xref: /openbmc/linux/drivers/of/base.c (revision f6723b56)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27 
28 #include "of_private.h"
29 
30 LIST_HEAD(aliases_lookup);
31 
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37 
38 DEFINE_MUTEX(of_aliases_mutex);
39 
40 /* use when traversing tree through the allnext, child, sibling,
41  * or parent members of struct device_node.
42  */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44 
45 int of_n_addr_cells(struct device_node *np)
46 {
47 	const __be32 *ip;
48 
49 	do {
50 		if (np->parent)
51 			np = np->parent;
52 		ip = of_get_property(np, "#address-cells", NULL);
53 		if (ip)
54 			return be32_to_cpup(ip);
55 	} while (np->parent);
56 	/* No #address-cells property for the root node */
57 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60 
61 int of_n_size_cells(struct device_node *np)
62 {
63 	const __be32 *ip;
64 
65 	do {
66 		if (np->parent)
67 			np = np->parent;
68 		ip = of_get_property(np, "#size-cells", NULL);
69 		if (ip)
70 			return be32_to_cpup(ip);
71 	} while (np->parent);
72 	/* No #size-cells property for the root node */
73 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76 
77 #ifdef CONFIG_NUMA
78 int __weak of_node_to_nid(struct device_node *np)
79 {
80 	return numa_node_id();
81 }
82 #endif
83 
84 #if defined(CONFIG_OF_DYNAMIC)
85 /**
86  *	of_node_get - Increment refcount of a node
87  *	@node:	Node to inc refcount, NULL is supported to
88  *		simplify writing of callers
89  *
90  *	Returns node.
91  */
92 struct device_node *of_node_get(struct device_node *node)
93 {
94 	if (node)
95 		kref_get(&node->kref);
96 	return node;
97 }
98 EXPORT_SYMBOL(of_node_get);
99 
100 static inline struct device_node *kref_to_device_node(struct kref *kref)
101 {
102 	return container_of(kref, struct device_node, kref);
103 }
104 
105 /**
106  *	of_node_release - release a dynamically allocated node
107  *	@kref:  kref element of the node to be released
108  *
109  *	In of_node_put() this function is passed to kref_put()
110  *	as the destructor.
111  */
112 static void of_node_release(struct kref *kref)
113 {
114 	struct device_node *node = kref_to_device_node(kref);
115 	struct property *prop = node->properties;
116 
117 	/* We should never be releasing nodes that haven't been detached. */
118 	if (!of_node_check_flag(node, OF_DETACHED)) {
119 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
120 		dump_stack();
121 		kref_init(&node->kref);
122 		return;
123 	}
124 
125 	if (!of_node_check_flag(node, OF_DYNAMIC))
126 		return;
127 
128 	while (prop) {
129 		struct property *next = prop->next;
130 		kfree(prop->name);
131 		kfree(prop->value);
132 		kfree(prop);
133 		prop = next;
134 
135 		if (!prop) {
136 			prop = node->deadprops;
137 			node->deadprops = NULL;
138 		}
139 	}
140 	kfree(node->full_name);
141 	kfree(node->data);
142 	kfree(node);
143 }
144 
145 /**
146  *	of_node_put - Decrement refcount of a node
147  *	@node:	Node to dec refcount, NULL is supported to
148  *		simplify writing of callers
149  *
150  */
151 void of_node_put(struct device_node *node)
152 {
153 	if (node)
154 		kref_put(&node->kref, of_node_release);
155 }
156 EXPORT_SYMBOL(of_node_put);
157 #endif /* CONFIG_OF_DYNAMIC */
158 
159 static struct property *__of_find_property(const struct device_node *np,
160 					   const char *name, int *lenp)
161 {
162 	struct property *pp;
163 
164 	if (!np)
165 		return NULL;
166 
167 	for (pp = np->properties; pp; pp = pp->next) {
168 		if (of_prop_cmp(pp->name, name) == 0) {
169 			if (lenp)
170 				*lenp = pp->length;
171 			break;
172 		}
173 	}
174 
175 	return pp;
176 }
177 
178 struct property *of_find_property(const struct device_node *np,
179 				  const char *name,
180 				  int *lenp)
181 {
182 	struct property *pp;
183 	unsigned long flags;
184 
185 	raw_spin_lock_irqsave(&devtree_lock, flags);
186 	pp = __of_find_property(np, name, lenp);
187 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
188 
189 	return pp;
190 }
191 EXPORT_SYMBOL(of_find_property);
192 
193 /**
194  * of_find_all_nodes - Get next node in global list
195  * @prev:	Previous node or NULL to start iteration
196  *		of_node_put() will be called on it
197  *
198  * Returns a node pointer with refcount incremented, use
199  * of_node_put() on it when done.
200  */
201 struct device_node *of_find_all_nodes(struct device_node *prev)
202 {
203 	struct device_node *np;
204 	unsigned long flags;
205 
206 	raw_spin_lock_irqsave(&devtree_lock, flags);
207 	np = prev ? prev->allnext : of_allnodes;
208 	for (; np != NULL; np = np->allnext)
209 		if (of_node_get(np))
210 			break;
211 	of_node_put(prev);
212 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
213 	return np;
214 }
215 EXPORT_SYMBOL(of_find_all_nodes);
216 
217 /*
218  * Find a property with a given name for a given node
219  * and return the value.
220  */
221 static const void *__of_get_property(const struct device_node *np,
222 				     const char *name, int *lenp)
223 {
224 	struct property *pp = __of_find_property(np, name, lenp);
225 
226 	return pp ? pp->value : NULL;
227 }
228 
229 /*
230  * Find a property with a given name for a given node
231  * and return the value.
232  */
233 const void *of_get_property(const struct device_node *np, const char *name,
234 			    int *lenp)
235 {
236 	struct property *pp = of_find_property(np, name, lenp);
237 
238 	return pp ? pp->value : NULL;
239 }
240 EXPORT_SYMBOL(of_get_property);
241 
242 /*
243  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
244  *
245  * @cpu: logical cpu index of a core/thread
246  * @phys_id: physical identifier of a core/thread
247  *
248  * CPU logical to physical index mapping is architecture specific.
249  * However this __weak function provides a default match of physical
250  * id to logical cpu index. phys_id provided here is usually values read
251  * from the device tree which must match the hardware internal registers.
252  *
253  * Returns true if the physical identifier and the logical cpu index
254  * correspond to the same core/thread, false otherwise.
255  */
256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
257 {
258 	return (u32)phys_id == cpu;
259 }
260 
261 /**
262  * Checks if the given "prop_name" property holds the physical id of the
263  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
264  * NULL, local thread number within the core is returned in it.
265  */
266 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
267 			const char *prop_name, int cpu, unsigned int *thread)
268 {
269 	const __be32 *cell;
270 	int ac, prop_len, tid;
271 	u64 hwid;
272 
273 	ac = of_n_addr_cells(cpun);
274 	cell = of_get_property(cpun, prop_name, &prop_len);
275 	if (!cell || !ac)
276 		return false;
277 	prop_len /= sizeof(*cell) * ac;
278 	for (tid = 0; tid < prop_len; tid++) {
279 		hwid = of_read_number(cell, ac);
280 		if (arch_match_cpu_phys_id(cpu, hwid)) {
281 			if (thread)
282 				*thread = tid;
283 			return true;
284 		}
285 		cell += ac;
286 	}
287 	return false;
288 }
289 
290 /*
291  * arch_find_n_match_cpu_physical_id - See if the given device node is
292  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
293  * else false.  If 'thread' is non-NULL, the local thread number within the
294  * core is returned in it.
295  */
296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
297 					      int cpu, unsigned int *thread)
298 {
299 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
300 	 * for thread ids on PowerPC. If it doesn't exist fallback to
301 	 * standard "reg" property.
302 	 */
303 	if (IS_ENABLED(CONFIG_PPC) &&
304 	    __of_find_n_match_cpu_property(cpun,
305 					   "ibm,ppc-interrupt-server#s",
306 					   cpu, thread))
307 		return true;
308 
309 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
310 		return true;
311 
312 	return false;
313 }
314 
315 /**
316  * of_get_cpu_node - Get device node associated with the given logical CPU
317  *
318  * @cpu: CPU number(logical index) for which device node is required
319  * @thread: if not NULL, local thread number within the physical core is
320  *          returned
321  *
322  * The main purpose of this function is to retrieve the device node for the
323  * given logical CPU index. It should be used to initialize the of_node in
324  * cpu device. Once of_node in cpu device is populated, all the further
325  * references can use that instead.
326  *
327  * CPU logical to physical index mapping is architecture specific and is built
328  * before booting secondary cores. This function uses arch_match_cpu_phys_id
329  * which can be overridden by architecture specific implementation.
330  *
331  * Returns a node pointer for the logical cpu if found, else NULL.
332  */
333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
334 {
335 	struct device_node *cpun;
336 
337 	for_each_node_by_type(cpun, "cpu") {
338 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
339 			return cpun;
340 	}
341 	return NULL;
342 }
343 EXPORT_SYMBOL(of_get_cpu_node);
344 
345 /** Checks if the given "compat" string matches one of the strings in
346  * the device's "compatible" property
347  */
348 static int __of_device_is_compatible(const struct device_node *device,
349 				     const char *compat)
350 {
351 	const char* cp;
352 	int cplen, l;
353 
354 	cp = __of_get_property(device, "compatible", &cplen);
355 	if (cp == NULL)
356 		return 0;
357 	while (cplen > 0) {
358 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
359 			return 1;
360 		l = strlen(cp) + 1;
361 		cp += l;
362 		cplen -= l;
363 	}
364 
365 	return 0;
366 }
367 
368 /** Checks if the given "compat" string matches one of the strings in
369  * the device's "compatible" property
370  */
371 int of_device_is_compatible(const struct device_node *device,
372 		const char *compat)
373 {
374 	unsigned long flags;
375 	int res;
376 
377 	raw_spin_lock_irqsave(&devtree_lock, flags);
378 	res = __of_device_is_compatible(device, compat);
379 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
380 	return res;
381 }
382 EXPORT_SYMBOL(of_device_is_compatible);
383 
384 /**
385  * of_machine_is_compatible - Test root of device tree for a given compatible value
386  * @compat: compatible string to look for in root node's compatible property.
387  *
388  * Returns true if the root node has the given value in its
389  * compatible property.
390  */
391 int of_machine_is_compatible(const char *compat)
392 {
393 	struct device_node *root;
394 	int rc = 0;
395 
396 	root = of_find_node_by_path("/");
397 	if (root) {
398 		rc = of_device_is_compatible(root, compat);
399 		of_node_put(root);
400 	}
401 	return rc;
402 }
403 EXPORT_SYMBOL(of_machine_is_compatible);
404 
405 /**
406  *  __of_device_is_available - check if a device is available for use
407  *
408  *  @device: Node to check for availability, with locks already held
409  *
410  *  Returns 1 if the status property is absent or set to "okay" or "ok",
411  *  0 otherwise
412  */
413 static int __of_device_is_available(const struct device_node *device)
414 {
415 	const char *status;
416 	int statlen;
417 
418 	if (!device)
419 		return 0;
420 
421 	status = __of_get_property(device, "status", &statlen);
422 	if (status == NULL)
423 		return 1;
424 
425 	if (statlen > 0) {
426 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
427 			return 1;
428 	}
429 
430 	return 0;
431 }
432 
433 /**
434  *  of_device_is_available - check if a device is available for use
435  *
436  *  @device: Node to check for availability
437  *
438  *  Returns 1 if the status property is absent or set to "okay" or "ok",
439  *  0 otherwise
440  */
441 int of_device_is_available(const struct device_node *device)
442 {
443 	unsigned long flags;
444 	int res;
445 
446 	raw_spin_lock_irqsave(&devtree_lock, flags);
447 	res = __of_device_is_available(device);
448 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
449 	return res;
450 
451 }
452 EXPORT_SYMBOL(of_device_is_available);
453 
454 /**
455  *	of_get_parent - Get a node's parent if any
456  *	@node:	Node to get parent
457  *
458  *	Returns a node pointer with refcount incremented, use
459  *	of_node_put() on it when done.
460  */
461 struct device_node *of_get_parent(const struct device_node *node)
462 {
463 	struct device_node *np;
464 	unsigned long flags;
465 
466 	if (!node)
467 		return NULL;
468 
469 	raw_spin_lock_irqsave(&devtree_lock, flags);
470 	np = of_node_get(node->parent);
471 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
472 	return np;
473 }
474 EXPORT_SYMBOL(of_get_parent);
475 
476 /**
477  *	of_get_next_parent - Iterate to a node's parent
478  *	@node:	Node to get parent of
479  *
480  * 	This is like of_get_parent() except that it drops the
481  * 	refcount on the passed node, making it suitable for iterating
482  * 	through a node's parents.
483  *
484  *	Returns a node pointer with refcount incremented, use
485  *	of_node_put() on it when done.
486  */
487 struct device_node *of_get_next_parent(struct device_node *node)
488 {
489 	struct device_node *parent;
490 	unsigned long flags;
491 
492 	if (!node)
493 		return NULL;
494 
495 	raw_spin_lock_irqsave(&devtree_lock, flags);
496 	parent = of_node_get(node->parent);
497 	of_node_put(node);
498 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
499 	return parent;
500 }
501 EXPORT_SYMBOL(of_get_next_parent);
502 
503 /**
504  *	of_get_next_child - Iterate a node childs
505  *	@node:	parent node
506  *	@prev:	previous child of the parent node, or NULL to get first
507  *
508  *	Returns a node pointer with refcount incremented, use
509  *	of_node_put() on it when done.
510  */
511 struct device_node *of_get_next_child(const struct device_node *node,
512 	struct device_node *prev)
513 {
514 	struct device_node *next;
515 	unsigned long flags;
516 
517 	raw_spin_lock_irqsave(&devtree_lock, flags);
518 	next = prev ? prev->sibling : node->child;
519 	for (; next; next = next->sibling)
520 		if (of_node_get(next))
521 			break;
522 	of_node_put(prev);
523 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
524 	return next;
525 }
526 EXPORT_SYMBOL(of_get_next_child);
527 
528 /**
529  *	of_get_next_available_child - Find the next available child node
530  *	@node:	parent node
531  *	@prev:	previous child of the parent node, or NULL to get first
532  *
533  *      This function is like of_get_next_child(), except that it
534  *      automatically skips any disabled nodes (i.e. status = "disabled").
535  */
536 struct device_node *of_get_next_available_child(const struct device_node *node,
537 	struct device_node *prev)
538 {
539 	struct device_node *next;
540 	unsigned long flags;
541 
542 	raw_spin_lock_irqsave(&devtree_lock, flags);
543 	next = prev ? prev->sibling : node->child;
544 	for (; next; next = next->sibling) {
545 		if (!__of_device_is_available(next))
546 			continue;
547 		if (of_node_get(next))
548 			break;
549 	}
550 	of_node_put(prev);
551 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
552 	return next;
553 }
554 EXPORT_SYMBOL(of_get_next_available_child);
555 
556 /**
557  *	of_get_child_by_name - Find the child node by name for a given parent
558  *	@node:	parent node
559  *	@name:	child name to look for.
560  *
561  *      This function looks for child node for given matching name
562  *
563  *	Returns a node pointer if found, with refcount incremented, use
564  *	of_node_put() on it when done.
565  *	Returns NULL if node is not found.
566  */
567 struct device_node *of_get_child_by_name(const struct device_node *node,
568 				const char *name)
569 {
570 	struct device_node *child;
571 
572 	for_each_child_of_node(node, child)
573 		if (child->name && (of_node_cmp(child->name, name) == 0))
574 			break;
575 	return child;
576 }
577 EXPORT_SYMBOL(of_get_child_by_name);
578 
579 /**
580  *	of_find_node_by_path - Find a node matching a full OF path
581  *	@path:	The full path to match
582  *
583  *	Returns a node pointer with refcount incremented, use
584  *	of_node_put() on it when done.
585  */
586 struct device_node *of_find_node_by_path(const char *path)
587 {
588 	struct device_node *np = of_allnodes;
589 	unsigned long flags;
590 
591 	raw_spin_lock_irqsave(&devtree_lock, flags);
592 	for (; np; np = np->allnext) {
593 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
594 		    && of_node_get(np))
595 			break;
596 	}
597 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
598 	return np;
599 }
600 EXPORT_SYMBOL(of_find_node_by_path);
601 
602 /**
603  *	of_find_node_by_name - Find a node by its "name" property
604  *	@from:	The node to start searching from or NULL, the node
605  *		you pass will not be searched, only the next one
606  *		will; typically, you pass what the previous call
607  *		returned. of_node_put() will be called on it
608  *	@name:	The name string to match against
609  *
610  *	Returns a node pointer with refcount incremented, use
611  *	of_node_put() on it when done.
612  */
613 struct device_node *of_find_node_by_name(struct device_node *from,
614 	const char *name)
615 {
616 	struct device_node *np;
617 	unsigned long flags;
618 
619 	raw_spin_lock_irqsave(&devtree_lock, flags);
620 	np = from ? from->allnext : of_allnodes;
621 	for (; np; np = np->allnext)
622 		if (np->name && (of_node_cmp(np->name, name) == 0)
623 		    && of_node_get(np))
624 			break;
625 	of_node_put(from);
626 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
627 	return np;
628 }
629 EXPORT_SYMBOL(of_find_node_by_name);
630 
631 /**
632  *	of_find_node_by_type - Find a node by its "device_type" property
633  *	@from:	The node to start searching from, or NULL to start searching
634  *		the entire device tree. The node you pass will not be
635  *		searched, only the next one will; typically, you pass
636  *		what the previous call returned. of_node_put() will be
637  *		called on from for you.
638  *	@type:	The type string to match against
639  *
640  *	Returns a node pointer with refcount incremented, use
641  *	of_node_put() on it when done.
642  */
643 struct device_node *of_find_node_by_type(struct device_node *from,
644 	const char *type)
645 {
646 	struct device_node *np;
647 	unsigned long flags;
648 
649 	raw_spin_lock_irqsave(&devtree_lock, flags);
650 	np = from ? from->allnext : of_allnodes;
651 	for (; np; np = np->allnext)
652 		if (np->type && (of_node_cmp(np->type, type) == 0)
653 		    && of_node_get(np))
654 			break;
655 	of_node_put(from);
656 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
657 	return np;
658 }
659 EXPORT_SYMBOL(of_find_node_by_type);
660 
661 /**
662  *	of_find_compatible_node - Find a node based on type and one of the
663  *                                tokens in its "compatible" property
664  *	@from:		The node to start searching from or NULL, the node
665  *			you pass will not be searched, only the next one
666  *			will; typically, you pass what the previous call
667  *			returned. of_node_put() will be called on it
668  *	@type:		The type string to match "device_type" or NULL to ignore
669  *	@compatible:	The string to match to one of the tokens in the device
670  *			"compatible" list.
671  *
672  *	Returns a node pointer with refcount incremented, use
673  *	of_node_put() on it when done.
674  */
675 struct device_node *of_find_compatible_node(struct device_node *from,
676 	const char *type, const char *compatible)
677 {
678 	struct device_node *np;
679 	unsigned long flags;
680 
681 	raw_spin_lock_irqsave(&devtree_lock, flags);
682 	np = from ? from->allnext : of_allnodes;
683 	for (; np; np = np->allnext) {
684 		if (type
685 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
686 			continue;
687 		if (__of_device_is_compatible(np, compatible) &&
688 		    of_node_get(np))
689 			break;
690 	}
691 	of_node_put(from);
692 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
693 	return np;
694 }
695 EXPORT_SYMBOL(of_find_compatible_node);
696 
697 /**
698  *	of_find_node_with_property - Find a node which has a property with
699  *                                   the given name.
700  *	@from:		The node to start searching from or NULL, the node
701  *			you pass will not be searched, only the next one
702  *			will; typically, you pass what the previous call
703  *			returned. of_node_put() will be called on it
704  *	@prop_name:	The name of the property to look for.
705  *
706  *	Returns a node pointer with refcount incremented, use
707  *	of_node_put() on it when done.
708  */
709 struct device_node *of_find_node_with_property(struct device_node *from,
710 	const char *prop_name)
711 {
712 	struct device_node *np;
713 	struct property *pp;
714 	unsigned long flags;
715 
716 	raw_spin_lock_irqsave(&devtree_lock, flags);
717 	np = from ? from->allnext : of_allnodes;
718 	for (; np; np = np->allnext) {
719 		for (pp = np->properties; pp; pp = pp->next) {
720 			if (of_prop_cmp(pp->name, prop_name) == 0) {
721 				of_node_get(np);
722 				goto out;
723 			}
724 		}
725 	}
726 out:
727 	of_node_put(from);
728 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
729 	return np;
730 }
731 EXPORT_SYMBOL(of_find_node_with_property);
732 
733 static const struct of_device_id *
734 of_match_compatible(const struct of_device_id *matches,
735 			const struct device_node *node)
736 {
737 	const char *cp;
738 	int cplen, l;
739 	const struct of_device_id *m;
740 
741 	cp = __of_get_property(node, "compatible", &cplen);
742 	while (cp && (cplen > 0)) {
743 		m = matches;
744 		while (m->name[0] || m->type[0] || m->compatible[0]) {
745 			/* Only match for the entries without type and name */
746 			if (m->name[0] || m->type[0] ||
747 				of_compat_cmp(m->compatible, cp,
748 					 strlen(m->compatible)))
749 				m++;
750 			else
751 				return m;
752 		}
753 
754 		/* Get node's next compatible string */
755 		l = strlen(cp) + 1;
756 		cp += l;
757 		cplen -= l;
758 	}
759 
760 	return NULL;
761 }
762 
763 static
764 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
765 					   const struct device_node *node)
766 {
767 	const struct of_device_id *m;
768 
769 	if (!matches)
770 		return NULL;
771 
772 	m = of_match_compatible(matches, node);
773 	if (m)
774 		return m;
775 
776 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
777 		int match = 1;
778 		if (matches->name[0])
779 			match &= node->name
780 				&& !strcmp(matches->name, node->name);
781 		if (matches->type[0])
782 			match &= node->type
783 				&& !strcmp(matches->type, node->type);
784 		if (matches->compatible[0])
785 			match &= __of_device_is_compatible(node,
786 							   matches->compatible);
787 		if (match)
788 			return matches;
789 		matches++;
790 	}
791 	return NULL;
792 }
793 
794 /**
795  * of_match_node - Tell if an device_node has a matching of_match structure
796  *	@matches:	array of of device match structures to search in
797  *	@node:		the of device structure to match against
798  *
799  *	Low level utility function used by device matching. We have two ways
800  *	of matching:
801  *	- Try to find the best compatible match by comparing each compatible
802  *	  string of device node with all the given matches respectively.
803  *	- If the above method failed, then try to match the compatible by using
804  *	  __of_device_is_compatible() besides the match in type and name.
805  */
806 const struct of_device_id *of_match_node(const struct of_device_id *matches,
807 					 const struct device_node *node)
808 {
809 	const struct of_device_id *match;
810 	unsigned long flags;
811 
812 	raw_spin_lock_irqsave(&devtree_lock, flags);
813 	match = __of_match_node(matches, node);
814 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
815 	return match;
816 }
817 EXPORT_SYMBOL(of_match_node);
818 
819 /**
820  *	of_find_matching_node_and_match - Find a node based on an of_device_id
821  *					  match table.
822  *	@from:		The node to start searching from or NULL, the node
823  *			you pass will not be searched, only the next one
824  *			will; typically, you pass what the previous call
825  *			returned. of_node_put() will be called on it
826  *	@matches:	array of of device match structures to search in
827  *	@match		Updated to point at the matches entry which matched
828  *
829  *	Returns a node pointer with refcount incremented, use
830  *	of_node_put() on it when done.
831  */
832 struct device_node *of_find_matching_node_and_match(struct device_node *from,
833 					const struct of_device_id *matches,
834 					const struct of_device_id **match)
835 {
836 	struct device_node *np;
837 	const struct of_device_id *m;
838 	unsigned long flags;
839 
840 	if (match)
841 		*match = NULL;
842 
843 	raw_spin_lock_irqsave(&devtree_lock, flags);
844 	np = from ? from->allnext : of_allnodes;
845 	for (; np; np = np->allnext) {
846 		m = __of_match_node(matches, np);
847 		if (m && of_node_get(np)) {
848 			if (match)
849 				*match = m;
850 			break;
851 		}
852 	}
853 	of_node_put(from);
854 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
855 	return np;
856 }
857 EXPORT_SYMBOL(of_find_matching_node_and_match);
858 
859 /**
860  * of_modalias_node - Lookup appropriate modalias for a device node
861  * @node:	pointer to a device tree node
862  * @modalias:	Pointer to buffer that modalias value will be copied into
863  * @len:	Length of modalias value
864  *
865  * Based on the value of the compatible property, this routine will attempt
866  * to choose an appropriate modalias value for a particular device tree node.
867  * It does this by stripping the manufacturer prefix (as delimited by a ',')
868  * from the first entry in the compatible list property.
869  *
870  * This routine returns 0 on success, <0 on failure.
871  */
872 int of_modalias_node(struct device_node *node, char *modalias, int len)
873 {
874 	const char *compatible, *p;
875 	int cplen;
876 
877 	compatible = of_get_property(node, "compatible", &cplen);
878 	if (!compatible || strlen(compatible) > cplen)
879 		return -ENODEV;
880 	p = strchr(compatible, ',');
881 	strlcpy(modalias, p ? p + 1 : compatible, len);
882 	return 0;
883 }
884 EXPORT_SYMBOL_GPL(of_modalias_node);
885 
886 /**
887  * of_find_node_by_phandle - Find a node given a phandle
888  * @handle:	phandle of the node to find
889  *
890  * Returns a node pointer with refcount incremented, use
891  * of_node_put() on it when done.
892  */
893 struct device_node *of_find_node_by_phandle(phandle handle)
894 {
895 	struct device_node *np;
896 	unsigned long flags;
897 
898 	raw_spin_lock_irqsave(&devtree_lock, flags);
899 	for (np = of_allnodes; np; np = np->allnext)
900 		if (np->phandle == handle)
901 			break;
902 	of_node_get(np);
903 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
904 	return np;
905 }
906 EXPORT_SYMBOL(of_find_node_by_phandle);
907 
908 /**
909  * of_find_property_value_of_size
910  *
911  * @np:		device node from which the property value is to be read.
912  * @propname:	name of the property to be searched.
913  * @len:	requested length of property value
914  *
915  * Search for a property in a device node and valid the requested size.
916  * Returns the property value on success, -EINVAL if the property does not
917  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
918  * property data isn't large enough.
919  *
920  */
921 static void *of_find_property_value_of_size(const struct device_node *np,
922 			const char *propname, u32 len)
923 {
924 	struct property *prop = of_find_property(np, propname, NULL);
925 
926 	if (!prop)
927 		return ERR_PTR(-EINVAL);
928 	if (!prop->value)
929 		return ERR_PTR(-ENODATA);
930 	if (len > prop->length)
931 		return ERR_PTR(-EOVERFLOW);
932 
933 	return prop->value;
934 }
935 
936 /**
937  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
938  *
939  * @np:		device node from which the property value is to be read.
940  * @propname:	name of the property to be searched.
941  * @index:	index of the u32 in the list of values
942  * @out_value:	pointer to return value, modified only if no error.
943  *
944  * Search for a property in a device node and read nth 32-bit value from
945  * it. Returns 0 on success, -EINVAL if the property does not exist,
946  * -ENODATA if property does not have a value, and -EOVERFLOW if the
947  * property data isn't large enough.
948  *
949  * The out_value is modified only if a valid u32 value can be decoded.
950  */
951 int of_property_read_u32_index(const struct device_node *np,
952 				       const char *propname,
953 				       u32 index, u32 *out_value)
954 {
955 	const u32 *val = of_find_property_value_of_size(np, propname,
956 					((index + 1) * sizeof(*out_value)));
957 
958 	if (IS_ERR(val))
959 		return PTR_ERR(val);
960 
961 	*out_value = be32_to_cpup(((__be32 *)val) + index);
962 	return 0;
963 }
964 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
965 
966 /**
967  * of_property_read_u8_array - Find and read an array of u8 from a property.
968  *
969  * @np:		device node from which the property value is to be read.
970  * @propname:	name of the property to be searched.
971  * @out_values:	pointer to return value, modified only if return value is 0.
972  * @sz:		number of array elements to read
973  *
974  * Search for a property in a device node and read 8-bit value(s) from
975  * it. Returns 0 on success, -EINVAL if the property does not exist,
976  * -ENODATA if property does not have a value, and -EOVERFLOW if the
977  * property data isn't large enough.
978  *
979  * dts entry of array should be like:
980  *	property = /bits/ 8 <0x50 0x60 0x70>;
981  *
982  * The out_values is modified only if a valid u8 value can be decoded.
983  */
984 int of_property_read_u8_array(const struct device_node *np,
985 			const char *propname, u8 *out_values, size_t sz)
986 {
987 	const u8 *val = of_find_property_value_of_size(np, propname,
988 						(sz * sizeof(*out_values)));
989 
990 	if (IS_ERR(val))
991 		return PTR_ERR(val);
992 
993 	while (sz--)
994 		*out_values++ = *val++;
995 	return 0;
996 }
997 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
998 
999 /**
1000  * of_property_read_u16_array - Find and read an array of u16 from a property.
1001  *
1002  * @np:		device node from which the property value is to be read.
1003  * @propname:	name of the property to be searched.
1004  * @out_values:	pointer to return value, modified only if return value is 0.
1005  * @sz:		number of array elements to read
1006  *
1007  * Search for a property in a device node and read 16-bit value(s) from
1008  * it. Returns 0 on success, -EINVAL if the property does not exist,
1009  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1010  * property data isn't large enough.
1011  *
1012  * dts entry of array should be like:
1013  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1014  *
1015  * The out_values is modified only if a valid u16 value can be decoded.
1016  */
1017 int of_property_read_u16_array(const struct device_node *np,
1018 			const char *propname, u16 *out_values, size_t sz)
1019 {
1020 	const __be16 *val = of_find_property_value_of_size(np, propname,
1021 						(sz * sizeof(*out_values)));
1022 
1023 	if (IS_ERR(val))
1024 		return PTR_ERR(val);
1025 
1026 	while (sz--)
1027 		*out_values++ = be16_to_cpup(val++);
1028 	return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1031 
1032 /**
1033  * of_property_read_u32_array - Find and read an array of 32 bit integers
1034  * from a property.
1035  *
1036  * @np:		device node from which the property value is to be read.
1037  * @propname:	name of the property to be searched.
1038  * @out_values:	pointer to return value, modified only if return value is 0.
1039  * @sz:		number of array elements to read
1040  *
1041  * Search for a property in a device node and read 32-bit value(s) from
1042  * it. Returns 0 on success, -EINVAL if the property does not exist,
1043  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1044  * property data isn't large enough.
1045  *
1046  * The out_values is modified only if a valid u32 value can be decoded.
1047  */
1048 int of_property_read_u32_array(const struct device_node *np,
1049 			       const char *propname, u32 *out_values,
1050 			       size_t sz)
1051 {
1052 	const __be32 *val = of_find_property_value_of_size(np, propname,
1053 						(sz * sizeof(*out_values)));
1054 
1055 	if (IS_ERR(val))
1056 		return PTR_ERR(val);
1057 
1058 	while (sz--)
1059 		*out_values++ = be32_to_cpup(val++);
1060 	return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1063 
1064 /**
1065  * of_property_read_u64 - Find and read a 64 bit integer from a property
1066  * @np:		device node from which the property value is to be read.
1067  * @propname:	name of the property to be searched.
1068  * @out_value:	pointer to return value, modified only if return value is 0.
1069  *
1070  * Search for a property in a device node and read a 64-bit value from
1071  * it. Returns 0 on success, -EINVAL if the property does not exist,
1072  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1073  * property data isn't large enough.
1074  *
1075  * The out_value is modified only if a valid u64 value can be decoded.
1076  */
1077 int of_property_read_u64(const struct device_node *np, const char *propname,
1078 			 u64 *out_value)
1079 {
1080 	const __be32 *val = of_find_property_value_of_size(np, propname,
1081 						sizeof(*out_value));
1082 
1083 	if (IS_ERR(val))
1084 		return PTR_ERR(val);
1085 
1086 	*out_value = of_read_number(val, 2);
1087 	return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(of_property_read_u64);
1090 
1091 /**
1092  * of_property_read_string - Find and read a string from a property
1093  * @np:		device node from which the property value is to be read.
1094  * @propname:	name of the property to be searched.
1095  * @out_string:	pointer to null terminated return string, modified only if
1096  *		return value is 0.
1097  *
1098  * Search for a property in a device tree node and retrieve a null
1099  * terminated string value (pointer to data, not a copy). Returns 0 on
1100  * success, -EINVAL if the property does not exist, -ENODATA if property
1101  * does not have a value, and -EILSEQ if the string is not null-terminated
1102  * within the length of the property data.
1103  *
1104  * The out_string pointer is modified only if a valid string can be decoded.
1105  */
1106 int of_property_read_string(struct device_node *np, const char *propname,
1107 				const char **out_string)
1108 {
1109 	struct property *prop = of_find_property(np, propname, NULL);
1110 	if (!prop)
1111 		return -EINVAL;
1112 	if (!prop->value)
1113 		return -ENODATA;
1114 	if (strnlen(prop->value, prop->length) >= prop->length)
1115 		return -EILSEQ;
1116 	*out_string = prop->value;
1117 	return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(of_property_read_string);
1120 
1121 /**
1122  * of_property_read_string_index - Find and read a string from a multiple
1123  * strings property.
1124  * @np:		device node from which the property value is to be read.
1125  * @propname:	name of the property to be searched.
1126  * @index:	index of the string in the list of strings
1127  * @out_string:	pointer to null terminated return string, modified only if
1128  *		return value is 0.
1129  *
1130  * Search for a property in a device tree node and retrieve a null
1131  * terminated string value (pointer to data, not a copy) in the list of strings
1132  * contained in that property.
1133  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1134  * property does not have a value, and -EILSEQ if the string is not
1135  * null-terminated within the length of the property data.
1136  *
1137  * The out_string pointer is modified only if a valid string can be decoded.
1138  */
1139 int of_property_read_string_index(struct device_node *np, const char *propname,
1140 				  int index, const char **output)
1141 {
1142 	struct property *prop = of_find_property(np, propname, NULL);
1143 	int i = 0;
1144 	size_t l = 0, total = 0;
1145 	const char *p;
1146 
1147 	if (!prop)
1148 		return -EINVAL;
1149 	if (!prop->value)
1150 		return -ENODATA;
1151 	if (strnlen(prop->value, prop->length) >= prop->length)
1152 		return -EILSEQ;
1153 
1154 	p = prop->value;
1155 
1156 	for (i = 0; total < prop->length; total += l, p += l) {
1157 		l = strlen(p) + 1;
1158 		if (i++ == index) {
1159 			*output = p;
1160 			return 0;
1161 		}
1162 	}
1163 	return -ENODATA;
1164 }
1165 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1166 
1167 /**
1168  * of_property_match_string() - Find string in a list and return index
1169  * @np: pointer to node containing string list property
1170  * @propname: string list property name
1171  * @string: pointer to string to search for in string list
1172  *
1173  * This function searches a string list property and returns the index
1174  * of a specific string value.
1175  */
1176 int of_property_match_string(struct device_node *np, const char *propname,
1177 			     const char *string)
1178 {
1179 	struct property *prop = of_find_property(np, propname, NULL);
1180 	size_t l;
1181 	int i;
1182 	const char *p, *end;
1183 
1184 	if (!prop)
1185 		return -EINVAL;
1186 	if (!prop->value)
1187 		return -ENODATA;
1188 
1189 	p = prop->value;
1190 	end = p + prop->length;
1191 
1192 	for (i = 0; p < end; i++, p += l) {
1193 		l = strlen(p) + 1;
1194 		if (p + l > end)
1195 			return -EILSEQ;
1196 		pr_debug("comparing %s with %s\n", string, p);
1197 		if (strcmp(string, p) == 0)
1198 			return i; /* Found it; return index */
1199 	}
1200 	return -ENODATA;
1201 }
1202 EXPORT_SYMBOL_GPL(of_property_match_string);
1203 
1204 /**
1205  * of_property_count_strings - Find and return the number of strings from a
1206  * multiple strings property.
1207  * @np:		device node from which the property value is to be read.
1208  * @propname:	name of the property to be searched.
1209  *
1210  * Search for a property in a device tree node and retrieve the number of null
1211  * terminated string contain in it. Returns the number of strings on
1212  * success, -EINVAL if the property does not exist, -ENODATA if property
1213  * does not have a value, and -EILSEQ if the string is not null-terminated
1214  * within the length of the property data.
1215  */
1216 int of_property_count_strings(struct device_node *np, const char *propname)
1217 {
1218 	struct property *prop = of_find_property(np, propname, NULL);
1219 	int i = 0;
1220 	size_t l = 0, total = 0;
1221 	const char *p;
1222 
1223 	if (!prop)
1224 		return -EINVAL;
1225 	if (!prop->value)
1226 		return -ENODATA;
1227 	if (strnlen(prop->value, prop->length) >= prop->length)
1228 		return -EILSEQ;
1229 
1230 	p = prop->value;
1231 
1232 	for (i = 0; total < prop->length; total += l, p += l, i++)
1233 		l = strlen(p) + 1;
1234 
1235 	return i;
1236 }
1237 EXPORT_SYMBOL_GPL(of_property_count_strings);
1238 
1239 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1240 {
1241 	int i;
1242 	printk("%s %s", msg, of_node_full_name(args->np));
1243 	for (i = 0; i < args->args_count; i++)
1244 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1245 	printk("\n");
1246 }
1247 
1248 static int __of_parse_phandle_with_args(const struct device_node *np,
1249 					const char *list_name,
1250 					const char *cells_name,
1251 					int cell_count, int index,
1252 					struct of_phandle_args *out_args)
1253 {
1254 	const __be32 *list, *list_end;
1255 	int rc = 0, size, cur_index = 0;
1256 	uint32_t count = 0;
1257 	struct device_node *node = NULL;
1258 	phandle phandle;
1259 
1260 	/* Retrieve the phandle list property */
1261 	list = of_get_property(np, list_name, &size);
1262 	if (!list)
1263 		return -ENOENT;
1264 	list_end = list + size / sizeof(*list);
1265 
1266 	/* Loop over the phandles until all the requested entry is found */
1267 	while (list < list_end) {
1268 		rc = -EINVAL;
1269 		count = 0;
1270 
1271 		/*
1272 		 * If phandle is 0, then it is an empty entry with no
1273 		 * arguments.  Skip forward to the next entry.
1274 		 */
1275 		phandle = be32_to_cpup(list++);
1276 		if (phandle) {
1277 			/*
1278 			 * Find the provider node and parse the #*-cells
1279 			 * property to determine the argument length.
1280 			 *
1281 			 * This is not needed if the cell count is hard-coded
1282 			 * (i.e. cells_name not set, but cell_count is set),
1283 			 * except when we're going to return the found node
1284 			 * below.
1285 			 */
1286 			if (cells_name || cur_index == index) {
1287 				node = of_find_node_by_phandle(phandle);
1288 				if (!node) {
1289 					pr_err("%s: could not find phandle\n",
1290 						np->full_name);
1291 					goto err;
1292 				}
1293 			}
1294 
1295 			if (cells_name) {
1296 				if (of_property_read_u32(node, cells_name,
1297 							 &count)) {
1298 					pr_err("%s: could not get %s for %s\n",
1299 						np->full_name, cells_name,
1300 						node->full_name);
1301 					goto err;
1302 				}
1303 			} else {
1304 				count = cell_count;
1305 			}
1306 
1307 			/*
1308 			 * Make sure that the arguments actually fit in the
1309 			 * remaining property data length
1310 			 */
1311 			if (list + count > list_end) {
1312 				pr_err("%s: arguments longer than property\n",
1313 					 np->full_name);
1314 				goto err;
1315 			}
1316 		}
1317 
1318 		/*
1319 		 * All of the error cases above bail out of the loop, so at
1320 		 * this point, the parsing is successful. If the requested
1321 		 * index matches, then fill the out_args structure and return,
1322 		 * or return -ENOENT for an empty entry.
1323 		 */
1324 		rc = -ENOENT;
1325 		if (cur_index == index) {
1326 			if (!phandle)
1327 				goto err;
1328 
1329 			if (out_args) {
1330 				int i;
1331 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1332 					count = MAX_PHANDLE_ARGS;
1333 				out_args->np = node;
1334 				out_args->args_count = count;
1335 				for (i = 0; i < count; i++)
1336 					out_args->args[i] = be32_to_cpup(list++);
1337 			} else {
1338 				of_node_put(node);
1339 			}
1340 
1341 			/* Found it! return success */
1342 			return 0;
1343 		}
1344 
1345 		of_node_put(node);
1346 		node = NULL;
1347 		list += count;
1348 		cur_index++;
1349 	}
1350 
1351 	/*
1352 	 * Unlock node before returning result; will be one of:
1353 	 * -ENOENT : index is for empty phandle
1354 	 * -EINVAL : parsing error on data
1355 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1356 	 */
1357 	rc = index < 0 ? cur_index : -ENOENT;
1358  err:
1359 	if (node)
1360 		of_node_put(node);
1361 	return rc;
1362 }
1363 
1364 /**
1365  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1366  * @np: Pointer to device node holding phandle property
1367  * @phandle_name: Name of property holding a phandle value
1368  * @index: For properties holding a table of phandles, this is the index into
1369  *         the table
1370  *
1371  * Returns the device_node pointer with refcount incremented.  Use
1372  * of_node_put() on it when done.
1373  */
1374 struct device_node *of_parse_phandle(const struct device_node *np,
1375 				     const char *phandle_name, int index)
1376 {
1377 	struct of_phandle_args args;
1378 
1379 	if (index < 0)
1380 		return NULL;
1381 
1382 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1383 					 index, &args))
1384 		return NULL;
1385 
1386 	return args.np;
1387 }
1388 EXPORT_SYMBOL(of_parse_phandle);
1389 
1390 /**
1391  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1392  * @np:		pointer to a device tree node containing a list
1393  * @list_name:	property name that contains a list
1394  * @cells_name:	property name that specifies phandles' arguments count
1395  * @index:	index of a phandle to parse out
1396  * @out_args:	optional pointer to output arguments structure (will be filled)
1397  *
1398  * This function is useful to parse lists of phandles and their arguments.
1399  * Returns 0 on success and fills out_args, on error returns appropriate
1400  * errno value.
1401  *
1402  * Caller is responsible to call of_node_put() on the returned out_args->node
1403  * pointer.
1404  *
1405  * Example:
1406  *
1407  * phandle1: node1 {
1408  * 	#list-cells = <2>;
1409  * }
1410  *
1411  * phandle2: node2 {
1412  * 	#list-cells = <1>;
1413  * }
1414  *
1415  * node3 {
1416  * 	list = <&phandle1 1 2 &phandle2 3>;
1417  * }
1418  *
1419  * To get a device_node of the `node2' node you may call this:
1420  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1421  */
1422 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1423 				const char *cells_name, int index,
1424 				struct of_phandle_args *out_args)
1425 {
1426 	if (index < 0)
1427 		return -EINVAL;
1428 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1429 					    index, out_args);
1430 }
1431 EXPORT_SYMBOL(of_parse_phandle_with_args);
1432 
1433 /**
1434  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1435  * @np:		pointer to a device tree node containing a list
1436  * @list_name:	property name that contains a list
1437  * @cell_count: number of argument cells following the phandle
1438  * @index:	index of a phandle to parse out
1439  * @out_args:	optional pointer to output arguments structure (will be filled)
1440  *
1441  * This function is useful to parse lists of phandles and their arguments.
1442  * Returns 0 on success and fills out_args, on error returns appropriate
1443  * errno value.
1444  *
1445  * Caller is responsible to call of_node_put() on the returned out_args->node
1446  * pointer.
1447  *
1448  * Example:
1449  *
1450  * phandle1: node1 {
1451  * }
1452  *
1453  * phandle2: node2 {
1454  * }
1455  *
1456  * node3 {
1457  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1458  * }
1459  *
1460  * To get a device_node of the `node2' node you may call this:
1461  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1462  */
1463 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1464 				const char *list_name, int cell_count,
1465 				int index, struct of_phandle_args *out_args)
1466 {
1467 	if (index < 0)
1468 		return -EINVAL;
1469 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1470 					   index, out_args);
1471 }
1472 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1473 
1474 /**
1475  * of_count_phandle_with_args() - Find the number of phandles references in a property
1476  * @np:		pointer to a device tree node containing a list
1477  * @list_name:	property name that contains a list
1478  * @cells_name:	property name that specifies phandles' arguments count
1479  *
1480  * Returns the number of phandle + argument tuples within a property. It
1481  * is a typical pattern to encode a list of phandle and variable
1482  * arguments into a single property. The number of arguments is encoded
1483  * by a property in the phandle-target node. For example, a gpios
1484  * property would contain a list of GPIO specifies consisting of a
1485  * phandle and 1 or more arguments. The number of arguments are
1486  * determined by the #gpio-cells property in the node pointed to by the
1487  * phandle.
1488  */
1489 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1490 				const char *cells_name)
1491 {
1492 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1493 					    NULL);
1494 }
1495 EXPORT_SYMBOL(of_count_phandle_with_args);
1496 
1497 #if defined(CONFIG_OF_DYNAMIC)
1498 static int of_property_notify(int action, struct device_node *np,
1499 			      struct property *prop)
1500 {
1501 	struct of_prop_reconfig pr;
1502 
1503 	pr.dn = np;
1504 	pr.prop = prop;
1505 	return of_reconfig_notify(action, &pr);
1506 }
1507 #else
1508 static int of_property_notify(int action, struct device_node *np,
1509 			      struct property *prop)
1510 {
1511 	return 0;
1512 }
1513 #endif
1514 
1515 /**
1516  * of_add_property - Add a property to a node
1517  */
1518 int of_add_property(struct device_node *np, struct property *prop)
1519 {
1520 	struct property **next;
1521 	unsigned long flags;
1522 	int rc;
1523 
1524 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1525 	if (rc)
1526 		return rc;
1527 
1528 	prop->next = NULL;
1529 	raw_spin_lock_irqsave(&devtree_lock, flags);
1530 	next = &np->properties;
1531 	while (*next) {
1532 		if (strcmp(prop->name, (*next)->name) == 0) {
1533 			/* duplicate ! don't insert it */
1534 			raw_spin_unlock_irqrestore(&devtree_lock, flags);
1535 			return -1;
1536 		}
1537 		next = &(*next)->next;
1538 	}
1539 	*next = prop;
1540 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1541 
1542 #ifdef CONFIG_PROC_DEVICETREE
1543 	/* try to add to proc as well if it was initialized */
1544 	if (np->pde)
1545 		proc_device_tree_add_prop(np->pde, prop);
1546 #endif /* CONFIG_PROC_DEVICETREE */
1547 
1548 	return 0;
1549 }
1550 
1551 /**
1552  * of_remove_property - Remove a property from a node.
1553  *
1554  * Note that we don't actually remove it, since we have given out
1555  * who-knows-how-many pointers to the data using get-property.
1556  * Instead we just move the property to the "dead properties"
1557  * list, so it won't be found any more.
1558  */
1559 int of_remove_property(struct device_node *np, struct property *prop)
1560 {
1561 	struct property **next;
1562 	unsigned long flags;
1563 	int found = 0;
1564 	int rc;
1565 
1566 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1567 	if (rc)
1568 		return rc;
1569 
1570 	raw_spin_lock_irqsave(&devtree_lock, flags);
1571 	next = &np->properties;
1572 	while (*next) {
1573 		if (*next == prop) {
1574 			/* found the node */
1575 			*next = prop->next;
1576 			prop->next = np->deadprops;
1577 			np->deadprops = prop;
1578 			found = 1;
1579 			break;
1580 		}
1581 		next = &(*next)->next;
1582 	}
1583 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1584 
1585 	if (!found)
1586 		return -ENODEV;
1587 
1588 #ifdef CONFIG_PROC_DEVICETREE
1589 	/* try to remove the proc node as well */
1590 	if (np->pde)
1591 		proc_device_tree_remove_prop(np->pde, prop);
1592 #endif /* CONFIG_PROC_DEVICETREE */
1593 
1594 	return 0;
1595 }
1596 
1597 /*
1598  * of_update_property - Update a property in a node, if the property does
1599  * not exist, add it.
1600  *
1601  * Note that we don't actually remove it, since we have given out
1602  * who-knows-how-many pointers to the data using get-property.
1603  * Instead we just move the property to the "dead properties" list,
1604  * and add the new property to the property list
1605  */
1606 int of_update_property(struct device_node *np, struct property *newprop)
1607 {
1608 	struct property **next, *oldprop;
1609 	unsigned long flags;
1610 	int rc, found = 0;
1611 
1612 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1613 	if (rc)
1614 		return rc;
1615 
1616 	if (!newprop->name)
1617 		return -EINVAL;
1618 
1619 	oldprop = of_find_property(np, newprop->name, NULL);
1620 	if (!oldprop)
1621 		return of_add_property(np, newprop);
1622 
1623 	raw_spin_lock_irqsave(&devtree_lock, flags);
1624 	next = &np->properties;
1625 	while (*next) {
1626 		if (*next == oldprop) {
1627 			/* found the node */
1628 			newprop->next = oldprop->next;
1629 			*next = newprop;
1630 			oldprop->next = np->deadprops;
1631 			np->deadprops = oldprop;
1632 			found = 1;
1633 			break;
1634 		}
1635 		next = &(*next)->next;
1636 	}
1637 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1638 
1639 	if (!found)
1640 		return -ENODEV;
1641 
1642 #ifdef CONFIG_PROC_DEVICETREE
1643 	/* try to add to proc as well if it was initialized */
1644 	if (np->pde)
1645 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1646 #endif /* CONFIG_PROC_DEVICETREE */
1647 
1648 	return 0;
1649 }
1650 
1651 #if defined(CONFIG_OF_DYNAMIC)
1652 /*
1653  * Support for dynamic device trees.
1654  *
1655  * On some platforms, the device tree can be manipulated at runtime.
1656  * The routines in this section support adding, removing and changing
1657  * device tree nodes.
1658  */
1659 
1660 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1661 
1662 int of_reconfig_notifier_register(struct notifier_block *nb)
1663 {
1664 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1665 }
1666 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1667 
1668 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1669 {
1670 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1671 }
1672 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1673 
1674 int of_reconfig_notify(unsigned long action, void *p)
1675 {
1676 	int rc;
1677 
1678 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1679 	return notifier_to_errno(rc);
1680 }
1681 
1682 #ifdef CONFIG_PROC_DEVICETREE
1683 static void of_add_proc_dt_entry(struct device_node *dn)
1684 {
1685 	struct proc_dir_entry *ent;
1686 
1687 	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1688 	if (ent)
1689 		proc_device_tree_add_node(dn, ent);
1690 }
1691 #else
1692 static void of_add_proc_dt_entry(struct device_node *dn)
1693 {
1694 	return;
1695 }
1696 #endif
1697 
1698 /**
1699  * of_attach_node - Plug a device node into the tree and global list.
1700  */
1701 int of_attach_node(struct device_node *np)
1702 {
1703 	unsigned long flags;
1704 	int rc;
1705 
1706 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1707 	if (rc)
1708 		return rc;
1709 
1710 	raw_spin_lock_irqsave(&devtree_lock, flags);
1711 	np->sibling = np->parent->child;
1712 	np->allnext = of_allnodes;
1713 	np->parent->child = np;
1714 	of_allnodes = np;
1715 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1716 
1717 	of_add_proc_dt_entry(np);
1718 	return 0;
1719 }
1720 
1721 #ifdef CONFIG_PROC_DEVICETREE
1722 static void of_remove_proc_dt_entry(struct device_node *dn)
1723 {
1724 	proc_remove(dn->pde);
1725 }
1726 #else
1727 static void of_remove_proc_dt_entry(struct device_node *dn)
1728 {
1729 	return;
1730 }
1731 #endif
1732 
1733 /**
1734  * of_detach_node - "Unplug" a node from the device tree.
1735  *
1736  * The caller must hold a reference to the node.  The memory associated with
1737  * the node is not freed until its refcount goes to zero.
1738  */
1739 int of_detach_node(struct device_node *np)
1740 {
1741 	struct device_node *parent;
1742 	unsigned long flags;
1743 	int rc = 0;
1744 
1745 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1746 	if (rc)
1747 		return rc;
1748 
1749 	raw_spin_lock_irqsave(&devtree_lock, flags);
1750 
1751 	if (of_node_check_flag(np, OF_DETACHED)) {
1752 		/* someone already detached it */
1753 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1754 		return rc;
1755 	}
1756 
1757 	parent = np->parent;
1758 	if (!parent) {
1759 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1760 		return rc;
1761 	}
1762 
1763 	if (of_allnodes == np)
1764 		of_allnodes = np->allnext;
1765 	else {
1766 		struct device_node *prev;
1767 		for (prev = of_allnodes;
1768 		     prev->allnext != np;
1769 		     prev = prev->allnext)
1770 			;
1771 		prev->allnext = np->allnext;
1772 	}
1773 
1774 	if (parent->child == np)
1775 		parent->child = np->sibling;
1776 	else {
1777 		struct device_node *prevsib;
1778 		for (prevsib = np->parent->child;
1779 		     prevsib->sibling != np;
1780 		     prevsib = prevsib->sibling)
1781 			;
1782 		prevsib->sibling = np->sibling;
1783 	}
1784 
1785 	of_node_set_flag(np, OF_DETACHED);
1786 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1787 
1788 	of_remove_proc_dt_entry(np);
1789 	return rc;
1790 }
1791 #endif /* defined(CONFIG_OF_DYNAMIC) */
1792 
1793 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1794 			 int id, const char *stem, int stem_len)
1795 {
1796 	ap->np = np;
1797 	ap->id = id;
1798 	strncpy(ap->stem, stem, stem_len);
1799 	ap->stem[stem_len] = 0;
1800 	list_add_tail(&ap->link, &aliases_lookup);
1801 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1802 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1803 }
1804 
1805 /**
1806  * of_alias_scan - Scan all properties of 'aliases' node
1807  *
1808  * The function scans all the properties of 'aliases' node and populate
1809  * the the global lookup table with the properties.  It returns the
1810  * number of alias_prop found, or error code in error case.
1811  *
1812  * @dt_alloc:	An allocator that provides a virtual address to memory
1813  *		for the resulting tree
1814  */
1815 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1816 {
1817 	struct property *pp;
1818 
1819 	of_chosen = of_find_node_by_path("/chosen");
1820 	if (of_chosen == NULL)
1821 		of_chosen = of_find_node_by_path("/chosen@0");
1822 
1823 	if (of_chosen) {
1824 		const char *name;
1825 
1826 		name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1827 		if (name)
1828 			of_stdout = of_find_node_by_path(name);
1829 	}
1830 
1831 	of_aliases = of_find_node_by_path("/aliases");
1832 	if (!of_aliases)
1833 		return;
1834 
1835 	for_each_property_of_node(of_aliases, pp) {
1836 		const char *start = pp->name;
1837 		const char *end = start + strlen(start);
1838 		struct device_node *np;
1839 		struct alias_prop *ap;
1840 		int id, len;
1841 
1842 		/* Skip those we do not want to proceed */
1843 		if (!strcmp(pp->name, "name") ||
1844 		    !strcmp(pp->name, "phandle") ||
1845 		    !strcmp(pp->name, "linux,phandle"))
1846 			continue;
1847 
1848 		np = of_find_node_by_path(pp->value);
1849 		if (!np)
1850 			continue;
1851 
1852 		/* walk the alias backwards to extract the id and work out
1853 		 * the 'stem' string */
1854 		while (isdigit(*(end-1)) && end > start)
1855 			end--;
1856 		len = end - start;
1857 
1858 		if (kstrtoint(end, 10, &id) < 0)
1859 			continue;
1860 
1861 		/* Allocate an alias_prop with enough space for the stem */
1862 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1863 		if (!ap)
1864 			continue;
1865 		memset(ap, 0, sizeof(*ap) + len + 1);
1866 		ap->alias = start;
1867 		of_alias_add(ap, np, id, start, len);
1868 	}
1869 }
1870 
1871 /**
1872  * of_alias_get_id - Get alias id for the given device_node
1873  * @np:		Pointer to the given device_node
1874  * @stem:	Alias stem of the given device_node
1875  *
1876  * The function travels the lookup table to get alias id for the given
1877  * device_node and alias stem.  It returns the alias id if find it.
1878  */
1879 int of_alias_get_id(struct device_node *np, const char *stem)
1880 {
1881 	struct alias_prop *app;
1882 	int id = -ENODEV;
1883 
1884 	mutex_lock(&of_aliases_mutex);
1885 	list_for_each_entry(app, &aliases_lookup, link) {
1886 		if (strcmp(app->stem, stem) != 0)
1887 			continue;
1888 
1889 		if (np == app->np) {
1890 			id = app->id;
1891 			break;
1892 		}
1893 	}
1894 	mutex_unlock(&of_aliases_mutex);
1895 
1896 	return id;
1897 }
1898 EXPORT_SYMBOL_GPL(of_alias_get_id);
1899 
1900 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1901 			       u32 *pu)
1902 {
1903 	const void *curv = cur;
1904 
1905 	if (!prop)
1906 		return NULL;
1907 
1908 	if (!cur) {
1909 		curv = prop->value;
1910 		goto out_val;
1911 	}
1912 
1913 	curv += sizeof(*cur);
1914 	if (curv >= prop->value + prop->length)
1915 		return NULL;
1916 
1917 out_val:
1918 	*pu = be32_to_cpup(curv);
1919 	return curv;
1920 }
1921 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1922 
1923 const char *of_prop_next_string(struct property *prop, const char *cur)
1924 {
1925 	const void *curv = cur;
1926 
1927 	if (!prop)
1928 		return NULL;
1929 
1930 	if (!cur)
1931 		return prop->value;
1932 
1933 	curv += strlen(cur) + 1;
1934 	if (curv >= prop->value + prop->length)
1935 		return NULL;
1936 
1937 	return curv;
1938 }
1939 EXPORT_SYMBOL_GPL(of_prop_next_string);
1940 
1941 /**
1942  * of_device_is_stdout_path - check if a device node matches the
1943  *                            linux,stdout-path property
1944  *
1945  * Check if this device node matches the linux,stdout-path property
1946  * in the chosen node. return true if yes, false otherwise.
1947  */
1948 int of_device_is_stdout_path(struct device_node *dn)
1949 {
1950 	if (!of_stdout)
1951 		return false;
1952 
1953 	return of_stdout == dn;
1954 }
1955 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1956 
1957 /**
1958  *	of_find_next_cache_node - Find a node's subsidiary cache
1959  *	@np:	node of type "cpu" or "cache"
1960  *
1961  *	Returns a node pointer with refcount incremented, use
1962  *	of_node_put() on it when done.  Caller should hold a reference
1963  *	to np.
1964  */
1965 struct device_node *of_find_next_cache_node(const struct device_node *np)
1966 {
1967 	struct device_node *child;
1968 	const phandle *handle;
1969 
1970 	handle = of_get_property(np, "l2-cache", NULL);
1971 	if (!handle)
1972 		handle = of_get_property(np, "next-level-cache", NULL);
1973 
1974 	if (handle)
1975 		return of_find_node_by_phandle(be32_to_cpup(handle));
1976 
1977 	/* OF on pmac has nodes instead of properties named "l2-cache"
1978 	 * beneath CPU nodes.
1979 	 */
1980 	if (!strcmp(np->type, "cpu"))
1981 		for_each_child_of_node(np, child)
1982 			if (!strcmp(child->type, "cache"))
1983 				return child;
1984 
1985 	return NULL;
1986 }
1987