xref: /openbmc/linux/drivers/of/base.c (revision f7777dcc)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27 
28 #include "of_private.h"
29 
30 LIST_HEAD(aliases_lookup);
31 
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37 
38 DEFINE_MUTEX(of_aliases_mutex);
39 
40 /* use when traversing tree through the allnext, child, sibling,
41  * or parent members of struct device_node.
42  */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44 
45 int of_n_addr_cells(struct device_node *np)
46 {
47 	const __be32 *ip;
48 
49 	do {
50 		if (np->parent)
51 			np = np->parent;
52 		ip = of_get_property(np, "#address-cells", NULL);
53 		if (ip)
54 			return be32_to_cpup(ip);
55 	} while (np->parent);
56 	/* No #address-cells property for the root node */
57 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60 
61 int of_n_size_cells(struct device_node *np)
62 {
63 	const __be32 *ip;
64 
65 	do {
66 		if (np->parent)
67 			np = np->parent;
68 		ip = of_get_property(np, "#size-cells", NULL);
69 		if (ip)
70 			return be32_to_cpup(ip);
71 	} while (np->parent);
72 	/* No #size-cells property for the root node */
73 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76 
77 #if defined(CONFIG_OF_DYNAMIC)
78 /**
79  *	of_node_get - Increment refcount of a node
80  *	@node:	Node to inc refcount, NULL is supported to
81  *		simplify writing of callers
82  *
83  *	Returns node.
84  */
85 struct device_node *of_node_get(struct device_node *node)
86 {
87 	if (node)
88 		kref_get(&node->kref);
89 	return node;
90 }
91 EXPORT_SYMBOL(of_node_get);
92 
93 static inline struct device_node *kref_to_device_node(struct kref *kref)
94 {
95 	return container_of(kref, struct device_node, kref);
96 }
97 
98 /**
99  *	of_node_release - release a dynamically allocated node
100  *	@kref:  kref element of the node to be released
101  *
102  *	In of_node_put() this function is passed to kref_put()
103  *	as the destructor.
104  */
105 static void of_node_release(struct kref *kref)
106 {
107 	struct device_node *node = kref_to_device_node(kref);
108 	struct property *prop = node->properties;
109 
110 	/* We should never be releasing nodes that haven't been detached. */
111 	if (!of_node_check_flag(node, OF_DETACHED)) {
112 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
113 		dump_stack();
114 		kref_init(&node->kref);
115 		return;
116 	}
117 
118 	if (!of_node_check_flag(node, OF_DYNAMIC))
119 		return;
120 
121 	while (prop) {
122 		struct property *next = prop->next;
123 		kfree(prop->name);
124 		kfree(prop->value);
125 		kfree(prop);
126 		prop = next;
127 
128 		if (!prop) {
129 			prop = node->deadprops;
130 			node->deadprops = NULL;
131 		}
132 	}
133 	kfree(node->full_name);
134 	kfree(node->data);
135 	kfree(node);
136 }
137 
138 /**
139  *	of_node_put - Decrement refcount of a node
140  *	@node:	Node to dec refcount, NULL is supported to
141  *		simplify writing of callers
142  *
143  */
144 void of_node_put(struct device_node *node)
145 {
146 	if (node)
147 		kref_put(&node->kref, of_node_release);
148 }
149 EXPORT_SYMBOL(of_node_put);
150 #endif /* CONFIG_OF_DYNAMIC */
151 
152 static struct property *__of_find_property(const struct device_node *np,
153 					   const char *name, int *lenp)
154 {
155 	struct property *pp;
156 
157 	if (!np)
158 		return NULL;
159 
160 	for (pp = np->properties; pp; pp = pp->next) {
161 		if (of_prop_cmp(pp->name, name) == 0) {
162 			if (lenp)
163 				*lenp = pp->length;
164 			break;
165 		}
166 	}
167 
168 	return pp;
169 }
170 
171 struct property *of_find_property(const struct device_node *np,
172 				  const char *name,
173 				  int *lenp)
174 {
175 	struct property *pp;
176 	unsigned long flags;
177 
178 	raw_spin_lock_irqsave(&devtree_lock, flags);
179 	pp = __of_find_property(np, name, lenp);
180 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
181 
182 	return pp;
183 }
184 EXPORT_SYMBOL(of_find_property);
185 
186 /**
187  * of_find_all_nodes - Get next node in global list
188  * @prev:	Previous node or NULL to start iteration
189  *		of_node_put() will be called on it
190  *
191  * Returns a node pointer with refcount incremented, use
192  * of_node_put() on it when done.
193  */
194 struct device_node *of_find_all_nodes(struct device_node *prev)
195 {
196 	struct device_node *np;
197 	unsigned long flags;
198 
199 	raw_spin_lock_irqsave(&devtree_lock, flags);
200 	np = prev ? prev->allnext : of_allnodes;
201 	for (; np != NULL; np = np->allnext)
202 		if (of_node_get(np))
203 			break;
204 	of_node_put(prev);
205 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
206 	return np;
207 }
208 EXPORT_SYMBOL(of_find_all_nodes);
209 
210 /*
211  * Find a property with a given name for a given node
212  * and return the value.
213  */
214 static const void *__of_get_property(const struct device_node *np,
215 				     const char *name, int *lenp)
216 {
217 	struct property *pp = __of_find_property(np, name, lenp);
218 
219 	return pp ? pp->value : NULL;
220 }
221 
222 /*
223  * Find a property with a given name for a given node
224  * and return the value.
225  */
226 const void *of_get_property(const struct device_node *np, const char *name,
227 			    int *lenp)
228 {
229 	struct property *pp = of_find_property(np, name, lenp);
230 
231 	return pp ? pp->value : NULL;
232 }
233 EXPORT_SYMBOL(of_get_property);
234 
235 /*
236  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
237  *
238  * @cpu: logical cpu index of a core/thread
239  * @phys_id: physical identifier of a core/thread
240  *
241  * CPU logical to physical index mapping is architecture specific.
242  * However this __weak function provides a default match of physical
243  * id to logical cpu index. phys_id provided here is usually values read
244  * from the device tree which must match the hardware internal registers.
245  *
246  * Returns true if the physical identifier and the logical cpu index
247  * correspond to the same core/thread, false otherwise.
248  */
249 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
250 {
251 	return (u32)phys_id == cpu;
252 }
253 
254 /**
255  * Checks if the given "prop_name" property holds the physical id of the
256  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
257  * NULL, local thread number within the core is returned in it.
258  */
259 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
260 			const char *prop_name, int cpu, unsigned int *thread)
261 {
262 	const __be32 *cell;
263 	int ac, prop_len, tid;
264 	u64 hwid;
265 
266 	ac = of_n_addr_cells(cpun);
267 	cell = of_get_property(cpun, prop_name, &prop_len);
268 	if (!cell)
269 		return false;
270 	prop_len /= sizeof(*cell);
271 	for (tid = 0; tid < prop_len; tid++) {
272 		hwid = of_read_number(cell, ac);
273 		if (arch_match_cpu_phys_id(cpu, hwid)) {
274 			if (thread)
275 				*thread = tid;
276 			return true;
277 		}
278 		cell += ac;
279 	}
280 	return false;
281 }
282 
283 /**
284  * of_get_cpu_node - Get device node associated with the given logical CPU
285  *
286  * @cpu: CPU number(logical index) for which device node is required
287  * @thread: if not NULL, local thread number within the physical core is
288  *          returned
289  *
290  * The main purpose of this function is to retrieve the device node for the
291  * given logical CPU index. It should be used to initialize the of_node in
292  * cpu device. Once of_node in cpu device is populated, all the further
293  * references can use that instead.
294  *
295  * CPU logical to physical index mapping is architecture specific and is built
296  * before booting secondary cores. This function uses arch_match_cpu_phys_id
297  * which can be overridden by architecture specific implementation.
298  *
299  * Returns a node pointer for the logical cpu if found, else NULL.
300  */
301 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
302 {
303 	struct device_node *cpun, *cpus;
304 
305 	cpus = of_find_node_by_path("/cpus");
306 	if (!cpus)
307 		return NULL;
308 
309 	for_each_child_of_node(cpus, cpun) {
310 		if (of_node_cmp(cpun->type, "cpu"))
311 			continue;
312 		/* Check for non-standard "ibm,ppc-interrupt-server#s" property
313 		 * for thread ids on PowerPC. If it doesn't exist fallback to
314 		 * standard "reg" property.
315 		 */
316 		if (IS_ENABLED(CONFIG_PPC) &&
317 			__of_find_n_match_cpu_property(cpun,
318 				"ibm,ppc-interrupt-server#s", cpu, thread))
319 			return cpun;
320 		if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
321 			return cpun;
322 	}
323 	return NULL;
324 }
325 EXPORT_SYMBOL(of_get_cpu_node);
326 
327 /** Checks if the given "compat" string matches one of the strings in
328  * the device's "compatible" property
329  */
330 static int __of_device_is_compatible(const struct device_node *device,
331 				     const char *compat)
332 {
333 	const char* cp;
334 	int cplen, l;
335 
336 	cp = __of_get_property(device, "compatible", &cplen);
337 	if (cp == NULL)
338 		return 0;
339 	while (cplen > 0) {
340 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
341 			return 1;
342 		l = strlen(cp) + 1;
343 		cp += l;
344 		cplen -= l;
345 	}
346 
347 	return 0;
348 }
349 
350 /** Checks if the given "compat" string matches one of the strings in
351  * the device's "compatible" property
352  */
353 int of_device_is_compatible(const struct device_node *device,
354 		const char *compat)
355 {
356 	unsigned long flags;
357 	int res;
358 
359 	raw_spin_lock_irqsave(&devtree_lock, flags);
360 	res = __of_device_is_compatible(device, compat);
361 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
362 	return res;
363 }
364 EXPORT_SYMBOL(of_device_is_compatible);
365 
366 /**
367  * of_machine_is_compatible - Test root of device tree for a given compatible value
368  * @compat: compatible string to look for in root node's compatible property.
369  *
370  * Returns true if the root node has the given value in its
371  * compatible property.
372  */
373 int of_machine_is_compatible(const char *compat)
374 {
375 	struct device_node *root;
376 	int rc = 0;
377 
378 	root = of_find_node_by_path("/");
379 	if (root) {
380 		rc = of_device_is_compatible(root, compat);
381 		of_node_put(root);
382 	}
383 	return rc;
384 }
385 EXPORT_SYMBOL(of_machine_is_compatible);
386 
387 /**
388  *  __of_device_is_available - check if a device is available for use
389  *
390  *  @device: Node to check for availability, with locks already held
391  *
392  *  Returns 1 if the status property is absent or set to "okay" or "ok",
393  *  0 otherwise
394  */
395 static int __of_device_is_available(const struct device_node *device)
396 {
397 	const char *status;
398 	int statlen;
399 
400 	status = __of_get_property(device, "status", &statlen);
401 	if (status == NULL)
402 		return 1;
403 
404 	if (statlen > 0) {
405 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
406 			return 1;
407 	}
408 
409 	return 0;
410 }
411 
412 /**
413  *  of_device_is_available - check if a device is available for use
414  *
415  *  @device: Node to check for availability
416  *
417  *  Returns 1 if the status property is absent or set to "okay" or "ok",
418  *  0 otherwise
419  */
420 int of_device_is_available(const struct device_node *device)
421 {
422 	unsigned long flags;
423 	int res;
424 
425 	raw_spin_lock_irqsave(&devtree_lock, flags);
426 	res = __of_device_is_available(device);
427 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
428 	return res;
429 
430 }
431 EXPORT_SYMBOL(of_device_is_available);
432 
433 /**
434  *	of_get_parent - Get a node's parent if any
435  *	@node:	Node to get parent
436  *
437  *	Returns a node pointer with refcount incremented, use
438  *	of_node_put() on it when done.
439  */
440 struct device_node *of_get_parent(const struct device_node *node)
441 {
442 	struct device_node *np;
443 	unsigned long flags;
444 
445 	if (!node)
446 		return NULL;
447 
448 	raw_spin_lock_irqsave(&devtree_lock, flags);
449 	np = of_node_get(node->parent);
450 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
451 	return np;
452 }
453 EXPORT_SYMBOL(of_get_parent);
454 
455 /**
456  *	of_get_next_parent - Iterate to a node's parent
457  *	@node:	Node to get parent of
458  *
459  * 	This is like of_get_parent() except that it drops the
460  * 	refcount on the passed node, making it suitable for iterating
461  * 	through a node's parents.
462  *
463  *	Returns a node pointer with refcount incremented, use
464  *	of_node_put() on it when done.
465  */
466 struct device_node *of_get_next_parent(struct device_node *node)
467 {
468 	struct device_node *parent;
469 	unsigned long flags;
470 
471 	if (!node)
472 		return NULL;
473 
474 	raw_spin_lock_irqsave(&devtree_lock, flags);
475 	parent = of_node_get(node->parent);
476 	of_node_put(node);
477 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
478 	return parent;
479 }
480 EXPORT_SYMBOL(of_get_next_parent);
481 
482 /**
483  *	of_get_next_child - Iterate a node childs
484  *	@node:	parent node
485  *	@prev:	previous child of the parent node, or NULL to get first
486  *
487  *	Returns a node pointer with refcount incremented, use
488  *	of_node_put() on it when done.
489  */
490 struct device_node *of_get_next_child(const struct device_node *node,
491 	struct device_node *prev)
492 {
493 	struct device_node *next;
494 	unsigned long flags;
495 
496 	raw_spin_lock_irqsave(&devtree_lock, flags);
497 	next = prev ? prev->sibling : node->child;
498 	for (; next; next = next->sibling)
499 		if (of_node_get(next))
500 			break;
501 	of_node_put(prev);
502 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
503 	return next;
504 }
505 EXPORT_SYMBOL(of_get_next_child);
506 
507 /**
508  *	of_get_next_available_child - Find the next available child node
509  *	@node:	parent node
510  *	@prev:	previous child of the parent node, or NULL to get first
511  *
512  *      This function is like of_get_next_child(), except that it
513  *      automatically skips any disabled nodes (i.e. status = "disabled").
514  */
515 struct device_node *of_get_next_available_child(const struct device_node *node,
516 	struct device_node *prev)
517 {
518 	struct device_node *next;
519 	unsigned long flags;
520 
521 	raw_spin_lock_irqsave(&devtree_lock, flags);
522 	next = prev ? prev->sibling : node->child;
523 	for (; next; next = next->sibling) {
524 		if (!__of_device_is_available(next))
525 			continue;
526 		if (of_node_get(next))
527 			break;
528 	}
529 	of_node_put(prev);
530 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
531 	return next;
532 }
533 EXPORT_SYMBOL(of_get_next_available_child);
534 
535 /**
536  *	of_get_child_by_name - Find the child node by name for a given parent
537  *	@node:	parent node
538  *	@name:	child name to look for.
539  *
540  *      This function looks for child node for given matching name
541  *
542  *	Returns a node pointer if found, with refcount incremented, use
543  *	of_node_put() on it when done.
544  *	Returns NULL if node is not found.
545  */
546 struct device_node *of_get_child_by_name(const struct device_node *node,
547 				const char *name)
548 {
549 	struct device_node *child;
550 
551 	for_each_child_of_node(node, child)
552 		if (child->name && (of_node_cmp(child->name, name) == 0))
553 			break;
554 	return child;
555 }
556 EXPORT_SYMBOL(of_get_child_by_name);
557 
558 /**
559  *	of_find_node_by_path - Find a node matching a full OF path
560  *	@path:	The full path to match
561  *
562  *	Returns a node pointer with refcount incremented, use
563  *	of_node_put() on it when done.
564  */
565 struct device_node *of_find_node_by_path(const char *path)
566 {
567 	struct device_node *np = of_allnodes;
568 	unsigned long flags;
569 
570 	raw_spin_lock_irqsave(&devtree_lock, flags);
571 	for (; np; np = np->allnext) {
572 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
573 		    && of_node_get(np))
574 			break;
575 	}
576 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
577 	return np;
578 }
579 EXPORT_SYMBOL(of_find_node_by_path);
580 
581 /**
582  *	of_find_node_by_name - Find a node by its "name" property
583  *	@from:	The node to start searching from or NULL, the node
584  *		you pass will not be searched, only the next one
585  *		will; typically, you pass what the previous call
586  *		returned. of_node_put() will be called on it
587  *	@name:	The name string to match against
588  *
589  *	Returns a node pointer with refcount incremented, use
590  *	of_node_put() on it when done.
591  */
592 struct device_node *of_find_node_by_name(struct device_node *from,
593 	const char *name)
594 {
595 	struct device_node *np;
596 	unsigned long flags;
597 
598 	raw_spin_lock_irqsave(&devtree_lock, flags);
599 	np = from ? from->allnext : of_allnodes;
600 	for (; np; np = np->allnext)
601 		if (np->name && (of_node_cmp(np->name, name) == 0)
602 		    && of_node_get(np))
603 			break;
604 	of_node_put(from);
605 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
606 	return np;
607 }
608 EXPORT_SYMBOL(of_find_node_by_name);
609 
610 /**
611  *	of_find_node_by_type - Find a node by its "device_type" property
612  *	@from:	The node to start searching from, or NULL to start searching
613  *		the entire device tree. The node you pass will not be
614  *		searched, only the next one will; typically, you pass
615  *		what the previous call returned. of_node_put() will be
616  *		called on from for you.
617  *	@type:	The type string to match against
618  *
619  *	Returns a node pointer with refcount incremented, use
620  *	of_node_put() on it when done.
621  */
622 struct device_node *of_find_node_by_type(struct device_node *from,
623 	const char *type)
624 {
625 	struct device_node *np;
626 	unsigned long flags;
627 
628 	raw_spin_lock_irqsave(&devtree_lock, flags);
629 	np = from ? from->allnext : of_allnodes;
630 	for (; np; np = np->allnext)
631 		if (np->type && (of_node_cmp(np->type, type) == 0)
632 		    && of_node_get(np))
633 			break;
634 	of_node_put(from);
635 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
636 	return np;
637 }
638 EXPORT_SYMBOL(of_find_node_by_type);
639 
640 /**
641  *	of_find_compatible_node - Find a node based on type and one of the
642  *                                tokens in its "compatible" property
643  *	@from:		The node to start searching from or NULL, the node
644  *			you pass will not be searched, only the next one
645  *			will; typically, you pass what the previous call
646  *			returned. of_node_put() will be called on it
647  *	@type:		The type string to match "device_type" or NULL to ignore
648  *	@compatible:	The string to match to one of the tokens in the device
649  *			"compatible" list.
650  *
651  *	Returns a node pointer with refcount incremented, use
652  *	of_node_put() on it when done.
653  */
654 struct device_node *of_find_compatible_node(struct device_node *from,
655 	const char *type, const char *compatible)
656 {
657 	struct device_node *np;
658 	unsigned long flags;
659 
660 	raw_spin_lock_irqsave(&devtree_lock, flags);
661 	np = from ? from->allnext : of_allnodes;
662 	for (; np; np = np->allnext) {
663 		if (type
664 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
665 			continue;
666 		if (__of_device_is_compatible(np, compatible) &&
667 		    of_node_get(np))
668 			break;
669 	}
670 	of_node_put(from);
671 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 	return np;
673 }
674 EXPORT_SYMBOL(of_find_compatible_node);
675 
676 /**
677  *	of_find_node_with_property - Find a node which has a property with
678  *                                   the given name.
679  *	@from:		The node to start searching from or NULL, the node
680  *			you pass will not be searched, only the next one
681  *			will; typically, you pass what the previous call
682  *			returned. of_node_put() will be called on it
683  *	@prop_name:	The name of the property to look for.
684  *
685  *	Returns a node pointer with refcount incremented, use
686  *	of_node_put() on it when done.
687  */
688 struct device_node *of_find_node_with_property(struct device_node *from,
689 	const char *prop_name)
690 {
691 	struct device_node *np;
692 	struct property *pp;
693 	unsigned long flags;
694 
695 	raw_spin_lock_irqsave(&devtree_lock, flags);
696 	np = from ? from->allnext : of_allnodes;
697 	for (; np; np = np->allnext) {
698 		for (pp = np->properties; pp; pp = pp->next) {
699 			if (of_prop_cmp(pp->name, prop_name) == 0) {
700 				of_node_get(np);
701 				goto out;
702 			}
703 		}
704 	}
705 out:
706 	of_node_put(from);
707 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
708 	return np;
709 }
710 EXPORT_SYMBOL(of_find_node_with_property);
711 
712 static
713 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
714 					   const struct device_node *node)
715 {
716 	if (!matches)
717 		return NULL;
718 
719 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
720 		int match = 1;
721 		if (matches->name[0])
722 			match &= node->name
723 				&& !strcmp(matches->name, node->name);
724 		if (matches->type[0])
725 			match &= node->type
726 				&& !strcmp(matches->type, node->type);
727 		if (matches->compatible[0])
728 			match &= __of_device_is_compatible(node,
729 							   matches->compatible);
730 		if (match)
731 			return matches;
732 		matches++;
733 	}
734 	return NULL;
735 }
736 
737 /**
738  * of_match_node - Tell if an device_node has a matching of_match structure
739  *	@matches:	array of of device match structures to search in
740  *	@node:		the of device structure to match against
741  *
742  *	Low level utility function used by device matching.
743  */
744 const struct of_device_id *of_match_node(const struct of_device_id *matches,
745 					 const struct device_node *node)
746 {
747 	const struct of_device_id *match;
748 	unsigned long flags;
749 
750 	raw_spin_lock_irqsave(&devtree_lock, flags);
751 	match = __of_match_node(matches, node);
752 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
753 	return match;
754 }
755 EXPORT_SYMBOL(of_match_node);
756 
757 /**
758  *	of_find_matching_node_and_match - Find a node based on an of_device_id
759  *					  match table.
760  *	@from:		The node to start searching from or NULL, the node
761  *			you pass will not be searched, only the next one
762  *			will; typically, you pass what the previous call
763  *			returned. of_node_put() will be called on it
764  *	@matches:	array of of device match structures to search in
765  *	@match		Updated to point at the matches entry which matched
766  *
767  *	Returns a node pointer with refcount incremented, use
768  *	of_node_put() on it when done.
769  */
770 struct device_node *of_find_matching_node_and_match(struct device_node *from,
771 					const struct of_device_id *matches,
772 					const struct of_device_id **match)
773 {
774 	struct device_node *np;
775 	const struct of_device_id *m;
776 	unsigned long flags;
777 
778 	if (match)
779 		*match = NULL;
780 
781 	raw_spin_lock_irqsave(&devtree_lock, flags);
782 	np = from ? from->allnext : of_allnodes;
783 	for (; np; np = np->allnext) {
784 		m = __of_match_node(matches, np);
785 		if (m && of_node_get(np)) {
786 			if (match)
787 				*match = m;
788 			break;
789 		}
790 	}
791 	of_node_put(from);
792 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
793 	return np;
794 }
795 EXPORT_SYMBOL(of_find_matching_node_and_match);
796 
797 /**
798  * of_modalias_node - Lookup appropriate modalias for a device node
799  * @node:	pointer to a device tree node
800  * @modalias:	Pointer to buffer that modalias value will be copied into
801  * @len:	Length of modalias value
802  *
803  * Based on the value of the compatible property, this routine will attempt
804  * to choose an appropriate modalias value for a particular device tree node.
805  * It does this by stripping the manufacturer prefix (as delimited by a ',')
806  * from the first entry in the compatible list property.
807  *
808  * This routine returns 0 on success, <0 on failure.
809  */
810 int of_modalias_node(struct device_node *node, char *modalias, int len)
811 {
812 	const char *compatible, *p;
813 	int cplen;
814 
815 	compatible = of_get_property(node, "compatible", &cplen);
816 	if (!compatible || strlen(compatible) > cplen)
817 		return -ENODEV;
818 	p = strchr(compatible, ',');
819 	strlcpy(modalias, p ? p + 1 : compatible, len);
820 	return 0;
821 }
822 EXPORT_SYMBOL_GPL(of_modalias_node);
823 
824 /**
825  * of_find_node_by_phandle - Find a node given a phandle
826  * @handle:	phandle of the node to find
827  *
828  * Returns a node pointer with refcount incremented, use
829  * of_node_put() on it when done.
830  */
831 struct device_node *of_find_node_by_phandle(phandle handle)
832 {
833 	struct device_node *np;
834 	unsigned long flags;
835 
836 	raw_spin_lock_irqsave(&devtree_lock, flags);
837 	for (np = of_allnodes; np; np = np->allnext)
838 		if (np->phandle == handle)
839 			break;
840 	of_node_get(np);
841 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
842 	return np;
843 }
844 EXPORT_SYMBOL(of_find_node_by_phandle);
845 
846 /**
847  * of_find_property_value_of_size
848  *
849  * @np:		device node from which the property value is to be read.
850  * @propname:	name of the property to be searched.
851  * @len:	requested length of property value
852  *
853  * Search for a property in a device node and valid the requested size.
854  * Returns the property value on success, -EINVAL if the property does not
855  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
856  * property data isn't large enough.
857  *
858  */
859 static void *of_find_property_value_of_size(const struct device_node *np,
860 			const char *propname, u32 len)
861 {
862 	struct property *prop = of_find_property(np, propname, NULL);
863 
864 	if (!prop)
865 		return ERR_PTR(-EINVAL);
866 	if (!prop->value)
867 		return ERR_PTR(-ENODATA);
868 	if (len > prop->length)
869 		return ERR_PTR(-EOVERFLOW);
870 
871 	return prop->value;
872 }
873 
874 /**
875  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
876  *
877  * @np:		device node from which the property value is to be read.
878  * @propname:	name of the property to be searched.
879  * @index:	index of the u32 in the list of values
880  * @out_value:	pointer to return value, modified only if no error.
881  *
882  * Search for a property in a device node and read nth 32-bit value from
883  * it. Returns 0 on success, -EINVAL if the property does not exist,
884  * -ENODATA if property does not have a value, and -EOVERFLOW if the
885  * property data isn't large enough.
886  *
887  * The out_value is modified only if a valid u32 value can be decoded.
888  */
889 int of_property_read_u32_index(const struct device_node *np,
890 				       const char *propname,
891 				       u32 index, u32 *out_value)
892 {
893 	const u32 *val = of_find_property_value_of_size(np, propname,
894 					((index + 1) * sizeof(*out_value)));
895 
896 	if (IS_ERR(val))
897 		return PTR_ERR(val);
898 
899 	*out_value = be32_to_cpup(((__be32 *)val) + index);
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
903 
904 /**
905  * of_property_read_u8_array - Find and read an array of u8 from a property.
906  *
907  * @np:		device node from which the property value is to be read.
908  * @propname:	name of the property to be searched.
909  * @out_values:	pointer to return value, modified only if return value is 0.
910  * @sz:		number of array elements to read
911  *
912  * Search for a property in a device node and read 8-bit value(s) from
913  * it. Returns 0 on success, -EINVAL if the property does not exist,
914  * -ENODATA if property does not have a value, and -EOVERFLOW if the
915  * property data isn't large enough.
916  *
917  * dts entry of array should be like:
918  *	property = /bits/ 8 <0x50 0x60 0x70>;
919  *
920  * The out_values is modified only if a valid u8 value can be decoded.
921  */
922 int of_property_read_u8_array(const struct device_node *np,
923 			const char *propname, u8 *out_values, size_t sz)
924 {
925 	const u8 *val = of_find_property_value_of_size(np, propname,
926 						(sz * sizeof(*out_values)));
927 
928 	if (IS_ERR(val))
929 		return PTR_ERR(val);
930 
931 	while (sz--)
932 		*out_values++ = *val++;
933 	return 0;
934 }
935 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
936 
937 /**
938  * of_property_read_u16_array - Find and read an array of u16 from a property.
939  *
940  * @np:		device node from which the property value is to be read.
941  * @propname:	name of the property to be searched.
942  * @out_values:	pointer to return value, modified only if return value is 0.
943  * @sz:		number of array elements to read
944  *
945  * Search for a property in a device node and read 16-bit value(s) from
946  * it. Returns 0 on success, -EINVAL if the property does not exist,
947  * -ENODATA if property does not have a value, and -EOVERFLOW if the
948  * property data isn't large enough.
949  *
950  * dts entry of array should be like:
951  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
952  *
953  * The out_values is modified only if a valid u16 value can be decoded.
954  */
955 int of_property_read_u16_array(const struct device_node *np,
956 			const char *propname, u16 *out_values, size_t sz)
957 {
958 	const __be16 *val = of_find_property_value_of_size(np, propname,
959 						(sz * sizeof(*out_values)));
960 
961 	if (IS_ERR(val))
962 		return PTR_ERR(val);
963 
964 	while (sz--)
965 		*out_values++ = be16_to_cpup(val++);
966 	return 0;
967 }
968 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
969 
970 /**
971  * of_property_read_u32_array - Find and read an array of 32 bit integers
972  * from a property.
973  *
974  * @np:		device node from which the property value is to be read.
975  * @propname:	name of the property to be searched.
976  * @out_values:	pointer to return value, modified only if return value is 0.
977  * @sz:		number of array elements to read
978  *
979  * Search for a property in a device node and read 32-bit value(s) from
980  * it. Returns 0 on success, -EINVAL if the property does not exist,
981  * -ENODATA if property does not have a value, and -EOVERFLOW if the
982  * property data isn't large enough.
983  *
984  * The out_values is modified only if a valid u32 value can be decoded.
985  */
986 int of_property_read_u32_array(const struct device_node *np,
987 			       const char *propname, u32 *out_values,
988 			       size_t sz)
989 {
990 	const __be32 *val = of_find_property_value_of_size(np, propname,
991 						(sz * sizeof(*out_values)));
992 
993 	if (IS_ERR(val))
994 		return PTR_ERR(val);
995 
996 	while (sz--)
997 		*out_values++ = be32_to_cpup(val++);
998 	return 0;
999 }
1000 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1001 
1002 /**
1003  * of_property_read_u64 - Find and read a 64 bit integer from a property
1004  * @np:		device node from which the property value is to be read.
1005  * @propname:	name of the property to be searched.
1006  * @out_value:	pointer to return value, modified only if return value is 0.
1007  *
1008  * Search for a property in a device node and read a 64-bit value from
1009  * it. Returns 0 on success, -EINVAL if the property does not exist,
1010  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1011  * property data isn't large enough.
1012  *
1013  * The out_value is modified only if a valid u64 value can be decoded.
1014  */
1015 int of_property_read_u64(const struct device_node *np, const char *propname,
1016 			 u64 *out_value)
1017 {
1018 	const __be32 *val = of_find_property_value_of_size(np, propname,
1019 						sizeof(*out_value));
1020 
1021 	if (IS_ERR(val))
1022 		return PTR_ERR(val);
1023 
1024 	*out_value = of_read_number(val, 2);
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(of_property_read_u64);
1028 
1029 /**
1030  * of_property_read_string - Find and read a string from a property
1031  * @np:		device node from which the property value is to be read.
1032  * @propname:	name of the property to be searched.
1033  * @out_string:	pointer to null terminated return string, modified only if
1034  *		return value is 0.
1035  *
1036  * Search for a property in a device tree node and retrieve a null
1037  * terminated string value (pointer to data, not a copy). Returns 0 on
1038  * success, -EINVAL if the property does not exist, -ENODATA if property
1039  * does not have a value, and -EILSEQ if the string is not null-terminated
1040  * within the length of the property data.
1041  *
1042  * The out_string pointer is modified only if a valid string can be decoded.
1043  */
1044 int of_property_read_string(struct device_node *np, const char *propname,
1045 				const char **out_string)
1046 {
1047 	struct property *prop = of_find_property(np, propname, NULL);
1048 	if (!prop)
1049 		return -EINVAL;
1050 	if (!prop->value)
1051 		return -ENODATA;
1052 	if (strnlen(prop->value, prop->length) >= prop->length)
1053 		return -EILSEQ;
1054 	*out_string = prop->value;
1055 	return 0;
1056 }
1057 EXPORT_SYMBOL_GPL(of_property_read_string);
1058 
1059 /**
1060  * of_property_read_string_index - Find and read a string from a multiple
1061  * strings property.
1062  * @np:		device node from which the property value is to be read.
1063  * @propname:	name of the property to be searched.
1064  * @index:	index of the string in the list of strings
1065  * @out_string:	pointer to null terminated return string, modified only if
1066  *		return value is 0.
1067  *
1068  * Search for a property in a device tree node and retrieve a null
1069  * terminated string value (pointer to data, not a copy) in the list of strings
1070  * contained in that property.
1071  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1072  * property does not have a value, and -EILSEQ if the string is not
1073  * null-terminated within the length of the property data.
1074  *
1075  * The out_string pointer is modified only if a valid string can be decoded.
1076  */
1077 int of_property_read_string_index(struct device_node *np, const char *propname,
1078 				  int index, const char **output)
1079 {
1080 	struct property *prop = of_find_property(np, propname, NULL);
1081 	int i = 0;
1082 	size_t l = 0, total = 0;
1083 	const char *p;
1084 
1085 	if (!prop)
1086 		return -EINVAL;
1087 	if (!prop->value)
1088 		return -ENODATA;
1089 	if (strnlen(prop->value, prop->length) >= prop->length)
1090 		return -EILSEQ;
1091 
1092 	p = prop->value;
1093 
1094 	for (i = 0; total < prop->length; total += l, p += l) {
1095 		l = strlen(p) + 1;
1096 		if (i++ == index) {
1097 			*output = p;
1098 			return 0;
1099 		}
1100 	}
1101 	return -ENODATA;
1102 }
1103 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1104 
1105 /**
1106  * of_property_match_string() - Find string in a list and return index
1107  * @np: pointer to node containing string list property
1108  * @propname: string list property name
1109  * @string: pointer to string to search for in string list
1110  *
1111  * This function searches a string list property and returns the index
1112  * of a specific string value.
1113  */
1114 int of_property_match_string(struct device_node *np, const char *propname,
1115 			     const char *string)
1116 {
1117 	struct property *prop = of_find_property(np, propname, NULL);
1118 	size_t l;
1119 	int i;
1120 	const char *p, *end;
1121 
1122 	if (!prop)
1123 		return -EINVAL;
1124 	if (!prop->value)
1125 		return -ENODATA;
1126 
1127 	p = prop->value;
1128 	end = p + prop->length;
1129 
1130 	for (i = 0; p < end; i++, p += l) {
1131 		l = strlen(p) + 1;
1132 		if (p + l > end)
1133 			return -EILSEQ;
1134 		pr_debug("comparing %s with %s\n", string, p);
1135 		if (strcmp(string, p) == 0)
1136 			return i; /* Found it; return index */
1137 	}
1138 	return -ENODATA;
1139 }
1140 EXPORT_SYMBOL_GPL(of_property_match_string);
1141 
1142 /**
1143  * of_property_count_strings - Find and return the number of strings from a
1144  * multiple strings property.
1145  * @np:		device node from which the property value is to be read.
1146  * @propname:	name of the property to be searched.
1147  *
1148  * Search for a property in a device tree node and retrieve the number of null
1149  * terminated string contain in it. Returns the number of strings on
1150  * success, -EINVAL if the property does not exist, -ENODATA if property
1151  * does not have a value, and -EILSEQ if the string is not null-terminated
1152  * within the length of the property data.
1153  */
1154 int of_property_count_strings(struct device_node *np, const char *propname)
1155 {
1156 	struct property *prop = of_find_property(np, propname, NULL);
1157 	int i = 0;
1158 	size_t l = 0, total = 0;
1159 	const char *p;
1160 
1161 	if (!prop)
1162 		return -EINVAL;
1163 	if (!prop->value)
1164 		return -ENODATA;
1165 	if (strnlen(prop->value, prop->length) >= prop->length)
1166 		return -EILSEQ;
1167 
1168 	p = prop->value;
1169 
1170 	for (i = 0; total < prop->length; total += l, p += l, i++)
1171 		l = strlen(p) + 1;
1172 
1173 	return i;
1174 }
1175 EXPORT_SYMBOL_GPL(of_property_count_strings);
1176 
1177 static int __of_parse_phandle_with_args(const struct device_node *np,
1178 					const char *list_name,
1179 					const char *cells_name,
1180 					int cell_count, int index,
1181 					struct of_phandle_args *out_args)
1182 {
1183 	const __be32 *list, *list_end;
1184 	int rc = 0, size, cur_index = 0;
1185 	uint32_t count = 0;
1186 	struct device_node *node = NULL;
1187 	phandle phandle;
1188 
1189 	/* Retrieve the phandle list property */
1190 	list = of_get_property(np, list_name, &size);
1191 	if (!list)
1192 		return -ENOENT;
1193 	list_end = list + size / sizeof(*list);
1194 
1195 	/* Loop over the phandles until all the requested entry is found */
1196 	while (list < list_end) {
1197 		rc = -EINVAL;
1198 		count = 0;
1199 
1200 		/*
1201 		 * If phandle is 0, then it is an empty entry with no
1202 		 * arguments.  Skip forward to the next entry.
1203 		 */
1204 		phandle = be32_to_cpup(list++);
1205 		if (phandle) {
1206 			/*
1207 			 * Find the provider node and parse the #*-cells
1208 			 * property to determine the argument length.
1209 			 *
1210 			 * This is not needed if the cell count is hard-coded
1211 			 * (i.e. cells_name not set, but cell_count is set),
1212 			 * except when we're going to return the found node
1213 			 * below.
1214 			 */
1215 			if (cells_name || cur_index == index) {
1216 				node = of_find_node_by_phandle(phandle);
1217 				if (!node) {
1218 					pr_err("%s: could not find phandle\n",
1219 						np->full_name);
1220 					goto err;
1221 				}
1222 			}
1223 
1224 			if (cells_name) {
1225 				if (of_property_read_u32(node, cells_name,
1226 							 &count)) {
1227 					pr_err("%s: could not get %s for %s\n",
1228 						np->full_name, cells_name,
1229 						node->full_name);
1230 					goto err;
1231 				}
1232 			} else {
1233 				count = cell_count;
1234 			}
1235 
1236 			/*
1237 			 * Make sure that the arguments actually fit in the
1238 			 * remaining property data length
1239 			 */
1240 			if (list + count > list_end) {
1241 				pr_err("%s: arguments longer than property\n",
1242 					 np->full_name);
1243 				goto err;
1244 			}
1245 		}
1246 
1247 		/*
1248 		 * All of the error cases above bail out of the loop, so at
1249 		 * this point, the parsing is successful. If the requested
1250 		 * index matches, then fill the out_args structure and return,
1251 		 * or return -ENOENT for an empty entry.
1252 		 */
1253 		rc = -ENOENT;
1254 		if (cur_index == index) {
1255 			if (!phandle)
1256 				goto err;
1257 
1258 			if (out_args) {
1259 				int i;
1260 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1261 					count = MAX_PHANDLE_ARGS;
1262 				out_args->np = node;
1263 				out_args->args_count = count;
1264 				for (i = 0; i < count; i++)
1265 					out_args->args[i] = be32_to_cpup(list++);
1266 			} else {
1267 				of_node_put(node);
1268 			}
1269 
1270 			/* Found it! return success */
1271 			return 0;
1272 		}
1273 
1274 		of_node_put(node);
1275 		node = NULL;
1276 		list += count;
1277 		cur_index++;
1278 	}
1279 
1280 	/*
1281 	 * Unlock node before returning result; will be one of:
1282 	 * -ENOENT : index is for empty phandle
1283 	 * -EINVAL : parsing error on data
1284 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1285 	 */
1286 	rc = index < 0 ? cur_index : -ENOENT;
1287  err:
1288 	if (node)
1289 		of_node_put(node);
1290 	return rc;
1291 }
1292 
1293 /**
1294  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1295  * @np: Pointer to device node holding phandle property
1296  * @phandle_name: Name of property holding a phandle value
1297  * @index: For properties holding a table of phandles, this is the index into
1298  *         the table
1299  *
1300  * Returns the device_node pointer with refcount incremented.  Use
1301  * of_node_put() on it when done.
1302  */
1303 struct device_node *of_parse_phandle(const struct device_node *np,
1304 				     const char *phandle_name, int index)
1305 {
1306 	struct of_phandle_args args;
1307 
1308 	if (index < 0)
1309 		return NULL;
1310 
1311 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1312 					 index, &args))
1313 		return NULL;
1314 
1315 	return args.np;
1316 }
1317 EXPORT_SYMBOL(of_parse_phandle);
1318 
1319 /**
1320  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1321  * @np:		pointer to a device tree node containing a list
1322  * @list_name:	property name that contains a list
1323  * @cells_name:	property name that specifies phandles' arguments count
1324  * @index:	index of a phandle to parse out
1325  * @out_args:	optional pointer to output arguments structure (will be filled)
1326  *
1327  * This function is useful to parse lists of phandles and their arguments.
1328  * Returns 0 on success and fills out_args, on error returns appropriate
1329  * errno value.
1330  *
1331  * Caller is responsible to call of_node_put() on the returned out_args->node
1332  * pointer.
1333  *
1334  * Example:
1335  *
1336  * phandle1: node1 {
1337  * 	#list-cells = <2>;
1338  * }
1339  *
1340  * phandle2: node2 {
1341  * 	#list-cells = <1>;
1342  * }
1343  *
1344  * node3 {
1345  * 	list = <&phandle1 1 2 &phandle2 3>;
1346  * }
1347  *
1348  * To get a device_node of the `node2' node you may call this:
1349  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1350  */
1351 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1352 				const char *cells_name, int index,
1353 				struct of_phandle_args *out_args)
1354 {
1355 	if (index < 0)
1356 		return -EINVAL;
1357 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1358 					    index, out_args);
1359 }
1360 EXPORT_SYMBOL(of_parse_phandle_with_args);
1361 
1362 /**
1363  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1364  * @np:		pointer to a device tree node containing a list
1365  * @list_name:	property name that contains a list
1366  * @cell_count: number of argument cells following the phandle
1367  * @index:	index of a phandle to parse out
1368  * @out_args:	optional pointer to output arguments structure (will be filled)
1369  *
1370  * This function is useful to parse lists of phandles and their arguments.
1371  * Returns 0 on success and fills out_args, on error returns appropriate
1372  * errno value.
1373  *
1374  * Caller is responsible to call of_node_put() on the returned out_args->node
1375  * pointer.
1376  *
1377  * Example:
1378  *
1379  * phandle1: node1 {
1380  * }
1381  *
1382  * phandle2: node2 {
1383  * }
1384  *
1385  * node3 {
1386  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1387  * }
1388  *
1389  * To get a device_node of the `node2' node you may call this:
1390  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1391  */
1392 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1393 				const char *list_name, int cell_count,
1394 				int index, struct of_phandle_args *out_args)
1395 {
1396 	if (index < 0)
1397 		return -EINVAL;
1398 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1399 					   index, out_args);
1400 }
1401 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1402 
1403 /**
1404  * of_count_phandle_with_args() - Find the number of phandles references in a property
1405  * @np:		pointer to a device tree node containing a list
1406  * @list_name:	property name that contains a list
1407  * @cells_name:	property name that specifies phandles' arguments count
1408  *
1409  * Returns the number of phandle + argument tuples within a property. It
1410  * is a typical pattern to encode a list of phandle and variable
1411  * arguments into a single property. The number of arguments is encoded
1412  * by a property in the phandle-target node. For example, a gpios
1413  * property would contain a list of GPIO specifies consisting of a
1414  * phandle and 1 or more arguments. The number of arguments are
1415  * determined by the #gpio-cells property in the node pointed to by the
1416  * phandle.
1417  */
1418 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1419 				const char *cells_name)
1420 {
1421 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1422 					    NULL);
1423 }
1424 EXPORT_SYMBOL(of_count_phandle_with_args);
1425 
1426 #if defined(CONFIG_OF_DYNAMIC)
1427 static int of_property_notify(int action, struct device_node *np,
1428 			      struct property *prop)
1429 {
1430 	struct of_prop_reconfig pr;
1431 
1432 	pr.dn = np;
1433 	pr.prop = prop;
1434 	return of_reconfig_notify(action, &pr);
1435 }
1436 #else
1437 static int of_property_notify(int action, struct device_node *np,
1438 			      struct property *prop)
1439 {
1440 	return 0;
1441 }
1442 #endif
1443 
1444 /**
1445  * of_add_property - Add a property to a node
1446  */
1447 int of_add_property(struct device_node *np, struct property *prop)
1448 {
1449 	struct property **next;
1450 	unsigned long flags;
1451 	int rc;
1452 
1453 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1454 	if (rc)
1455 		return rc;
1456 
1457 	prop->next = NULL;
1458 	raw_spin_lock_irqsave(&devtree_lock, flags);
1459 	next = &np->properties;
1460 	while (*next) {
1461 		if (strcmp(prop->name, (*next)->name) == 0) {
1462 			/* duplicate ! don't insert it */
1463 			raw_spin_unlock_irqrestore(&devtree_lock, flags);
1464 			return -1;
1465 		}
1466 		next = &(*next)->next;
1467 	}
1468 	*next = prop;
1469 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1470 
1471 #ifdef CONFIG_PROC_DEVICETREE
1472 	/* try to add to proc as well if it was initialized */
1473 	if (np->pde)
1474 		proc_device_tree_add_prop(np->pde, prop);
1475 #endif /* CONFIG_PROC_DEVICETREE */
1476 
1477 	return 0;
1478 }
1479 
1480 /**
1481  * of_remove_property - Remove a property from a node.
1482  *
1483  * Note that we don't actually remove it, since we have given out
1484  * who-knows-how-many pointers to the data using get-property.
1485  * Instead we just move the property to the "dead properties"
1486  * list, so it won't be found any more.
1487  */
1488 int of_remove_property(struct device_node *np, struct property *prop)
1489 {
1490 	struct property **next;
1491 	unsigned long flags;
1492 	int found = 0;
1493 	int rc;
1494 
1495 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1496 	if (rc)
1497 		return rc;
1498 
1499 	raw_spin_lock_irqsave(&devtree_lock, flags);
1500 	next = &np->properties;
1501 	while (*next) {
1502 		if (*next == prop) {
1503 			/* found the node */
1504 			*next = prop->next;
1505 			prop->next = np->deadprops;
1506 			np->deadprops = prop;
1507 			found = 1;
1508 			break;
1509 		}
1510 		next = &(*next)->next;
1511 	}
1512 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1513 
1514 	if (!found)
1515 		return -ENODEV;
1516 
1517 #ifdef CONFIG_PROC_DEVICETREE
1518 	/* try to remove the proc node as well */
1519 	if (np->pde)
1520 		proc_device_tree_remove_prop(np->pde, prop);
1521 #endif /* CONFIG_PROC_DEVICETREE */
1522 
1523 	return 0;
1524 }
1525 
1526 /*
1527  * of_update_property - Update a property in a node, if the property does
1528  * not exist, add it.
1529  *
1530  * Note that we don't actually remove it, since we have given out
1531  * who-knows-how-many pointers to the data using get-property.
1532  * Instead we just move the property to the "dead properties" list,
1533  * and add the new property to the property list
1534  */
1535 int of_update_property(struct device_node *np, struct property *newprop)
1536 {
1537 	struct property **next, *oldprop;
1538 	unsigned long flags;
1539 	int rc, found = 0;
1540 
1541 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1542 	if (rc)
1543 		return rc;
1544 
1545 	if (!newprop->name)
1546 		return -EINVAL;
1547 
1548 	oldprop = of_find_property(np, newprop->name, NULL);
1549 	if (!oldprop)
1550 		return of_add_property(np, newprop);
1551 
1552 	raw_spin_lock_irqsave(&devtree_lock, flags);
1553 	next = &np->properties;
1554 	while (*next) {
1555 		if (*next == oldprop) {
1556 			/* found the node */
1557 			newprop->next = oldprop->next;
1558 			*next = newprop;
1559 			oldprop->next = np->deadprops;
1560 			np->deadprops = oldprop;
1561 			found = 1;
1562 			break;
1563 		}
1564 		next = &(*next)->next;
1565 	}
1566 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1567 
1568 	if (!found)
1569 		return -ENODEV;
1570 
1571 #ifdef CONFIG_PROC_DEVICETREE
1572 	/* try to add to proc as well if it was initialized */
1573 	if (np->pde)
1574 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1575 #endif /* CONFIG_PROC_DEVICETREE */
1576 
1577 	return 0;
1578 }
1579 
1580 #if defined(CONFIG_OF_DYNAMIC)
1581 /*
1582  * Support for dynamic device trees.
1583  *
1584  * On some platforms, the device tree can be manipulated at runtime.
1585  * The routines in this section support adding, removing and changing
1586  * device tree nodes.
1587  */
1588 
1589 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1590 
1591 int of_reconfig_notifier_register(struct notifier_block *nb)
1592 {
1593 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1594 }
1595 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1596 
1597 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1598 {
1599 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1600 }
1601 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1602 
1603 int of_reconfig_notify(unsigned long action, void *p)
1604 {
1605 	int rc;
1606 
1607 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1608 	return notifier_to_errno(rc);
1609 }
1610 
1611 #ifdef CONFIG_PROC_DEVICETREE
1612 static void of_add_proc_dt_entry(struct device_node *dn)
1613 {
1614 	struct proc_dir_entry *ent;
1615 
1616 	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1617 	if (ent)
1618 		proc_device_tree_add_node(dn, ent);
1619 }
1620 #else
1621 static void of_add_proc_dt_entry(struct device_node *dn)
1622 {
1623 	return;
1624 }
1625 #endif
1626 
1627 /**
1628  * of_attach_node - Plug a device node into the tree and global list.
1629  */
1630 int of_attach_node(struct device_node *np)
1631 {
1632 	unsigned long flags;
1633 	int rc;
1634 
1635 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1636 	if (rc)
1637 		return rc;
1638 
1639 	raw_spin_lock_irqsave(&devtree_lock, flags);
1640 	np->sibling = np->parent->child;
1641 	np->allnext = of_allnodes;
1642 	np->parent->child = np;
1643 	of_allnodes = np;
1644 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1645 
1646 	of_add_proc_dt_entry(np);
1647 	return 0;
1648 }
1649 
1650 #ifdef CONFIG_PROC_DEVICETREE
1651 static void of_remove_proc_dt_entry(struct device_node *dn)
1652 {
1653 	proc_remove(dn->pde);
1654 }
1655 #else
1656 static void of_remove_proc_dt_entry(struct device_node *dn)
1657 {
1658 	return;
1659 }
1660 #endif
1661 
1662 /**
1663  * of_detach_node - "Unplug" a node from the device tree.
1664  *
1665  * The caller must hold a reference to the node.  The memory associated with
1666  * the node is not freed until its refcount goes to zero.
1667  */
1668 int of_detach_node(struct device_node *np)
1669 {
1670 	struct device_node *parent;
1671 	unsigned long flags;
1672 	int rc = 0;
1673 
1674 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1675 	if (rc)
1676 		return rc;
1677 
1678 	raw_spin_lock_irqsave(&devtree_lock, flags);
1679 
1680 	if (of_node_check_flag(np, OF_DETACHED)) {
1681 		/* someone already detached it */
1682 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1683 		return rc;
1684 	}
1685 
1686 	parent = np->parent;
1687 	if (!parent) {
1688 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1689 		return rc;
1690 	}
1691 
1692 	if (of_allnodes == np)
1693 		of_allnodes = np->allnext;
1694 	else {
1695 		struct device_node *prev;
1696 		for (prev = of_allnodes;
1697 		     prev->allnext != np;
1698 		     prev = prev->allnext)
1699 			;
1700 		prev->allnext = np->allnext;
1701 	}
1702 
1703 	if (parent->child == np)
1704 		parent->child = np->sibling;
1705 	else {
1706 		struct device_node *prevsib;
1707 		for (prevsib = np->parent->child;
1708 		     prevsib->sibling != np;
1709 		     prevsib = prevsib->sibling)
1710 			;
1711 		prevsib->sibling = np->sibling;
1712 	}
1713 
1714 	of_node_set_flag(np, OF_DETACHED);
1715 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1716 
1717 	of_remove_proc_dt_entry(np);
1718 	return rc;
1719 }
1720 #endif /* defined(CONFIG_OF_DYNAMIC) */
1721 
1722 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1723 			 int id, const char *stem, int stem_len)
1724 {
1725 	ap->np = np;
1726 	ap->id = id;
1727 	strncpy(ap->stem, stem, stem_len);
1728 	ap->stem[stem_len] = 0;
1729 	list_add_tail(&ap->link, &aliases_lookup);
1730 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1731 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1732 }
1733 
1734 /**
1735  * of_alias_scan - Scan all properties of 'aliases' node
1736  *
1737  * The function scans all the properties of 'aliases' node and populate
1738  * the the global lookup table with the properties.  It returns the
1739  * number of alias_prop found, or error code in error case.
1740  *
1741  * @dt_alloc:	An allocator that provides a virtual address to memory
1742  *		for the resulting tree
1743  */
1744 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1745 {
1746 	struct property *pp;
1747 
1748 	of_chosen = of_find_node_by_path("/chosen");
1749 	if (of_chosen == NULL)
1750 		of_chosen = of_find_node_by_path("/chosen@0");
1751 
1752 	if (of_chosen) {
1753 		const char *name;
1754 
1755 		name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1756 		if (name)
1757 			of_stdout = of_find_node_by_path(name);
1758 	}
1759 
1760 	of_aliases = of_find_node_by_path("/aliases");
1761 	if (!of_aliases)
1762 		return;
1763 
1764 	for_each_property_of_node(of_aliases, pp) {
1765 		const char *start = pp->name;
1766 		const char *end = start + strlen(start);
1767 		struct device_node *np;
1768 		struct alias_prop *ap;
1769 		int id, len;
1770 
1771 		/* Skip those we do not want to proceed */
1772 		if (!strcmp(pp->name, "name") ||
1773 		    !strcmp(pp->name, "phandle") ||
1774 		    !strcmp(pp->name, "linux,phandle"))
1775 			continue;
1776 
1777 		np = of_find_node_by_path(pp->value);
1778 		if (!np)
1779 			continue;
1780 
1781 		/* walk the alias backwards to extract the id and work out
1782 		 * the 'stem' string */
1783 		while (isdigit(*(end-1)) && end > start)
1784 			end--;
1785 		len = end - start;
1786 
1787 		if (kstrtoint(end, 10, &id) < 0)
1788 			continue;
1789 
1790 		/* Allocate an alias_prop with enough space for the stem */
1791 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1792 		if (!ap)
1793 			continue;
1794 		memset(ap, 0, sizeof(*ap) + len + 1);
1795 		ap->alias = start;
1796 		of_alias_add(ap, np, id, start, len);
1797 	}
1798 }
1799 
1800 /**
1801  * of_alias_get_id - Get alias id for the given device_node
1802  * @np:		Pointer to the given device_node
1803  * @stem:	Alias stem of the given device_node
1804  *
1805  * The function travels the lookup table to get alias id for the given
1806  * device_node and alias stem.  It returns the alias id if find it.
1807  */
1808 int of_alias_get_id(struct device_node *np, const char *stem)
1809 {
1810 	struct alias_prop *app;
1811 	int id = -ENODEV;
1812 
1813 	mutex_lock(&of_aliases_mutex);
1814 	list_for_each_entry(app, &aliases_lookup, link) {
1815 		if (strcmp(app->stem, stem) != 0)
1816 			continue;
1817 
1818 		if (np == app->np) {
1819 			id = app->id;
1820 			break;
1821 		}
1822 	}
1823 	mutex_unlock(&of_aliases_mutex);
1824 
1825 	return id;
1826 }
1827 EXPORT_SYMBOL_GPL(of_alias_get_id);
1828 
1829 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1830 			       u32 *pu)
1831 {
1832 	const void *curv = cur;
1833 
1834 	if (!prop)
1835 		return NULL;
1836 
1837 	if (!cur) {
1838 		curv = prop->value;
1839 		goto out_val;
1840 	}
1841 
1842 	curv += sizeof(*cur);
1843 	if (curv >= prop->value + prop->length)
1844 		return NULL;
1845 
1846 out_val:
1847 	*pu = be32_to_cpup(curv);
1848 	return curv;
1849 }
1850 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1851 
1852 const char *of_prop_next_string(struct property *prop, const char *cur)
1853 {
1854 	const void *curv = cur;
1855 
1856 	if (!prop)
1857 		return NULL;
1858 
1859 	if (!cur)
1860 		return prop->value;
1861 
1862 	curv += strlen(cur) + 1;
1863 	if (curv >= prop->value + prop->length)
1864 		return NULL;
1865 
1866 	return curv;
1867 }
1868 EXPORT_SYMBOL_GPL(of_prop_next_string);
1869 
1870 /**
1871  * of_device_is_stdout_path - check if a device node matches the
1872  *                            linux,stdout-path property
1873  *
1874  * Check if this device node matches the linux,stdout-path property
1875  * in the chosen node. return true if yes, false otherwise.
1876  */
1877 int of_device_is_stdout_path(struct device_node *dn)
1878 {
1879 	if (!of_stdout)
1880 		return false;
1881 
1882 	return of_stdout == dn;
1883 }
1884 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1885