1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions for working with the Flattened Device Tree data format 4 * 5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp 6 * benh@kernel.crashing.org 7 */ 8 9 #define pr_fmt(fmt) "OF: fdt: " fmt 10 11 #include <linux/crc32.h> 12 #include <linux/kernel.h> 13 #include <linux/initrd.h> 14 #include <linux/memblock.h> 15 #include <linux/mutex.h> 16 #include <linux/of.h> 17 #include <linux/of_fdt.h> 18 #include <linux/of_reserved_mem.h> 19 #include <linux/sizes.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/libfdt.h> 24 #include <linux/debugfs.h> 25 #include <linux/serial_core.h> 26 #include <linux/sysfs.h> 27 #include <linux/random.h> 28 29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ 30 #include <asm/page.h> 31 32 #include "of_private.h" 33 34 /* 35 * of_fdt_limit_memory - limit the number of regions in the /memory node 36 * @limit: maximum entries 37 * 38 * Adjust the flattened device tree to have at most 'limit' number of 39 * memory entries in the /memory node. This function may be called 40 * any time after initial_boot_param is set. 41 */ 42 void __init of_fdt_limit_memory(int limit) 43 { 44 int memory; 45 int len; 46 const void *val; 47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 49 const __be32 *addr_prop; 50 const __be32 *size_prop; 51 int root_offset; 52 int cell_size; 53 54 root_offset = fdt_path_offset(initial_boot_params, "/"); 55 if (root_offset < 0) 56 return; 57 58 addr_prop = fdt_getprop(initial_boot_params, root_offset, 59 "#address-cells", NULL); 60 if (addr_prop) 61 nr_address_cells = fdt32_to_cpu(*addr_prop); 62 63 size_prop = fdt_getprop(initial_boot_params, root_offset, 64 "#size-cells", NULL); 65 if (size_prop) 66 nr_size_cells = fdt32_to_cpu(*size_prop); 67 68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells); 69 70 memory = fdt_path_offset(initial_boot_params, "/memory"); 71 if (memory > 0) { 72 val = fdt_getprop(initial_boot_params, memory, "reg", &len); 73 if (len > limit*cell_size) { 74 len = limit*cell_size; 75 pr_debug("Limiting number of entries to %d\n", limit); 76 fdt_setprop(initial_boot_params, memory, "reg", val, 77 len); 78 } 79 } 80 } 81 82 static bool of_fdt_device_is_available(const void *blob, unsigned long node) 83 { 84 const char *status = fdt_getprop(blob, node, "status", NULL); 85 86 if (!status) 87 return true; 88 89 if (!strcmp(status, "ok") || !strcmp(status, "okay")) 90 return true; 91 92 return false; 93 } 94 95 static void *unflatten_dt_alloc(void **mem, unsigned long size, 96 unsigned long align) 97 { 98 void *res; 99 100 *mem = PTR_ALIGN(*mem, align); 101 res = *mem; 102 *mem += size; 103 104 return res; 105 } 106 107 static void populate_properties(const void *blob, 108 int offset, 109 void **mem, 110 struct device_node *np, 111 const char *nodename, 112 bool dryrun) 113 { 114 struct property *pp, **pprev = NULL; 115 int cur; 116 bool has_name = false; 117 118 pprev = &np->properties; 119 for (cur = fdt_first_property_offset(blob, offset); 120 cur >= 0; 121 cur = fdt_next_property_offset(blob, cur)) { 122 const __be32 *val; 123 const char *pname; 124 u32 sz; 125 126 val = fdt_getprop_by_offset(blob, cur, &pname, &sz); 127 if (!val) { 128 pr_warn("Cannot locate property at 0x%x\n", cur); 129 continue; 130 } 131 132 if (!pname) { 133 pr_warn("Cannot find property name at 0x%x\n", cur); 134 continue; 135 } 136 137 if (!strcmp(pname, "name")) 138 has_name = true; 139 140 pp = unflatten_dt_alloc(mem, sizeof(struct property), 141 __alignof__(struct property)); 142 if (dryrun) 143 continue; 144 145 /* We accept flattened tree phandles either in 146 * ePAPR-style "phandle" properties, or the 147 * legacy "linux,phandle" properties. If both 148 * appear and have different values, things 149 * will get weird. Don't do that. 150 */ 151 if (!strcmp(pname, "phandle") || 152 !strcmp(pname, "linux,phandle")) { 153 if (!np->phandle) 154 np->phandle = be32_to_cpup(val); 155 } 156 157 /* And we process the "ibm,phandle" property 158 * used in pSeries dynamic device tree 159 * stuff 160 */ 161 if (!strcmp(pname, "ibm,phandle")) 162 np->phandle = be32_to_cpup(val); 163 164 pp->name = (char *)pname; 165 pp->length = sz; 166 pp->value = (__be32 *)val; 167 *pprev = pp; 168 pprev = &pp->next; 169 } 170 171 /* With version 0x10 we may not have the name property, 172 * recreate it here from the unit name if absent 173 */ 174 if (!has_name) { 175 const char *p = nodename, *ps = p, *pa = NULL; 176 int len; 177 178 while (*p) { 179 if ((*p) == '@') 180 pa = p; 181 else if ((*p) == '/') 182 ps = p + 1; 183 p++; 184 } 185 186 if (pa < ps) 187 pa = p; 188 len = (pa - ps) + 1; 189 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, 190 __alignof__(struct property)); 191 if (!dryrun) { 192 pp->name = "name"; 193 pp->length = len; 194 pp->value = pp + 1; 195 *pprev = pp; 196 pprev = &pp->next; 197 memcpy(pp->value, ps, len - 1); 198 ((char *)pp->value)[len - 1] = 0; 199 pr_debug("fixed up name for %s -> %s\n", 200 nodename, (char *)pp->value); 201 } 202 } 203 204 if (!dryrun) 205 *pprev = NULL; 206 } 207 208 static int populate_node(const void *blob, 209 int offset, 210 void **mem, 211 struct device_node *dad, 212 struct device_node **pnp, 213 bool dryrun) 214 { 215 struct device_node *np; 216 const char *pathp; 217 int len; 218 219 pathp = fdt_get_name(blob, offset, &len); 220 if (!pathp) { 221 *pnp = NULL; 222 return len; 223 } 224 225 len++; 226 227 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len, 228 __alignof__(struct device_node)); 229 if (!dryrun) { 230 char *fn; 231 of_node_init(np); 232 np->full_name = fn = ((char *)np) + sizeof(*np); 233 234 memcpy(fn, pathp, len); 235 236 if (dad != NULL) { 237 np->parent = dad; 238 np->sibling = dad->child; 239 dad->child = np; 240 } 241 } 242 243 populate_properties(blob, offset, mem, np, pathp, dryrun); 244 if (!dryrun) { 245 np->name = of_get_property(np, "name", NULL); 246 if (!np->name) 247 np->name = "<NULL>"; 248 } 249 250 *pnp = np; 251 return true; 252 } 253 254 static void reverse_nodes(struct device_node *parent) 255 { 256 struct device_node *child, *next; 257 258 /* In-depth first */ 259 child = parent->child; 260 while (child) { 261 reverse_nodes(child); 262 263 child = child->sibling; 264 } 265 266 /* Reverse the nodes in the child list */ 267 child = parent->child; 268 parent->child = NULL; 269 while (child) { 270 next = child->sibling; 271 272 child->sibling = parent->child; 273 parent->child = child; 274 child = next; 275 } 276 } 277 278 /** 279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree 280 * @blob: The parent device tree blob 281 * @mem: Memory chunk to use for allocating device nodes and properties 282 * @dad: Parent struct device_node 283 * @nodepp: The device_node tree created by the call 284 * 285 * It returns the size of unflattened device tree or error code 286 */ 287 static int unflatten_dt_nodes(const void *blob, 288 void *mem, 289 struct device_node *dad, 290 struct device_node **nodepp) 291 { 292 struct device_node *root; 293 int offset = 0, depth = 0, initial_depth = 0; 294 #define FDT_MAX_DEPTH 64 295 struct device_node *nps[FDT_MAX_DEPTH]; 296 void *base = mem; 297 bool dryrun = !base; 298 int ret; 299 300 if (nodepp) 301 *nodepp = NULL; 302 303 /* 304 * We're unflattening device sub-tree if @dad is valid. There are 305 * possibly multiple nodes in the first level of depth. We need 306 * set @depth to 1 to make fdt_next_node() happy as it bails 307 * immediately when negative @depth is found. Otherwise, the device 308 * nodes except the first one won't be unflattened successfully. 309 */ 310 if (dad) 311 depth = initial_depth = 1; 312 313 root = dad; 314 nps[depth] = dad; 315 316 for (offset = 0; 317 offset >= 0 && depth >= initial_depth; 318 offset = fdt_next_node(blob, offset, &depth)) { 319 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH)) 320 continue; 321 322 if (!IS_ENABLED(CONFIG_OF_KOBJ) && 323 !of_fdt_device_is_available(blob, offset)) 324 continue; 325 326 ret = populate_node(blob, offset, &mem, nps[depth], 327 &nps[depth+1], dryrun); 328 if (ret < 0) 329 return ret; 330 331 if (!dryrun && nodepp && !*nodepp) 332 *nodepp = nps[depth+1]; 333 if (!dryrun && !root) 334 root = nps[depth+1]; 335 } 336 337 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { 338 pr_err("Error %d processing FDT\n", offset); 339 return -EINVAL; 340 } 341 342 /* 343 * Reverse the child list. Some drivers assumes node order matches .dts 344 * node order 345 */ 346 if (!dryrun) 347 reverse_nodes(root); 348 349 return mem - base; 350 } 351 352 /** 353 * __unflatten_device_tree - create tree of device_nodes from flat blob 354 * 355 * unflattens a device-tree, creating the 356 * tree of struct device_node. It also fills the "name" and "type" 357 * pointers of the nodes so the normal device-tree walking functions 358 * can be used. 359 * @blob: The blob to expand 360 * @dad: Parent device node 361 * @mynodes: The device_node tree created by the call 362 * @dt_alloc: An allocator that provides a virtual address to memory 363 * for the resulting tree 364 * @detached: if true set OF_DETACHED on @mynodes 365 * 366 * Returns NULL on failure or the memory chunk containing the unflattened 367 * device tree on success. 368 */ 369 void *__unflatten_device_tree(const void *blob, 370 struct device_node *dad, 371 struct device_node **mynodes, 372 void *(*dt_alloc)(u64 size, u64 align), 373 bool detached) 374 { 375 int size; 376 void *mem; 377 int ret; 378 379 if (mynodes) 380 *mynodes = NULL; 381 382 pr_debug(" -> unflatten_device_tree()\n"); 383 384 if (!blob) { 385 pr_debug("No device tree pointer\n"); 386 return NULL; 387 } 388 389 pr_debug("Unflattening device tree:\n"); 390 pr_debug("magic: %08x\n", fdt_magic(blob)); 391 pr_debug("size: %08x\n", fdt_totalsize(blob)); 392 pr_debug("version: %08x\n", fdt_version(blob)); 393 394 if (fdt_check_header(blob)) { 395 pr_err("Invalid device tree blob header\n"); 396 return NULL; 397 } 398 399 /* First pass, scan for size */ 400 size = unflatten_dt_nodes(blob, NULL, dad, NULL); 401 if (size <= 0) 402 return NULL; 403 404 size = ALIGN(size, 4); 405 pr_debug(" size is %d, allocating...\n", size); 406 407 /* Allocate memory for the expanded device tree */ 408 mem = dt_alloc(size + 4, __alignof__(struct device_node)); 409 if (!mem) 410 return NULL; 411 412 memset(mem, 0, size); 413 414 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); 415 416 pr_debug(" unflattening %p...\n", mem); 417 418 /* Second pass, do actual unflattening */ 419 ret = unflatten_dt_nodes(blob, mem, dad, mynodes); 420 421 if (be32_to_cpup(mem + size) != 0xdeadbeef) 422 pr_warn("End of tree marker overwritten: %08x\n", 423 be32_to_cpup(mem + size)); 424 425 if (ret <= 0) 426 return NULL; 427 428 if (detached && mynodes && *mynodes) { 429 of_node_set_flag(*mynodes, OF_DETACHED); 430 pr_debug("unflattened tree is detached\n"); 431 } 432 433 pr_debug(" <- unflatten_device_tree()\n"); 434 return mem; 435 } 436 437 static void *kernel_tree_alloc(u64 size, u64 align) 438 { 439 return kzalloc(size, GFP_KERNEL); 440 } 441 442 static DEFINE_MUTEX(of_fdt_unflatten_mutex); 443 444 /** 445 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob 446 * @blob: Flat device tree blob 447 * @dad: Parent device node 448 * @mynodes: The device tree created by the call 449 * 450 * unflattens the device-tree passed by the firmware, creating the 451 * tree of struct device_node. It also fills the "name" and "type" 452 * pointers of the nodes so the normal device-tree walking functions 453 * can be used. 454 * 455 * Returns NULL on failure or the memory chunk containing the unflattened 456 * device tree on success. 457 */ 458 void *of_fdt_unflatten_tree(const unsigned long *blob, 459 struct device_node *dad, 460 struct device_node **mynodes) 461 { 462 void *mem; 463 464 mutex_lock(&of_fdt_unflatten_mutex); 465 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, 466 true); 467 mutex_unlock(&of_fdt_unflatten_mutex); 468 469 return mem; 470 } 471 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); 472 473 /* Everything below here references initial_boot_params directly. */ 474 int __initdata dt_root_addr_cells; 475 int __initdata dt_root_size_cells; 476 477 void *initial_boot_params __ro_after_init; 478 479 #ifdef CONFIG_OF_EARLY_FLATTREE 480 481 static u32 of_fdt_crc32; 482 483 /** 484 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property 485 */ 486 static int __init __reserved_mem_reserve_reg(unsigned long node, 487 const char *uname) 488 { 489 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); 490 phys_addr_t base, size; 491 int len; 492 const __be32 *prop; 493 int first = 1; 494 bool nomap; 495 496 prop = of_get_flat_dt_prop(node, "reg", &len); 497 if (!prop) 498 return -ENOENT; 499 500 if (len && len % t_len != 0) { 501 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", 502 uname); 503 return -EINVAL; 504 } 505 506 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; 507 508 while (len >= t_len) { 509 base = dt_mem_next_cell(dt_root_addr_cells, &prop); 510 size = dt_mem_next_cell(dt_root_size_cells, &prop); 511 512 if (size && 513 early_init_dt_reserve_memory_arch(base, size, nomap) == 0) 514 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n", 515 uname, &base, (unsigned long)size / SZ_1M); 516 else 517 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n", 518 uname, &base, (unsigned long)size / SZ_1M); 519 520 len -= t_len; 521 if (first) { 522 fdt_reserved_mem_save_node(node, uname, base, size); 523 first = 0; 524 } 525 } 526 return 0; 527 } 528 529 /** 530 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided 531 * in /reserved-memory matches the values supported by the current implementation, 532 * also check if ranges property has been provided 533 */ 534 static int __init __reserved_mem_check_root(unsigned long node) 535 { 536 const __be32 *prop; 537 538 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 539 if (!prop || be32_to_cpup(prop) != dt_root_size_cells) 540 return -EINVAL; 541 542 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 543 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) 544 return -EINVAL; 545 546 prop = of_get_flat_dt_prop(node, "ranges", NULL); 547 if (!prop) 548 return -EINVAL; 549 return 0; 550 } 551 552 /** 553 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory 554 */ 555 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname, 556 int depth, void *data) 557 { 558 static int found; 559 int err; 560 561 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) { 562 if (__reserved_mem_check_root(node) != 0) { 563 pr_err("Reserved memory: unsupported node format, ignoring\n"); 564 /* break scan */ 565 return 1; 566 } 567 found = 1; 568 /* scan next node */ 569 return 0; 570 } else if (!found) { 571 /* scan next node */ 572 return 0; 573 } else if (found && depth < 2) { 574 /* scanning of /reserved-memory has been finished */ 575 return 1; 576 } 577 578 if (!of_fdt_device_is_available(initial_boot_params, node)) 579 return 0; 580 581 err = __reserved_mem_reserve_reg(node, uname); 582 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL)) 583 fdt_reserved_mem_save_node(node, uname, 0, 0); 584 585 /* scan next node */ 586 return 0; 587 } 588 589 /** 590 * early_init_fdt_scan_reserved_mem() - create reserved memory regions 591 * 592 * This function grabs memory from early allocator for device exclusive use 593 * defined in device tree structures. It should be called by arch specific code 594 * once the early allocator (i.e. memblock) has been fully activated. 595 */ 596 void __init early_init_fdt_scan_reserved_mem(void) 597 { 598 int n; 599 u64 base, size; 600 601 if (!initial_boot_params) 602 return; 603 604 /* Process header /memreserve/ fields */ 605 for (n = 0; ; n++) { 606 fdt_get_mem_rsv(initial_boot_params, n, &base, &size); 607 if (!size) 608 break; 609 early_init_dt_reserve_memory_arch(base, size, false); 610 } 611 612 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL); 613 fdt_init_reserved_mem(); 614 } 615 616 /** 617 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob 618 */ 619 void __init early_init_fdt_reserve_self(void) 620 { 621 if (!initial_boot_params) 622 return; 623 624 /* Reserve the dtb region */ 625 early_init_dt_reserve_memory_arch(__pa(initial_boot_params), 626 fdt_totalsize(initial_boot_params), 627 false); 628 } 629 630 /** 631 * of_scan_flat_dt - scan flattened tree blob and call callback on each. 632 * @it: callback function 633 * @data: context data pointer 634 * 635 * This function is used to scan the flattened device-tree, it is 636 * used to extract the memory information at boot before we can 637 * unflatten the tree 638 */ 639 int __init of_scan_flat_dt(int (*it)(unsigned long node, 640 const char *uname, int depth, 641 void *data), 642 void *data) 643 { 644 const void *blob = initial_boot_params; 645 const char *pathp; 646 int offset, rc = 0, depth = -1; 647 648 if (!blob) 649 return 0; 650 651 for (offset = fdt_next_node(blob, -1, &depth); 652 offset >= 0 && depth >= 0 && !rc; 653 offset = fdt_next_node(blob, offset, &depth)) { 654 655 pathp = fdt_get_name(blob, offset, NULL); 656 rc = it(offset, pathp, depth, data); 657 } 658 return rc; 659 } 660 661 /** 662 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. 663 * @it: callback function 664 * @data: context data pointer 665 * 666 * This function is used to scan sub-nodes of a node. 667 */ 668 int __init of_scan_flat_dt_subnodes(unsigned long parent, 669 int (*it)(unsigned long node, 670 const char *uname, 671 void *data), 672 void *data) 673 { 674 const void *blob = initial_boot_params; 675 int node; 676 677 fdt_for_each_subnode(node, blob, parent) { 678 const char *pathp; 679 int rc; 680 681 pathp = fdt_get_name(blob, node, NULL); 682 rc = it(node, pathp, data); 683 if (rc) 684 return rc; 685 } 686 return 0; 687 } 688 689 /** 690 * of_get_flat_dt_subnode_by_name - get the subnode by given name 691 * 692 * @node: the parent node 693 * @uname: the name of subnode 694 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none 695 */ 696 697 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) 698 { 699 return fdt_subnode_offset(initial_boot_params, node, uname); 700 } 701 702 /** 703 * of_get_flat_dt_root - find the root node in the flat blob 704 */ 705 unsigned long __init of_get_flat_dt_root(void) 706 { 707 return 0; 708 } 709 710 /** 711 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr 712 * 713 * This function can be used within scan_flattened_dt callback to get 714 * access to properties 715 */ 716 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, 717 int *size) 718 { 719 return fdt_getprop(initial_boot_params, node, name, size); 720 } 721 722 /** 723 * of_fdt_is_compatible - Return true if given node from the given blob has 724 * compat in its compatible list 725 * @blob: A device tree blob 726 * @node: node to test 727 * @compat: compatible string to compare with compatible list. 728 * 729 * On match, returns a non-zero value with smaller values returned for more 730 * specific compatible values. 731 */ 732 static int of_fdt_is_compatible(const void *blob, 733 unsigned long node, const char *compat) 734 { 735 const char *cp; 736 int cplen; 737 unsigned long l, score = 0; 738 739 cp = fdt_getprop(blob, node, "compatible", &cplen); 740 if (cp == NULL) 741 return 0; 742 while (cplen > 0) { 743 score++; 744 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 745 return score; 746 l = strlen(cp) + 1; 747 cp += l; 748 cplen -= l; 749 } 750 751 return 0; 752 } 753 754 /** 755 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list 756 * @node: node to test 757 * @compat: compatible string to compare with compatible list. 758 */ 759 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) 760 { 761 return of_fdt_is_compatible(initial_boot_params, node, compat); 762 } 763 764 /** 765 * of_flat_dt_match - Return true if node matches a list of compatible values 766 */ 767 static int __init of_flat_dt_match(unsigned long node, const char *const *compat) 768 { 769 unsigned int tmp, score = 0; 770 771 if (!compat) 772 return 0; 773 774 while (*compat) { 775 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat); 776 if (tmp && (score == 0 || (tmp < score))) 777 score = tmp; 778 compat++; 779 } 780 781 return score; 782 } 783 784 /** 785 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle 786 */ 787 uint32_t __init of_get_flat_dt_phandle(unsigned long node) 788 { 789 return fdt_get_phandle(initial_boot_params, node); 790 } 791 792 struct fdt_scan_status { 793 const char *name; 794 int namelen; 795 int depth; 796 int found; 797 int (*iterator)(unsigned long node, const char *uname, int depth, void *data); 798 void *data; 799 }; 800 801 const char * __init of_flat_dt_get_machine_name(void) 802 { 803 const char *name; 804 unsigned long dt_root = of_get_flat_dt_root(); 805 806 name = of_get_flat_dt_prop(dt_root, "model", NULL); 807 if (!name) 808 name = of_get_flat_dt_prop(dt_root, "compatible", NULL); 809 return name; 810 } 811 812 /** 813 * of_flat_dt_match_machine - Iterate match tables to find matching machine. 814 * 815 * @default_match: A machine specific ptr to return in case of no match. 816 * @get_next_compat: callback function to return next compatible match table. 817 * 818 * Iterate through machine match tables to find the best match for the machine 819 * compatible string in the FDT. 820 */ 821 const void * __init of_flat_dt_match_machine(const void *default_match, 822 const void * (*get_next_compat)(const char * const**)) 823 { 824 const void *data = NULL; 825 const void *best_data = default_match; 826 const char *const *compat; 827 unsigned long dt_root; 828 unsigned int best_score = ~1, score = 0; 829 830 dt_root = of_get_flat_dt_root(); 831 while ((data = get_next_compat(&compat))) { 832 score = of_flat_dt_match(dt_root, compat); 833 if (score > 0 && score < best_score) { 834 best_data = data; 835 best_score = score; 836 } 837 } 838 if (!best_data) { 839 const char *prop; 840 int size; 841 842 pr_err("\n unrecognized device tree list:\n[ "); 843 844 prop = of_get_flat_dt_prop(dt_root, "compatible", &size); 845 if (prop) { 846 while (size > 0) { 847 printk("'%s' ", prop); 848 size -= strlen(prop) + 1; 849 prop += strlen(prop) + 1; 850 } 851 } 852 printk("]\n\n"); 853 return NULL; 854 } 855 856 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); 857 858 return best_data; 859 } 860 861 #ifdef CONFIG_BLK_DEV_INITRD 862 static void __early_init_dt_declare_initrd(unsigned long start, 863 unsigned long end) 864 { 865 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is 866 * enabled since __va() is called too early. ARM64 does make use 867 * of phys_initrd_start/phys_initrd_size so we can skip this 868 * conversion. 869 */ 870 if (!IS_ENABLED(CONFIG_ARM64)) { 871 initrd_start = (unsigned long)__va(start); 872 initrd_end = (unsigned long)__va(end); 873 initrd_below_start_ok = 1; 874 } 875 } 876 877 /** 878 * early_init_dt_check_for_initrd - Decode initrd location from flat tree 879 * @node: reference to node containing initrd location ('chosen') 880 */ 881 static void __init early_init_dt_check_for_initrd(unsigned long node) 882 { 883 u64 start, end; 884 int len; 885 const __be32 *prop; 886 887 pr_debug("Looking for initrd properties... "); 888 889 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); 890 if (!prop) 891 return; 892 start = of_read_number(prop, len/4); 893 894 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); 895 if (!prop) 896 return; 897 end = of_read_number(prop, len/4); 898 899 __early_init_dt_declare_initrd(start, end); 900 phys_initrd_start = start; 901 phys_initrd_size = end - start; 902 903 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", 904 (unsigned long long)start, (unsigned long long)end); 905 } 906 #else 907 static inline void early_init_dt_check_for_initrd(unsigned long node) 908 { 909 } 910 #endif /* CONFIG_BLK_DEV_INITRD */ 911 912 #ifdef CONFIG_SERIAL_EARLYCON 913 914 int __init early_init_dt_scan_chosen_stdout(void) 915 { 916 int offset; 917 const char *p, *q, *options = NULL; 918 int l; 919 const struct earlycon_id *match; 920 const void *fdt = initial_boot_params; 921 922 offset = fdt_path_offset(fdt, "/chosen"); 923 if (offset < 0) 924 offset = fdt_path_offset(fdt, "/chosen@0"); 925 if (offset < 0) 926 return -ENOENT; 927 928 p = fdt_getprop(fdt, offset, "stdout-path", &l); 929 if (!p) 930 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); 931 if (!p || !l) 932 return -ENOENT; 933 934 q = strchrnul(p, ':'); 935 if (*q != '\0') 936 options = q + 1; 937 l = q - p; 938 939 /* Get the node specified by stdout-path */ 940 offset = fdt_path_offset_namelen(fdt, p, l); 941 if (offset < 0) { 942 pr_warn("earlycon: stdout-path %.*s not found\n", l, p); 943 return 0; 944 } 945 946 for (match = __earlycon_table; match < __earlycon_table_end; match++) { 947 if (!match->compatible[0]) 948 continue; 949 950 if (fdt_node_check_compatible(fdt, offset, match->compatible)) 951 continue; 952 953 if (of_setup_earlycon(match, offset, options) == 0) 954 return 0; 955 } 956 return -ENODEV; 957 } 958 #endif 959 960 /** 961 * early_init_dt_scan_root - fetch the top level address and size cells 962 */ 963 int __init early_init_dt_scan_root(unsigned long node, const char *uname, 964 int depth, void *data) 965 { 966 const __be32 *prop; 967 968 if (depth != 0) 969 return 0; 970 971 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 972 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 973 974 prop = of_get_flat_dt_prop(node, "#size-cells", NULL); 975 if (prop) 976 dt_root_size_cells = be32_to_cpup(prop); 977 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); 978 979 prop = of_get_flat_dt_prop(node, "#address-cells", NULL); 980 if (prop) 981 dt_root_addr_cells = be32_to_cpup(prop); 982 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); 983 984 /* break now */ 985 return 1; 986 } 987 988 u64 __init dt_mem_next_cell(int s, const __be32 **cellp) 989 { 990 const __be32 *p = *cellp; 991 992 *cellp = p + s; 993 return of_read_number(p, s); 994 } 995 996 /** 997 * early_init_dt_scan_memory - Look for and parse memory nodes 998 */ 999 int __init early_init_dt_scan_memory(unsigned long node, const char *uname, 1000 int depth, void *data) 1001 { 1002 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 1003 const __be32 *reg, *endp; 1004 int l; 1005 bool hotpluggable; 1006 1007 /* We are scanning "memory" nodes only */ 1008 if (type == NULL || strcmp(type, "memory") != 0) 1009 return 0; 1010 1011 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); 1012 if (reg == NULL) 1013 reg = of_get_flat_dt_prop(node, "reg", &l); 1014 if (reg == NULL) 1015 return 0; 1016 1017 endp = reg + (l / sizeof(__be32)); 1018 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); 1019 1020 pr_debug("memory scan node %s, reg size %d,\n", uname, l); 1021 1022 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { 1023 u64 base, size; 1024 1025 base = dt_mem_next_cell(dt_root_addr_cells, ®); 1026 size = dt_mem_next_cell(dt_root_size_cells, ®); 1027 1028 if (size == 0) 1029 continue; 1030 pr_debug(" - %llx , %llx\n", (unsigned long long)base, 1031 (unsigned long long)size); 1032 1033 early_init_dt_add_memory_arch(base, size); 1034 1035 if (!hotpluggable) 1036 continue; 1037 1038 if (early_init_dt_mark_hotplug_memory_arch(base, size)) 1039 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", 1040 base, base + size); 1041 } 1042 1043 return 0; 1044 } 1045 1046 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, 1047 int depth, void *data) 1048 { 1049 int l; 1050 const char *p; 1051 const void *rng_seed; 1052 1053 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); 1054 1055 if (depth != 1 || !data || 1056 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) 1057 return 0; 1058 1059 early_init_dt_check_for_initrd(node); 1060 1061 /* Retrieve command line */ 1062 p = of_get_flat_dt_prop(node, "bootargs", &l); 1063 if (p != NULL && l > 0) 1064 strlcpy(data, p, min(l, COMMAND_LINE_SIZE)); 1065 1066 /* 1067 * CONFIG_CMDLINE is meant to be a default in case nothing else 1068 * managed to set the command line, unless CONFIG_CMDLINE_FORCE 1069 * is set in which case we override whatever was found earlier. 1070 */ 1071 #ifdef CONFIG_CMDLINE 1072 #if defined(CONFIG_CMDLINE_EXTEND) 1073 strlcat(data, " ", COMMAND_LINE_SIZE); 1074 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1075 #elif defined(CONFIG_CMDLINE_FORCE) 1076 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1077 #else 1078 /* No arguments from boot loader, use kernel's cmdl*/ 1079 if (!((char *)data)[0]) 1080 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); 1081 #endif 1082 #endif /* CONFIG_CMDLINE */ 1083 1084 pr_debug("Command line is: %s\n", (char *)data); 1085 1086 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); 1087 if (rng_seed && l > 0) { 1088 add_bootloader_randomness(rng_seed, l); 1089 1090 /* try to clear seed so it won't be found. */ 1091 fdt_nop_property(initial_boot_params, node, "rng-seed"); 1092 1093 /* update CRC check value */ 1094 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1095 fdt_totalsize(initial_boot_params)); 1096 } 1097 1098 /* break now */ 1099 return 1; 1100 } 1101 1102 #ifndef MIN_MEMBLOCK_ADDR 1103 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) 1104 #endif 1105 #ifndef MAX_MEMBLOCK_ADDR 1106 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) 1107 #endif 1108 1109 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) 1110 { 1111 const u64 phys_offset = MIN_MEMBLOCK_ADDR; 1112 1113 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { 1114 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1115 base, base + size); 1116 return; 1117 } 1118 1119 if (!PAGE_ALIGNED(base)) { 1120 size -= PAGE_SIZE - (base & ~PAGE_MASK); 1121 base = PAGE_ALIGN(base); 1122 } 1123 size &= PAGE_MASK; 1124 1125 if (base > MAX_MEMBLOCK_ADDR) { 1126 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1127 base, base + size); 1128 return; 1129 } 1130 1131 if (base + size - 1 > MAX_MEMBLOCK_ADDR) { 1132 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1133 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); 1134 size = MAX_MEMBLOCK_ADDR - base + 1; 1135 } 1136 1137 if (base + size < phys_offset) { 1138 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", 1139 base, base + size); 1140 return; 1141 } 1142 if (base < phys_offset) { 1143 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", 1144 base, phys_offset); 1145 size -= phys_offset - base; 1146 base = phys_offset; 1147 } 1148 memblock_add(base, size); 1149 } 1150 1151 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size) 1152 { 1153 return memblock_mark_hotplug(base, size); 1154 } 1155 1156 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base, 1157 phys_addr_t size, bool nomap) 1158 { 1159 if (nomap) { 1160 /* 1161 * If the memory is already reserved (by another region), we 1162 * should not allow it to be marked nomap. 1163 */ 1164 if (memblock_is_region_reserved(base, size)) 1165 return -EBUSY; 1166 1167 return memblock_mark_nomap(base, size); 1168 } 1169 return memblock_reserve(base, size); 1170 } 1171 1172 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) 1173 { 1174 void *ptr = memblock_alloc(size, align); 1175 1176 if (!ptr) 1177 panic("%s: Failed to allocate %llu bytes align=0x%llx\n", 1178 __func__, size, align); 1179 1180 return ptr; 1181 } 1182 1183 bool __init early_init_dt_verify(void *params) 1184 { 1185 if (!params) 1186 return false; 1187 1188 /* check device tree validity */ 1189 if (fdt_check_header(params)) 1190 return false; 1191 1192 /* Setup flat device-tree pointer */ 1193 initial_boot_params = params; 1194 of_fdt_crc32 = crc32_be(~0, initial_boot_params, 1195 fdt_totalsize(initial_boot_params)); 1196 return true; 1197 } 1198 1199 1200 void __init early_init_dt_scan_nodes(void) 1201 { 1202 int rc = 0; 1203 1204 /* Retrieve various information from the /chosen node */ 1205 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); 1206 if (!rc) 1207 pr_warn("No chosen node found, continuing without\n"); 1208 1209 /* Initialize {size,address}-cells info */ 1210 of_scan_flat_dt(early_init_dt_scan_root, NULL); 1211 1212 /* Setup memory, calling early_init_dt_add_memory_arch */ 1213 of_scan_flat_dt(early_init_dt_scan_memory, NULL); 1214 } 1215 1216 bool __init early_init_dt_scan(void *params) 1217 { 1218 bool status; 1219 1220 status = early_init_dt_verify(params); 1221 if (!status) 1222 return false; 1223 1224 early_init_dt_scan_nodes(); 1225 return true; 1226 } 1227 1228 /** 1229 * unflatten_device_tree - create tree of device_nodes from flat blob 1230 * 1231 * unflattens the device-tree passed by the firmware, creating the 1232 * tree of struct device_node. It also fills the "name" and "type" 1233 * pointers of the nodes so the normal device-tree walking functions 1234 * can be used. 1235 */ 1236 void __init unflatten_device_tree(void) 1237 { 1238 __unflatten_device_tree(initial_boot_params, NULL, &of_root, 1239 early_init_dt_alloc_memory_arch, false); 1240 1241 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ 1242 of_alias_scan(early_init_dt_alloc_memory_arch); 1243 1244 unittest_unflatten_overlay_base(); 1245 } 1246 1247 /** 1248 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob 1249 * 1250 * Copies and unflattens the device-tree passed by the firmware, creating the 1251 * tree of struct device_node. It also fills the "name" and "type" 1252 * pointers of the nodes so the normal device-tree walking functions 1253 * can be used. This should only be used when the FDT memory has not been 1254 * reserved such is the case when the FDT is built-in to the kernel init 1255 * section. If the FDT memory is reserved already then unflatten_device_tree 1256 * should be used instead. 1257 */ 1258 void __init unflatten_and_copy_device_tree(void) 1259 { 1260 int size; 1261 void *dt; 1262 1263 if (!initial_boot_params) { 1264 pr_warn("No valid device tree found, continuing without\n"); 1265 return; 1266 } 1267 1268 size = fdt_totalsize(initial_boot_params); 1269 dt = early_init_dt_alloc_memory_arch(size, 1270 roundup_pow_of_two(FDT_V17_SIZE)); 1271 1272 if (dt) { 1273 memcpy(dt, initial_boot_params, size); 1274 initial_boot_params = dt; 1275 } 1276 unflatten_device_tree(); 1277 } 1278 1279 #ifdef CONFIG_SYSFS 1280 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, 1281 struct bin_attribute *bin_attr, 1282 char *buf, loff_t off, size_t count) 1283 { 1284 memcpy(buf, initial_boot_params + off, count); 1285 return count; 1286 } 1287 1288 static int __init of_fdt_raw_init(void) 1289 { 1290 static struct bin_attribute of_fdt_raw_attr = 1291 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); 1292 1293 if (!initial_boot_params) 1294 return 0; 1295 1296 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, 1297 fdt_totalsize(initial_boot_params))) { 1298 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); 1299 return 0; 1300 } 1301 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); 1302 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); 1303 } 1304 late_initcall(of_fdt_raw_init); 1305 #endif 1306 1307 #endif /* CONFIG_OF_EARLY_FLATTREE */ 1308