1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 do { 94 if (np->parent) 95 np = np->parent; 96 if (!of_property_read_u32(np, "#address-cells", &cells)) 97 return cells; 98 } while (np->parent); 99 /* No #address-cells property for the root node */ 100 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 101 } 102 EXPORT_SYMBOL(of_n_addr_cells); 103 104 int of_n_size_cells(struct device_node *np) 105 { 106 u32 cells; 107 108 do { 109 if (np->parent) 110 np = np->parent; 111 if (!of_property_read_u32(np, "#size-cells", &cells)) 112 return cells; 113 } while (np->parent); 114 /* No #size-cells property for the root node */ 115 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 116 } 117 EXPORT_SYMBOL(of_n_size_cells); 118 119 #ifdef CONFIG_NUMA 120 int __weak of_node_to_nid(struct device_node *np) 121 { 122 return NUMA_NO_NODE; 123 } 124 #endif 125 126 /* 127 * Assumptions behind phandle_cache implementation: 128 * - phandle property values are in a contiguous range of 1..n 129 * 130 * If the assumptions do not hold, then 131 * - the phandle lookup overhead reduction provided by the cache 132 * will likely be less 133 */ 134 135 static struct device_node **phandle_cache; 136 static u32 phandle_cache_mask; 137 138 /* 139 * Caller must hold devtree_lock. 140 */ 141 static void __of_free_phandle_cache(void) 142 { 143 u32 cache_entries = phandle_cache_mask + 1; 144 u32 k; 145 146 if (!phandle_cache) 147 return; 148 149 for (k = 0; k < cache_entries; k++) 150 of_node_put(phandle_cache[k]); 151 152 kfree(phandle_cache); 153 phandle_cache = NULL; 154 } 155 156 int of_free_phandle_cache(void) 157 { 158 unsigned long flags; 159 160 raw_spin_lock_irqsave(&devtree_lock, flags); 161 162 __of_free_phandle_cache(); 163 164 raw_spin_unlock_irqrestore(&devtree_lock, flags); 165 166 return 0; 167 } 168 #if !defined(CONFIG_MODULES) 169 late_initcall_sync(of_free_phandle_cache); 170 #endif 171 172 /* 173 * Caller must hold devtree_lock. 174 */ 175 void __of_free_phandle_cache_entry(phandle handle) 176 { 177 phandle masked_handle; 178 struct device_node *np; 179 180 if (!handle) 181 return; 182 183 masked_handle = handle & phandle_cache_mask; 184 185 if (phandle_cache) { 186 np = phandle_cache[masked_handle]; 187 if (np && handle == np->phandle) { 188 of_node_put(np); 189 phandle_cache[masked_handle] = NULL; 190 } 191 } 192 } 193 194 void of_populate_phandle_cache(void) 195 { 196 unsigned long flags; 197 u32 cache_entries; 198 struct device_node *np; 199 u32 phandles = 0; 200 201 raw_spin_lock_irqsave(&devtree_lock, flags); 202 203 __of_free_phandle_cache(); 204 205 for_each_of_allnodes(np) 206 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 207 phandles++; 208 209 if (!phandles) 210 goto out; 211 212 cache_entries = roundup_pow_of_two(phandles); 213 phandle_cache_mask = cache_entries - 1; 214 215 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), 216 GFP_ATOMIC); 217 if (!phandle_cache) 218 goto out; 219 220 for_each_of_allnodes(np) 221 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) { 222 of_node_get(np); 223 phandle_cache[np->phandle & phandle_cache_mask] = np; 224 } 225 226 out: 227 raw_spin_unlock_irqrestore(&devtree_lock, flags); 228 } 229 230 void __init of_core_init(void) 231 { 232 struct device_node *np; 233 234 of_populate_phandle_cache(); 235 236 /* Create the kset, and register existing nodes */ 237 mutex_lock(&of_mutex); 238 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 239 if (!of_kset) { 240 mutex_unlock(&of_mutex); 241 pr_err("failed to register existing nodes\n"); 242 return; 243 } 244 for_each_of_allnodes(np) 245 __of_attach_node_sysfs(np); 246 mutex_unlock(&of_mutex); 247 248 /* Symlink in /proc as required by userspace ABI */ 249 if (of_root) 250 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 251 } 252 253 static struct property *__of_find_property(const struct device_node *np, 254 const char *name, int *lenp) 255 { 256 struct property *pp; 257 258 if (!np) 259 return NULL; 260 261 for (pp = np->properties; pp; pp = pp->next) { 262 if (of_prop_cmp(pp->name, name) == 0) { 263 if (lenp) 264 *lenp = pp->length; 265 break; 266 } 267 } 268 269 return pp; 270 } 271 272 struct property *of_find_property(const struct device_node *np, 273 const char *name, 274 int *lenp) 275 { 276 struct property *pp; 277 unsigned long flags; 278 279 raw_spin_lock_irqsave(&devtree_lock, flags); 280 pp = __of_find_property(np, name, lenp); 281 raw_spin_unlock_irqrestore(&devtree_lock, flags); 282 283 return pp; 284 } 285 EXPORT_SYMBOL(of_find_property); 286 287 struct device_node *__of_find_all_nodes(struct device_node *prev) 288 { 289 struct device_node *np; 290 if (!prev) { 291 np = of_root; 292 } else if (prev->child) { 293 np = prev->child; 294 } else { 295 /* Walk back up looking for a sibling, or the end of the structure */ 296 np = prev; 297 while (np->parent && !np->sibling) 298 np = np->parent; 299 np = np->sibling; /* Might be null at the end of the tree */ 300 } 301 return np; 302 } 303 304 /** 305 * of_find_all_nodes - Get next node in global list 306 * @prev: Previous node or NULL to start iteration 307 * of_node_put() will be called on it 308 * 309 * Returns a node pointer with refcount incremented, use 310 * of_node_put() on it when done. 311 */ 312 struct device_node *of_find_all_nodes(struct device_node *prev) 313 { 314 struct device_node *np; 315 unsigned long flags; 316 317 raw_spin_lock_irqsave(&devtree_lock, flags); 318 np = __of_find_all_nodes(prev); 319 of_node_get(np); 320 of_node_put(prev); 321 raw_spin_unlock_irqrestore(&devtree_lock, flags); 322 return np; 323 } 324 EXPORT_SYMBOL(of_find_all_nodes); 325 326 /* 327 * Find a property with a given name for a given node 328 * and return the value. 329 */ 330 const void *__of_get_property(const struct device_node *np, 331 const char *name, int *lenp) 332 { 333 struct property *pp = __of_find_property(np, name, lenp); 334 335 return pp ? pp->value : NULL; 336 } 337 338 /* 339 * Find a property with a given name for a given node 340 * and return the value. 341 */ 342 const void *of_get_property(const struct device_node *np, const char *name, 343 int *lenp) 344 { 345 struct property *pp = of_find_property(np, name, lenp); 346 347 return pp ? pp->value : NULL; 348 } 349 EXPORT_SYMBOL(of_get_property); 350 351 /* 352 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 353 * 354 * @cpu: logical cpu index of a core/thread 355 * @phys_id: physical identifier of a core/thread 356 * 357 * CPU logical to physical index mapping is architecture specific. 358 * However this __weak function provides a default match of physical 359 * id to logical cpu index. phys_id provided here is usually values read 360 * from the device tree which must match the hardware internal registers. 361 * 362 * Returns true if the physical identifier and the logical cpu index 363 * correspond to the same core/thread, false otherwise. 364 */ 365 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 366 { 367 return (u32)phys_id == cpu; 368 } 369 370 /** 371 * Checks if the given "prop_name" property holds the physical id of the 372 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 373 * NULL, local thread number within the core is returned in it. 374 */ 375 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 376 const char *prop_name, int cpu, unsigned int *thread) 377 { 378 const __be32 *cell; 379 int ac, prop_len, tid; 380 u64 hwid; 381 382 ac = of_n_addr_cells(cpun); 383 cell = of_get_property(cpun, prop_name, &prop_len); 384 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 385 return true; 386 if (!cell || !ac) 387 return false; 388 prop_len /= sizeof(*cell) * ac; 389 for (tid = 0; tid < prop_len; tid++) { 390 hwid = of_read_number(cell, ac); 391 if (arch_match_cpu_phys_id(cpu, hwid)) { 392 if (thread) 393 *thread = tid; 394 return true; 395 } 396 cell += ac; 397 } 398 return false; 399 } 400 401 /* 402 * arch_find_n_match_cpu_physical_id - See if the given device node is 403 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 404 * else false. If 'thread' is non-NULL, the local thread number within the 405 * core is returned in it. 406 */ 407 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 408 int cpu, unsigned int *thread) 409 { 410 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 411 * for thread ids on PowerPC. If it doesn't exist fallback to 412 * standard "reg" property. 413 */ 414 if (IS_ENABLED(CONFIG_PPC) && 415 __of_find_n_match_cpu_property(cpun, 416 "ibm,ppc-interrupt-server#s", 417 cpu, thread)) 418 return true; 419 420 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 421 } 422 423 /** 424 * of_get_cpu_node - Get device node associated with the given logical CPU 425 * 426 * @cpu: CPU number(logical index) for which device node is required 427 * @thread: if not NULL, local thread number within the physical core is 428 * returned 429 * 430 * The main purpose of this function is to retrieve the device node for the 431 * given logical CPU index. It should be used to initialize the of_node in 432 * cpu device. Once of_node in cpu device is populated, all the further 433 * references can use that instead. 434 * 435 * CPU logical to physical index mapping is architecture specific and is built 436 * before booting secondary cores. This function uses arch_match_cpu_phys_id 437 * which can be overridden by architecture specific implementation. 438 * 439 * Returns a node pointer for the logical cpu with refcount incremented, use 440 * of_node_put() on it when done. Returns NULL if not found. 441 */ 442 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 443 { 444 struct device_node *cpun; 445 446 for_each_of_cpu_node(cpun) { 447 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 448 return cpun; 449 } 450 return NULL; 451 } 452 EXPORT_SYMBOL(of_get_cpu_node); 453 454 /** 455 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 456 * 457 * @cpu_node: Pointer to the device_node for CPU. 458 * 459 * Returns the logical CPU number of the given CPU device_node. 460 * Returns -ENODEV if the CPU is not found. 461 */ 462 int of_cpu_node_to_id(struct device_node *cpu_node) 463 { 464 int cpu; 465 bool found = false; 466 struct device_node *np; 467 468 for_each_possible_cpu(cpu) { 469 np = of_cpu_device_node_get(cpu); 470 found = (cpu_node == np); 471 of_node_put(np); 472 if (found) 473 return cpu; 474 } 475 476 return -ENODEV; 477 } 478 EXPORT_SYMBOL(of_cpu_node_to_id); 479 480 /** 481 * __of_device_is_compatible() - Check if the node matches given constraints 482 * @device: pointer to node 483 * @compat: required compatible string, NULL or "" for any match 484 * @type: required device_type value, NULL or "" for any match 485 * @name: required node name, NULL or "" for any match 486 * 487 * Checks if the given @compat, @type and @name strings match the 488 * properties of the given @device. A constraints can be skipped by 489 * passing NULL or an empty string as the constraint. 490 * 491 * Returns 0 for no match, and a positive integer on match. The return 492 * value is a relative score with larger values indicating better 493 * matches. The score is weighted for the most specific compatible value 494 * to get the highest score. Matching type is next, followed by matching 495 * name. Practically speaking, this results in the following priority 496 * order for matches: 497 * 498 * 1. specific compatible && type && name 499 * 2. specific compatible && type 500 * 3. specific compatible && name 501 * 4. specific compatible 502 * 5. general compatible && type && name 503 * 6. general compatible && type 504 * 7. general compatible && name 505 * 8. general compatible 506 * 9. type && name 507 * 10. type 508 * 11. name 509 */ 510 static int __of_device_is_compatible(const struct device_node *device, 511 const char *compat, const char *type, const char *name) 512 { 513 struct property *prop; 514 const char *cp; 515 int index = 0, score = 0; 516 517 /* Compatible match has highest priority */ 518 if (compat && compat[0]) { 519 prop = __of_find_property(device, "compatible", NULL); 520 for (cp = of_prop_next_string(prop, NULL); cp; 521 cp = of_prop_next_string(prop, cp), index++) { 522 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 523 score = INT_MAX/2 - (index << 2); 524 break; 525 } 526 } 527 if (!score) 528 return 0; 529 } 530 531 /* Matching type is better than matching name */ 532 if (type && type[0]) { 533 if (!__of_node_is_type(device, type)) 534 return 0; 535 score += 2; 536 } 537 538 /* Matching name is a bit better than not */ 539 if (name && name[0]) { 540 if (!of_node_name_eq(device, name)) 541 return 0; 542 score++; 543 } 544 545 return score; 546 } 547 548 /** Checks if the given "compat" string matches one of the strings in 549 * the device's "compatible" property 550 */ 551 int of_device_is_compatible(const struct device_node *device, 552 const char *compat) 553 { 554 unsigned long flags; 555 int res; 556 557 raw_spin_lock_irqsave(&devtree_lock, flags); 558 res = __of_device_is_compatible(device, compat, NULL, NULL); 559 raw_spin_unlock_irqrestore(&devtree_lock, flags); 560 return res; 561 } 562 EXPORT_SYMBOL(of_device_is_compatible); 563 564 /** Checks if the device is compatible with any of the entries in 565 * a NULL terminated array of strings. Returns the best match 566 * score or 0. 567 */ 568 int of_device_compatible_match(struct device_node *device, 569 const char *const *compat) 570 { 571 unsigned int tmp, score = 0; 572 573 if (!compat) 574 return 0; 575 576 while (*compat) { 577 tmp = of_device_is_compatible(device, *compat); 578 if (tmp > score) 579 score = tmp; 580 compat++; 581 } 582 583 return score; 584 } 585 586 /** 587 * of_machine_is_compatible - Test root of device tree for a given compatible value 588 * @compat: compatible string to look for in root node's compatible property. 589 * 590 * Returns a positive integer if the root node has the given value in its 591 * compatible property. 592 */ 593 int of_machine_is_compatible(const char *compat) 594 { 595 struct device_node *root; 596 int rc = 0; 597 598 root = of_find_node_by_path("/"); 599 if (root) { 600 rc = of_device_is_compatible(root, compat); 601 of_node_put(root); 602 } 603 return rc; 604 } 605 EXPORT_SYMBOL(of_machine_is_compatible); 606 607 /** 608 * __of_device_is_available - check if a device is available for use 609 * 610 * @device: Node to check for availability, with locks already held 611 * 612 * Returns true if the status property is absent or set to "okay" or "ok", 613 * false otherwise 614 */ 615 static bool __of_device_is_available(const struct device_node *device) 616 { 617 const char *status; 618 int statlen; 619 620 if (!device) 621 return false; 622 623 status = __of_get_property(device, "status", &statlen); 624 if (status == NULL) 625 return true; 626 627 if (statlen > 0) { 628 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 629 return true; 630 } 631 632 return false; 633 } 634 635 /** 636 * of_device_is_available - check if a device is available for use 637 * 638 * @device: Node to check for availability 639 * 640 * Returns true if the status property is absent or set to "okay" or "ok", 641 * false otherwise 642 */ 643 bool of_device_is_available(const struct device_node *device) 644 { 645 unsigned long flags; 646 bool res; 647 648 raw_spin_lock_irqsave(&devtree_lock, flags); 649 res = __of_device_is_available(device); 650 raw_spin_unlock_irqrestore(&devtree_lock, flags); 651 return res; 652 653 } 654 EXPORT_SYMBOL(of_device_is_available); 655 656 /** 657 * of_device_is_big_endian - check if a device has BE registers 658 * 659 * @device: Node to check for endianness 660 * 661 * Returns true if the device has a "big-endian" property, or if the kernel 662 * was compiled for BE *and* the device has a "native-endian" property. 663 * Returns false otherwise. 664 * 665 * Callers would nominally use ioread32be/iowrite32be if 666 * of_device_is_big_endian() == true, or readl/writel otherwise. 667 */ 668 bool of_device_is_big_endian(const struct device_node *device) 669 { 670 if (of_property_read_bool(device, "big-endian")) 671 return true; 672 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 673 of_property_read_bool(device, "native-endian")) 674 return true; 675 return false; 676 } 677 EXPORT_SYMBOL(of_device_is_big_endian); 678 679 /** 680 * of_get_parent - Get a node's parent if any 681 * @node: Node to get parent 682 * 683 * Returns a node pointer with refcount incremented, use 684 * of_node_put() on it when done. 685 */ 686 struct device_node *of_get_parent(const struct device_node *node) 687 { 688 struct device_node *np; 689 unsigned long flags; 690 691 if (!node) 692 return NULL; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 np = of_node_get(node->parent); 696 raw_spin_unlock_irqrestore(&devtree_lock, flags); 697 return np; 698 } 699 EXPORT_SYMBOL(of_get_parent); 700 701 /** 702 * of_get_next_parent - Iterate to a node's parent 703 * @node: Node to get parent of 704 * 705 * This is like of_get_parent() except that it drops the 706 * refcount on the passed node, making it suitable for iterating 707 * through a node's parents. 708 * 709 * Returns a node pointer with refcount incremented, use 710 * of_node_put() on it when done. 711 */ 712 struct device_node *of_get_next_parent(struct device_node *node) 713 { 714 struct device_node *parent; 715 unsigned long flags; 716 717 if (!node) 718 return NULL; 719 720 raw_spin_lock_irqsave(&devtree_lock, flags); 721 parent = of_node_get(node->parent); 722 of_node_put(node); 723 raw_spin_unlock_irqrestore(&devtree_lock, flags); 724 return parent; 725 } 726 EXPORT_SYMBOL(of_get_next_parent); 727 728 static struct device_node *__of_get_next_child(const struct device_node *node, 729 struct device_node *prev) 730 { 731 struct device_node *next; 732 733 if (!node) 734 return NULL; 735 736 next = prev ? prev->sibling : node->child; 737 for (; next; next = next->sibling) 738 if (of_node_get(next)) 739 break; 740 of_node_put(prev); 741 return next; 742 } 743 #define __for_each_child_of_node(parent, child) \ 744 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 745 child = __of_get_next_child(parent, child)) 746 747 /** 748 * of_get_next_child - Iterate a node childs 749 * @node: parent node 750 * @prev: previous child of the parent node, or NULL to get first 751 * 752 * Returns a node pointer with refcount incremented, use of_node_put() on 753 * it when done. Returns NULL when prev is the last child. Decrements the 754 * refcount of prev. 755 */ 756 struct device_node *of_get_next_child(const struct device_node *node, 757 struct device_node *prev) 758 { 759 struct device_node *next; 760 unsigned long flags; 761 762 raw_spin_lock_irqsave(&devtree_lock, flags); 763 next = __of_get_next_child(node, prev); 764 raw_spin_unlock_irqrestore(&devtree_lock, flags); 765 return next; 766 } 767 EXPORT_SYMBOL(of_get_next_child); 768 769 /** 770 * of_get_next_available_child - Find the next available child node 771 * @node: parent node 772 * @prev: previous child of the parent node, or NULL to get first 773 * 774 * This function is like of_get_next_child(), except that it 775 * automatically skips any disabled nodes (i.e. status = "disabled"). 776 */ 777 struct device_node *of_get_next_available_child(const struct device_node *node, 778 struct device_node *prev) 779 { 780 struct device_node *next; 781 unsigned long flags; 782 783 if (!node) 784 return NULL; 785 786 raw_spin_lock_irqsave(&devtree_lock, flags); 787 next = prev ? prev->sibling : node->child; 788 for (; next; next = next->sibling) { 789 if (!__of_device_is_available(next)) 790 continue; 791 if (of_node_get(next)) 792 break; 793 } 794 of_node_put(prev); 795 raw_spin_unlock_irqrestore(&devtree_lock, flags); 796 return next; 797 } 798 EXPORT_SYMBOL(of_get_next_available_child); 799 800 /** 801 * of_get_next_cpu_node - Iterate on cpu nodes 802 * @prev: previous child of the /cpus node, or NULL to get first 803 * 804 * Returns a cpu node pointer with refcount incremented, use of_node_put() 805 * on it when done. Returns NULL when prev is the last child. Decrements 806 * the refcount of prev. 807 */ 808 struct device_node *of_get_next_cpu_node(struct device_node *prev) 809 { 810 struct device_node *next = NULL; 811 unsigned long flags; 812 struct device_node *node; 813 814 if (!prev) 815 node = of_find_node_by_path("/cpus"); 816 817 raw_spin_lock_irqsave(&devtree_lock, flags); 818 if (prev) 819 next = prev->sibling; 820 else if (node) { 821 next = node->child; 822 of_node_put(node); 823 } 824 for (; next; next = next->sibling) { 825 if (!(of_node_name_eq(next, "cpu") || 826 __of_node_is_type(next, "cpu"))) 827 continue; 828 if (of_node_get(next)) 829 break; 830 } 831 of_node_put(prev); 832 raw_spin_unlock_irqrestore(&devtree_lock, flags); 833 return next; 834 } 835 EXPORT_SYMBOL(of_get_next_cpu_node); 836 837 /** 838 * of_get_compatible_child - Find compatible child node 839 * @parent: parent node 840 * @compatible: compatible string 841 * 842 * Lookup child node whose compatible property contains the given compatible 843 * string. 844 * 845 * Returns a node pointer with refcount incremented, use of_node_put() on it 846 * when done; or NULL if not found. 847 */ 848 struct device_node *of_get_compatible_child(const struct device_node *parent, 849 const char *compatible) 850 { 851 struct device_node *child; 852 853 for_each_child_of_node(parent, child) { 854 if (of_device_is_compatible(child, compatible)) 855 break; 856 } 857 858 return child; 859 } 860 EXPORT_SYMBOL(of_get_compatible_child); 861 862 /** 863 * of_get_child_by_name - Find the child node by name for a given parent 864 * @node: parent node 865 * @name: child name to look for. 866 * 867 * This function looks for child node for given matching name 868 * 869 * Returns a node pointer if found, with refcount incremented, use 870 * of_node_put() on it when done. 871 * Returns NULL if node is not found. 872 */ 873 struct device_node *of_get_child_by_name(const struct device_node *node, 874 const char *name) 875 { 876 struct device_node *child; 877 878 for_each_child_of_node(node, child) 879 if (of_node_name_eq(child, name)) 880 break; 881 return child; 882 } 883 EXPORT_SYMBOL(of_get_child_by_name); 884 885 struct device_node *__of_find_node_by_path(struct device_node *parent, 886 const char *path) 887 { 888 struct device_node *child; 889 int len; 890 891 len = strcspn(path, "/:"); 892 if (!len) 893 return NULL; 894 895 __for_each_child_of_node(parent, child) { 896 const char *name = kbasename(child->full_name); 897 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 898 return child; 899 } 900 return NULL; 901 } 902 903 struct device_node *__of_find_node_by_full_path(struct device_node *node, 904 const char *path) 905 { 906 const char *separator = strchr(path, ':'); 907 908 while (node && *path == '/') { 909 struct device_node *tmp = node; 910 911 path++; /* Increment past '/' delimiter */ 912 node = __of_find_node_by_path(node, path); 913 of_node_put(tmp); 914 path = strchrnul(path, '/'); 915 if (separator && separator < path) 916 break; 917 } 918 return node; 919 } 920 921 /** 922 * of_find_node_opts_by_path - Find a node matching a full OF path 923 * @path: Either the full path to match, or if the path does not 924 * start with '/', the name of a property of the /aliases 925 * node (an alias). In the case of an alias, the node 926 * matching the alias' value will be returned. 927 * @opts: Address of a pointer into which to store the start of 928 * an options string appended to the end of the path with 929 * a ':' separator. 930 * 931 * Valid paths: 932 * /foo/bar Full path 933 * foo Valid alias 934 * foo/bar Valid alias + relative path 935 * 936 * Returns a node pointer with refcount incremented, use 937 * of_node_put() on it when done. 938 */ 939 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 940 { 941 struct device_node *np = NULL; 942 struct property *pp; 943 unsigned long flags; 944 const char *separator = strchr(path, ':'); 945 946 if (opts) 947 *opts = separator ? separator + 1 : NULL; 948 949 if (strcmp(path, "/") == 0) 950 return of_node_get(of_root); 951 952 /* The path could begin with an alias */ 953 if (*path != '/') { 954 int len; 955 const char *p = separator; 956 957 if (!p) 958 p = strchrnul(path, '/'); 959 len = p - path; 960 961 /* of_aliases must not be NULL */ 962 if (!of_aliases) 963 return NULL; 964 965 for_each_property_of_node(of_aliases, pp) { 966 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 967 np = of_find_node_by_path(pp->value); 968 break; 969 } 970 } 971 if (!np) 972 return NULL; 973 path = p; 974 } 975 976 /* Step down the tree matching path components */ 977 raw_spin_lock_irqsave(&devtree_lock, flags); 978 if (!np) 979 np = of_node_get(of_root); 980 np = __of_find_node_by_full_path(np, path); 981 raw_spin_unlock_irqrestore(&devtree_lock, flags); 982 return np; 983 } 984 EXPORT_SYMBOL(of_find_node_opts_by_path); 985 986 /** 987 * of_find_node_by_name - Find a node by its "name" property 988 * @from: The node to start searching from or NULL; the node 989 * you pass will not be searched, only the next one 990 * will. Typically, you pass what the previous call 991 * returned. of_node_put() will be called on @from. 992 * @name: The name string to match against 993 * 994 * Returns a node pointer with refcount incremented, use 995 * of_node_put() on it when done. 996 */ 997 struct device_node *of_find_node_by_name(struct device_node *from, 998 const char *name) 999 { 1000 struct device_node *np; 1001 unsigned long flags; 1002 1003 raw_spin_lock_irqsave(&devtree_lock, flags); 1004 for_each_of_allnodes_from(from, np) 1005 if (of_node_name_eq(np, name) && of_node_get(np)) 1006 break; 1007 of_node_put(from); 1008 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1009 return np; 1010 } 1011 EXPORT_SYMBOL(of_find_node_by_name); 1012 1013 /** 1014 * of_find_node_by_type - Find a node by its "device_type" property 1015 * @from: The node to start searching from, or NULL to start searching 1016 * the entire device tree. The node you pass will not be 1017 * searched, only the next one will; typically, you pass 1018 * what the previous call returned. of_node_put() will be 1019 * called on from for you. 1020 * @type: The type string to match against 1021 * 1022 * Returns a node pointer with refcount incremented, use 1023 * of_node_put() on it when done. 1024 */ 1025 struct device_node *of_find_node_by_type(struct device_node *from, 1026 const char *type) 1027 { 1028 struct device_node *np; 1029 unsigned long flags; 1030 1031 raw_spin_lock_irqsave(&devtree_lock, flags); 1032 for_each_of_allnodes_from(from, np) 1033 if (__of_node_is_type(np, type) && of_node_get(np)) 1034 break; 1035 of_node_put(from); 1036 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1037 return np; 1038 } 1039 EXPORT_SYMBOL(of_find_node_by_type); 1040 1041 /** 1042 * of_find_compatible_node - Find a node based on type and one of the 1043 * tokens in its "compatible" property 1044 * @from: The node to start searching from or NULL, the node 1045 * you pass will not be searched, only the next one 1046 * will; typically, you pass what the previous call 1047 * returned. of_node_put() will be called on it 1048 * @type: The type string to match "device_type" or NULL to ignore 1049 * @compatible: The string to match to one of the tokens in the device 1050 * "compatible" list. 1051 * 1052 * Returns a node pointer with refcount incremented, use 1053 * of_node_put() on it when done. 1054 */ 1055 struct device_node *of_find_compatible_node(struct device_node *from, 1056 const char *type, const char *compatible) 1057 { 1058 struct device_node *np; 1059 unsigned long flags; 1060 1061 raw_spin_lock_irqsave(&devtree_lock, flags); 1062 for_each_of_allnodes_from(from, np) 1063 if (__of_device_is_compatible(np, compatible, type, NULL) && 1064 of_node_get(np)) 1065 break; 1066 of_node_put(from); 1067 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1068 return np; 1069 } 1070 EXPORT_SYMBOL(of_find_compatible_node); 1071 1072 /** 1073 * of_find_node_with_property - Find a node which has a property with 1074 * the given name. 1075 * @from: The node to start searching from or NULL, the node 1076 * you pass will not be searched, only the next one 1077 * will; typically, you pass what the previous call 1078 * returned. of_node_put() will be called on it 1079 * @prop_name: The name of the property to look for. 1080 * 1081 * Returns a node pointer with refcount incremented, use 1082 * of_node_put() on it when done. 1083 */ 1084 struct device_node *of_find_node_with_property(struct device_node *from, 1085 const char *prop_name) 1086 { 1087 struct device_node *np; 1088 struct property *pp; 1089 unsigned long flags; 1090 1091 raw_spin_lock_irqsave(&devtree_lock, flags); 1092 for_each_of_allnodes_from(from, np) { 1093 for (pp = np->properties; pp; pp = pp->next) { 1094 if (of_prop_cmp(pp->name, prop_name) == 0) { 1095 of_node_get(np); 1096 goto out; 1097 } 1098 } 1099 } 1100 out: 1101 of_node_put(from); 1102 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1103 return np; 1104 } 1105 EXPORT_SYMBOL(of_find_node_with_property); 1106 1107 static 1108 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1109 const struct device_node *node) 1110 { 1111 const struct of_device_id *best_match = NULL; 1112 int score, best_score = 0; 1113 1114 if (!matches) 1115 return NULL; 1116 1117 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1118 score = __of_device_is_compatible(node, matches->compatible, 1119 matches->type, matches->name); 1120 if (score > best_score) { 1121 best_match = matches; 1122 best_score = score; 1123 } 1124 } 1125 1126 return best_match; 1127 } 1128 1129 /** 1130 * of_match_node - Tell if a device_node has a matching of_match structure 1131 * @matches: array of of device match structures to search in 1132 * @node: the of device structure to match against 1133 * 1134 * Low level utility function used by device matching. 1135 */ 1136 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1137 const struct device_node *node) 1138 { 1139 const struct of_device_id *match; 1140 unsigned long flags; 1141 1142 raw_spin_lock_irqsave(&devtree_lock, flags); 1143 match = __of_match_node(matches, node); 1144 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1145 return match; 1146 } 1147 EXPORT_SYMBOL(of_match_node); 1148 1149 /** 1150 * of_find_matching_node_and_match - Find a node based on an of_device_id 1151 * match table. 1152 * @from: The node to start searching from or NULL, the node 1153 * you pass will not be searched, only the next one 1154 * will; typically, you pass what the previous call 1155 * returned. of_node_put() will be called on it 1156 * @matches: array of of device match structures to search in 1157 * @match Updated to point at the matches entry which matched 1158 * 1159 * Returns a node pointer with refcount incremented, use 1160 * of_node_put() on it when done. 1161 */ 1162 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1163 const struct of_device_id *matches, 1164 const struct of_device_id **match) 1165 { 1166 struct device_node *np; 1167 const struct of_device_id *m; 1168 unsigned long flags; 1169 1170 if (match) 1171 *match = NULL; 1172 1173 raw_spin_lock_irqsave(&devtree_lock, flags); 1174 for_each_of_allnodes_from(from, np) { 1175 m = __of_match_node(matches, np); 1176 if (m && of_node_get(np)) { 1177 if (match) 1178 *match = m; 1179 break; 1180 } 1181 } 1182 of_node_put(from); 1183 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1184 return np; 1185 } 1186 EXPORT_SYMBOL(of_find_matching_node_and_match); 1187 1188 /** 1189 * of_modalias_node - Lookup appropriate modalias for a device node 1190 * @node: pointer to a device tree node 1191 * @modalias: Pointer to buffer that modalias value will be copied into 1192 * @len: Length of modalias value 1193 * 1194 * Based on the value of the compatible property, this routine will attempt 1195 * to choose an appropriate modalias value for a particular device tree node. 1196 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1197 * from the first entry in the compatible list property. 1198 * 1199 * This routine returns 0 on success, <0 on failure. 1200 */ 1201 int of_modalias_node(struct device_node *node, char *modalias, int len) 1202 { 1203 const char *compatible, *p; 1204 int cplen; 1205 1206 compatible = of_get_property(node, "compatible", &cplen); 1207 if (!compatible || strlen(compatible) > cplen) 1208 return -ENODEV; 1209 p = strchr(compatible, ','); 1210 strlcpy(modalias, p ? p + 1 : compatible, len); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(of_modalias_node); 1214 1215 /** 1216 * of_find_node_by_phandle - Find a node given a phandle 1217 * @handle: phandle of the node to find 1218 * 1219 * Returns a node pointer with refcount incremented, use 1220 * of_node_put() on it when done. 1221 */ 1222 struct device_node *of_find_node_by_phandle(phandle handle) 1223 { 1224 struct device_node *np = NULL; 1225 unsigned long flags; 1226 phandle masked_handle; 1227 1228 if (!handle) 1229 return NULL; 1230 1231 raw_spin_lock_irqsave(&devtree_lock, flags); 1232 1233 masked_handle = handle & phandle_cache_mask; 1234 1235 if (phandle_cache) { 1236 if (phandle_cache[masked_handle] && 1237 handle == phandle_cache[masked_handle]->phandle) 1238 np = phandle_cache[masked_handle]; 1239 if (np && of_node_check_flag(np, OF_DETACHED)) { 1240 WARN_ON(1); /* did not uncache np on node removal */ 1241 of_node_put(np); 1242 phandle_cache[masked_handle] = NULL; 1243 np = NULL; 1244 } 1245 } 1246 1247 if (!np) { 1248 for_each_of_allnodes(np) 1249 if (np->phandle == handle && 1250 !of_node_check_flag(np, OF_DETACHED)) { 1251 if (phandle_cache) { 1252 /* will put when removed from cache */ 1253 of_node_get(np); 1254 phandle_cache[masked_handle] = np; 1255 } 1256 break; 1257 } 1258 } 1259 1260 of_node_get(np); 1261 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1262 return np; 1263 } 1264 EXPORT_SYMBOL(of_find_node_by_phandle); 1265 1266 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1267 { 1268 int i; 1269 printk("%s %pOF", msg, args->np); 1270 for (i = 0; i < args->args_count; i++) { 1271 const char delim = i ? ',' : ':'; 1272 1273 pr_cont("%c%08x", delim, args->args[i]); 1274 } 1275 pr_cont("\n"); 1276 } 1277 1278 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1279 const struct device_node *np, 1280 const char *list_name, 1281 const char *cells_name, 1282 int cell_count) 1283 { 1284 const __be32 *list; 1285 int size; 1286 1287 memset(it, 0, sizeof(*it)); 1288 1289 list = of_get_property(np, list_name, &size); 1290 if (!list) 1291 return -ENOENT; 1292 1293 it->cells_name = cells_name; 1294 it->cell_count = cell_count; 1295 it->parent = np; 1296 it->list_end = list + size / sizeof(*list); 1297 it->phandle_end = list; 1298 it->cur = list; 1299 1300 return 0; 1301 } 1302 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1303 1304 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1305 { 1306 uint32_t count = 0; 1307 1308 if (it->node) { 1309 of_node_put(it->node); 1310 it->node = NULL; 1311 } 1312 1313 if (!it->cur || it->phandle_end >= it->list_end) 1314 return -ENOENT; 1315 1316 it->cur = it->phandle_end; 1317 1318 /* If phandle is 0, then it is an empty entry with no arguments. */ 1319 it->phandle = be32_to_cpup(it->cur++); 1320 1321 if (it->phandle) { 1322 1323 /* 1324 * Find the provider node and parse the #*-cells property to 1325 * determine the argument length. 1326 */ 1327 it->node = of_find_node_by_phandle(it->phandle); 1328 1329 if (it->cells_name) { 1330 if (!it->node) { 1331 pr_err("%pOF: could not find phandle\n", 1332 it->parent); 1333 goto err; 1334 } 1335 1336 if (of_property_read_u32(it->node, it->cells_name, 1337 &count)) { 1338 pr_err("%pOF: could not get %s for %pOF\n", 1339 it->parent, 1340 it->cells_name, 1341 it->node); 1342 goto err; 1343 } 1344 } else { 1345 count = it->cell_count; 1346 } 1347 1348 /* 1349 * Make sure that the arguments actually fit in the remaining 1350 * property data length 1351 */ 1352 if (it->cur + count > it->list_end) { 1353 pr_err("%pOF: arguments longer than property\n", 1354 it->parent); 1355 goto err; 1356 } 1357 } 1358 1359 it->phandle_end = it->cur + count; 1360 it->cur_count = count; 1361 1362 return 0; 1363 1364 err: 1365 if (it->node) { 1366 of_node_put(it->node); 1367 it->node = NULL; 1368 } 1369 1370 return -EINVAL; 1371 } 1372 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1373 1374 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1375 uint32_t *args, 1376 int size) 1377 { 1378 int i, count; 1379 1380 count = it->cur_count; 1381 1382 if (WARN_ON(size < count)) 1383 count = size; 1384 1385 for (i = 0; i < count; i++) 1386 args[i] = be32_to_cpup(it->cur++); 1387 1388 return count; 1389 } 1390 1391 static int __of_parse_phandle_with_args(const struct device_node *np, 1392 const char *list_name, 1393 const char *cells_name, 1394 int cell_count, int index, 1395 struct of_phandle_args *out_args) 1396 { 1397 struct of_phandle_iterator it; 1398 int rc, cur_index = 0; 1399 1400 /* Loop over the phandles until all the requested entry is found */ 1401 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1402 /* 1403 * All of the error cases bail out of the loop, so at 1404 * this point, the parsing is successful. If the requested 1405 * index matches, then fill the out_args structure and return, 1406 * or return -ENOENT for an empty entry. 1407 */ 1408 rc = -ENOENT; 1409 if (cur_index == index) { 1410 if (!it.phandle) 1411 goto err; 1412 1413 if (out_args) { 1414 int c; 1415 1416 c = of_phandle_iterator_args(&it, 1417 out_args->args, 1418 MAX_PHANDLE_ARGS); 1419 out_args->np = it.node; 1420 out_args->args_count = c; 1421 } else { 1422 of_node_put(it.node); 1423 } 1424 1425 /* Found it! return success */ 1426 return 0; 1427 } 1428 1429 cur_index++; 1430 } 1431 1432 /* 1433 * Unlock node before returning result; will be one of: 1434 * -ENOENT : index is for empty phandle 1435 * -EINVAL : parsing error on data 1436 */ 1437 1438 err: 1439 of_node_put(it.node); 1440 return rc; 1441 } 1442 1443 /** 1444 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1445 * @np: Pointer to device node holding phandle property 1446 * @phandle_name: Name of property holding a phandle value 1447 * @index: For properties holding a table of phandles, this is the index into 1448 * the table 1449 * 1450 * Returns the device_node pointer with refcount incremented. Use 1451 * of_node_put() on it when done. 1452 */ 1453 struct device_node *of_parse_phandle(const struct device_node *np, 1454 const char *phandle_name, int index) 1455 { 1456 struct of_phandle_args args; 1457 1458 if (index < 0) 1459 return NULL; 1460 1461 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1462 index, &args)) 1463 return NULL; 1464 1465 return args.np; 1466 } 1467 EXPORT_SYMBOL(of_parse_phandle); 1468 1469 /** 1470 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1471 * @np: pointer to a device tree node containing a list 1472 * @list_name: property name that contains a list 1473 * @cells_name: property name that specifies phandles' arguments count 1474 * @index: index of a phandle to parse out 1475 * @out_args: optional pointer to output arguments structure (will be filled) 1476 * 1477 * This function is useful to parse lists of phandles and their arguments. 1478 * Returns 0 on success and fills out_args, on error returns appropriate 1479 * errno value. 1480 * 1481 * Caller is responsible to call of_node_put() on the returned out_args->np 1482 * pointer. 1483 * 1484 * Example: 1485 * 1486 * phandle1: node1 { 1487 * #list-cells = <2>; 1488 * } 1489 * 1490 * phandle2: node2 { 1491 * #list-cells = <1>; 1492 * } 1493 * 1494 * node3 { 1495 * list = <&phandle1 1 2 &phandle2 3>; 1496 * } 1497 * 1498 * To get a device_node of the `node2' node you may call this: 1499 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1500 */ 1501 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1502 const char *cells_name, int index, 1503 struct of_phandle_args *out_args) 1504 { 1505 if (index < 0) 1506 return -EINVAL; 1507 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1508 index, out_args); 1509 } 1510 EXPORT_SYMBOL(of_parse_phandle_with_args); 1511 1512 /** 1513 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1514 * @np: pointer to a device tree node containing a list 1515 * @list_name: property name that contains a list 1516 * @stem_name: stem of property names that specify phandles' arguments count 1517 * @index: index of a phandle to parse out 1518 * @out_args: optional pointer to output arguments structure (will be filled) 1519 * 1520 * This function is useful to parse lists of phandles and their arguments. 1521 * Returns 0 on success and fills out_args, on error returns appropriate errno 1522 * value. The difference between this function and of_parse_phandle_with_args() 1523 * is that this API remaps a phandle if the node the phandle points to has 1524 * a <@stem_name>-map property. 1525 * 1526 * Caller is responsible to call of_node_put() on the returned out_args->np 1527 * pointer. 1528 * 1529 * Example: 1530 * 1531 * phandle1: node1 { 1532 * #list-cells = <2>; 1533 * } 1534 * 1535 * phandle2: node2 { 1536 * #list-cells = <1>; 1537 * } 1538 * 1539 * phandle3: node3 { 1540 * #list-cells = <1>; 1541 * list-map = <0 &phandle2 3>, 1542 * <1 &phandle2 2>, 1543 * <2 &phandle1 5 1>; 1544 * list-map-mask = <0x3>; 1545 * }; 1546 * 1547 * node4 { 1548 * list = <&phandle1 1 2 &phandle3 0>; 1549 * } 1550 * 1551 * To get a device_node of the `node2' node you may call this: 1552 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1553 */ 1554 int of_parse_phandle_with_args_map(const struct device_node *np, 1555 const char *list_name, 1556 const char *stem_name, 1557 int index, struct of_phandle_args *out_args) 1558 { 1559 char *cells_name, *map_name = NULL, *mask_name = NULL; 1560 char *pass_name = NULL; 1561 struct device_node *cur, *new = NULL; 1562 const __be32 *map, *mask, *pass; 1563 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1564 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1565 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1566 const __be32 *match_array = initial_match_array; 1567 int i, ret, map_len, match; 1568 u32 list_size, new_size; 1569 1570 if (index < 0) 1571 return -EINVAL; 1572 1573 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1574 if (!cells_name) 1575 return -ENOMEM; 1576 1577 ret = -ENOMEM; 1578 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1579 if (!map_name) 1580 goto free; 1581 1582 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1583 if (!mask_name) 1584 goto free; 1585 1586 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1587 if (!pass_name) 1588 goto free; 1589 1590 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1591 out_args); 1592 if (ret) 1593 goto free; 1594 1595 /* Get the #<list>-cells property */ 1596 cur = out_args->np; 1597 ret = of_property_read_u32(cur, cells_name, &list_size); 1598 if (ret < 0) 1599 goto put; 1600 1601 /* Precalculate the match array - this simplifies match loop */ 1602 for (i = 0; i < list_size; i++) 1603 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1604 1605 ret = -EINVAL; 1606 while (cur) { 1607 /* Get the <list>-map property */ 1608 map = of_get_property(cur, map_name, &map_len); 1609 if (!map) { 1610 ret = 0; 1611 goto free; 1612 } 1613 map_len /= sizeof(u32); 1614 1615 /* Get the <list>-map-mask property (optional) */ 1616 mask = of_get_property(cur, mask_name, NULL); 1617 if (!mask) 1618 mask = dummy_mask; 1619 /* Iterate through <list>-map property */ 1620 match = 0; 1621 while (map_len > (list_size + 1) && !match) { 1622 /* Compare specifiers */ 1623 match = 1; 1624 for (i = 0; i < list_size; i++, map_len--) 1625 match &= !((match_array[i] ^ *map++) & mask[i]); 1626 1627 of_node_put(new); 1628 new = of_find_node_by_phandle(be32_to_cpup(map)); 1629 map++; 1630 map_len--; 1631 1632 /* Check if not found */ 1633 if (!new) 1634 goto put; 1635 1636 if (!of_device_is_available(new)) 1637 match = 0; 1638 1639 ret = of_property_read_u32(new, cells_name, &new_size); 1640 if (ret) 1641 goto put; 1642 1643 /* Check for malformed properties */ 1644 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1645 goto put; 1646 if (map_len < new_size) 1647 goto put; 1648 1649 /* Move forward by new node's #<list>-cells amount */ 1650 map += new_size; 1651 map_len -= new_size; 1652 } 1653 if (!match) 1654 goto put; 1655 1656 /* Get the <list>-map-pass-thru property (optional) */ 1657 pass = of_get_property(cur, pass_name, NULL); 1658 if (!pass) 1659 pass = dummy_pass; 1660 1661 /* 1662 * Successfully parsed a <list>-map translation; copy new 1663 * specifier into the out_args structure, keeping the 1664 * bits specified in <list>-map-pass-thru. 1665 */ 1666 match_array = map - new_size; 1667 for (i = 0; i < new_size; i++) { 1668 __be32 val = *(map - new_size + i); 1669 1670 if (i < list_size) { 1671 val &= ~pass[i]; 1672 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1673 } 1674 1675 out_args->args[i] = be32_to_cpu(val); 1676 } 1677 out_args->args_count = list_size = new_size; 1678 /* Iterate again with new provider */ 1679 out_args->np = new; 1680 of_node_put(cur); 1681 cur = new; 1682 } 1683 put: 1684 of_node_put(cur); 1685 of_node_put(new); 1686 free: 1687 kfree(mask_name); 1688 kfree(map_name); 1689 kfree(cells_name); 1690 kfree(pass_name); 1691 1692 return ret; 1693 } 1694 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1695 1696 /** 1697 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1698 * @np: pointer to a device tree node containing a list 1699 * @list_name: property name that contains a list 1700 * @cell_count: number of argument cells following the phandle 1701 * @index: index of a phandle to parse out 1702 * @out_args: optional pointer to output arguments structure (will be filled) 1703 * 1704 * This function is useful to parse lists of phandles and their arguments. 1705 * Returns 0 on success and fills out_args, on error returns appropriate 1706 * errno value. 1707 * 1708 * Caller is responsible to call of_node_put() on the returned out_args->np 1709 * pointer. 1710 * 1711 * Example: 1712 * 1713 * phandle1: node1 { 1714 * } 1715 * 1716 * phandle2: node2 { 1717 * } 1718 * 1719 * node3 { 1720 * list = <&phandle1 0 2 &phandle2 2 3>; 1721 * } 1722 * 1723 * To get a device_node of the `node2' node you may call this: 1724 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1725 */ 1726 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1727 const char *list_name, int cell_count, 1728 int index, struct of_phandle_args *out_args) 1729 { 1730 if (index < 0) 1731 return -EINVAL; 1732 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1733 index, out_args); 1734 } 1735 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1736 1737 /** 1738 * of_count_phandle_with_args() - Find the number of phandles references in a property 1739 * @np: pointer to a device tree node containing a list 1740 * @list_name: property name that contains a list 1741 * @cells_name: property name that specifies phandles' arguments count 1742 * 1743 * Returns the number of phandle + argument tuples within a property. It 1744 * is a typical pattern to encode a list of phandle and variable 1745 * arguments into a single property. The number of arguments is encoded 1746 * by a property in the phandle-target node. For example, a gpios 1747 * property would contain a list of GPIO specifies consisting of a 1748 * phandle and 1 or more arguments. The number of arguments are 1749 * determined by the #gpio-cells property in the node pointed to by the 1750 * phandle. 1751 */ 1752 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1753 const char *cells_name) 1754 { 1755 struct of_phandle_iterator it; 1756 int rc, cur_index = 0; 1757 1758 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1759 if (rc) 1760 return rc; 1761 1762 while ((rc = of_phandle_iterator_next(&it)) == 0) 1763 cur_index += 1; 1764 1765 if (rc != -ENOENT) 1766 return rc; 1767 1768 return cur_index; 1769 } 1770 EXPORT_SYMBOL(of_count_phandle_with_args); 1771 1772 /** 1773 * __of_add_property - Add a property to a node without lock operations 1774 */ 1775 int __of_add_property(struct device_node *np, struct property *prop) 1776 { 1777 struct property **next; 1778 1779 prop->next = NULL; 1780 next = &np->properties; 1781 while (*next) { 1782 if (strcmp(prop->name, (*next)->name) == 0) 1783 /* duplicate ! don't insert it */ 1784 return -EEXIST; 1785 1786 next = &(*next)->next; 1787 } 1788 *next = prop; 1789 1790 return 0; 1791 } 1792 1793 /** 1794 * of_add_property - Add a property to a node 1795 */ 1796 int of_add_property(struct device_node *np, struct property *prop) 1797 { 1798 unsigned long flags; 1799 int rc; 1800 1801 mutex_lock(&of_mutex); 1802 1803 raw_spin_lock_irqsave(&devtree_lock, flags); 1804 rc = __of_add_property(np, prop); 1805 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1806 1807 if (!rc) 1808 __of_add_property_sysfs(np, prop); 1809 1810 mutex_unlock(&of_mutex); 1811 1812 if (!rc) 1813 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1814 1815 return rc; 1816 } 1817 1818 int __of_remove_property(struct device_node *np, struct property *prop) 1819 { 1820 struct property **next; 1821 1822 for (next = &np->properties; *next; next = &(*next)->next) { 1823 if (*next == prop) 1824 break; 1825 } 1826 if (*next == NULL) 1827 return -ENODEV; 1828 1829 /* found the node */ 1830 *next = prop->next; 1831 prop->next = np->deadprops; 1832 np->deadprops = prop; 1833 1834 return 0; 1835 } 1836 1837 /** 1838 * of_remove_property - Remove a property from a node. 1839 * 1840 * Note that we don't actually remove it, since we have given out 1841 * who-knows-how-many pointers to the data using get-property. 1842 * Instead we just move the property to the "dead properties" 1843 * list, so it won't be found any more. 1844 */ 1845 int of_remove_property(struct device_node *np, struct property *prop) 1846 { 1847 unsigned long flags; 1848 int rc; 1849 1850 if (!prop) 1851 return -ENODEV; 1852 1853 mutex_lock(&of_mutex); 1854 1855 raw_spin_lock_irqsave(&devtree_lock, flags); 1856 rc = __of_remove_property(np, prop); 1857 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1858 1859 if (!rc) 1860 __of_remove_property_sysfs(np, prop); 1861 1862 mutex_unlock(&of_mutex); 1863 1864 if (!rc) 1865 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1866 1867 return rc; 1868 } 1869 1870 int __of_update_property(struct device_node *np, struct property *newprop, 1871 struct property **oldpropp) 1872 { 1873 struct property **next, *oldprop; 1874 1875 for (next = &np->properties; *next; next = &(*next)->next) { 1876 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1877 break; 1878 } 1879 *oldpropp = oldprop = *next; 1880 1881 if (oldprop) { 1882 /* replace the node */ 1883 newprop->next = oldprop->next; 1884 *next = newprop; 1885 oldprop->next = np->deadprops; 1886 np->deadprops = oldprop; 1887 } else { 1888 /* new node */ 1889 newprop->next = NULL; 1890 *next = newprop; 1891 } 1892 1893 return 0; 1894 } 1895 1896 /* 1897 * of_update_property - Update a property in a node, if the property does 1898 * not exist, add it. 1899 * 1900 * Note that we don't actually remove it, since we have given out 1901 * who-knows-how-many pointers to the data using get-property. 1902 * Instead we just move the property to the "dead properties" list, 1903 * and add the new property to the property list 1904 */ 1905 int of_update_property(struct device_node *np, struct property *newprop) 1906 { 1907 struct property *oldprop; 1908 unsigned long flags; 1909 int rc; 1910 1911 if (!newprop->name) 1912 return -EINVAL; 1913 1914 mutex_lock(&of_mutex); 1915 1916 raw_spin_lock_irqsave(&devtree_lock, flags); 1917 rc = __of_update_property(np, newprop, &oldprop); 1918 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1919 1920 if (!rc) 1921 __of_update_property_sysfs(np, newprop, oldprop); 1922 1923 mutex_unlock(&of_mutex); 1924 1925 if (!rc) 1926 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1927 1928 return rc; 1929 } 1930 1931 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1932 int id, const char *stem, int stem_len) 1933 { 1934 ap->np = np; 1935 ap->id = id; 1936 strncpy(ap->stem, stem, stem_len); 1937 ap->stem[stem_len] = 0; 1938 list_add_tail(&ap->link, &aliases_lookup); 1939 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1940 ap->alias, ap->stem, ap->id, np); 1941 } 1942 1943 /** 1944 * of_alias_scan - Scan all properties of the 'aliases' node 1945 * 1946 * The function scans all the properties of the 'aliases' node and populates 1947 * the global lookup table with the properties. It returns the 1948 * number of alias properties found, or an error code in case of failure. 1949 * 1950 * @dt_alloc: An allocator that provides a virtual address to memory 1951 * for storing the resulting tree 1952 */ 1953 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1954 { 1955 struct property *pp; 1956 1957 of_aliases = of_find_node_by_path("/aliases"); 1958 of_chosen = of_find_node_by_path("/chosen"); 1959 if (of_chosen == NULL) 1960 of_chosen = of_find_node_by_path("/chosen@0"); 1961 1962 if (of_chosen) { 1963 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1964 const char *name = NULL; 1965 1966 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1967 of_property_read_string(of_chosen, "linux,stdout-path", 1968 &name); 1969 if (IS_ENABLED(CONFIG_PPC) && !name) 1970 of_property_read_string(of_aliases, "stdout", &name); 1971 if (name) 1972 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1973 } 1974 1975 if (!of_aliases) 1976 return; 1977 1978 for_each_property_of_node(of_aliases, pp) { 1979 const char *start = pp->name; 1980 const char *end = start + strlen(start); 1981 struct device_node *np; 1982 struct alias_prop *ap; 1983 int id, len; 1984 1985 /* Skip those we do not want to proceed */ 1986 if (!strcmp(pp->name, "name") || 1987 !strcmp(pp->name, "phandle") || 1988 !strcmp(pp->name, "linux,phandle")) 1989 continue; 1990 1991 np = of_find_node_by_path(pp->value); 1992 if (!np) 1993 continue; 1994 1995 /* walk the alias backwards to extract the id and work out 1996 * the 'stem' string */ 1997 while (isdigit(*(end-1)) && end > start) 1998 end--; 1999 len = end - start; 2000 2001 if (kstrtoint(end, 10, &id) < 0) 2002 continue; 2003 2004 /* Allocate an alias_prop with enough space for the stem */ 2005 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2006 if (!ap) 2007 continue; 2008 memset(ap, 0, sizeof(*ap) + len + 1); 2009 ap->alias = start; 2010 of_alias_add(ap, np, id, start, len); 2011 } 2012 } 2013 2014 /** 2015 * of_alias_get_id - Get alias id for the given device_node 2016 * @np: Pointer to the given device_node 2017 * @stem: Alias stem of the given device_node 2018 * 2019 * The function travels the lookup table to get the alias id for the given 2020 * device_node and alias stem. It returns the alias id if found. 2021 */ 2022 int of_alias_get_id(struct device_node *np, const char *stem) 2023 { 2024 struct alias_prop *app; 2025 int id = -ENODEV; 2026 2027 mutex_lock(&of_mutex); 2028 list_for_each_entry(app, &aliases_lookup, link) { 2029 if (strcmp(app->stem, stem) != 0) 2030 continue; 2031 2032 if (np == app->np) { 2033 id = app->id; 2034 break; 2035 } 2036 } 2037 mutex_unlock(&of_mutex); 2038 2039 return id; 2040 } 2041 EXPORT_SYMBOL_GPL(of_alias_get_id); 2042 2043 /** 2044 * of_alias_get_alias_list - Get alias list for the given device driver 2045 * @matches: Array of OF device match structures to search in 2046 * @stem: Alias stem of the given device_node 2047 * @bitmap: Bitmap field pointer 2048 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2049 * 2050 * The function travels the lookup table to record alias ids for the given 2051 * device match structures and alias stem. 2052 * 2053 * Return: 0 or -ENOSYS when !CONFIG_OF or 2054 * -EOVERFLOW if alias ID is greater then allocated nbits 2055 */ 2056 int of_alias_get_alias_list(const struct of_device_id *matches, 2057 const char *stem, unsigned long *bitmap, 2058 unsigned int nbits) 2059 { 2060 struct alias_prop *app; 2061 int ret = 0; 2062 2063 /* Zero bitmap field to make sure that all the time it is clean */ 2064 bitmap_zero(bitmap, nbits); 2065 2066 mutex_lock(&of_mutex); 2067 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2068 list_for_each_entry(app, &aliases_lookup, link) { 2069 pr_debug("%s: stem: %s, id: %d\n", 2070 __func__, app->stem, app->id); 2071 2072 if (strcmp(app->stem, stem) != 0) { 2073 pr_debug("%s: stem comparison didn't pass %s\n", 2074 __func__, app->stem); 2075 continue; 2076 } 2077 2078 if (of_match_node(matches, app->np)) { 2079 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2080 2081 if (app->id >= nbits) { 2082 pr_warn("%s: ID %d >= than bitmap field %d\n", 2083 __func__, app->id, nbits); 2084 ret = -EOVERFLOW; 2085 } else { 2086 set_bit(app->id, bitmap); 2087 } 2088 } 2089 } 2090 mutex_unlock(&of_mutex); 2091 2092 return ret; 2093 } 2094 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2095 2096 /** 2097 * of_alias_get_highest_id - Get highest alias id for the given stem 2098 * @stem: Alias stem to be examined 2099 * 2100 * The function travels the lookup table to get the highest alias id for the 2101 * given alias stem. It returns the alias id if found. 2102 */ 2103 int of_alias_get_highest_id(const char *stem) 2104 { 2105 struct alias_prop *app; 2106 int id = -ENODEV; 2107 2108 mutex_lock(&of_mutex); 2109 list_for_each_entry(app, &aliases_lookup, link) { 2110 if (strcmp(app->stem, stem) != 0) 2111 continue; 2112 2113 if (app->id > id) 2114 id = app->id; 2115 } 2116 mutex_unlock(&of_mutex); 2117 2118 return id; 2119 } 2120 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2121 2122 /** 2123 * of_console_check() - Test and setup console for DT setup 2124 * @dn - Pointer to device node 2125 * @name - Name to use for preferred console without index. ex. "ttyS" 2126 * @index - Index to use for preferred console. 2127 * 2128 * Check if the given device node matches the stdout-path property in the 2129 * /chosen node. If it does then register it as the preferred console and return 2130 * TRUE. Otherwise return FALSE. 2131 */ 2132 bool of_console_check(struct device_node *dn, char *name, int index) 2133 { 2134 if (!dn || dn != of_stdout || console_set_on_cmdline) 2135 return false; 2136 2137 /* 2138 * XXX: cast `options' to char pointer to suppress complication 2139 * warnings: printk, UART and console drivers expect char pointer. 2140 */ 2141 return !add_preferred_console(name, index, (char *)of_stdout_options); 2142 } 2143 EXPORT_SYMBOL_GPL(of_console_check); 2144 2145 /** 2146 * of_find_next_cache_node - Find a node's subsidiary cache 2147 * @np: node of type "cpu" or "cache" 2148 * 2149 * Returns a node pointer with refcount incremented, use 2150 * of_node_put() on it when done. Caller should hold a reference 2151 * to np. 2152 */ 2153 struct device_node *of_find_next_cache_node(const struct device_node *np) 2154 { 2155 struct device_node *child, *cache_node; 2156 2157 cache_node = of_parse_phandle(np, "l2-cache", 0); 2158 if (!cache_node) 2159 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2160 2161 if (cache_node) 2162 return cache_node; 2163 2164 /* OF on pmac has nodes instead of properties named "l2-cache" 2165 * beneath CPU nodes. 2166 */ 2167 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2168 for_each_child_of_node(np, child) 2169 if (of_node_is_type(child, "cache")) 2170 return child; 2171 2172 return NULL; 2173 } 2174 2175 /** 2176 * of_find_last_cache_level - Find the level at which the last cache is 2177 * present for the given logical cpu 2178 * 2179 * @cpu: cpu number(logical index) for which the last cache level is needed 2180 * 2181 * Returns the the level at which the last cache is present. It is exactly 2182 * same as the total number of cache levels for the given logical cpu. 2183 */ 2184 int of_find_last_cache_level(unsigned int cpu) 2185 { 2186 u32 cache_level = 0; 2187 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2188 2189 while (np) { 2190 prev = np; 2191 of_node_put(np); 2192 np = of_find_next_cache_node(np); 2193 } 2194 2195 of_property_read_u32(prev, "cache-level", &cache_level); 2196 2197 return cache_level; 2198 } 2199 2200 /** 2201 * of_map_rid - Translate a requester ID through a downstream mapping. 2202 * @np: root complex device node. 2203 * @rid: device requester ID to map. 2204 * @map_name: property name of the map to use. 2205 * @map_mask_name: optional property name of the mask to use. 2206 * @target: optional pointer to a target device node. 2207 * @id_out: optional pointer to receive the translated ID. 2208 * 2209 * Given a device requester ID, look up the appropriate implementation-defined 2210 * platform ID and/or the target device which receives transactions on that 2211 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2212 * @id_out may be NULL if only the other is required. If @target points to 2213 * a non-NULL device node pointer, only entries targeting that node will be 2214 * matched; if it points to a NULL value, it will receive the device node of 2215 * the first matching target phandle, with a reference held. 2216 * 2217 * Return: 0 on success or a standard error code on failure. 2218 */ 2219 int of_map_rid(struct device_node *np, u32 rid, 2220 const char *map_name, const char *map_mask_name, 2221 struct device_node **target, u32 *id_out) 2222 { 2223 u32 map_mask, masked_rid; 2224 int map_len; 2225 const __be32 *map = NULL; 2226 2227 if (!np || !map_name || (!target && !id_out)) 2228 return -EINVAL; 2229 2230 map = of_get_property(np, map_name, &map_len); 2231 if (!map) { 2232 if (target) 2233 return -ENODEV; 2234 /* Otherwise, no map implies no translation */ 2235 *id_out = rid; 2236 return 0; 2237 } 2238 2239 if (!map_len || map_len % (4 * sizeof(*map))) { 2240 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2241 map_name, map_len); 2242 return -EINVAL; 2243 } 2244 2245 /* The default is to select all bits. */ 2246 map_mask = 0xffffffff; 2247 2248 /* 2249 * Can be overridden by "{iommu,msi}-map-mask" property. 2250 * If of_property_read_u32() fails, the default is used. 2251 */ 2252 if (map_mask_name) 2253 of_property_read_u32(np, map_mask_name, &map_mask); 2254 2255 masked_rid = map_mask & rid; 2256 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2257 struct device_node *phandle_node; 2258 u32 rid_base = be32_to_cpup(map + 0); 2259 u32 phandle = be32_to_cpup(map + 1); 2260 u32 out_base = be32_to_cpup(map + 2); 2261 u32 rid_len = be32_to_cpup(map + 3); 2262 2263 if (rid_base & ~map_mask) { 2264 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n", 2265 np, map_name, map_name, 2266 map_mask, rid_base); 2267 return -EFAULT; 2268 } 2269 2270 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len) 2271 continue; 2272 2273 phandle_node = of_find_node_by_phandle(phandle); 2274 if (!phandle_node) 2275 return -ENODEV; 2276 2277 if (target) { 2278 if (*target) 2279 of_node_put(phandle_node); 2280 else 2281 *target = phandle_node; 2282 2283 if (*target != phandle_node) 2284 continue; 2285 } 2286 2287 if (id_out) 2288 *id_out = masked_rid - rid_base + out_base; 2289 2290 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n", 2291 np, map_name, map_mask, rid_base, out_base, 2292 rid_len, rid, masked_rid - rid_base + out_base); 2293 return 0; 2294 } 2295 2296 pr_err("%pOF: Invalid %s translation - no match for rid 0x%x on %pOF\n", 2297 np, map_name, rid, target && *target ? *target : NULL); 2298 return -EFAULT; 2299 } 2300 EXPORT_SYMBOL_GPL(of_map_rid); 2301