1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 21 #define pr_fmt(fmt) "OF: " fmt 22 23 #include <linux/console.h> 24 #include <linux/ctype.h> 25 #include <linux/cpu.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/of_graph.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/proc_fs.h> 34 35 #include "of_private.h" 36 37 LIST_HEAD(aliases_lookup); 38 39 struct device_node *of_root; 40 EXPORT_SYMBOL(of_root); 41 struct device_node *of_chosen; 42 struct device_node *of_aliases; 43 struct device_node *of_stdout; 44 static const char *of_stdout_options; 45 46 struct kset *of_kset; 47 48 /* 49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 50 * This mutex must be held whenever modifications are being made to the 51 * device tree. The of_{attach,detach}_node() and 52 * of_{add,remove,update}_property() helpers make sure this happens. 53 */ 54 DEFINE_MUTEX(of_mutex); 55 56 /* use when traversing tree through the child, sibling, 57 * or parent members of struct device_node. 58 */ 59 DEFINE_RAW_SPINLOCK(devtree_lock); 60 61 int of_n_addr_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#address-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #address-cells property for the root node */ 73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_addr_cells); 76 77 int of_n_size_cells(struct device_node *np) 78 { 79 const __be32 *ip; 80 81 do { 82 if (np->parent) 83 np = np->parent; 84 ip = of_get_property(np, "#size-cells", NULL); 85 if (ip) 86 return be32_to_cpup(ip); 87 } while (np->parent); 88 /* No #size-cells property for the root node */ 89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 90 } 91 EXPORT_SYMBOL(of_n_size_cells); 92 93 #ifdef CONFIG_NUMA 94 int __weak of_node_to_nid(struct device_node *np) 95 { 96 return NUMA_NO_NODE; 97 } 98 #endif 99 100 #ifndef CONFIG_OF_DYNAMIC 101 static void of_node_release(struct kobject *kobj) 102 { 103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 104 } 105 #endif /* CONFIG_OF_DYNAMIC */ 106 107 struct kobj_type of_node_ktype = { 108 .release = of_node_release, 109 }; 110 111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 112 struct bin_attribute *bin_attr, char *buf, 113 loff_t offset, size_t count) 114 { 115 struct property *pp = container_of(bin_attr, struct property, attr); 116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 117 } 118 119 /* always return newly allocated name, caller must free after use */ 120 static const char *safe_name(struct kobject *kobj, const char *orig_name) 121 { 122 const char *name = orig_name; 123 struct kernfs_node *kn; 124 int i = 0; 125 126 /* don't be a hero. After 16 tries give up */ 127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 128 sysfs_put(kn); 129 if (name != orig_name) 130 kfree(name); 131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 132 } 133 134 if (name == orig_name) { 135 name = kstrdup(orig_name, GFP_KERNEL); 136 } else { 137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n", 138 kobject_name(kobj), name); 139 } 140 return name; 141 } 142 143 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 144 { 145 int rc; 146 147 /* Important: Don't leak passwords */ 148 bool secure = strncmp(pp->name, "security-", 9) == 0; 149 150 if (!IS_ENABLED(CONFIG_SYSFS)) 151 return 0; 152 153 if (!of_kset || !of_node_is_attached(np)) 154 return 0; 155 156 sysfs_bin_attr_init(&pp->attr); 157 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 158 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 159 pp->attr.size = secure ? 0 : pp->length; 160 pp->attr.read = of_node_property_read; 161 162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 164 return rc; 165 } 166 167 int __of_attach_node_sysfs(struct device_node *np) 168 { 169 const char *name; 170 struct kobject *parent; 171 struct property *pp; 172 int rc; 173 174 if (!IS_ENABLED(CONFIG_SYSFS)) 175 return 0; 176 177 if (!of_kset) 178 return 0; 179 180 np->kobj.kset = of_kset; 181 if (!np->parent) { 182 /* Nodes without parents are new top level trees */ 183 name = safe_name(&of_kset->kobj, "base"); 184 parent = NULL; 185 } else { 186 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 187 parent = &np->parent->kobj; 188 } 189 if (!name) 190 return -ENOMEM; 191 rc = kobject_add(&np->kobj, parent, "%s", name); 192 kfree(name); 193 if (rc) 194 return rc; 195 196 for_each_property_of_node(np, pp) 197 __of_add_property_sysfs(np, pp); 198 199 return 0; 200 } 201 202 void __init of_core_init(void) 203 { 204 struct device_node *np; 205 206 /* Create the kset, and register existing nodes */ 207 mutex_lock(&of_mutex); 208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 209 if (!of_kset) { 210 mutex_unlock(&of_mutex); 211 pr_err("failed to register existing nodes\n"); 212 return; 213 } 214 for_each_of_allnodes(np) 215 __of_attach_node_sysfs(np); 216 mutex_unlock(&of_mutex); 217 218 /* Symlink in /proc as required by userspace ABI */ 219 if (of_root) 220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 221 } 222 223 static struct property *__of_find_property(const struct device_node *np, 224 const char *name, int *lenp) 225 { 226 struct property *pp; 227 228 if (!np) 229 return NULL; 230 231 for (pp = np->properties; pp; pp = pp->next) { 232 if (of_prop_cmp(pp->name, name) == 0) { 233 if (lenp) 234 *lenp = pp->length; 235 break; 236 } 237 } 238 239 return pp; 240 } 241 242 struct property *of_find_property(const struct device_node *np, 243 const char *name, 244 int *lenp) 245 { 246 struct property *pp; 247 unsigned long flags; 248 249 raw_spin_lock_irqsave(&devtree_lock, flags); 250 pp = __of_find_property(np, name, lenp); 251 raw_spin_unlock_irqrestore(&devtree_lock, flags); 252 253 return pp; 254 } 255 EXPORT_SYMBOL(of_find_property); 256 257 struct device_node *__of_find_all_nodes(struct device_node *prev) 258 { 259 struct device_node *np; 260 if (!prev) { 261 np = of_root; 262 } else if (prev->child) { 263 np = prev->child; 264 } else { 265 /* Walk back up looking for a sibling, or the end of the structure */ 266 np = prev; 267 while (np->parent && !np->sibling) 268 np = np->parent; 269 np = np->sibling; /* Might be null at the end of the tree */ 270 } 271 return np; 272 } 273 274 /** 275 * of_find_all_nodes - Get next node in global list 276 * @prev: Previous node or NULL to start iteration 277 * of_node_put() will be called on it 278 * 279 * Returns a node pointer with refcount incremented, use 280 * of_node_put() on it when done. 281 */ 282 struct device_node *of_find_all_nodes(struct device_node *prev) 283 { 284 struct device_node *np; 285 unsigned long flags; 286 287 raw_spin_lock_irqsave(&devtree_lock, flags); 288 np = __of_find_all_nodes(prev); 289 of_node_get(np); 290 of_node_put(prev); 291 raw_spin_unlock_irqrestore(&devtree_lock, flags); 292 return np; 293 } 294 EXPORT_SYMBOL(of_find_all_nodes); 295 296 /* 297 * Find a property with a given name for a given node 298 * and return the value. 299 */ 300 const void *__of_get_property(const struct device_node *np, 301 const char *name, int *lenp) 302 { 303 struct property *pp = __of_find_property(np, name, lenp); 304 305 return pp ? pp->value : NULL; 306 } 307 308 /* 309 * Find a property with a given name for a given node 310 * and return the value. 311 */ 312 const void *of_get_property(const struct device_node *np, const char *name, 313 int *lenp) 314 { 315 struct property *pp = of_find_property(np, name, lenp); 316 317 return pp ? pp->value : NULL; 318 } 319 EXPORT_SYMBOL(of_get_property); 320 321 /* 322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 323 * 324 * @cpu: logical cpu index of a core/thread 325 * @phys_id: physical identifier of a core/thread 326 * 327 * CPU logical to physical index mapping is architecture specific. 328 * However this __weak function provides a default match of physical 329 * id to logical cpu index. phys_id provided here is usually values read 330 * from the device tree which must match the hardware internal registers. 331 * 332 * Returns true if the physical identifier and the logical cpu index 333 * correspond to the same core/thread, false otherwise. 334 */ 335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 336 { 337 return (u32)phys_id == cpu; 338 } 339 340 /** 341 * Checks if the given "prop_name" property holds the physical id of the 342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 343 * NULL, local thread number within the core is returned in it. 344 */ 345 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 346 const char *prop_name, int cpu, unsigned int *thread) 347 { 348 const __be32 *cell; 349 int ac, prop_len, tid; 350 u64 hwid; 351 352 ac = of_n_addr_cells(cpun); 353 cell = of_get_property(cpun, prop_name, &prop_len); 354 if (!cell || !ac) 355 return false; 356 prop_len /= sizeof(*cell) * ac; 357 for (tid = 0; tid < prop_len; tid++) { 358 hwid = of_read_number(cell, ac); 359 if (arch_match_cpu_phys_id(cpu, hwid)) { 360 if (thread) 361 *thread = tid; 362 return true; 363 } 364 cell += ac; 365 } 366 return false; 367 } 368 369 /* 370 * arch_find_n_match_cpu_physical_id - See if the given device node is 371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 372 * else false. If 'thread' is non-NULL, the local thread number within the 373 * core is returned in it. 374 */ 375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 376 int cpu, unsigned int *thread) 377 { 378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 379 * for thread ids on PowerPC. If it doesn't exist fallback to 380 * standard "reg" property. 381 */ 382 if (IS_ENABLED(CONFIG_PPC) && 383 __of_find_n_match_cpu_property(cpun, 384 "ibm,ppc-interrupt-server#s", 385 cpu, thread)) 386 return true; 387 388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 389 } 390 391 /** 392 * of_get_cpu_node - Get device node associated with the given logical CPU 393 * 394 * @cpu: CPU number(logical index) for which device node is required 395 * @thread: if not NULL, local thread number within the physical core is 396 * returned 397 * 398 * The main purpose of this function is to retrieve the device node for the 399 * given logical CPU index. It should be used to initialize the of_node in 400 * cpu device. Once of_node in cpu device is populated, all the further 401 * references can use that instead. 402 * 403 * CPU logical to physical index mapping is architecture specific and is built 404 * before booting secondary cores. This function uses arch_match_cpu_phys_id 405 * which can be overridden by architecture specific implementation. 406 * 407 * Returns a node pointer for the logical cpu with refcount incremented, use 408 * of_node_put() on it when done. Returns NULL if not found. 409 */ 410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 411 { 412 struct device_node *cpun; 413 414 for_each_node_by_type(cpun, "cpu") { 415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 416 return cpun; 417 } 418 return NULL; 419 } 420 EXPORT_SYMBOL(of_get_cpu_node); 421 422 /** 423 * __of_device_is_compatible() - Check if the node matches given constraints 424 * @device: pointer to node 425 * @compat: required compatible string, NULL or "" for any match 426 * @type: required device_type value, NULL or "" for any match 427 * @name: required node name, NULL or "" for any match 428 * 429 * Checks if the given @compat, @type and @name strings match the 430 * properties of the given @device. A constraints can be skipped by 431 * passing NULL or an empty string as the constraint. 432 * 433 * Returns 0 for no match, and a positive integer on match. The return 434 * value is a relative score with larger values indicating better 435 * matches. The score is weighted for the most specific compatible value 436 * to get the highest score. Matching type is next, followed by matching 437 * name. Practically speaking, this results in the following priority 438 * order for matches: 439 * 440 * 1. specific compatible && type && name 441 * 2. specific compatible && type 442 * 3. specific compatible && name 443 * 4. specific compatible 444 * 5. general compatible && type && name 445 * 6. general compatible && type 446 * 7. general compatible && name 447 * 8. general compatible 448 * 9. type && name 449 * 10. type 450 * 11. name 451 */ 452 static int __of_device_is_compatible(const struct device_node *device, 453 const char *compat, const char *type, const char *name) 454 { 455 struct property *prop; 456 const char *cp; 457 int index = 0, score = 0; 458 459 /* Compatible match has highest priority */ 460 if (compat && compat[0]) { 461 prop = __of_find_property(device, "compatible", NULL); 462 for (cp = of_prop_next_string(prop, NULL); cp; 463 cp = of_prop_next_string(prop, cp), index++) { 464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 465 score = INT_MAX/2 - (index << 2); 466 break; 467 } 468 } 469 if (!score) 470 return 0; 471 } 472 473 /* Matching type is better than matching name */ 474 if (type && type[0]) { 475 if (!device->type || of_node_cmp(type, device->type)) 476 return 0; 477 score += 2; 478 } 479 480 /* Matching name is a bit better than not */ 481 if (name && name[0]) { 482 if (!device->name || of_node_cmp(name, device->name)) 483 return 0; 484 score++; 485 } 486 487 return score; 488 } 489 490 /** Checks if the given "compat" string matches one of the strings in 491 * the device's "compatible" property 492 */ 493 int of_device_is_compatible(const struct device_node *device, 494 const char *compat) 495 { 496 unsigned long flags; 497 int res; 498 499 raw_spin_lock_irqsave(&devtree_lock, flags); 500 res = __of_device_is_compatible(device, compat, NULL, NULL); 501 raw_spin_unlock_irqrestore(&devtree_lock, flags); 502 return res; 503 } 504 EXPORT_SYMBOL(of_device_is_compatible); 505 506 /** Checks if the device is compatible with any of the entries in 507 * a NULL terminated array of strings. Returns the best match 508 * score or 0. 509 */ 510 int of_device_compatible_match(struct device_node *device, 511 const char *const *compat) 512 { 513 unsigned int tmp, score = 0; 514 515 if (!compat) 516 return 0; 517 518 while (*compat) { 519 tmp = of_device_is_compatible(device, *compat); 520 if (tmp > score) 521 score = tmp; 522 compat++; 523 } 524 525 return score; 526 } 527 528 /** 529 * of_machine_is_compatible - Test root of device tree for a given compatible value 530 * @compat: compatible string to look for in root node's compatible property. 531 * 532 * Returns a positive integer if the root node has the given value in its 533 * compatible property. 534 */ 535 int of_machine_is_compatible(const char *compat) 536 { 537 struct device_node *root; 538 int rc = 0; 539 540 root = of_find_node_by_path("/"); 541 if (root) { 542 rc = of_device_is_compatible(root, compat); 543 of_node_put(root); 544 } 545 return rc; 546 } 547 EXPORT_SYMBOL(of_machine_is_compatible); 548 549 /** 550 * __of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability, with locks already held 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 static bool __of_device_is_available(const struct device_node *device) 558 { 559 const char *status; 560 int statlen; 561 562 if (!device) 563 return false; 564 565 status = __of_get_property(device, "status", &statlen); 566 if (status == NULL) 567 return true; 568 569 if (statlen > 0) { 570 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 571 return true; 572 } 573 574 return false; 575 } 576 577 /** 578 * of_device_is_available - check if a device is available for use 579 * 580 * @device: Node to check for availability 581 * 582 * Returns true if the status property is absent or set to "okay" or "ok", 583 * false otherwise 584 */ 585 bool of_device_is_available(const struct device_node *device) 586 { 587 unsigned long flags; 588 bool res; 589 590 raw_spin_lock_irqsave(&devtree_lock, flags); 591 res = __of_device_is_available(device); 592 raw_spin_unlock_irqrestore(&devtree_lock, flags); 593 return res; 594 595 } 596 EXPORT_SYMBOL(of_device_is_available); 597 598 /** 599 * of_device_is_big_endian - check if a device has BE registers 600 * 601 * @device: Node to check for endianness 602 * 603 * Returns true if the device has a "big-endian" property, or if the kernel 604 * was compiled for BE *and* the device has a "native-endian" property. 605 * Returns false otherwise. 606 * 607 * Callers would nominally use ioread32be/iowrite32be if 608 * of_device_is_big_endian() == true, or readl/writel otherwise. 609 */ 610 bool of_device_is_big_endian(const struct device_node *device) 611 { 612 if (of_property_read_bool(device, "big-endian")) 613 return true; 614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 615 of_property_read_bool(device, "native-endian")) 616 return true; 617 return false; 618 } 619 EXPORT_SYMBOL(of_device_is_big_endian); 620 621 /** 622 * of_get_parent - Get a node's parent if any 623 * @node: Node to get parent 624 * 625 * Returns a node pointer with refcount incremented, use 626 * of_node_put() on it when done. 627 */ 628 struct device_node *of_get_parent(const struct device_node *node) 629 { 630 struct device_node *np; 631 unsigned long flags; 632 633 if (!node) 634 return NULL; 635 636 raw_spin_lock_irqsave(&devtree_lock, flags); 637 np = of_node_get(node->parent); 638 raw_spin_unlock_irqrestore(&devtree_lock, flags); 639 return np; 640 } 641 EXPORT_SYMBOL(of_get_parent); 642 643 /** 644 * of_get_next_parent - Iterate to a node's parent 645 * @node: Node to get parent of 646 * 647 * This is like of_get_parent() except that it drops the 648 * refcount on the passed node, making it suitable for iterating 649 * through a node's parents. 650 * 651 * Returns a node pointer with refcount incremented, use 652 * of_node_put() on it when done. 653 */ 654 struct device_node *of_get_next_parent(struct device_node *node) 655 { 656 struct device_node *parent; 657 unsigned long flags; 658 659 if (!node) 660 return NULL; 661 662 raw_spin_lock_irqsave(&devtree_lock, flags); 663 parent = of_node_get(node->parent); 664 of_node_put(node); 665 raw_spin_unlock_irqrestore(&devtree_lock, flags); 666 return parent; 667 } 668 EXPORT_SYMBOL(of_get_next_parent); 669 670 static struct device_node *__of_get_next_child(const struct device_node *node, 671 struct device_node *prev) 672 { 673 struct device_node *next; 674 675 if (!node) 676 return NULL; 677 678 next = prev ? prev->sibling : node->child; 679 for (; next; next = next->sibling) 680 if (of_node_get(next)) 681 break; 682 of_node_put(prev); 683 return next; 684 } 685 #define __for_each_child_of_node(parent, child) \ 686 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 687 child = __of_get_next_child(parent, child)) 688 689 /** 690 * of_get_next_child - Iterate a node childs 691 * @node: parent node 692 * @prev: previous child of the parent node, or NULL to get first 693 * 694 * Returns a node pointer with refcount incremented, use of_node_put() on 695 * it when done. Returns NULL when prev is the last child. Decrements the 696 * refcount of prev. 697 */ 698 struct device_node *of_get_next_child(const struct device_node *node, 699 struct device_node *prev) 700 { 701 struct device_node *next; 702 unsigned long flags; 703 704 raw_spin_lock_irqsave(&devtree_lock, flags); 705 next = __of_get_next_child(node, prev); 706 raw_spin_unlock_irqrestore(&devtree_lock, flags); 707 return next; 708 } 709 EXPORT_SYMBOL(of_get_next_child); 710 711 /** 712 * of_get_next_available_child - Find the next available child node 713 * @node: parent node 714 * @prev: previous child of the parent node, or NULL to get first 715 * 716 * This function is like of_get_next_child(), except that it 717 * automatically skips any disabled nodes (i.e. status = "disabled"). 718 */ 719 struct device_node *of_get_next_available_child(const struct device_node *node, 720 struct device_node *prev) 721 { 722 struct device_node *next; 723 unsigned long flags; 724 725 if (!node) 726 return NULL; 727 728 raw_spin_lock_irqsave(&devtree_lock, flags); 729 next = prev ? prev->sibling : node->child; 730 for (; next; next = next->sibling) { 731 if (!__of_device_is_available(next)) 732 continue; 733 if (of_node_get(next)) 734 break; 735 } 736 of_node_put(prev); 737 raw_spin_unlock_irqrestore(&devtree_lock, flags); 738 return next; 739 } 740 EXPORT_SYMBOL(of_get_next_available_child); 741 742 /** 743 * of_get_child_by_name - Find the child node by name for a given parent 744 * @node: parent node 745 * @name: child name to look for. 746 * 747 * This function looks for child node for given matching name 748 * 749 * Returns a node pointer if found, with refcount incremented, use 750 * of_node_put() on it when done. 751 * Returns NULL if node is not found. 752 */ 753 struct device_node *of_get_child_by_name(const struct device_node *node, 754 const char *name) 755 { 756 struct device_node *child; 757 758 for_each_child_of_node(node, child) 759 if (child->name && (of_node_cmp(child->name, name) == 0)) 760 break; 761 return child; 762 } 763 EXPORT_SYMBOL(of_get_child_by_name); 764 765 static struct device_node *__of_find_node_by_path(struct device_node *parent, 766 const char *path) 767 { 768 struct device_node *child; 769 int len; 770 771 len = strcspn(path, "/:"); 772 if (!len) 773 return NULL; 774 775 __for_each_child_of_node(parent, child) { 776 const char *name = strrchr(child->full_name, '/'); 777 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 778 continue; 779 name++; 780 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 781 return child; 782 } 783 return NULL; 784 } 785 786 /** 787 * of_find_node_opts_by_path - Find a node matching a full OF path 788 * @path: Either the full path to match, or if the path does not 789 * start with '/', the name of a property of the /aliases 790 * node (an alias). In the case of an alias, the node 791 * matching the alias' value will be returned. 792 * @opts: Address of a pointer into which to store the start of 793 * an options string appended to the end of the path with 794 * a ':' separator. 795 * 796 * Valid paths: 797 * /foo/bar Full path 798 * foo Valid alias 799 * foo/bar Valid alias + relative path 800 * 801 * Returns a node pointer with refcount incremented, use 802 * of_node_put() on it when done. 803 */ 804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 805 { 806 struct device_node *np = NULL; 807 struct property *pp; 808 unsigned long flags; 809 const char *separator = strchr(path, ':'); 810 811 if (opts) 812 *opts = separator ? separator + 1 : NULL; 813 814 if (strcmp(path, "/") == 0) 815 return of_node_get(of_root); 816 817 /* The path could begin with an alias */ 818 if (*path != '/') { 819 int len; 820 const char *p = separator; 821 822 if (!p) 823 p = strchrnul(path, '/'); 824 len = p - path; 825 826 /* of_aliases must not be NULL */ 827 if (!of_aliases) 828 return NULL; 829 830 for_each_property_of_node(of_aliases, pp) { 831 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 832 np = of_find_node_by_path(pp->value); 833 break; 834 } 835 } 836 if (!np) 837 return NULL; 838 path = p; 839 } 840 841 /* Step down the tree matching path components */ 842 raw_spin_lock_irqsave(&devtree_lock, flags); 843 if (!np) 844 np = of_node_get(of_root); 845 while (np && *path == '/') { 846 struct device_node *tmp = np; 847 848 path++; /* Increment past '/' delimiter */ 849 np = __of_find_node_by_path(np, path); 850 of_node_put(tmp); 851 path = strchrnul(path, '/'); 852 if (separator && separator < path) 853 break; 854 } 855 raw_spin_unlock_irqrestore(&devtree_lock, flags); 856 return np; 857 } 858 EXPORT_SYMBOL(of_find_node_opts_by_path); 859 860 /** 861 * of_find_node_by_name - Find a node by its "name" property 862 * @from: The node to start searching from or NULL, the node 863 * you pass will not be searched, only the next one 864 * will; typically, you pass what the previous call 865 * returned. of_node_put() will be called on it 866 * @name: The name string to match against 867 * 868 * Returns a node pointer with refcount incremented, use 869 * of_node_put() on it when done. 870 */ 871 struct device_node *of_find_node_by_name(struct device_node *from, 872 const char *name) 873 { 874 struct device_node *np; 875 unsigned long flags; 876 877 raw_spin_lock_irqsave(&devtree_lock, flags); 878 for_each_of_allnodes_from(from, np) 879 if (np->name && (of_node_cmp(np->name, name) == 0) 880 && of_node_get(np)) 881 break; 882 of_node_put(from); 883 raw_spin_unlock_irqrestore(&devtree_lock, flags); 884 return np; 885 } 886 EXPORT_SYMBOL(of_find_node_by_name); 887 888 /** 889 * of_find_node_by_type - Find a node by its "device_type" property 890 * @from: The node to start searching from, or NULL to start searching 891 * the entire device tree. The node you pass will not be 892 * searched, only the next one will; typically, you pass 893 * what the previous call returned. of_node_put() will be 894 * called on from for you. 895 * @type: The type string to match against 896 * 897 * Returns a node pointer with refcount incremented, use 898 * of_node_put() on it when done. 899 */ 900 struct device_node *of_find_node_by_type(struct device_node *from, 901 const char *type) 902 { 903 struct device_node *np; 904 unsigned long flags; 905 906 raw_spin_lock_irqsave(&devtree_lock, flags); 907 for_each_of_allnodes_from(from, np) 908 if (np->type && (of_node_cmp(np->type, type) == 0) 909 && of_node_get(np)) 910 break; 911 of_node_put(from); 912 raw_spin_unlock_irqrestore(&devtree_lock, flags); 913 return np; 914 } 915 EXPORT_SYMBOL(of_find_node_by_type); 916 917 /** 918 * of_find_compatible_node - Find a node based on type and one of the 919 * tokens in its "compatible" property 920 * @from: The node to start searching from or NULL, the node 921 * you pass will not be searched, only the next one 922 * will; typically, you pass what the previous call 923 * returned. of_node_put() will be called on it 924 * @type: The type string to match "device_type" or NULL to ignore 925 * @compatible: The string to match to one of the tokens in the device 926 * "compatible" list. 927 * 928 * Returns a node pointer with refcount incremented, use 929 * of_node_put() on it when done. 930 */ 931 struct device_node *of_find_compatible_node(struct device_node *from, 932 const char *type, const char *compatible) 933 { 934 struct device_node *np; 935 unsigned long flags; 936 937 raw_spin_lock_irqsave(&devtree_lock, flags); 938 for_each_of_allnodes_from(from, np) 939 if (__of_device_is_compatible(np, compatible, type, NULL) && 940 of_node_get(np)) 941 break; 942 of_node_put(from); 943 raw_spin_unlock_irqrestore(&devtree_lock, flags); 944 return np; 945 } 946 EXPORT_SYMBOL(of_find_compatible_node); 947 948 /** 949 * of_find_node_with_property - Find a node which has a property with 950 * the given name. 951 * @from: The node to start searching from or NULL, the node 952 * you pass will not be searched, only the next one 953 * will; typically, you pass what the previous call 954 * returned. of_node_put() will be called on it 955 * @prop_name: The name of the property to look for. 956 * 957 * Returns a node pointer with refcount incremented, use 958 * of_node_put() on it when done. 959 */ 960 struct device_node *of_find_node_with_property(struct device_node *from, 961 const char *prop_name) 962 { 963 struct device_node *np; 964 struct property *pp; 965 unsigned long flags; 966 967 raw_spin_lock_irqsave(&devtree_lock, flags); 968 for_each_of_allnodes_from(from, np) { 969 for (pp = np->properties; pp; pp = pp->next) { 970 if (of_prop_cmp(pp->name, prop_name) == 0) { 971 of_node_get(np); 972 goto out; 973 } 974 } 975 } 976 out: 977 of_node_put(from); 978 raw_spin_unlock_irqrestore(&devtree_lock, flags); 979 return np; 980 } 981 EXPORT_SYMBOL(of_find_node_with_property); 982 983 static 984 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 985 const struct device_node *node) 986 { 987 const struct of_device_id *best_match = NULL; 988 int score, best_score = 0; 989 990 if (!matches) 991 return NULL; 992 993 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 994 score = __of_device_is_compatible(node, matches->compatible, 995 matches->type, matches->name); 996 if (score > best_score) { 997 best_match = matches; 998 best_score = score; 999 } 1000 } 1001 1002 return best_match; 1003 } 1004 1005 /** 1006 * of_match_node - Tell if a device_node has a matching of_match structure 1007 * @matches: array of of device match structures to search in 1008 * @node: the of device structure to match against 1009 * 1010 * Low level utility function used by device matching. 1011 */ 1012 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1013 const struct device_node *node) 1014 { 1015 const struct of_device_id *match; 1016 unsigned long flags; 1017 1018 raw_spin_lock_irqsave(&devtree_lock, flags); 1019 match = __of_match_node(matches, node); 1020 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1021 return match; 1022 } 1023 EXPORT_SYMBOL(of_match_node); 1024 1025 /** 1026 * of_find_matching_node_and_match - Find a node based on an of_device_id 1027 * match table. 1028 * @from: The node to start searching from or NULL, the node 1029 * you pass will not be searched, only the next one 1030 * will; typically, you pass what the previous call 1031 * returned. of_node_put() will be called on it 1032 * @matches: array of of device match structures to search in 1033 * @match Updated to point at the matches entry which matched 1034 * 1035 * Returns a node pointer with refcount incremented, use 1036 * of_node_put() on it when done. 1037 */ 1038 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1039 const struct of_device_id *matches, 1040 const struct of_device_id **match) 1041 { 1042 struct device_node *np; 1043 const struct of_device_id *m; 1044 unsigned long flags; 1045 1046 if (match) 1047 *match = NULL; 1048 1049 raw_spin_lock_irqsave(&devtree_lock, flags); 1050 for_each_of_allnodes_from(from, np) { 1051 m = __of_match_node(matches, np); 1052 if (m && of_node_get(np)) { 1053 if (match) 1054 *match = m; 1055 break; 1056 } 1057 } 1058 of_node_put(from); 1059 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1060 return np; 1061 } 1062 EXPORT_SYMBOL(of_find_matching_node_and_match); 1063 1064 /** 1065 * of_modalias_node - Lookup appropriate modalias for a device node 1066 * @node: pointer to a device tree node 1067 * @modalias: Pointer to buffer that modalias value will be copied into 1068 * @len: Length of modalias value 1069 * 1070 * Based on the value of the compatible property, this routine will attempt 1071 * to choose an appropriate modalias value for a particular device tree node. 1072 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1073 * from the first entry in the compatible list property. 1074 * 1075 * This routine returns 0 on success, <0 on failure. 1076 */ 1077 int of_modalias_node(struct device_node *node, char *modalias, int len) 1078 { 1079 const char *compatible, *p; 1080 int cplen; 1081 1082 compatible = of_get_property(node, "compatible", &cplen); 1083 if (!compatible || strlen(compatible) > cplen) 1084 return -ENODEV; 1085 p = strchr(compatible, ','); 1086 strlcpy(modalias, p ? p + 1 : compatible, len); 1087 return 0; 1088 } 1089 EXPORT_SYMBOL_GPL(of_modalias_node); 1090 1091 /** 1092 * of_find_node_by_phandle - Find a node given a phandle 1093 * @handle: phandle of the node to find 1094 * 1095 * Returns a node pointer with refcount incremented, use 1096 * of_node_put() on it when done. 1097 */ 1098 struct device_node *of_find_node_by_phandle(phandle handle) 1099 { 1100 struct device_node *np; 1101 unsigned long flags; 1102 1103 if (!handle) 1104 return NULL; 1105 1106 raw_spin_lock_irqsave(&devtree_lock, flags); 1107 for_each_of_allnodes(np) 1108 if (np->phandle == handle) 1109 break; 1110 of_node_get(np); 1111 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1112 return np; 1113 } 1114 EXPORT_SYMBOL(of_find_node_by_phandle); 1115 1116 /** 1117 * of_property_count_elems_of_size - Count the number of elements in a property 1118 * 1119 * @np: device node from which the property value is to be read. 1120 * @propname: name of the property to be searched. 1121 * @elem_size: size of the individual element 1122 * 1123 * Search for a property in a device node and count the number of elements of 1124 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1125 * property does not exist or its length does not match a multiple of elem_size 1126 * and -ENODATA if the property does not have a value. 1127 */ 1128 int of_property_count_elems_of_size(const struct device_node *np, 1129 const char *propname, int elem_size) 1130 { 1131 struct property *prop = of_find_property(np, propname, NULL); 1132 1133 if (!prop) 1134 return -EINVAL; 1135 if (!prop->value) 1136 return -ENODATA; 1137 1138 if (prop->length % elem_size != 0) { 1139 pr_err("size of %s in node %s is not a multiple of %d\n", 1140 propname, np->full_name, elem_size); 1141 return -EINVAL; 1142 } 1143 1144 return prop->length / elem_size; 1145 } 1146 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1147 1148 /** 1149 * of_find_property_value_of_size 1150 * 1151 * @np: device node from which the property value is to be read. 1152 * @propname: name of the property to be searched. 1153 * @min: minimum allowed length of property value 1154 * @max: maximum allowed length of property value (0 means unlimited) 1155 * @len: if !=NULL, actual length is written to here 1156 * 1157 * Search for a property in a device node and valid the requested size. 1158 * Returns the property value on success, -EINVAL if the property does not 1159 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1160 * property data is too small or too large. 1161 * 1162 */ 1163 static void *of_find_property_value_of_size(const struct device_node *np, 1164 const char *propname, u32 min, u32 max, size_t *len) 1165 { 1166 struct property *prop = of_find_property(np, propname, NULL); 1167 1168 if (!prop) 1169 return ERR_PTR(-EINVAL); 1170 if (!prop->value) 1171 return ERR_PTR(-ENODATA); 1172 if (prop->length < min) 1173 return ERR_PTR(-EOVERFLOW); 1174 if (max && prop->length > max) 1175 return ERR_PTR(-EOVERFLOW); 1176 1177 if (len) 1178 *len = prop->length; 1179 1180 return prop->value; 1181 } 1182 1183 /** 1184 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1185 * 1186 * @np: device node from which the property value is to be read. 1187 * @propname: name of the property to be searched. 1188 * @index: index of the u32 in the list of values 1189 * @out_value: pointer to return value, modified only if no error. 1190 * 1191 * Search for a property in a device node and read nth 32-bit value from 1192 * it. Returns 0 on success, -EINVAL if the property does not exist, 1193 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1194 * property data isn't large enough. 1195 * 1196 * The out_value is modified only if a valid u32 value can be decoded. 1197 */ 1198 int of_property_read_u32_index(const struct device_node *np, 1199 const char *propname, 1200 u32 index, u32 *out_value) 1201 { 1202 const u32 *val = of_find_property_value_of_size(np, propname, 1203 ((index + 1) * sizeof(*out_value)), 1204 0, 1205 NULL); 1206 1207 if (IS_ERR(val)) 1208 return PTR_ERR(val); 1209 1210 *out_value = be32_to_cpup(((__be32 *)val) + index); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1214 1215 /** 1216 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 1217 * 1218 * @np: device node from which the property value is to be read. 1219 * @propname: name of the property to be searched. 1220 * @index: index of the u64 in the list of values 1221 * @out_value: pointer to return value, modified only if no error. 1222 * 1223 * Search for a property in a device node and read nth 64-bit value from 1224 * it. Returns 0 on success, -EINVAL if the property does not exist, 1225 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1226 * property data isn't large enough. 1227 * 1228 * The out_value is modified only if a valid u64 value can be decoded. 1229 */ 1230 int of_property_read_u64_index(const struct device_node *np, 1231 const char *propname, 1232 u32 index, u64 *out_value) 1233 { 1234 const u64 *val = of_find_property_value_of_size(np, propname, 1235 ((index + 1) * sizeof(*out_value)), 1236 0, NULL); 1237 1238 if (IS_ERR(val)) 1239 return PTR_ERR(val); 1240 1241 *out_value = be64_to_cpup(((__be64 *)val) + index); 1242 return 0; 1243 } 1244 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 1245 1246 /** 1247 * of_property_read_variable_u8_array - Find and read an array of u8 from a 1248 * property, with bounds on the minimum and maximum array size. 1249 * 1250 * @np: device node from which the property value is to be read. 1251 * @propname: name of the property to be searched. 1252 * @out_values: pointer to return value, modified only if return value is 0. 1253 * @sz_min: minimum number of array elements to read 1254 * @sz_max: maximum number of array elements to read, if zero there is no 1255 * upper limit on the number of elements in the dts entry but only 1256 * sz_min will be read. 1257 * 1258 * Search for a property in a device node and read 8-bit value(s) from 1259 * it. Returns number of elements read on success, -EINVAL if the property 1260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1261 * if the property data is smaller than sz_min or longer than sz_max. 1262 * 1263 * dts entry of array should be like: 1264 * property = /bits/ 8 <0x50 0x60 0x70>; 1265 * 1266 * The out_values is modified only if a valid u8 value can be decoded. 1267 */ 1268 int of_property_read_variable_u8_array(const struct device_node *np, 1269 const char *propname, u8 *out_values, 1270 size_t sz_min, size_t sz_max) 1271 { 1272 size_t sz, count; 1273 const u8 *val = of_find_property_value_of_size(np, propname, 1274 (sz_min * sizeof(*out_values)), 1275 (sz_max * sizeof(*out_values)), 1276 &sz); 1277 1278 if (IS_ERR(val)) 1279 return PTR_ERR(val); 1280 1281 if (!sz_max) 1282 sz = sz_min; 1283 else 1284 sz /= sizeof(*out_values); 1285 1286 count = sz; 1287 while (count--) 1288 *out_values++ = *val++; 1289 1290 return sz; 1291 } 1292 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 1293 1294 /** 1295 * of_property_read_variable_u16_array - Find and read an array of u16 from a 1296 * property, with bounds on the minimum and maximum array size. 1297 * 1298 * @np: device node from which the property value is to be read. 1299 * @propname: name of the property to be searched. 1300 * @out_values: pointer to return value, modified only if return value is 0. 1301 * @sz_min: minimum number of array elements to read 1302 * @sz_max: maximum number of array elements to read, if zero there is no 1303 * upper limit on the number of elements in the dts entry but only 1304 * sz_min will be read. 1305 * 1306 * Search for a property in a device node and read 16-bit value(s) from 1307 * it. Returns number of elements read on success, -EINVAL if the property 1308 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1309 * if the property data is smaller than sz_min or longer than sz_max. 1310 * 1311 * dts entry of array should be like: 1312 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1313 * 1314 * The out_values is modified only if a valid u16 value can be decoded. 1315 */ 1316 int of_property_read_variable_u16_array(const struct device_node *np, 1317 const char *propname, u16 *out_values, 1318 size_t sz_min, size_t sz_max) 1319 { 1320 size_t sz, count; 1321 const __be16 *val = of_find_property_value_of_size(np, propname, 1322 (sz_min * sizeof(*out_values)), 1323 (sz_max * sizeof(*out_values)), 1324 &sz); 1325 1326 if (IS_ERR(val)) 1327 return PTR_ERR(val); 1328 1329 if (!sz_max) 1330 sz = sz_min; 1331 else 1332 sz /= sizeof(*out_values); 1333 1334 count = sz; 1335 while (count--) 1336 *out_values++ = be16_to_cpup(val++); 1337 1338 return sz; 1339 } 1340 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 1341 1342 /** 1343 * of_property_read_variable_u32_array - Find and read an array of 32 bit 1344 * integers from a property, with bounds on the minimum and maximum array size. 1345 * 1346 * @np: device node from which the property value is to be read. 1347 * @propname: name of the property to be searched. 1348 * @out_values: pointer to return value, modified only if return value is 0. 1349 * @sz_min: minimum number of array elements to read 1350 * @sz_max: maximum number of array elements to read, if zero there is no 1351 * upper limit on the number of elements in the dts entry but only 1352 * sz_min will be read. 1353 * 1354 * Search for a property in a device node and read 32-bit value(s) from 1355 * it. Returns number of elements read on success, -EINVAL if the property 1356 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1357 * if the property data is smaller than sz_min or longer than sz_max. 1358 * 1359 * The out_values is modified only if a valid u32 value can be decoded. 1360 */ 1361 int of_property_read_variable_u32_array(const struct device_node *np, 1362 const char *propname, u32 *out_values, 1363 size_t sz_min, size_t sz_max) 1364 { 1365 size_t sz, count; 1366 const __be32 *val = of_find_property_value_of_size(np, propname, 1367 (sz_min * sizeof(*out_values)), 1368 (sz_max * sizeof(*out_values)), 1369 &sz); 1370 1371 if (IS_ERR(val)) 1372 return PTR_ERR(val); 1373 1374 if (!sz_max) 1375 sz = sz_min; 1376 else 1377 sz /= sizeof(*out_values); 1378 1379 count = sz; 1380 while (count--) 1381 *out_values++ = be32_to_cpup(val++); 1382 1383 return sz; 1384 } 1385 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 1386 1387 /** 1388 * of_property_read_u64 - Find and read a 64 bit integer from a property 1389 * @np: device node from which the property value is to be read. 1390 * @propname: name of the property to be searched. 1391 * @out_value: pointer to return value, modified only if return value is 0. 1392 * 1393 * Search for a property in a device node and read a 64-bit value from 1394 * it. Returns 0 on success, -EINVAL if the property does not exist, 1395 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1396 * property data isn't large enough. 1397 * 1398 * The out_value is modified only if a valid u64 value can be decoded. 1399 */ 1400 int of_property_read_u64(const struct device_node *np, const char *propname, 1401 u64 *out_value) 1402 { 1403 const __be32 *val = of_find_property_value_of_size(np, propname, 1404 sizeof(*out_value), 1405 0, 1406 NULL); 1407 1408 if (IS_ERR(val)) 1409 return PTR_ERR(val); 1410 1411 *out_value = of_read_number(val, 2); 1412 return 0; 1413 } 1414 EXPORT_SYMBOL_GPL(of_property_read_u64); 1415 1416 /** 1417 * of_property_read_variable_u64_array - Find and read an array of 64 bit 1418 * integers from a property, with bounds on the minimum and maximum array size. 1419 * 1420 * @np: device node from which the property value is to be read. 1421 * @propname: name of the property to be searched. 1422 * @out_values: pointer to return value, modified only if return value is 0. 1423 * @sz_min: minimum number of array elements to read 1424 * @sz_max: maximum number of array elements to read, if zero there is no 1425 * upper limit on the number of elements in the dts entry but only 1426 * sz_min will be read. 1427 * 1428 * Search for a property in a device node and read 64-bit value(s) from 1429 * it. Returns number of elements read on success, -EINVAL if the property 1430 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1431 * if the property data is smaller than sz_min or longer than sz_max. 1432 * 1433 * The out_values is modified only if a valid u64 value can be decoded. 1434 */ 1435 int of_property_read_variable_u64_array(const struct device_node *np, 1436 const char *propname, u64 *out_values, 1437 size_t sz_min, size_t sz_max) 1438 { 1439 size_t sz, count; 1440 const __be32 *val = of_find_property_value_of_size(np, propname, 1441 (sz_min * sizeof(*out_values)), 1442 (sz_max * sizeof(*out_values)), 1443 &sz); 1444 1445 if (IS_ERR(val)) 1446 return PTR_ERR(val); 1447 1448 if (!sz_max) 1449 sz = sz_min; 1450 else 1451 sz /= sizeof(*out_values); 1452 1453 count = sz; 1454 while (count--) { 1455 *out_values++ = of_read_number(val, 2); 1456 val += 2; 1457 } 1458 1459 return sz; 1460 } 1461 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 1462 1463 /** 1464 * of_property_read_string - Find and read a string from a property 1465 * @np: device node from which the property value is to be read. 1466 * @propname: name of the property to be searched. 1467 * @out_string: pointer to null terminated return string, modified only if 1468 * return value is 0. 1469 * 1470 * Search for a property in a device tree node and retrieve a null 1471 * terminated string value (pointer to data, not a copy). Returns 0 on 1472 * success, -EINVAL if the property does not exist, -ENODATA if property 1473 * does not have a value, and -EILSEQ if the string is not null-terminated 1474 * within the length of the property data. 1475 * 1476 * The out_string pointer is modified only if a valid string can be decoded. 1477 */ 1478 int of_property_read_string(const struct device_node *np, const char *propname, 1479 const char **out_string) 1480 { 1481 const struct property *prop = of_find_property(np, propname, NULL); 1482 if (!prop) 1483 return -EINVAL; 1484 if (!prop->value) 1485 return -ENODATA; 1486 if (strnlen(prop->value, prop->length) >= prop->length) 1487 return -EILSEQ; 1488 *out_string = prop->value; 1489 return 0; 1490 } 1491 EXPORT_SYMBOL_GPL(of_property_read_string); 1492 1493 /** 1494 * of_property_match_string() - Find string in a list and return index 1495 * @np: pointer to node containing string list property 1496 * @propname: string list property name 1497 * @string: pointer to string to search for in string list 1498 * 1499 * This function searches a string list property and returns the index 1500 * of a specific string value. 1501 */ 1502 int of_property_match_string(const struct device_node *np, const char *propname, 1503 const char *string) 1504 { 1505 const struct property *prop = of_find_property(np, propname, NULL); 1506 size_t l; 1507 int i; 1508 const char *p, *end; 1509 1510 if (!prop) 1511 return -EINVAL; 1512 if (!prop->value) 1513 return -ENODATA; 1514 1515 p = prop->value; 1516 end = p + prop->length; 1517 1518 for (i = 0; p < end; i++, p += l) { 1519 l = strnlen(p, end - p) + 1; 1520 if (p + l > end) 1521 return -EILSEQ; 1522 pr_debug("comparing %s with %s\n", string, p); 1523 if (strcmp(string, p) == 0) 1524 return i; /* Found it; return index */ 1525 } 1526 return -ENODATA; 1527 } 1528 EXPORT_SYMBOL_GPL(of_property_match_string); 1529 1530 /** 1531 * of_property_read_string_helper() - Utility helper for parsing string properties 1532 * @np: device node from which the property value is to be read. 1533 * @propname: name of the property to be searched. 1534 * @out_strs: output array of string pointers. 1535 * @sz: number of array elements to read. 1536 * @skip: Number of strings to skip over at beginning of list. 1537 * 1538 * Don't call this function directly. It is a utility helper for the 1539 * of_property_read_string*() family of functions. 1540 */ 1541 int of_property_read_string_helper(const struct device_node *np, 1542 const char *propname, const char **out_strs, 1543 size_t sz, int skip) 1544 { 1545 const struct property *prop = of_find_property(np, propname, NULL); 1546 int l = 0, i = 0; 1547 const char *p, *end; 1548 1549 if (!prop) 1550 return -EINVAL; 1551 if (!prop->value) 1552 return -ENODATA; 1553 p = prop->value; 1554 end = p + prop->length; 1555 1556 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1557 l = strnlen(p, end - p) + 1; 1558 if (p + l > end) 1559 return -EILSEQ; 1560 if (out_strs && i >= skip) 1561 *out_strs++ = p; 1562 } 1563 i -= skip; 1564 return i <= 0 ? -ENODATA : i; 1565 } 1566 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1567 1568 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1569 { 1570 int i; 1571 printk("%s %s", msg, of_node_full_name(args->np)); 1572 for (i = 0; i < args->args_count; i++) { 1573 const char delim = i ? ',' : ':'; 1574 1575 pr_cont("%c%08x", delim, args->args[i]); 1576 } 1577 pr_cont("\n"); 1578 } 1579 1580 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1581 const struct device_node *np, 1582 const char *list_name, 1583 const char *cells_name, 1584 int cell_count) 1585 { 1586 const __be32 *list; 1587 int size; 1588 1589 memset(it, 0, sizeof(*it)); 1590 1591 list = of_get_property(np, list_name, &size); 1592 if (!list) 1593 return -ENOENT; 1594 1595 it->cells_name = cells_name; 1596 it->cell_count = cell_count; 1597 it->parent = np; 1598 it->list_end = list + size / sizeof(*list); 1599 it->phandle_end = list; 1600 it->cur = list; 1601 1602 return 0; 1603 } 1604 1605 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1606 { 1607 uint32_t count = 0; 1608 1609 if (it->node) { 1610 of_node_put(it->node); 1611 it->node = NULL; 1612 } 1613 1614 if (!it->cur || it->phandle_end >= it->list_end) 1615 return -ENOENT; 1616 1617 it->cur = it->phandle_end; 1618 1619 /* If phandle is 0, then it is an empty entry with no arguments. */ 1620 it->phandle = be32_to_cpup(it->cur++); 1621 1622 if (it->phandle) { 1623 1624 /* 1625 * Find the provider node and parse the #*-cells property to 1626 * determine the argument length. 1627 */ 1628 it->node = of_find_node_by_phandle(it->phandle); 1629 1630 if (it->cells_name) { 1631 if (!it->node) { 1632 pr_err("%s: could not find phandle\n", 1633 it->parent->full_name); 1634 goto err; 1635 } 1636 1637 if (of_property_read_u32(it->node, it->cells_name, 1638 &count)) { 1639 pr_err("%s: could not get %s for %s\n", 1640 it->parent->full_name, 1641 it->cells_name, 1642 it->node->full_name); 1643 goto err; 1644 } 1645 } else { 1646 count = it->cell_count; 1647 } 1648 1649 /* 1650 * Make sure that the arguments actually fit in the remaining 1651 * property data length 1652 */ 1653 if (it->cur + count > it->list_end) { 1654 pr_err("%s: arguments longer than property\n", 1655 it->parent->full_name); 1656 goto err; 1657 } 1658 } 1659 1660 it->phandle_end = it->cur + count; 1661 it->cur_count = count; 1662 1663 return 0; 1664 1665 err: 1666 if (it->node) { 1667 of_node_put(it->node); 1668 it->node = NULL; 1669 } 1670 1671 return -EINVAL; 1672 } 1673 1674 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1675 uint32_t *args, 1676 int size) 1677 { 1678 int i, count; 1679 1680 count = it->cur_count; 1681 1682 if (WARN_ON(size < count)) 1683 count = size; 1684 1685 for (i = 0; i < count; i++) 1686 args[i] = be32_to_cpup(it->cur++); 1687 1688 return count; 1689 } 1690 1691 static int __of_parse_phandle_with_args(const struct device_node *np, 1692 const char *list_name, 1693 const char *cells_name, 1694 int cell_count, int index, 1695 struct of_phandle_args *out_args) 1696 { 1697 struct of_phandle_iterator it; 1698 int rc, cur_index = 0; 1699 1700 /* Loop over the phandles until all the requested entry is found */ 1701 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1702 /* 1703 * All of the error cases bail out of the loop, so at 1704 * this point, the parsing is successful. If the requested 1705 * index matches, then fill the out_args structure and return, 1706 * or return -ENOENT for an empty entry. 1707 */ 1708 rc = -ENOENT; 1709 if (cur_index == index) { 1710 if (!it.phandle) 1711 goto err; 1712 1713 if (out_args) { 1714 int c; 1715 1716 c = of_phandle_iterator_args(&it, 1717 out_args->args, 1718 MAX_PHANDLE_ARGS); 1719 out_args->np = it.node; 1720 out_args->args_count = c; 1721 } else { 1722 of_node_put(it.node); 1723 } 1724 1725 /* Found it! return success */ 1726 return 0; 1727 } 1728 1729 cur_index++; 1730 } 1731 1732 /* 1733 * Unlock node before returning result; will be one of: 1734 * -ENOENT : index is for empty phandle 1735 * -EINVAL : parsing error on data 1736 */ 1737 1738 err: 1739 of_node_put(it.node); 1740 return rc; 1741 } 1742 1743 /** 1744 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1745 * @np: Pointer to device node holding phandle property 1746 * @phandle_name: Name of property holding a phandle value 1747 * @index: For properties holding a table of phandles, this is the index into 1748 * the table 1749 * 1750 * Returns the device_node pointer with refcount incremented. Use 1751 * of_node_put() on it when done. 1752 */ 1753 struct device_node *of_parse_phandle(const struct device_node *np, 1754 const char *phandle_name, int index) 1755 { 1756 struct of_phandle_args args; 1757 1758 if (index < 0) 1759 return NULL; 1760 1761 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1762 index, &args)) 1763 return NULL; 1764 1765 return args.np; 1766 } 1767 EXPORT_SYMBOL(of_parse_phandle); 1768 1769 /** 1770 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1771 * @np: pointer to a device tree node containing a list 1772 * @list_name: property name that contains a list 1773 * @cells_name: property name that specifies phandles' arguments count 1774 * @index: index of a phandle to parse out 1775 * @out_args: optional pointer to output arguments structure (will be filled) 1776 * 1777 * This function is useful to parse lists of phandles and their arguments. 1778 * Returns 0 on success and fills out_args, on error returns appropriate 1779 * errno value. 1780 * 1781 * Caller is responsible to call of_node_put() on the returned out_args->np 1782 * pointer. 1783 * 1784 * Example: 1785 * 1786 * phandle1: node1 { 1787 * #list-cells = <2>; 1788 * } 1789 * 1790 * phandle2: node2 { 1791 * #list-cells = <1>; 1792 * } 1793 * 1794 * node3 { 1795 * list = <&phandle1 1 2 &phandle2 3>; 1796 * } 1797 * 1798 * To get a device_node of the `node2' node you may call this: 1799 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1800 */ 1801 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1802 const char *cells_name, int index, 1803 struct of_phandle_args *out_args) 1804 { 1805 if (index < 0) 1806 return -EINVAL; 1807 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1808 index, out_args); 1809 } 1810 EXPORT_SYMBOL(of_parse_phandle_with_args); 1811 1812 /** 1813 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1814 * @np: pointer to a device tree node containing a list 1815 * @list_name: property name that contains a list 1816 * @cell_count: number of argument cells following the phandle 1817 * @index: index of a phandle to parse out 1818 * @out_args: optional pointer to output arguments structure (will be filled) 1819 * 1820 * This function is useful to parse lists of phandles and their arguments. 1821 * Returns 0 on success and fills out_args, on error returns appropriate 1822 * errno value. 1823 * 1824 * Caller is responsible to call of_node_put() on the returned out_args->np 1825 * pointer. 1826 * 1827 * Example: 1828 * 1829 * phandle1: node1 { 1830 * } 1831 * 1832 * phandle2: node2 { 1833 * } 1834 * 1835 * node3 { 1836 * list = <&phandle1 0 2 &phandle2 2 3>; 1837 * } 1838 * 1839 * To get a device_node of the `node2' node you may call this: 1840 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1841 */ 1842 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1843 const char *list_name, int cell_count, 1844 int index, struct of_phandle_args *out_args) 1845 { 1846 if (index < 0) 1847 return -EINVAL; 1848 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1849 index, out_args); 1850 } 1851 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1852 1853 /** 1854 * of_count_phandle_with_args() - Find the number of phandles references in a property 1855 * @np: pointer to a device tree node containing a list 1856 * @list_name: property name that contains a list 1857 * @cells_name: property name that specifies phandles' arguments count 1858 * 1859 * Returns the number of phandle + argument tuples within a property. It 1860 * is a typical pattern to encode a list of phandle and variable 1861 * arguments into a single property. The number of arguments is encoded 1862 * by a property in the phandle-target node. For example, a gpios 1863 * property would contain a list of GPIO specifies consisting of a 1864 * phandle and 1 or more arguments. The number of arguments are 1865 * determined by the #gpio-cells property in the node pointed to by the 1866 * phandle. 1867 */ 1868 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1869 const char *cells_name) 1870 { 1871 struct of_phandle_iterator it; 1872 int rc, cur_index = 0; 1873 1874 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1875 if (rc) 1876 return rc; 1877 1878 while ((rc = of_phandle_iterator_next(&it)) == 0) 1879 cur_index += 1; 1880 1881 if (rc != -ENOENT) 1882 return rc; 1883 1884 return cur_index; 1885 } 1886 EXPORT_SYMBOL(of_count_phandle_with_args); 1887 1888 /** 1889 * __of_add_property - Add a property to a node without lock operations 1890 */ 1891 int __of_add_property(struct device_node *np, struct property *prop) 1892 { 1893 struct property **next; 1894 1895 prop->next = NULL; 1896 next = &np->properties; 1897 while (*next) { 1898 if (strcmp(prop->name, (*next)->name) == 0) 1899 /* duplicate ! don't insert it */ 1900 return -EEXIST; 1901 1902 next = &(*next)->next; 1903 } 1904 *next = prop; 1905 1906 return 0; 1907 } 1908 1909 /** 1910 * of_add_property - Add a property to a node 1911 */ 1912 int of_add_property(struct device_node *np, struct property *prop) 1913 { 1914 unsigned long flags; 1915 int rc; 1916 1917 mutex_lock(&of_mutex); 1918 1919 raw_spin_lock_irqsave(&devtree_lock, flags); 1920 rc = __of_add_property(np, prop); 1921 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1922 1923 if (!rc) 1924 __of_add_property_sysfs(np, prop); 1925 1926 mutex_unlock(&of_mutex); 1927 1928 if (!rc) 1929 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1930 1931 return rc; 1932 } 1933 1934 int __of_remove_property(struct device_node *np, struct property *prop) 1935 { 1936 struct property **next; 1937 1938 for (next = &np->properties; *next; next = &(*next)->next) { 1939 if (*next == prop) 1940 break; 1941 } 1942 if (*next == NULL) 1943 return -ENODEV; 1944 1945 /* found the node */ 1946 *next = prop->next; 1947 prop->next = np->deadprops; 1948 np->deadprops = prop; 1949 1950 return 0; 1951 } 1952 1953 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) 1954 { 1955 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1956 kfree(prop->attr.attr.name); 1957 } 1958 1959 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1960 { 1961 if (!IS_ENABLED(CONFIG_SYSFS)) 1962 return; 1963 1964 /* at early boot, bail here and defer setup to of_init() */ 1965 if (of_kset && of_node_is_attached(np)) 1966 __of_sysfs_remove_bin_file(np, prop); 1967 } 1968 1969 /** 1970 * of_remove_property - Remove a property from a node. 1971 * 1972 * Note that we don't actually remove it, since we have given out 1973 * who-knows-how-many pointers to the data using get-property. 1974 * Instead we just move the property to the "dead properties" 1975 * list, so it won't be found any more. 1976 */ 1977 int of_remove_property(struct device_node *np, struct property *prop) 1978 { 1979 unsigned long flags; 1980 int rc; 1981 1982 if (!prop) 1983 return -ENODEV; 1984 1985 mutex_lock(&of_mutex); 1986 1987 raw_spin_lock_irqsave(&devtree_lock, flags); 1988 rc = __of_remove_property(np, prop); 1989 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1990 1991 if (!rc) 1992 __of_remove_property_sysfs(np, prop); 1993 1994 mutex_unlock(&of_mutex); 1995 1996 if (!rc) 1997 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1998 1999 return rc; 2000 } 2001 2002 int __of_update_property(struct device_node *np, struct property *newprop, 2003 struct property **oldpropp) 2004 { 2005 struct property **next, *oldprop; 2006 2007 for (next = &np->properties; *next; next = &(*next)->next) { 2008 if (of_prop_cmp((*next)->name, newprop->name) == 0) 2009 break; 2010 } 2011 *oldpropp = oldprop = *next; 2012 2013 if (oldprop) { 2014 /* replace the node */ 2015 newprop->next = oldprop->next; 2016 *next = newprop; 2017 oldprop->next = np->deadprops; 2018 np->deadprops = oldprop; 2019 } else { 2020 /* new node */ 2021 newprop->next = NULL; 2022 *next = newprop; 2023 } 2024 2025 return 0; 2026 } 2027 2028 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 2029 struct property *oldprop) 2030 { 2031 if (!IS_ENABLED(CONFIG_SYSFS)) 2032 return; 2033 2034 /* At early boot, bail out and defer setup to of_init() */ 2035 if (!of_kset) 2036 return; 2037 2038 if (oldprop) 2039 __of_sysfs_remove_bin_file(np, oldprop); 2040 __of_add_property_sysfs(np, newprop); 2041 } 2042 2043 /* 2044 * of_update_property - Update a property in a node, if the property does 2045 * not exist, add it. 2046 * 2047 * Note that we don't actually remove it, since we have given out 2048 * who-knows-how-many pointers to the data using get-property. 2049 * Instead we just move the property to the "dead properties" list, 2050 * and add the new property to the property list 2051 */ 2052 int of_update_property(struct device_node *np, struct property *newprop) 2053 { 2054 struct property *oldprop; 2055 unsigned long flags; 2056 int rc; 2057 2058 if (!newprop->name) 2059 return -EINVAL; 2060 2061 mutex_lock(&of_mutex); 2062 2063 raw_spin_lock_irqsave(&devtree_lock, flags); 2064 rc = __of_update_property(np, newprop, &oldprop); 2065 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2066 2067 if (!rc) 2068 __of_update_property_sysfs(np, newprop, oldprop); 2069 2070 mutex_unlock(&of_mutex); 2071 2072 if (!rc) 2073 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 2074 2075 return rc; 2076 } 2077 2078 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 2079 int id, const char *stem, int stem_len) 2080 { 2081 ap->np = np; 2082 ap->id = id; 2083 strncpy(ap->stem, stem, stem_len); 2084 ap->stem[stem_len] = 0; 2085 list_add_tail(&ap->link, &aliases_lookup); 2086 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 2087 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 2088 } 2089 2090 /** 2091 * of_alias_scan - Scan all properties of the 'aliases' node 2092 * 2093 * The function scans all the properties of the 'aliases' node and populates 2094 * the global lookup table with the properties. It returns the 2095 * number of alias properties found, or an error code in case of failure. 2096 * 2097 * @dt_alloc: An allocator that provides a virtual address to memory 2098 * for storing the resulting tree 2099 */ 2100 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2101 { 2102 struct property *pp; 2103 2104 of_aliases = of_find_node_by_path("/aliases"); 2105 of_chosen = of_find_node_by_path("/chosen"); 2106 if (of_chosen == NULL) 2107 of_chosen = of_find_node_by_path("/chosen@0"); 2108 2109 if (of_chosen) { 2110 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 2111 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 2112 if (!name) 2113 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 2114 if (IS_ENABLED(CONFIG_PPC) && !name) 2115 name = of_get_property(of_aliases, "stdout", NULL); 2116 if (name) 2117 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2118 } 2119 2120 if (!of_aliases) 2121 return; 2122 2123 for_each_property_of_node(of_aliases, pp) { 2124 const char *start = pp->name; 2125 const char *end = start + strlen(start); 2126 struct device_node *np; 2127 struct alias_prop *ap; 2128 int id, len; 2129 2130 /* Skip those we do not want to proceed */ 2131 if (!strcmp(pp->name, "name") || 2132 !strcmp(pp->name, "phandle") || 2133 !strcmp(pp->name, "linux,phandle")) 2134 continue; 2135 2136 np = of_find_node_by_path(pp->value); 2137 if (!np) 2138 continue; 2139 2140 /* walk the alias backwards to extract the id and work out 2141 * the 'stem' string */ 2142 while (isdigit(*(end-1)) && end > start) 2143 end--; 2144 len = end - start; 2145 2146 if (kstrtoint(end, 10, &id) < 0) 2147 continue; 2148 2149 /* Allocate an alias_prop with enough space for the stem */ 2150 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2151 if (!ap) 2152 continue; 2153 memset(ap, 0, sizeof(*ap) + len + 1); 2154 ap->alias = start; 2155 of_alias_add(ap, np, id, start, len); 2156 } 2157 } 2158 2159 /** 2160 * of_alias_get_id - Get alias id for the given device_node 2161 * @np: Pointer to the given device_node 2162 * @stem: Alias stem of the given device_node 2163 * 2164 * The function travels the lookup table to get the alias id for the given 2165 * device_node and alias stem. It returns the alias id if found. 2166 */ 2167 int of_alias_get_id(struct device_node *np, const char *stem) 2168 { 2169 struct alias_prop *app; 2170 int id = -ENODEV; 2171 2172 mutex_lock(&of_mutex); 2173 list_for_each_entry(app, &aliases_lookup, link) { 2174 if (strcmp(app->stem, stem) != 0) 2175 continue; 2176 2177 if (np == app->np) { 2178 id = app->id; 2179 break; 2180 } 2181 } 2182 mutex_unlock(&of_mutex); 2183 2184 return id; 2185 } 2186 EXPORT_SYMBOL_GPL(of_alias_get_id); 2187 2188 /** 2189 * of_alias_get_highest_id - Get highest alias id for the given stem 2190 * @stem: Alias stem to be examined 2191 * 2192 * The function travels the lookup table to get the highest alias id for the 2193 * given alias stem. It returns the alias id if found. 2194 */ 2195 int of_alias_get_highest_id(const char *stem) 2196 { 2197 struct alias_prop *app; 2198 int id = -ENODEV; 2199 2200 mutex_lock(&of_mutex); 2201 list_for_each_entry(app, &aliases_lookup, link) { 2202 if (strcmp(app->stem, stem) != 0) 2203 continue; 2204 2205 if (app->id > id) 2206 id = app->id; 2207 } 2208 mutex_unlock(&of_mutex); 2209 2210 return id; 2211 } 2212 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2213 2214 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2215 u32 *pu) 2216 { 2217 const void *curv = cur; 2218 2219 if (!prop) 2220 return NULL; 2221 2222 if (!cur) { 2223 curv = prop->value; 2224 goto out_val; 2225 } 2226 2227 curv += sizeof(*cur); 2228 if (curv >= prop->value + prop->length) 2229 return NULL; 2230 2231 out_val: 2232 *pu = be32_to_cpup(curv); 2233 return curv; 2234 } 2235 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2236 2237 const char *of_prop_next_string(struct property *prop, const char *cur) 2238 { 2239 const void *curv = cur; 2240 2241 if (!prop) 2242 return NULL; 2243 2244 if (!cur) 2245 return prop->value; 2246 2247 curv += strlen(cur) + 1; 2248 if (curv >= prop->value + prop->length) 2249 return NULL; 2250 2251 return curv; 2252 } 2253 EXPORT_SYMBOL_GPL(of_prop_next_string); 2254 2255 /** 2256 * of_console_check() - Test and setup console for DT setup 2257 * @dn - Pointer to device node 2258 * @name - Name to use for preferred console without index. ex. "ttyS" 2259 * @index - Index to use for preferred console. 2260 * 2261 * Check if the given device node matches the stdout-path property in the 2262 * /chosen node. If it does then register it as the preferred console and return 2263 * TRUE. Otherwise return FALSE. 2264 */ 2265 bool of_console_check(struct device_node *dn, char *name, int index) 2266 { 2267 if (!dn || dn != of_stdout || console_set_on_cmdline) 2268 return false; 2269 return !add_preferred_console(name, index, 2270 kstrdup(of_stdout_options, GFP_KERNEL)); 2271 } 2272 EXPORT_SYMBOL_GPL(of_console_check); 2273 2274 /** 2275 * of_find_next_cache_node - Find a node's subsidiary cache 2276 * @np: node of type "cpu" or "cache" 2277 * 2278 * Returns a node pointer with refcount incremented, use 2279 * of_node_put() on it when done. Caller should hold a reference 2280 * to np. 2281 */ 2282 struct device_node *of_find_next_cache_node(const struct device_node *np) 2283 { 2284 struct device_node *child, *cache_node; 2285 2286 cache_node = of_parse_phandle(np, "l2-cache", 0); 2287 if (!cache_node) 2288 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2289 2290 if (cache_node) 2291 return cache_node; 2292 2293 /* OF on pmac has nodes instead of properties named "l2-cache" 2294 * beneath CPU nodes. 2295 */ 2296 if (!strcmp(np->type, "cpu")) 2297 for_each_child_of_node(np, child) 2298 if (!strcmp(child->type, "cache")) 2299 return child; 2300 2301 return NULL; 2302 } 2303 2304 /** 2305 * of_find_last_cache_level - Find the level at which the last cache is 2306 * present for the given logical cpu 2307 * 2308 * @cpu: cpu number(logical index) for which the last cache level is needed 2309 * 2310 * Returns the the level at which the last cache is present. It is exactly 2311 * same as the total number of cache levels for the given logical cpu. 2312 */ 2313 int of_find_last_cache_level(unsigned int cpu) 2314 { 2315 u32 cache_level = 0; 2316 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2317 2318 while (np) { 2319 prev = np; 2320 of_node_put(np); 2321 np = of_find_next_cache_node(np); 2322 } 2323 2324 of_property_read_u32(prev, "cache-level", &cache_level); 2325 2326 return cache_level; 2327 } 2328 2329 /** 2330 * of_graph_parse_endpoint() - parse common endpoint node properties 2331 * @node: pointer to endpoint device_node 2332 * @endpoint: pointer to the OF endpoint data structure 2333 * 2334 * The caller should hold a reference to @node. 2335 */ 2336 int of_graph_parse_endpoint(const struct device_node *node, 2337 struct of_endpoint *endpoint) 2338 { 2339 struct device_node *port_node = of_get_parent(node); 2340 2341 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2342 __func__, node->full_name); 2343 2344 memset(endpoint, 0, sizeof(*endpoint)); 2345 2346 endpoint->local_node = node; 2347 /* 2348 * It doesn't matter whether the two calls below succeed. 2349 * If they don't then the default value 0 is used. 2350 */ 2351 of_property_read_u32(port_node, "reg", &endpoint->port); 2352 of_property_read_u32(node, "reg", &endpoint->id); 2353 2354 of_node_put(port_node); 2355 2356 return 0; 2357 } 2358 EXPORT_SYMBOL(of_graph_parse_endpoint); 2359 2360 /** 2361 * of_graph_get_port_by_id() - get the port matching a given id 2362 * @parent: pointer to the parent device node 2363 * @id: id of the port 2364 * 2365 * Return: A 'port' node pointer with refcount incremented. The caller 2366 * has to use of_node_put() on it when done. 2367 */ 2368 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2369 { 2370 struct device_node *node, *port; 2371 2372 node = of_get_child_by_name(parent, "ports"); 2373 if (node) 2374 parent = node; 2375 2376 for_each_child_of_node(parent, port) { 2377 u32 port_id = 0; 2378 2379 if (of_node_cmp(port->name, "port") != 0) 2380 continue; 2381 of_property_read_u32(port, "reg", &port_id); 2382 if (id == port_id) 2383 break; 2384 } 2385 2386 of_node_put(node); 2387 2388 return port; 2389 } 2390 EXPORT_SYMBOL(of_graph_get_port_by_id); 2391 2392 /** 2393 * of_graph_get_next_endpoint() - get next endpoint node 2394 * @parent: pointer to the parent device node 2395 * @prev: previous endpoint node, or NULL to get first 2396 * 2397 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2398 * of the passed @prev node is decremented. 2399 */ 2400 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2401 struct device_node *prev) 2402 { 2403 struct device_node *endpoint; 2404 struct device_node *port; 2405 2406 if (!parent) 2407 return NULL; 2408 2409 /* 2410 * Start by locating the port node. If no previous endpoint is specified 2411 * search for the first port node, otherwise get the previous endpoint 2412 * parent port node. 2413 */ 2414 if (!prev) { 2415 struct device_node *node; 2416 2417 node = of_get_child_by_name(parent, "ports"); 2418 if (node) 2419 parent = node; 2420 2421 port = of_get_child_by_name(parent, "port"); 2422 of_node_put(node); 2423 2424 if (!port) { 2425 pr_err("graph: no port node found in %s\n", 2426 parent->full_name); 2427 return NULL; 2428 } 2429 } else { 2430 port = of_get_parent(prev); 2431 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2432 __func__, prev->full_name)) 2433 return NULL; 2434 } 2435 2436 while (1) { 2437 /* 2438 * Now that we have a port node, get the next endpoint by 2439 * getting the next child. If the previous endpoint is NULL this 2440 * will return the first child. 2441 */ 2442 endpoint = of_get_next_child(port, prev); 2443 if (endpoint) { 2444 of_node_put(port); 2445 return endpoint; 2446 } 2447 2448 /* No more endpoints under this port, try the next one. */ 2449 prev = NULL; 2450 2451 do { 2452 port = of_get_next_child(parent, port); 2453 if (!port) 2454 return NULL; 2455 } while (of_node_cmp(port->name, "port")); 2456 } 2457 } 2458 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2459 2460 /** 2461 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2462 * @parent: pointer to the parent device node 2463 * @port_reg: identifier (value of reg property) of the parent port node 2464 * @reg: identifier (value of reg property) of the endpoint node 2465 * 2466 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2467 * is the child of a port node identified by port_reg. reg and port_reg are 2468 * ignored when they are -1. 2469 */ 2470 struct device_node *of_graph_get_endpoint_by_regs( 2471 const struct device_node *parent, int port_reg, int reg) 2472 { 2473 struct of_endpoint endpoint; 2474 struct device_node *node = NULL; 2475 2476 for_each_endpoint_of_node(parent, node) { 2477 of_graph_parse_endpoint(node, &endpoint); 2478 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2479 ((reg == -1) || (endpoint.id == reg))) 2480 return node; 2481 } 2482 2483 return NULL; 2484 } 2485 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2486 2487 /** 2488 * of_graph_get_remote_port_parent() - get remote port's parent node 2489 * @node: pointer to a local endpoint device_node 2490 * 2491 * Return: Remote device node associated with remote endpoint node linked 2492 * to @node. Use of_node_put() on it when done. 2493 */ 2494 struct device_node *of_graph_get_remote_port_parent( 2495 const struct device_node *node) 2496 { 2497 struct device_node *np; 2498 unsigned int depth; 2499 2500 /* Get remote endpoint node. */ 2501 np = of_parse_phandle(node, "remote-endpoint", 0); 2502 2503 /* Walk 3 levels up only if there is 'ports' node. */ 2504 for (depth = 3; depth && np; depth--) { 2505 np = of_get_next_parent(np); 2506 if (depth == 2 && of_node_cmp(np->name, "ports")) 2507 break; 2508 } 2509 return np; 2510 } 2511 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2512 2513 /** 2514 * of_graph_get_remote_port() - get remote port node 2515 * @node: pointer to a local endpoint device_node 2516 * 2517 * Return: Remote port node associated with remote endpoint node linked 2518 * to @node. Use of_node_put() on it when done. 2519 */ 2520 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2521 { 2522 struct device_node *np; 2523 2524 /* Get remote endpoint node. */ 2525 np = of_parse_phandle(node, "remote-endpoint", 0); 2526 if (!np) 2527 return NULL; 2528 return of_get_next_parent(np); 2529 } 2530 EXPORT_SYMBOL(of_graph_get_remote_port); 2531 2532 /** 2533 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 2534 * @node: pointer to parent device_node containing graph port/endpoint 2535 * @port: identifier (value of reg property) of the parent port node 2536 * @endpoint: identifier (value of reg property) of the endpoint node 2537 * 2538 * Return: Remote device node associated with remote endpoint node linked 2539 * to @node. Use of_node_put() on it when done. 2540 */ 2541 struct device_node *of_graph_get_remote_node(const struct device_node *node, 2542 u32 port, u32 endpoint) 2543 { 2544 struct device_node *endpoint_node, *remote; 2545 2546 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 2547 if (!endpoint_node) { 2548 pr_debug("no valid endpoint (%d, %d) for node %s\n", 2549 port, endpoint, node->full_name); 2550 return NULL; 2551 } 2552 2553 remote = of_graph_get_remote_port_parent(endpoint_node); 2554 of_node_put(endpoint_node); 2555 if (!remote) { 2556 pr_debug("no valid remote node\n"); 2557 return NULL; 2558 } 2559 2560 if (!of_device_is_available(remote)) { 2561 pr_debug("not available for remote node\n"); 2562 return NULL; 2563 } 2564 2565 return remote; 2566 } 2567 EXPORT_SYMBOL(of_graph_get_remote_node); 2568