1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/spinlock.h> 25 #include <linux/slab.h> 26 #include <linux/proc_fs.h> 27 28 #include "of_private.h" 29 30 LIST_HEAD(aliases_lookup); 31 32 struct device_node *of_allnodes; 33 EXPORT_SYMBOL(of_allnodes); 34 struct device_node *of_chosen; 35 struct device_node *of_aliases; 36 static struct device_node *of_stdout; 37 38 DEFINE_MUTEX(of_aliases_mutex); 39 40 /* use when traversing tree through the allnext, child, sibling, 41 * or parent members of struct device_node. 42 */ 43 DEFINE_RAW_SPINLOCK(devtree_lock); 44 45 int of_n_addr_cells(struct device_node *np) 46 { 47 const __be32 *ip; 48 49 do { 50 if (np->parent) 51 np = np->parent; 52 ip = of_get_property(np, "#address-cells", NULL); 53 if (ip) 54 return be32_to_cpup(ip); 55 } while (np->parent); 56 /* No #address-cells property for the root node */ 57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 58 } 59 EXPORT_SYMBOL(of_n_addr_cells); 60 61 int of_n_size_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#size-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #size-cells property for the root node */ 73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_size_cells); 76 77 #ifdef CONFIG_NUMA 78 int __weak of_node_to_nid(struct device_node *np) 79 { 80 return numa_node_id(); 81 } 82 #endif 83 84 #if defined(CONFIG_OF_DYNAMIC) 85 /** 86 * of_node_get - Increment refcount of a node 87 * @node: Node to inc refcount, NULL is supported to 88 * simplify writing of callers 89 * 90 * Returns node. 91 */ 92 struct device_node *of_node_get(struct device_node *node) 93 { 94 if (node) 95 kref_get(&node->kref); 96 return node; 97 } 98 EXPORT_SYMBOL(of_node_get); 99 100 static inline struct device_node *kref_to_device_node(struct kref *kref) 101 { 102 return container_of(kref, struct device_node, kref); 103 } 104 105 /** 106 * of_node_release - release a dynamically allocated node 107 * @kref: kref element of the node to be released 108 * 109 * In of_node_put() this function is passed to kref_put() 110 * as the destructor. 111 */ 112 static void of_node_release(struct kref *kref) 113 { 114 struct device_node *node = kref_to_device_node(kref); 115 struct property *prop = node->properties; 116 117 /* We should never be releasing nodes that haven't been detached. */ 118 if (!of_node_check_flag(node, OF_DETACHED)) { 119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); 120 dump_stack(); 121 kref_init(&node->kref); 122 return; 123 } 124 125 if (!of_node_check_flag(node, OF_DYNAMIC)) 126 return; 127 128 while (prop) { 129 struct property *next = prop->next; 130 kfree(prop->name); 131 kfree(prop->value); 132 kfree(prop); 133 prop = next; 134 135 if (!prop) { 136 prop = node->deadprops; 137 node->deadprops = NULL; 138 } 139 } 140 kfree(node->full_name); 141 kfree(node->data); 142 kfree(node); 143 } 144 145 /** 146 * of_node_put - Decrement refcount of a node 147 * @node: Node to dec refcount, NULL is supported to 148 * simplify writing of callers 149 * 150 */ 151 void of_node_put(struct device_node *node) 152 { 153 if (node) 154 kref_put(&node->kref, of_node_release); 155 } 156 EXPORT_SYMBOL(of_node_put); 157 #endif /* CONFIG_OF_DYNAMIC */ 158 159 static struct property *__of_find_property(const struct device_node *np, 160 const char *name, int *lenp) 161 { 162 struct property *pp; 163 164 if (!np) 165 return NULL; 166 167 for (pp = np->properties; pp; pp = pp->next) { 168 if (of_prop_cmp(pp->name, name) == 0) { 169 if (lenp) 170 *lenp = pp->length; 171 break; 172 } 173 } 174 175 return pp; 176 } 177 178 struct property *of_find_property(const struct device_node *np, 179 const char *name, 180 int *lenp) 181 { 182 struct property *pp; 183 unsigned long flags; 184 185 raw_spin_lock_irqsave(&devtree_lock, flags); 186 pp = __of_find_property(np, name, lenp); 187 raw_spin_unlock_irqrestore(&devtree_lock, flags); 188 189 return pp; 190 } 191 EXPORT_SYMBOL(of_find_property); 192 193 /** 194 * of_find_all_nodes - Get next node in global list 195 * @prev: Previous node or NULL to start iteration 196 * of_node_put() will be called on it 197 * 198 * Returns a node pointer with refcount incremented, use 199 * of_node_put() on it when done. 200 */ 201 struct device_node *of_find_all_nodes(struct device_node *prev) 202 { 203 struct device_node *np; 204 unsigned long flags; 205 206 raw_spin_lock_irqsave(&devtree_lock, flags); 207 np = prev ? prev->allnext : of_allnodes; 208 for (; np != NULL; np = np->allnext) 209 if (of_node_get(np)) 210 break; 211 of_node_put(prev); 212 raw_spin_unlock_irqrestore(&devtree_lock, flags); 213 return np; 214 } 215 EXPORT_SYMBOL(of_find_all_nodes); 216 217 /* 218 * Find a property with a given name for a given node 219 * and return the value. 220 */ 221 static const void *__of_get_property(const struct device_node *np, 222 const char *name, int *lenp) 223 { 224 struct property *pp = __of_find_property(np, name, lenp); 225 226 return pp ? pp->value : NULL; 227 } 228 229 /* 230 * Find a property with a given name for a given node 231 * and return the value. 232 */ 233 const void *of_get_property(const struct device_node *np, const char *name, 234 int *lenp) 235 { 236 struct property *pp = of_find_property(np, name, lenp); 237 238 return pp ? pp->value : NULL; 239 } 240 EXPORT_SYMBOL(of_get_property); 241 242 /* 243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 244 * 245 * @cpu: logical cpu index of a core/thread 246 * @phys_id: physical identifier of a core/thread 247 * 248 * CPU logical to physical index mapping is architecture specific. 249 * However this __weak function provides a default match of physical 250 * id to logical cpu index. phys_id provided here is usually values read 251 * from the device tree which must match the hardware internal registers. 252 * 253 * Returns true if the physical identifier and the logical cpu index 254 * correspond to the same core/thread, false otherwise. 255 */ 256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 257 { 258 return (u32)phys_id == cpu; 259 } 260 261 /** 262 * Checks if the given "prop_name" property holds the physical id of the 263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 264 * NULL, local thread number within the core is returned in it. 265 */ 266 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 267 const char *prop_name, int cpu, unsigned int *thread) 268 { 269 const __be32 *cell; 270 int ac, prop_len, tid; 271 u64 hwid; 272 273 ac = of_n_addr_cells(cpun); 274 cell = of_get_property(cpun, prop_name, &prop_len); 275 if (!cell || !ac) 276 return false; 277 prop_len /= sizeof(*cell) * ac; 278 for (tid = 0; tid < prop_len; tid++) { 279 hwid = of_read_number(cell, ac); 280 if (arch_match_cpu_phys_id(cpu, hwid)) { 281 if (thread) 282 *thread = tid; 283 return true; 284 } 285 cell += ac; 286 } 287 return false; 288 } 289 290 /* 291 * arch_find_n_match_cpu_physical_id - See if the given device node is 292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 293 * else false. If 'thread' is non-NULL, the local thread number within the 294 * core is returned in it. 295 */ 296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 297 int cpu, unsigned int *thread) 298 { 299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 300 * for thread ids on PowerPC. If it doesn't exist fallback to 301 * standard "reg" property. 302 */ 303 if (IS_ENABLED(CONFIG_PPC) && 304 __of_find_n_match_cpu_property(cpun, 305 "ibm,ppc-interrupt-server#s", 306 cpu, thread)) 307 return true; 308 309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 310 return true; 311 312 return false; 313 } 314 315 /** 316 * of_get_cpu_node - Get device node associated with the given logical CPU 317 * 318 * @cpu: CPU number(logical index) for which device node is required 319 * @thread: if not NULL, local thread number within the physical core is 320 * returned 321 * 322 * The main purpose of this function is to retrieve the device node for the 323 * given logical CPU index. It should be used to initialize the of_node in 324 * cpu device. Once of_node in cpu device is populated, all the further 325 * references can use that instead. 326 * 327 * CPU logical to physical index mapping is architecture specific and is built 328 * before booting secondary cores. This function uses arch_match_cpu_phys_id 329 * which can be overridden by architecture specific implementation. 330 * 331 * Returns a node pointer for the logical cpu if found, else NULL. 332 */ 333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 334 { 335 struct device_node *cpun; 336 337 for_each_node_by_type(cpun, "cpu") { 338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 339 return cpun; 340 } 341 return NULL; 342 } 343 EXPORT_SYMBOL(of_get_cpu_node); 344 345 /** Checks if the given "compat" string matches one of the strings in 346 * the device's "compatible" property 347 */ 348 static int __of_device_is_compatible(const struct device_node *device, 349 const char *compat) 350 { 351 const char* cp; 352 int cplen, l; 353 354 cp = __of_get_property(device, "compatible", &cplen); 355 if (cp == NULL) 356 return 0; 357 while (cplen > 0) { 358 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 359 return 1; 360 l = strlen(cp) + 1; 361 cp += l; 362 cplen -= l; 363 } 364 365 return 0; 366 } 367 368 /** Checks if the given "compat" string matches one of the strings in 369 * the device's "compatible" property 370 */ 371 int of_device_is_compatible(const struct device_node *device, 372 const char *compat) 373 { 374 unsigned long flags; 375 int res; 376 377 raw_spin_lock_irqsave(&devtree_lock, flags); 378 res = __of_device_is_compatible(device, compat); 379 raw_spin_unlock_irqrestore(&devtree_lock, flags); 380 return res; 381 } 382 EXPORT_SYMBOL(of_device_is_compatible); 383 384 /** 385 * of_machine_is_compatible - Test root of device tree for a given compatible value 386 * @compat: compatible string to look for in root node's compatible property. 387 * 388 * Returns true if the root node has the given value in its 389 * compatible property. 390 */ 391 int of_machine_is_compatible(const char *compat) 392 { 393 struct device_node *root; 394 int rc = 0; 395 396 root = of_find_node_by_path("/"); 397 if (root) { 398 rc = of_device_is_compatible(root, compat); 399 of_node_put(root); 400 } 401 return rc; 402 } 403 EXPORT_SYMBOL(of_machine_is_compatible); 404 405 /** 406 * __of_device_is_available - check if a device is available for use 407 * 408 * @device: Node to check for availability, with locks already held 409 * 410 * Returns 1 if the status property is absent or set to "okay" or "ok", 411 * 0 otherwise 412 */ 413 static int __of_device_is_available(const struct device_node *device) 414 { 415 const char *status; 416 int statlen; 417 418 if (!device) 419 return 0; 420 421 status = __of_get_property(device, "status", &statlen); 422 if (status == NULL) 423 return 1; 424 425 if (statlen > 0) { 426 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 427 return 1; 428 } 429 430 return 0; 431 } 432 433 /** 434 * of_device_is_available - check if a device is available for use 435 * 436 * @device: Node to check for availability 437 * 438 * Returns 1 if the status property is absent or set to "okay" or "ok", 439 * 0 otherwise 440 */ 441 int of_device_is_available(const struct device_node *device) 442 { 443 unsigned long flags; 444 int res; 445 446 raw_spin_lock_irqsave(&devtree_lock, flags); 447 res = __of_device_is_available(device); 448 raw_spin_unlock_irqrestore(&devtree_lock, flags); 449 return res; 450 451 } 452 EXPORT_SYMBOL(of_device_is_available); 453 454 /** 455 * of_get_parent - Get a node's parent if any 456 * @node: Node to get parent 457 * 458 * Returns a node pointer with refcount incremented, use 459 * of_node_put() on it when done. 460 */ 461 struct device_node *of_get_parent(const struct device_node *node) 462 { 463 struct device_node *np; 464 unsigned long flags; 465 466 if (!node) 467 return NULL; 468 469 raw_spin_lock_irqsave(&devtree_lock, flags); 470 np = of_node_get(node->parent); 471 raw_spin_unlock_irqrestore(&devtree_lock, flags); 472 return np; 473 } 474 EXPORT_SYMBOL(of_get_parent); 475 476 /** 477 * of_get_next_parent - Iterate to a node's parent 478 * @node: Node to get parent of 479 * 480 * This is like of_get_parent() except that it drops the 481 * refcount on the passed node, making it suitable for iterating 482 * through a node's parents. 483 * 484 * Returns a node pointer with refcount incremented, use 485 * of_node_put() on it when done. 486 */ 487 struct device_node *of_get_next_parent(struct device_node *node) 488 { 489 struct device_node *parent; 490 unsigned long flags; 491 492 if (!node) 493 return NULL; 494 495 raw_spin_lock_irqsave(&devtree_lock, flags); 496 parent = of_node_get(node->parent); 497 of_node_put(node); 498 raw_spin_unlock_irqrestore(&devtree_lock, flags); 499 return parent; 500 } 501 EXPORT_SYMBOL(of_get_next_parent); 502 503 /** 504 * of_get_next_child - Iterate a node childs 505 * @node: parent node 506 * @prev: previous child of the parent node, or NULL to get first 507 * 508 * Returns a node pointer with refcount incremented, use 509 * of_node_put() on it when done. 510 */ 511 struct device_node *of_get_next_child(const struct device_node *node, 512 struct device_node *prev) 513 { 514 struct device_node *next; 515 unsigned long flags; 516 517 raw_spin_lock_irqsave(&devtree_lock, flags); 518 next = prev ? prev->sibling : node->child; 519 for (; next; next = next->sibling) 520 if (of_node_get(next)) 521 break; 522 of_node_put(prev); 523 raw_spin_unlock_irqrestore(&devtree_lock, flags); 524 return next; 525 } 526 EXPORT_SYMBOL(of_get_next_child); 527 528 /** 529 * of_get_next_available_child - Find the next available child node 530 * @node: parent node 531 * @prev: previous child of the parent node, or NULL to get first 532 * 533 * This function is like of_get_next_child(), except that it 534 * automatically skips any disabled nodes (i.e. status = "disabled"). 535 */ 536 struct device_node *of_get_next_available_child(const struct device_node *node, 537 struct device_node *prev) 538 { 539 struct device_node *next; 540 unsigned long flags; 541 542 raw_spin_lock_irqsave(&devtree_lock, flags); 543 next = prev ? prev->sibling : node->child; 544 for (; next; next = next->sibling) { 545 if (!__of_device_is_available(next)) 546 continue; 547 if (of_node_get(next)) 548 break; 549 } 550 of_node_put(prev); 551 raw_spin_unlock_irqrestore(&devtree_lock, flags); 552 return next; 553 } 554 EXPORT_SYMBOL(of_get_next_available_child); 555 556 /** 557 * of_get_child_by_name - Find the child node by name for a given parent 558 * @node: parent node 559 * @name: child name to look for. 560 * 561 * This function looks for child node for given matching name 562 * 563 * Returns a node pointer if found, with refcount incremented, use 564 * of_node_put() on it when done. 565 * Returns NULL if node is not found. 566 */ 567 struct device_node *of_get_child_by_name(const struct device_node *node, 568 const char *name) 569 { 570 struct device_node *child; 571 572 for_each_child_of_node(node, child) 573 if (child->name && (of_node_cmp(child->name, name) == 0)) 574 break; 575 return child; 576 } 577 EXPORT_SYMBOL(of_get_child_by_name); 578 579 /** 580 * of_find_node_by_path - Find a node matching a full OF path 581 * @path: The full path to match 582 * 583 * Returns a node pointer with refcount incremented, use 584 * of_node_put() on it when done. 585 */ 586 struct device_node *of_find_node_by_path(const char *path) 587 { 588 struct device_node *np = of_allnodes; 589 unsigned long flags; 590 591 raw_spin_lock_irqsave(&devtree_lock, flags); 592 for (; np; np = np->allnext) { 593 if (np->full_name && (of_node_cmp(np->full_name, path) == 0) 594 && of_node_get(np)) 595 break; 596 } 597 raw_spin_unlock_irqrestore(&devtree_lock, flags); 598 return np; 599 } 600 EXPORT_SYMBOL(of_find_node_by_path); 601 602 /** 603 * of_find_node_by_name - Find a node by its "name" property 604 * @from: The node to start searching from or NULL, the node 605 * you pass will not be searched, only the next one 606 * will; typically, you pass what the previous call 607 * returned. of_node_put() will be called on it 608 * @name: The name string to match against 609 * 610 * Returns a node pointer with refcount incremented, use 611 * of_node_put() on it when done. 612 */ 613 struct device_node *of_find_node_by_name(struct device_node *from, 614 const char *name) 615 { 616 struct device_node *np; 617 unsigned long flags; 618 619 raw_spin_lock_irqsave(&devtree_lock, flags); 620 np = from ? from->allnext : of_allnodes; 621 for (; np; np = np->allnext) 622 if (np->name && (of_node_cmp(np->name, name) == 0) 623 && of_node_get(np)) 624 break; 625 of_node_put(from); 626 raw_spin_unlock_irqrestore(&devtree_lock, flags); 627 return np; 628 } 629 EXPORT_SYMBOL(of_find_node_by_name); 630 631 /** 632 * of_find_node_by_type - Find a node by its "device_type" property 633 * @from: The node to start searching from, or NULL to start searching 634 * the entire device tree. The node you pass will not be 635 * searched, only the next one will; typically, you pass 636 * what the previous call returned. of_node_put() will be 637 * called on from for you. 638 * @type: The type string to match against 639 * 640 * Returns a node pointer with refcount incremented, use 641 * of_node_put() on it when done. 642 */ 643 struct device_node *of_find_node_by_type(struct device_node *from, 644 const char *type) 645 { 646 struct device_node *np; 647 unsigned long flags; 648 649 raw_spin_lock_irqsave(&devtree_lock, flags); 650 np = from ? from->allnext : of_allnodes; 651 for (; np; np = np->allnext) 652 if (np->type && (of_node_cmp(np->type, type) == 0) 653 && of_node_get(np)) 654 break; 655 of_node_put(from); 656 raw_spin_unlock_irqrestore(&devtree_lock, flags); 657 return np; 658 } 659 EXPORT_SYMBOL(of_find_node_by_type); 660 661 /** 662 * of_find_compatible_node - Find a node based on type and one of the 663 * tokens in its "compatible" property 664 * @from: The node to start searching from or NULL, the node 665 * you pass will not be searched, only the next one 666 * will; typically, you pass what the previous call 667 * returned. of_node_put() will be called on it 668 * @type: The type string to match "device_type" or NULL to ignore 669 * @compatible: The string to match to one of the tokens in the device 670 * "compatible" list. 671 * 672 * Returns a node pointer with refcount incremented, use 673 * of_node_put() on it when done. 674 */ 675 struct device_node *of_find_compatible_node(struct device_node *from, 676 const char *type, const char *compatible) 677 { 678 struct device_node *np; 679 unsigned long flags; 680 681 raw_spin_lock_irqsave(&devtree_lock, flags); 682 np = from ? from->allnext : of_allnodes; 683 for (; np; np = np->allnext) { 684 if (type 685 && !(np->type && (of_node_cmp(np->type, type) == 0))) 686 continue; 687 if (__of_device_is_compatible(np, compatible) && 688 of_node_get(np)) 689 break; 690 } 691 of_node_put(from); 692 raw_spin_unlock_irqrestore(&devtree_lock, flags); 693 return np; 694 } 695 EXPORT_SYMBOL(of_find_compatible_node); 696 697 /** 698 * of_find_node_with_property - Find a node which has a property with 699 * the given name. 700 * @from: The node to start searching from or NULL, the node 701 * you pass will not be searched, only the next one 702 * will; typically, you pass what the previous call 703 * returned. of_node_put() will be called on it 704 * @prop_name: The name of the property to look for. 705 * 706 * Returns a node pointer with refcount incremented, use 707 * of_node_put() on it when done. 708 */ 709 struct device_node *of_find_node_with_property(struct device_node *from, 710 const char *prop_name) 711 { 712 struct device_node *np; 713 struct property *pp; 714 unsigned long flags; 715 716 raw_spin_lock_irqsave(&devtree_lock, flags); 717 np = from ? from->allnext : of_allnodes; 718 for (; np; np = np->allnext) { 719 for (pp = np->properties; pp; pp = pp->next) { 720 if (of_prop_cmp(pp->name, prop_name) == 0) { 721 of_node_get(np); 722 goto out; 723 } 724 } 725 } 726 out: 727 of_node_put(from); 728 raw_spin_unlock_irqrestore(&devtree_lock, flags); 729 return np; 730 } 731 EXPORT_SYMBOL(of_find_node_with_property); 732 733 static const struct of_device_id * 734 of_match_compatible(const struct of_device_id *matches, 735 const struct device_node *node) 736 { 737 const char *cp; 738 int cplen, l; 739 const struct of_device_id *m; 740 741 cp = __of_get_property(node, "compatible", &cplen); 742 while (cp && (cplen > 0)) { 743 m = matches; 744 while (m->name[0] || m->type[0] || m->compatible[0]) { 745 /* Only match for the entries without type and name */ 746 if (m->name[0] || m->type[0] || 747 of_compat_cmp(m->compatible, cp, 748 strlen(m->compatible))) 749 m++; 750 else 751 return m; 752 } 753 754 /* Get node's next compatible string */ 755 l = strlen(cp) + 1; 756 cp += l; 757 cplen -= l; 758 } 759 760 return NULL; 761 } 762 763 static 764 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 765 const struct device_node *node) 766 { 767 const struct of_device_id *m; 768 769 if (!matches) 770 return NULL; 771 772 m = of_match_compatible(matches, node); 773 if (m) 774 return m; 775 776 while (matches->name[0] || matches->type[0] || matches->compatible[0]) { 777 int match = 1; 778 if (matches->name[0]) 779 match &= node->name 780 && !strcmp(matches->name, node->name); 781 if (matches->type[0]) 782 match &= node->type 783 && !strcmp(matches->type, node->type); 784 if (matches->compatible[0]) 785 match &= __of_device_is_compatible(node, 786 matches->compatible); 787 if (match) 788 return matches; 789 matches++; 790 } 791 return NULL; 792 } 793 794 /** 795 * of_match_node - Tell if an device_node has a matching of_match structure 796 * @matches: array of of device match structures to search in 797 * @node: the of device structure to match against 798 * 799 * Low level utility function used by device matching. We have two ways 800 * of matching: 801 * - Try to find the best compatible match by comparing each compatible 802 * string of device node with all the given matches respectively. 803 * - If the above method failed, then try to match the compatible by using 804 * __of_device_is_compatible() besides the match in type and name. 805 */ 806 const struct of_device_id *of_match_node(const struct of_device_id *matches, 807 const struct device_node *node) 808 { 809 const struct of_device_id *match; 810 unsigned long flags; 811 812 raw_spin_lock_irqsave(&devtree_lock, flags); 813 match = __of_match_node(matches, node); 814 raw_spin_unlock_irqrestore(&devtree_lock, flags); 815 return match; 816 } 817 EXPORT_SYMBOL(of_match_node); 818 819 /** 820 * of_find_matching_node_and_match - Find a node based on an of_device_id 821 * match table. 822 * @from: The node to start searching from or NULL, the node 823 * you pass will not be searched, only the next one 824 * will; typically, you pass what the previous call 825 * returned. of_node_put() will be called on it 826 * @matches: array of of device match structures to search in 827 * @match Updated to point at the matches entry which matched 828 * 829 * Returns a node pointer with refcount incremented, use 830 * of_node_put() on it when done. 831 */ 832 struct device_node *of_find_matching_node_and_match(struct device_node *from, 833 const struct of_device_id *matches, 834 const struct of_device_id **match) 835 { 836 struct device_node *np; 837 const struct of_device_id *m; 838 unsigned long flags; 839 840 if (match) 841 *match = NULL; 842 843 raw_spin_lock_irqsave(&devtree_lock, flags); 844 np = from ? from->allnext : of_allnodes; 845 for (; np; np = np->allnext) { 846 m = __of_match_node(matches, np); 847 if (m && of_node_get(np)) { 848 if (match) 849 *match = m; 850 break; 851 } 852 } 853 of_node_put(from); 854 raw_spin_unlock_irqrestore(&devtree_lock, flags); 855 return np; 856 } 857 EXPORT_SYMBOL(of_find_matching_node_and_match); 858 859 /** 860 * of_modalias_node - Lookup appropriate modalias for a device node 861 * @node: pointer to a device tree node 862 * @modalias: Pointer to buffer that modalias value will be copied into 863 * @len: Length of modalias value 864 * 865 * Based on the value of the compatible property, this routine will attempt 866 * to choose an appropriate modalias value for a particular device tree node. 867 * It does this by stripping the manufacturer prefix (as delimited by a ',') 868 * from the first entry in the compatible list property. 869 * 870 * This routine returns 0 on success, <0 on failure. 871 */ 872 int of_modalias_node(struct device_node *node, char *modalias, int len) 873 { 874 const char *compatible, *p; 875 int cplen; 876 877 compatible = of_get_property(node, "compatible", &cplen); 878 if (!compatible || strlen(compatible) > cplen) 879 return -ENODEV; 880 p = strchr(compatible, ','); 881 strlcpy(modalias, p ? p + 1 : compatible, len); 882 return 0; 883 } 884 EXPORT_SYMBOL_GPL(of_modalias_node); 885 886 /** 887 * of_find_node_by_phandle - Find a node given a phandle 888 * @handle: phandle of the node to find 889 * 890 * Returns a node pointer with refcount incremented, use 891 * of_node_put() on it when done. 892 */ 893 struct device_node *of_find_node_by_phandle(phandle handle) 894 { 895 struct device_node *np; 896 unsigned long flags; 897 898 raw_spin_lock_irqsave(&devtree_lock, flags); 899 for (np = of_allnodes; np; np = np->allnext) 900 if (np->phandle == handle) 901 break; 902 of_node_get(np); 903 raw_spin_unlock_irqrestore(&devtree_lock, flags); 904 return np; 905 } 906 EXPORT_SYMBOL(of_find_node_by_phandle); 907 908 /** 909 * of_find_property_value_of_size 910 * 911 * @np: device node from which the property value is to be read. 912 * @propname: name of the property to be searched. 913 * @len: requested length of property value 914 * 915 * Search for a property in a device node and valid the requested size. 916 * Returns the property value on success, -EINVAL if the property does not 917 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 918 * property data isn't large enough. 919 * 920 */ 921 static void *of_find_property_value_of_size(const struct device_node *np, 922 const char *propname, u32 len) 923 { 924 struct property *prop = of_find_property(np, propname, NULL); 925 926 if (!prop) 927 return ERR_PTR(-EINVAL); 928 if (!prop->value) 929 return ERR_PTR(-ENODATA); 930 if (len > prop->length) 931 return ERR_PTR(-EOVERFLOW); 932 933 return prop->value; 934 } 935 936 /** 937 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 938 * 939 * @np: device node from which the property value is to be read. 940 * @propname: name of the property to be searched. 941 * @index: index of the u32 in the list of values 942 * @out_value: pointer to return value, modified only if no error. 943 * 944 * Search for a property in a device node and read nth 32-bit value from 945 * it. Returns 0 on success, -EINVAL if the property does not exist, 946 * -ENODATA if property does not have a value, and -EOVERFLOW if the 947 * property data isn't large enough. 948 * 949 * The out_value is modified only if a valid u32 value can be decoded. 950 */ 951 int of_property_read_u32_index(const struct device_node *np, 952 const char *propname, 953 u32 index, u32 *out_value) 954 { 955 const u32 *val = of_find_property_value_of_size(np, propname, 956 ((index + 1) * sizeof(*out_value))); 957 958 if (IS_ERR(val)) 959 return PTR_ERR(val); 960 961 *out_value = be32_to_cpup(((__be32 *)val) + index); 962 return 0; 963 } 964 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 965 966 /** 967 * of_property_read_u8_array - Find and read an array of u8 from a property. 968 * 969 * @np: device node from which the property value is to be read. 970 * @propname: name of the property to be searched. 971 * @out_values: pointer to return value, modified only if return value is 0. 972 * @sz: number of array elements to read 973 * 974 * Search for a property in a device node and read 8-bit value(s) from 975 * it. Returns 0 on success, -EINVAL if the property does not exist, 976 * -ENODATA if property does not have a value, and -EOVERFLOW if the 977 * property data isn't large enough. 978 * 979 * dts entry of array should be like: 980 * property = /bits/ 8 <0x50 0x60 0x70>; 981 * 982 * The out_values is modified only if a valid u8 value can be decoded. 983 */ 984 int of_property_read_u8_array(const struct device_node *np, 985 const char *propname, u8 *out_values, size_t sz) 986 { 987 const u8 *val = of_find_property_value_of_size(np, propname, 988 (sz * sizeof(*out_values))); 989 990 if (IS_ERR(val)) 991 return PTR_ERR(val); 992 993 while (sz--) 994 *out_values++ = *val++; 995 return 0; 996 } 997 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 998 999 /** 1000 * of_property_read_u16_array - Find and read an array of u16 from a property. 1001 * 1002 * @np: device node from which the property value is to be read. 1003 * @propname: name of the property to be searched. 1004 * @out_values: pointer to return value, modified only if return value is 0. 1005 * @sz: number of array elements to read 1006 * 1007 * Search for a property in a device node and read 16-bit value(s) from 1008 * it. Returns 0 on success, -EINVAL if the property does not exist, 1009 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1010 * property data isn't large enough. 1011 * 1012 * dts entry of array should be like: 1013 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1014 * 1015 * The out_values is modified only if a valid u16 value can be decoded. 1016 */ 1017 int of_property_read_u16_array(const struct device_node *np, 1018 const char *propname, u16 *out_values, size_t sz) 1019 { 1020 const __be16 *val = of_find_property_value_of_size(np, propname, 1021 (sz * sizeof(*out_values))); 1022 1023 if (IS_ERR(val)) 1024 return PTR_ERR(val); 1025 1026 while (sz--) 1027 *out_values++ = be16_to_cpup(val++); 1028 return 0; 1029 } 1030 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1031 1032 /** 1033 * of_property_read_u32_array - Find and read an array of 32 bit integers 1034 * from a property. 1035 * 1036 * @np: device node from which the property value is to be read. 1037 * @propname: name of the property to be searched. 1038 * @out_values: pointer to return value, modified only if return value is 0. 1039 * @sz: number of array elements to read 1040 * 1041 * Search for a property in a device node and read 32-bit value(s) from 1042 * it. Returns 0 on success, -EINVAL if the property does not exist, 1043 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1044 * property data isn't large enough. 1045 * 1046 * The out_values is modified only if a valid u32 value can be decoded. 1047 */ 1048 int of_property_read_u32_array(const struct device_node *np, 1049 const char *propname, u32 *out_values, 1050 size_t sz) 1051 { 1052 const __be32 *val = of_find_property_value_of_size(np, propname, 1053 (sz * sizeof(*out_values))); 1054 1055 if (IS_ERR(val)) 1056 return PTR_ERR(val); 1057 1058 while (sz--) 1059 *out_values++ = be32_to_cpup(val++); 1060 return 0; 1061 } 1062 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1063 1064 /** 1065 * of_property_read_u64 - Find and read a 64 bit integer from a property 1066 * @np: device node from which the property value is to be read. 1067 * @propname: name of the property to be searched. 1068 * @out_value: pointer to return value, modified only if return value is 0. 1069 * 1070 * Search for a property in a device node and read a 64-bit value from 1071 * it. Returns 0 on success, -EINVAL if the property does not exist, 1072 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1073 * property data isn't large enough. 1074 * 1075 * The out_value is modified only if a valid u64 value can be decoded. 1076 */ 1077 int of_property_read_u64(const struct device_node *np, const char *propname, 1078 u64 *out_value) 1079 { 1080 const __be32 *val = of_find_property_value_of_size(np, propname, 1081 sizeof(*out_value)); 1082 1083 if (IS_ERR(val)) 1084 return PTR_ERR(val); 1085 1086 *out_value = of_read_number(val, 2); 1087 return 0; 1088 } 1089 EXPORT_SYMBOL_GPL(of_property_read_u64); 1090 1091 /** 1092 * of_property_read_string - Find and read a string from a property 1093 * @np: device node from which the property value is to be read. 1094 * @propname: name of the property to be searched. 1095 * @out_string: pointer to null terminated return string, modified only if 1096 * return value is 0. 1097 * 1098 * Search for a property in a device tree node and retrieve a null 1099 * terminated string value (pointer to data, not a copy). Returns 0 on 1100 * success, -EINVAL if the property does not exist, -ENODATA if property 1101 * does not have a value, and -EILSEQ if the string is not null-terminated 1102 * within the length of the property data. 1103 * 1104 * The out_string pointer is modified only if a valid string can be decoded. 1105 */ 1106 int of_property_read_string(struct device_node *np, const char *propname, 1107 const char **out_string) 1108 { 1109 struct property *prop = of_find_property(np, propname, NULL); 1110 if (!prop) 1111 return -EINVAL; 1112 if (!prop->value) 1113 return -ENODATA; 1114 if (strnlen(prop->value, prop->length) >= prop->length) 1115 return -EILSEQ; 1116 *out_string = prop->value; 1117 return 0; 1118 } 1119 EXPORT_SYMBOL_GPL(of_property_read_string); 1120 1121 /** 1122 * of_property_read_string_index - Find and read a string from a multiple 1123 * strings property. 1124 * @np: device node from which the property value is to be read. 1125 * @propname: name of the property to be searched. 1126 * @index: index of the string in the list of strings 1127 * @out_string: pointer to null terminated return string, modified only if 1128 * return value is 0. 1129 * 1130 * Search for a property in a device tree node and retrieve a null 1131 * terminated string value (pointer to data, not a copy) in the list of strings 1132 * contained in that property. 1133 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if 1134 * property does not have a value, and -EILSEQ if the string is not 1135 * null-terminated within the length of the property data. 1136 * 1137 * The out_string pointer is modified only if a valid string can be decoded. 1138 */ 1139 int of_property_read_string_index(struct device_node *np, const char *propname, 1140 int index, const char **output) 1141 { 1142 struct property *prop = of_find_property(np, propname, NULL); 1143 int i = 0; 1144 size_t l = 0, total = 0; 1145 const char *p; 1146 1147 if (!prop) 1148 return -EINVAL; 1149 if (!prop->value) 1150 return -ENODATA; 1151 if (strnlen(prop->value, prop->length) >= prop->length) 1152 return -EILSEQ; 1153 1154 p = prop->value; 1155 1156 for (i = 0; total < prop->length; total += l, p += l) { 1157 l = strlen(p) + 1; 1158 if (i++ == index) { 1159 *output = p; 1160 return 0; 1161 } 1162 } 1163 return -ENODATA; 1164 } 1165 EXPORT_SYMBOL_GPL(of_property_read_string_index); 1166 1167 /** 1168 * of_property_match_string() - Find string in a list and return index 1169 * @np: pointer to node containing string list property 1170 * @propname: string list property name 1171 * @string: pointer to string to search for in string list 1172 * 1173 * This function searches a string list property and returns the index 1174 * of a specific string value. 1175 */ 1176 int of_property_match_string(struct device_node *np, const char *propname, 1177 const char *string) 1178 { 1179 struct property *prop = of_find_property(np, propname, NULL); 1180 size_t l; 1181 int i; 1182 const char *p, *end; 1183 1184 if (!prop) 1185 return -EINVAL; 1186 if (!prop->value) 1187 return -ENODATA; 1188 1189 p = prop->value; 1190 end = p + prop->length; 1191 1192 for (i = 0; p < end; i++, p += l) { 1193 l = strlen(p) + 1; 1194 if (p + l > end) 1195 return -EILSEQ; 1196 pr_debug("comparing %s with %s\n", string, p); 1197 if (strcmp(string, p) == 0) 1198 return i; /* Found it; return index */ 1199 } 1200 return -ENODATA; 1201 } 1202 EXPORT_SYMBOL_GPL(of_property_match_string); 1203 1204 /** 1205 * of_property_count_strings - Find and return the number of strings from a 1206 * multiple strings property. 1207 * @np: device node from which the property value is to be read. 1208 * @propname: name of the property to be searched. 1209 * 1210 * Search for a property in a device tree node and retrieve the number of null 1211 * terminated string contain in it. Returns the number of strings on 1212 * success, -EINVAL if the property does not exist, -ENODATA if property 1213 * does not have a value, and -EILSEQ if the string is not null-terminated 1214 * within the length of the property data. 1215 */ 1216 int of_property_count_strings(struct device_node *np, const char *propname) 1217 { 1218 struct property *prop = of_find_property(np, propname, NULL); 1219 int i = 0; 1220 size_t l = 0, total = 0; 1221 const char *p; 1222 1223 if (!prop) 1224 return -EINVAL; 1225 if (!prop->value) 1226 return -ENODATA; 1227 if (strnlen(prop->value, prop->length) >= prop->length) 1228 return -EILSEQ; 1229 1230 p = prop->value; 1231 1232 for (i = 0; total < prop->length; total += l, p += l, i++) 1233 l = strlen(p) + 1; 1234 1235 return i; 1236 } 1237 EXPORT_SYMBOL_GPL(of_property_count_strings); 1238 1239 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1240 { 1241 int i; 1242 printk("%s %s", msg, of_node_full_name(args->np)); 1243 for (i = 0; i < args->args_count; i++) 1244 printk(i ? ",%08x" : ":%08x", args->args[i]); 1245 printk("\n"); 1246 } 1247 1248 static int __of_parse_phandle_with_args(const struct device_node *np, 1249 const char *list_name, 1250 const char *cells_name, 1251 int cell_count, int index, 1252 struct of_phandle_args *out_args) 1253 { 1254 const __be32 *list, *list_end; 1255 int rc = 0, size, cur_index = 0; 1256 uint32_t count = 0; 1257 struct device_node *node = NULL; 1258 phandle phandle; 1259 1260 /* Retrieve the phandle list property */ 1261 list = of_get_property(np, list_name, &size); 1262 if (!list) 1263 return -ENOENT; 1264 list_end = list + size / sizeof(*list); 1265 1266 /* Loop over the phandles until all the requested entry is found */ 1267 while (list < list_end) { 1268 rc = -EINVAL; 1269 count = 0; 1270 1271 /* 1272 * If phandle is 0, then it is an empty entry with no 1273 * arguments. Skip forward to the next entry. 1274 */ 1275 phandle = be32_to_cpup(list++); 1276 if (phandle) { 1277 /* 1278 * Find the provider node and parse the #*-cells 1279 * property to determine the argument length. 1280 * 1281 * This is not needed if the cell count is hard-coded 1282 * (i.e. cells_name not set, but cell_count is set), 1283 * except when we're going to return the found node 1284 * below. 1285 */ 1286 if (cells_name || cur_index == index) { 1287 node = of_find_node_by_phandle(phandle); 1288 if (!node) { 1289 pr_err("%s: could not find phandle\n", 1290 np->full_name); 1291 goto err; 1292 } 1293 } 1294 1295 if (cells_name) { 1296 if (of_property_read_u32(node, cells_name, 1297 &count)) { 1298 pr_err("%s: could not get %s for %s\n", 1299 np->full_name, cells_name, 1300 node->full_name); 1301 goto err; 1302 } 1303 } else { 1304 count = cell_count; 1305 } 1306 1307 /* 1308 * Make sure that the arguments actually fit in the 1309 * remaining property data length 1310 */ 1311 if (list + count > list_end) { 1312 pr_err("%s: arguments longer than property\n", 1313 np->full_name); 1314 goto err; 1315 } 1316 } 1317 1318 /* 1319 * All of the error cases above bail out of the loop, so at 1320 * this point, the parsing is successful. If the requested 1321 * index matches, then fill the out_args structure and return, 1322 * or return -ENOENT for an empty entry. 1323 */ 1324 rc = -ENOENT; 1325 if (cur_index == index) { 1326 if (!phandle) 1327 goto err; 1328 1329 if (out_args) { 1330 int i; 1331 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1332 count = MAX_PHANDLE_ARGS; 1333 out_args->np = node; 1334 out_args->args_count = count; 1335 for (i = 0; i < count; i++) 1336 out_args->args[i] = be32_to_cpup(list++); 1337 } else { 1338 of_node_put(node); 1339 } 1340 1341 /* Found it! return success */ 1342 return 0; 1343 } 1344 1345 of_node_put(node); 1346 node = NULL; 1347 list += count; 1348 cur_index++; 1349 } 1350 1351 /* 1352 * Unlock node before returning result; will be one of: 1353 * -ENOENT : index is for empty phandle 1354 * -EINVAL : parsing error on data 1355 * [1..n] : Number of phandle (count mode; when index = -1) 1356 */ 1357 rc = index < 0 ? cur_index : -ENOENT; 1358 err: 1359 if (node) 1360 of_node_put(node); 1361 return rc; 1362 } 1363 1364 /** 1365 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1366 * @np: Pointer to device node holding phandle property 1367 * @phandle_name: Name of property holding a phandle value 1368 * @index: For properties holding a table of phandles, this is the index into 1369 * the table 1370 * 1371 * Returns the device_node pointer with refcount incremented. Use 1372 * of_node_put() on it when done. 1373 */ 1374 struct device_node *of_parse_phandle(const struct device_node *np, 1375 const char *phandle_name, int index) 1376 { 1377 struct of_phandle_args args; 1378 1379 if (index < 0) 1380 return NULL; 1381 1382 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1383 index, &args)) 1384 return NULL; 1385 1386 return args.np; 1387 } 1388 EXPORT_SYMBOL(of_parse_phandle); 1389 1390 /** 1391 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1392 * @np: pointer to a device tree node containing a list 1393 * @list_name: property name that contains a list 1394 * @cells_name: property name that specifies phandles' arguments count 1395 * @index: index of a phandle to parse out 1396 * @out_args: optional pointer to output arguments structure (will be filled) 1397 * 1398 * This function is useful to parse lists of phandles and their arguments. 1399 * Returns 0 on success and fills out_args, on error returns appropriate 1400 * errno value. 1401 * 1402 * Caller is responsible to call of_node_put() on the returned out_args->node 1403 * pointer. 1404 * 1405 * Example: 1406 * 1407 * phandle1: node1 { 1408 * #list-cells = <2>; 1409 * } 1410 * 1411 * phandle2: node2 { 1412 * #list-cells = <1>; 1413 * } 1414 * 1415 * node3 { 1416 * list = <&phandle1 1 2 &phandle2 3>; 1417 * } 1418 * 1419 * To get a device_node of the `node2' node you may call this: 1420 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1421 */ 1422 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1423 const char *cells_name, int index, 1424 struct of_phandle_args *out_args) 1425 { 1426 if (index < 0) 1427 return -EINVAL; 1428 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1429 index, out_args); 1430 } 1431 EXPORT_SYMBOL(of_parse_phandle_with_args); 1432 1433 /** 1434 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1435 * @np: pointer to a device tree node containing a list 1436 * @list_name: property name that contains a list 1437 * @cell_count: number of argument cells following the phandle 1438 * @index: index of a phandle to parse out 1439 * @out_args: optional pointer to output arguments structure (will be filled) 1440 * 1441 * This function is useful to parse lists of phandles and their arguments. 1442 * Returns 0 on success and fills out_args, on error returns appropriate 1443 * errno value. 1444 * 1445 * Caller is responsible to call of_node_put() on the returned out_args->node 1446 * pointer. 1447 * 1448 * Example: 1449 * 1450 * phandle1: node1 { 1451 * } 1452 * 1453 * phandle2: node2 { 1454 * } 1455 * 1456 * node3 { 1457 * list = <&phandle1 0 2 &phandle2 2 3>; 1458 * } 1459 * 1460 * To get a device_node of the `node2' node you may call this: 1461 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1462 */ 1463 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1464 const char *list_name, int cell_count, 1465 int index, struct of_phandle_args *out_args) 1466 { 1467 if (index < 0) 1468 return -EINVAL; 1469 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1470 index, out_args); 1471 } 1472 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1473 1474 /** 1475 * of_count_phandle_with_args() - Find the number of phandles references in a property 1476 * @np: pointer to a device tree node containing a list 1477 * @list_name: property name that contains a list 1478 * @cells_name: property name that specifies phandles' arguments count 1479 * 1480 * Returns the number of phandle + argument tuples within a property. It 1481 * is a typical pattern to encode a list of phandle and variable 1482 * arguments into a single property. The number of arguments is encoded 1483 * by a property in the phandle-target node. For example, a gpios 1484 * property would contain a list of GPIO specifies consisting of a 1485 * phandle and 1 or more arguments. The number of arguments are 1486 * determined by the #gpio-cells property in the node pointed to by the 1487 * phandle. 1488 */ 1489 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1490 const char *cells_name) 1491 { 1492 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1493 NULL); 1494 } 1495 EXPORT_SYMBOL(of_count_phandle_with_args); 1496 1497 #if defined(CONFIG_OF_DYNAMIC) 1498 static int of_property_notify(int action, struct device_node *np, 1499 struct property *prop) 1500 { 1501 struct of_prop_reconfig pr; 1502 1503 pr.dn = np; 1504 pr.prop = prop; 1505 return of_reconfig_notify(action, &pr); 1506 } 1507 #else 1508 static int of_property_notify(int action, struct device_node *np, 1509 struct property *prop) 1510 { 1511 return 0; 1512 } 1513 #endif 1514 1515 /** 1516 * of_add_property - Add a property to a node 1517 */ 1518 int of_add_property(struct device_node *np, struct property *prop) 1519 { 1520 struct property **next; 1521 unsigned long flags; 1522 int rc; 1523 1524 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); 1525 if (rc) 1526 return rc; 1527 1528 prop->next = NULL; 1529 raw_spin_lock_irqsave(&devtree_lock, flags); 1530 next = &np->properties; 1531 while (*next) { 1532 if (strcmp(prop->name, (*next)->name) == 0) { 1533 /* duplicate ! don't insert it */ 1534 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1535 return -1; 1536 } 1537 next = &(*next)->next; 1538 } 1539 *next = prop; 1540 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1541 1542 #ifdef CONFIG_PROC_DEVICETREE 1543 /* try to add to proc as well if it was initialized */ 1544 if (np->pde) 1545 proc_device_tree_add_prop(np->pde, prop); 1546 #endif /* CONFIG_PROC_DEVICETREE */ 1547 1548 return 0; 1549 } 1550 1551 /** 1552 * of_remove_property - Remove a property from a node. 1553 * 1554 * Note that we don't actually remove it, since we have given out 1555 * who-knows-how-many pointers to the data using get-property. 1556 * Instead we just move the property to the "dead properties" 1557 * list, so it won't be found any more. 1558 */ 1559 int of_remove_property(struct device_node *np, struct property *prop) 1560 { 1561 struct property **next; 1562 unsigned long flags; 1563 int found = 0; 1564 int rc; 1565 1566 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); 1567 if (rc) 1568 return rc; 1569 1570 raw_spin_lock_irqsave(&devtree_lock, flags); 1571 next = &np->properties; 1572 while (*next) { 1573 if (*next == prop) { 1574 /* found the node */ 1575 *next = prop->next; 1576 prop->next = np->deadprops; 1577 np->deadprops = prop; 1578 found = 1; 1579 break; 1580 } 1581 next = &(*next)->next; 1582 } 1583 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1584 1585 if (!found) 1586 return -ENODEV; 1587 1588 #ifdef CONFIG_PROC_DEVICETREE 1589 /* try to remove the proc node as well */ 1590 if (np->pde) 1591 proc_device_tree_remove_prop(np->pde, prop); 1592 #endif /* CONFIG_PROC_DEVICETREE */ 1593 1594 return 0; 1595 } 1596 1597 /* 1598 * of_update_property - Update a property in a node, if the property does 1599 * not exist, add it. 1600 * 1601 * Note that we don't actually remove it, since we have given out 1602 * who-knows-how-many pointers to the data using get-property. 1603 * Instead we just move the property to the "dead properties" list, 1604 * and add the new property to the property list 1605 */ 1606 int of_update_property(struct device_node *np, struct property *newprop) 1607 { 1608 struct property **next, *oldprop; 1609 unsigned long flags; 1610 int rc, found = 0; 1611 1612 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); 1613 if (rc) 1614 return rc; 1615 1616 if (!newprop->name) 1617 return -EINVAL; 1618 1619 oldprop = of_find_property(np, newprop->name, NULL); 1620 if (!oldprop) 1621 return of_add_property(np, newprop); 1622 1623 raw_spin_lock_irqsave(&devtree_lock, flags); 1624 next = &np->properties; 1625 while (*next) { 1626 if (*next == oldprop) { 1627 /* found the node */ 1628 newprop->next = oldprop->next; 1629 *next = newprop; 1630 oldprop->next = np->deadprops; 1631 np->deadprops = oldprop; 1632 found = 1; 1633 break; 1634 } 1635 next = &(*next)->next; 1636 } 1637 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1638 1639 if (!found) 1640 return -ENODEV; 1641 1642 #ifdef CONFIG_PROC_DEVICETREE 1643 /* try to add to proc as well if it was initialized */ 1644 if (np->pde) 1645 proc_device_tree_update_prop(np->pde, newprop, oldprop); 1646 #endif /* CONFIG_PROC_DEVICETREE */ 1647 1648 return 0; 1649 } 1650 1651 #if defined(CONFIG_OF_DYNAMIC) 1652 /* 1653 * Support for dynamic device trees. 1654 * 1655 * On some platforms, the device tree can be manipulated at runtime. 1656 * The routines in this section support adding, removing and changing 1657 * device tree nodes. 1658 */ 1659 1660 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); 1661 1662 int of_reconfig_notifier_register(struct notifier_block *nb) 1663 { 1664 return blocking_notifier_chain_register(&of_reconfig_chain, nb); 1665 } 1666 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); 1667 1668 int of_reconfig_notifier_unregister(struct notifier_block *nb) 1669 { 1670 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); 1671 } 1672 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); 1673 1674 int of_reconfig_notify(unsigned long action, void *p) 1675 { 1676 int rc; 1677 1678 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); 1679 return notifier_to_errno(rc); 1680 } 1681 1682 #ifdef CONFIG_PROC_DEVICETREE 1683 static void of_add_proc_dt_entry(struct device_node *dn) 1684 { 1685 struct proc_dir_entry *ent; 1686 1687 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde); 1688 if (ent) 1689 proc_device_tree_add_node(dn, ent); 1690 } 1691 #else 1692 static void of_add_proc_dt_entry(struct device_node *dn) 1693 { 1694 return; 1695 } 1696 #endif 1697 1698 /** 1699 * of_attach_node - Plug a device node into the tree and global list. 1700 */ 1701 int of_attach_node(struct device_node *np) 1702 { 1703 unsigned long flags; 1704 int rc; 1705 1706 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); 1707 if (rc) 1708 return rc; 1709 1710 raw_spin_lock_irqsave(&devtree_lock, flags); 1711 np->sibling = np->parent->child; 1712 np->allnext = of_allnodes; 1713 np->parent->child = np; 1714 of_allnodes = np; 1715 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1716 1717 of_add_proc_dt_entry(np); 1718 return 0; 1719 } 1720 1721 #ifdef CONFIG_PROC_DEVICETREE 1722 static void of_remove_proc_dt_entry(struct device_node *dn) 1723 { 1724 proc_remove(dn->pde); 1725 } 1726 #else 1727 static void of_remove_proc_dt_entry(struct device_node *dn) 1728 { 1729 return; 1730 } 1731 #endif 1732 1733 /** 1734 * of_detach_node - "Unplug" a node from the device tree. 1735 * 1736 * The caller must hold a reference to the node. The memory associated with 1737 * the node is not freed until its refcount goes to zero. 1738 */ 1739 int of_detach_node(struct device_node *np) 1740 { 1741 struct device_node *parent; 1742 unsigned long flags; 1743 int rc = 0; 1744 1745 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); 1746 if (rc) 1747 return rc; 1748 1749 raw_spin_lock_irqsave(&devtree_lock, flags); 1750 1751 if (of_node_check_flag(np, OF_DETACHED)) { 1752 /* someone already detached it */ 1753 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1754 return rc; 1755 } 1756 1757 parent = np->parent; 1758 if (!parent) { 1759 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1760 return rc; 1761 } 1762 1763 if (of_allnodes == np) 1764 of_allnodes = np->allnext; 1765 else { 1766 struct device_node *prev; 1767 for (prev = of_allnodes; 1768 prev->allnext != np; 1769 prev = prev->allnext) 1770 ; 1771 prev->allnext = np->allnext; 1772 } 1773 1774 if (parent->child == np) 1775 parent->child = np->sibling; 1776 else { 1777 struct device_node *prevsib; 1778 for (prevsib = np->parent->child; 1779 prevsib->sibling != np; 1780 prevsib = prevsib->sibling) 1781 ; 1782 prevsib->sibling = np->sibling; 1783 } 1784 1785 of_node_set_flag(np, OF_DETACHED); 1786 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1787 1788 of_remove_proc_dt_entry(np); 1789 return rc; 1790 } 1791 #endif /* defined(CONFIG_OF_DYNAMIC) */ 1792 1793 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1794 int id, const char *stem, int stem_len) 1795 { 1796 ap->np = np; 1797 ap->id = id; 1798 strncpy(ap->stem, stem, stem_len); 1799 ap->stem[stem_len] = 0; 1800 list_add_tail(&ap->link, &aliases_lookup); 1801 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1802 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1803 } 1804 1805 /** 1806 * of_alias_scan - Scan all properties of 'aliases' node 1807 * 1808 * The function scans all the properties of 'aliases' node and populate 1809 * the the global lookup table with the properties. It returns the 1810 * number of alias_prop found, or error code in error case. 1811 * 1812 * @dt_alloc: An allocator that provides a virtual address to memory 1813 * for the resulting tree 1814 */ 1815 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1816 { 1817 struct property *pp; 1818 1819 of_chosen = of_find_node_by_path("/chosen"); 1820 if (of_chosen == NULL) 1821 of_chosen = of_find_node_by_path("/chosen@0"); 1822 1823 if (of_chosen) { 1824 const char *name; 1825 1826 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1827 if (name) 1828 of_stdout = of_find_node_by_path(name); 1829 } 1830 1831 of_aliases = of_find_node_by_path("/aliases"); 1832 if (!of_aliases) 1833 return; 1834 1835 for_each_property_of_node(of_aliases, pp) { 1836 const char *start = pp->name; 1837 const char *end = start + strlen(start); 1838 struct device_node *np; 1839 struct alias_prop *ap; 1840 int id, len; 1841 1842 /* Skip those we do not want to proceed */ 1843 if (!strcmp(pp->name, "name") || 1844 !strcmp(pp->name, "phandle") || 1845 !strcmp(pp->name, "linux,phandle")) 1846 continue; 1847 1848 np = of_find_node_by_path(pp->value); 1849 if (!np) 1850 continue; 1851 1852 /* walk the alias backwards to extract the id and work out 1853 * the 'stem' string */ 1854 while (isdigit(*(end-1)) && end > start) 1855 end--; 1856 len = end - start; 1857 1858 if (kstrtoint(end, 10, &id) < 0) 1859 continue; 1860 1861 /* Allocate an alias_prop with enough space for the stem */ 1862 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1863 if (!ap) 1864 continue; 1865 memset(ap, 0, sizeof(*ap) + len + 1); 1866 ap->alias = start; 1867 of_alias_add(ap, np, id, start, len); 1868 } 1869 } 1870 1871 /** 1872 * of_alias_get_id - Get alias id for the given device_node 1873 * @np: Pointer to the given device_node 1874 * @stem: Alias stem of the given device_node 1875 * 1876 * The function travels the lookup table to get alias id for the given 1877 * device_node and alias stem. It returns the alias id if find it. 1878 */ 1879 int of_alias_get_id(struct device_node *np, const char *stem) 1880 { 1881 struct alias_prop *app; 1882 int id = -ENODEV; 1883 1884 mutex_lock(&of_aliases_mutex); 1885 list_for_each_entry(app, &aliases_lookup, link) { 1886 if (strcmp(app->stem, stem) != 0) 1887 continue; 1888 1889 if (np == app->np) { 1890 id = app->id; 1891 break; 1892 } 1893 } 1894 mutex_unlock(&of_aliases_mutex); 1895 1896 return id; 1897 } 1898 EXPORT_SYMBOL_GPL(of_alias_get_id); 1899 1900 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1901 u32 *pu) 1902 { 1903 const void *curv = cur; 1904 1905 if (!prop) 1906 return NULL; 1907 1908 if (!cur) { 1909 curv = prop->value; 1910 goto out_val; 1911 } 1912 1913 curv += sizeof(*cur); 1914 if (curv >= prop->value + prop->length) 1915 return NULL; 1916 1917 out_val: 1918 *pu = be32_to_cpup(curv); 1919 return curv; 1920 } 1921 EXPORT_SYMBOL_GPL(of_prop_next_u32); 1922 1923 const char *of_prop_next_string(struct property *prop, const char *cur) 1924 { 1925 const void *curv = cur; 1926 1927 if (!prop) 1928 return NULL; 1929 1930 if (!cur) 1931 return prop->value; 1932 1933 curv += strlen(cur) + 1; 1934 if (curv >= prop->value + prop->length) 1935 return NULL; 1936 1937 return curv; 1938 } 1939 EXPORT_SYMBOL_GPL(of_prop_next_string); 1940 1941 /** 1942 * of_device_is_stdout_path - check if a device node matches the 1943 * linux,stdout-path property 1944 * 1945 * Check if this device node matches the linux,stdout-path property 1946 * in the chosen node. return true if yes, false otherwise. 1947 */ 1948 int of_device_is_stdout_path(struct device_node *dn) 1949 { 1950 if (!of_stdout) 1951 return false; 1952 1953 return of_stdout == dn; 1954 } 1955 EXPORT_SYMBOL_GPL(of_device_is_stdout_path); 1956 1957 /** 1958 * of_find_next_cache_node - Find a node's subsidiary cache 1959 * @np: node of type "cpu" or "cache" 1960 * 1961 * Returns a node pointer with refcount incremented, use 1962 * of_node_put() on it when done. Caller should hold a reference 1963 * to np. 1964 */ 1965 struct device_node *of_find_next_cache_node(const struct device_node *np) 1966 { 1967 struct device_node *child; 1968 const phandle *handle; 1969 1970 handle = of_get_property(np, "l2-cache", NULL); 1971 if (!handle) 1972 handle = of_get_property(np, "next-level-cache", NULL); 1973 1974 if (handle) 1975 return of_find_node_by_phandle(be32_to_cpup(handle)); 1976 1977 /* OF on pmac has nodes instead of properties named "l2-cache" 1978 * beneath CPU nodes. 1979 */ 1980 if (!strcmp(np->type, "cpu")) 1981 for_each_child_of_node(np, child) 1982 if (!strcmp(child->type, "cache")) 1983 return child; 1984 1985 return NULL; 1986 } 1987