #else
1183 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1184 {
1185 	WARN_ON(1);
1186 }
1187 
1188 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1189 {
1190 	return -ENOSYS;
1191 }
1192 
1193 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1194 					phys_addr_t size, bool nomap)
1195 {
1196 	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1197 		  &base, &size, nomap ? " (nomap)" : "");
1198 	return -ENOSYS;
1199 }
1200 
1201 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1202 {
1203 	WARN_ON(1);
1204 	return NULL;
1205 }
1206 #endif
1207 
1208 bool __init early_init_dt_verify(void *params)
1209 {
1210 	if (!params)
1211 		return false;
1212 
1213 	/* check device tree validity */
1214 	if (fdt_check_header(params))
1215 		return false;
1216 
1217 	/* Setup flat device-tree pointer */
1218 	initial_boot_params = params;
1219 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1220 				fdt_totalsize(initial_boot_params));
1221 	return true;
1222 }
1223 
1224 
1225 void __init early_init_dt_scan_nodes(void)
1226 {
1227 	/* Retrieve various information from the /chosen node */
1228 	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1229 
1230 	/* Initialize {size,address}-cells info */
1231 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1232 
1233 	/* Setup memory, calling early_init_dt_add_memory_arch */
1234 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1235 }
1236 
1237 bool __init early_init_dt_scan(void *params)
1238 {
1239 	bool status;
1240 
1241 	status = early_init_dt_verify(params);
1242 	if (!status)
1243 		return false;
1244 
1245 	early_init_dt_scan_nodes();
1246 	return true;
1247 }
1248 
1249 /**
1250  * unflatten_device_tree - create tree of device_nodes from flat blob
1251  *
1252  * unflattens the device-tree passed by the firmware, creating the
1253  * tree of struct device_node. It also fills the "name" and "type"
1254  * pointers of the nodes so the normal device-tree walking functions
1255  * can be used.
1256  */
1257 void __init unflatten_device_tree(void)
1258 {
1259 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1260 				early_init_dt_alloc_memory_arch, false);
1261 
1262 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1263 	of_alias_scan(early_init_dt_alloc_memory_arch);
1264 }
1265 
1266 /**
1267  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1268  *
1269  * Copies and unflattens the device-tree passed by the firmware, creating the
1270  * tree of struct device_node. It also fills the "name" and "type"
1271  * pointers of the nodes so the normal device-tree walking functions
1272  * can be used. This should only be used when the FDT memory has not been
1273  * reserved such is the case when the FDT is built-in to the kernel init
1274  * section. If the FDT memory is reserved already then unflatten_device_tree
1275  * should be used instead.
1276  */
1277 void __init unflatten_and_copy_device_tree(void)
1278 {
1279 	int size;
1280 	void *dt;
1281 
1282 	if (!initial_boot_params) {
1283 		pr_warn("No valid device tree found, continuing without\n");
1284 		return;
1285 	}
1286 
1287 	size = fdt_totalsize(initial_boot_params);
1288 	dt = early_init_dt_alloc_memory_arch(size,
1289 					     roundup_pow_of_two(FDT_V17_SIZE));
1290 
1291 	if (dt) {
1292 		memcpy(dt, initial_boot_params, size);
1293 		initial_boot_params = dt;
1294 	}
1295 	unflatten_device_tree();
1296 }
1297 
1298 #ifdef CONFIG_SYSFS
1299 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1300 			       struct bin_attribute *bin_attr,
1301 			       char *buf, loff_t off, size_t count)
1302 {
1303 	memcpy(buf, initial_boot_params + off, count);
1304 	return count;
1305 }
1306 
1307 static int __init of_fdt_raw_init(void)
1308 {
1309 	static struct bin_attribute of_fdt_raw_attr =
1310 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1311 
1312 	if (!initial_boot_params)
1313 		return 0;
1314 
1315 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1316 				     fdt_totalsize(initial_boot_params))) {
1317 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1318 		return 0;
1319 	}
1320 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1321 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1322 }
1323 late_initcall(of_fdt_raw_init);
1324 #endif
1325 
1326 #endif /* CONFIG_OF_EARLY_FLATTREE */
1327