xref: /openbmc/linux/drivers/of/base.c (revision e917ba44)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_allnodes;
36 EXPORT_SYMBOL(of_allnodes);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 
41 struct kset *of_kset;
42 
43 /*
44  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
45  * This mutex must be held whenever modifications are being made to the
46  * device tree. The of_{attach,detach}_node() and
47  * of_{add,remove,update}_property() helpers make sure this happens.
48  */
49 DEFINE_MUTEX(of_mutex);
50 
51 /* use when traversing tree through the allnext, child, sibling,
52  * or parent members of struct device_node.
53  */
54 DEFINE_RAW_SPINLOCK(devtree_lock);
55 
56 int of_n_addr_cells(struct device_node *np)
57 {
58 	const __be32 *ip;
59 
60 	do {
61 		if (np->parent)
62 			np = np->parent;
63 		ip = of_get_property(np, "#address-cells", NULL);
64 		if (ip)
65 			return be32_to_cpup(ip);
66 	} while (np->parent);
67 	/* No #address-cells property for the root node */
68 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69 }
70 EXPORT_SYMBOL(of_n_addr_cells);
71 
72 int of_n_size_cells(struct device_node *np)
73 {
74 	const __be32 *ip;
75 
76 	do {
77 		if (np->parent)
78 			np = np->parent;
79 		ip = of_get_property(np, "#size-cells", NULL);
80 		if (ip)
81 			return be32_to_cpup(ip);
82 	} while (np->parent);
83 	/* No #size-cells property for the root node */
84 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
85 }
86 EXPORT_SYMBOL(of_n_size_cells);
87 
88 #ifdef CONFIG_NUMA
89 int __weak of_node_to_nid(struct device_node *np)
90 {
91 	return numa_node_id();
92 }
93 #endif
94 
95 #ifndef CONFIG_OF_DYNAMIC
96 static void of_node_release(struct kobject *kobj)
97 {
98 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
99 }
100 #endif /* CONFIG_OF_DYNAMIC */
101 
102 struct kobj_type of_node_ktype = {
103 	.release = of_node_release,
104 };
105 
106 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
107 				struct bin_attribute *bin_attr, char *buf,
108 				loff_t offset, size_t count)
109 {
110 	struct property *pp = container_of(bin_attr, struct property, attr);
111 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
112 }
113 
114 static const char *safe_name(struct kobject *kobj, const char *orig_name)
115 {
116 	const char *name = orig_name;
117 	struct kernfs_node *kn;
118 	int i = 0;
119 
120 	/* don't be a hero. After 16 tries give up */
121 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
122 		sysfs_put(kn);
123 		if (name != orig_name)
124 			kfree(name);
125 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
126 	}
127 
128 	if (name != orig_name)
129 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
130 			kobject_name(kobj), name);
131 	return name;
132 }
133 
134 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
135 {
136 	int rc;
137 
138 	/* Important: Don't leak passwords */
139 	bool secure = strncmp(pp->name, "security-", 9) == 0;
140 
141 	if (!of_kset || !of_node_is_attached(np))
142 		return 0;
143 
144 	sysfs_bin_attr_init(&pp->attr);
145 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
146 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
147 	pp->attr.size = secure ? 0 : pp->length;
148 	pp->attr.read = of_node_property_read;
149 
150 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
151 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
152 	return rc;
153 }
154 
155 int __of_attach_node_sysfs(struct device_node *np)
156 {
157 	const char *name;
158 	struct property *pp;
159 	int rc;
160 
161 	if (!of_kset)
162 		return 0;
163 
164 	np->kobj.kset = of_kset;
165 	if (!np->parent) {
166 		/* Nodes without parents are new top level trees */
167 		rc = kobject_add(&np->kobj, NULL, "%s",
168 				 safe_name(&of_kset->kobj, "base"));
169 	} else {
170 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
171 		if (!name || !name[0])
172 			return -EINVAL;
173 
174 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
175 	}
176 	if (rc)
177 		return rc;
178 
179 	for_each_property_of_node(np, pp)
180 		__of_add_property_sysfs(np, pp);
181 
182 	return 0;
183 }
184 
185 static int __init of_init(void)
186 {
187 	struct device_node *np;
188 
189 	/* Create the kset, and register existing nodes */
190 	mutex_lock(&of_mutex);
191 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
192 	if (!of_kset) {
193 		mutex_unlock(&of_mutex);
194 		return -ENOMEM;
195 	}
196 	for_each_of_allnodes(np)
197 		__of_attach_node_sysfs(np);
198 	mutex_unlock(&of_mutex);
199 
200 	/* Symlink in /proc as required by userspace ABI */
201 	if (of_allnodes)
202 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
203 
204 	return 0;
205 }
206 core_initcall(of_init);
207 
208 static struct property *__of_find_property(const struct device_node *np,
209 					   const char *name, int *lenp)
210 {
211 	struct property *pp;
212 
213 	if (!np)
214 		return NULL;
215 
216 	for (pp = np->properties; pp; pp = pp->next) {
217 		if (of_prop_cmp(pp->name, name) == 0) {
218 			if (lenp)
219 				*lenp = pp->length;
220 			break;
221 		}
222 	}
223 
224 	return pp;
225 }
226 
227 struct property *of_find_property(const struct device_node *np,
228 				  const char *name,
229 				  int *lenp)
230 {
231 	struct property *pp;
232 	unsigned long flags;
233 
234 	raw_spin_lock_irqsave(&devtree_lock, flags);
235 	pp = __of_find_property(np, name, lenp);
236 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
237 
238 	return pp;
239 }
240 EXPORT_SYMBOL(of_find_property);
241 
242 /**
243  * of_find_all_nodes - Get next node in global list
244  * @prev:	Previous node or NULL to start iteration
245  *		of_node_put() will be called on it
246  *
247  * Returns a node pointer with refcount incremented, use
248  * of_node_put() on it when done.
249  */
250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 	struct device_node *np;
253 	unsigned long flags;
254 
255 	raw_spin_lock_irqsave(&devtree_lock, flags);
256 	np = prev ? prev->allnext : of_allnodes;
257 	for (; np != NULL; np = np->allnext)
258 		if (of_node_get(np))
259 			break;
260 	of_node_put(prev);
261 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
262 	return np;
263 }
264 EXPORT_SYMBOL(of_find_all_nodes);
265 
266 /*
267  * Find a property with a given name for a given node
268  * and return the value.
269  */
270 const void *__of_get_property(const struct device_node *np,
271 			      const char *name, int *lenp)
272 {
273 	struct property *pp = __of_find_property(np, name, lenp);
274 
275 	return pp ? pp->value : NULL;
276 }
277 
278 /*
279  * Find a property with a given name for a given node
280  * and return the value.
281  */
282 const void *of_get_property(const struct device_node *np, const char *name,
283 			    int *lenp)
284 {
285 	struct property *pp = of_find_property(np, name, lenp);
286 
287 	return pp ? pp->value : NULL;
288 }
289 EXPORT_SYMBOL(of_get_property);
290 
291 /*
292  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
293  *
294  * @cpu: logical cpu index of a core/thread
295  * @phys_id: physical identifier of a core/thread
296  *
297  * CPU logical to physical index mapping is architecture specific.
298  * However this __weak function provides a default match of physical
299  * id to logical cpu index. phys_id provided here is usually values read
300  * from the device tree which must match the hardware internal registers.
301  *
302  * Returns true if the physical identifier and the logical cpu index
303  * correspond to the same core/thread, false otherwise.
304  */
305 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
306 {
307 	return (u32)phys_id == cpu;
308 }
309 
310 /**
311  * Checks if the given "prop_name" property holds the physical id of the
312  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
313  * NULL, local thread number within the core is returned in it.
314  */
315 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
316 			const char *prop_name, int cpu, unsigned int *thread)
317 {
318 	const __be32 *cell;
319 	int ac, prop_len, tid;
320 	u64 hwid;
321 
322 	ac = of_n_addr_cells(cpun);
323 	cell = of_get_property(cpun, prop_name, &prop_len);
324 	if (!cell || !ac)
325 		return false;
326 	prop_len /= sizeof(*cell) * ac;
327 	for (tid = 0; tid < prop_len; tid++) {
328 		hwid = of_read_number(cell, ac);
329 		if (arch_match_cpu_phys_id(cpu, hwid)) {
330 			if (thread)
331 				*thread = tid;
332 			return true;
333 		}
334 		cell += ac;
335 	}
336 	return false;
337 }
338 
339 /*
340  * arch_find_n_match_cpu_physical_id - See if the given device node is
341  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
342  * else false.  If 'thread' is non-NULL, the local thread number within the
343  * core is returned in it.
344  */
345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 					      int cpu, unsigned int *thread)
347 {
348 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 	 * for thread ids on PowerPC. If it doesn't exist fallback to
350 	 * standard "reg" property.
351 	 */
352 	if (IS_ENABLED(CONFIG_PPC) &&
353 	    __of_find_n_match_cpu_property(cpun,
354 					   "ibm,ppc-interrupt-server#s",
355 					   cpu, thread))
356 		return true;
357 
358 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
359 		return true;
360 
361 	return false;
362 }
363 
364 /**
365  * of_get_cpu_node - Get device node associated with the given logical CPU
366  *
367  * @cpu: CPU number(logical index) for which device node is required
368  * @thread: if not NULL, local thread number within the physical core is
369  *          returned
370  *
371  * The main purpose of this function is to retrieve the device node for the
372  * given logical CPU index. It should be used to initialize the of_node in
373  * cpu device. Once of_node in cpu device is populated, all the further
374  * references can use that instead.
375  *
376  * CPU logical to physical index mapping is architecture specific and is built
377  * before booting secondary cores. This function uses arch_match_cpu_phys_id
378  * which can be overridden by architecture specific implementation.
379  *
380  * Returns a node pointer for the logical cpu if found, else NULL.
381  */
382 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
383 {
384 	struct device_node *cpun;
385 
386 	for_each_node_by_type(cpun, "cpu") {
387 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
388 			return cpun;
389 	}
390 	return NULL;
391 }
392 EXPORT_SYMBOL(of_get_cpu_node);
393 
394 /**
395  * __of_device_is_compatible() - Check if the node matches given constraints
396  * @device: pointer to node
397  * @compat: required compatible string, NULL or "" for any match
398  * @type: required device_type value, NULL or "" for any match
399  * @name: required node name, NULL or "" for any match
400  *
401  * Checks if the given @compat, @type and @name strings match the
402  * properties of the given @device. A constraints can be skipped by
403  * passing NULL or an empty string as the constraint.
404  *
405  * Returns 0 for no match, and a positive integer on match. The return
406  * value is a relative score with larger values indicating better
407  * matches. The score is weighted for the most specific compatible value
408  * to get the highest score. Matching type is next, followed by matching
409  * name. Practically speaking, this results in the following priority
410  * order for matches:
411  *
412  * 1. specific compatible && type && name
413  * 2. specific compatible && type
414  * 3. specific compatible && name
415  * 4. specific compatible
416  * 5. general compatible && type && name
417  * 6. general compatible && type
418  * 7. general compatible && name
419  * 8. general compatible
420  * 9. type && name
421  * 10. type
422  * 11. name
423  */
424 static int __of_device_is_compatible(const struct device_node *device,
425 				     const char *compat, const char *type, const char *name)
426 {
427 	struct property *prop;
428 	const char *cp;
429 	int index = 0, score = 0;
430 
431 	/* Compatible match has highest priority */
432 	if (compat && compat[0]) {
433 		prop = __of_find_property(device, "compatible", NULL);
434 		for (cp = of_prop_next_string(prop, NULL); cp;
435 		     cp = of_prop_next_string(prop, cp), index++) {
436 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
437 				score = INT_MAX/2 - (index << 2);
438 				break;
439 			}
440 		}
441 		if (!score)
442 			return 0;
443 	}
444 
445 	/* Matching type is better than matching name */
446 	if (type && type[0]) {
447 		if (!device->type || of_node_cmp(type, device->type))
448 			return 0;
449 		score += 2;
450 	}
451 
452 	/* Matching name is a bit better than not */
453 	if (name && name[0]) {
454 		if (!device->name || of_node_cmp(name, device->name))
455 			return 0;
456 		score++;
457 	}
458 
459 	return score;
460 }
461 
462 /** Checks if the given "compat" string matches one of the strings in
463  * the device's "compatible" property
464  */
465 int of_device_is_compatible(const struct device_node *device,
466 		const char *compat)
467 {
468 	unsigned long flags;
469 	int res;
470 
471 	raw_spin_lock_irqsave(&devtree_lock, flags);
472 	res = __of_device_is_compatible(device, compat, NULL, NULL);
473 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
474 	return res;
475 }
476 EXPORT_SYMBOL(of_device_is_compatible);
477 
478 /**
479  * of_machine_is_compatible - Test root of device tree for a given compatible value
480  * @compat: compatible string to look for in root node's compatible property.
481  *
482  * Returns true if the root node has the given value in its
483  * compatible property.
484  */
485 int of_machine_is_compatible(const char *compat)
486 {
487 	struct device_node *root;
488 	int rc = 0;
489 
490 	root = of_find_node_by_path("/");
491 	if (root) {
492 		rc = of_device_is_compatible(root, compat);
493 		of_node_put(root);
494 	}
495 	return rc;
496 }
497 EXPORT_SYMBOL(of_machine_is_compatible);
498 
499 /**
500  *  __of_device_is_available - check if a device is available for use
501  *
502  *  @device: Node to check for availability, with locks already held
503  *
504  *  Returns 1 if the status property is absent or set to "okay" or "ok",
505  *  0 otherwise
506  */
507 static int __of_device_is_available(const struct device_node *device)
508 {
509 	const char *status;
510 	int statlen;
511 
512 	if (!device)
513 		return 0;
514 
515 	status = __of_get_property(device, "status", &statlen);
516 	if (status == NULL)
517 		return 1;
518 
519 	if (statlen > 0) {
520 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
521 			return 1;
522 	}
523 
524 	return 0;
525 }
526 
527 /**
528  *  of_device_is_available - check if a device is available for use
529  *
530  *  @device: Node to check for availability
531  *
532  *  Returns 1 if the status property is absent or set to "okay" or "ok",
533  *  0 otherwise
534  */
535 int of_device_is_available(const struct device_node *device)
536 {
537 	unsigned long flags;
538 	int res;
539 
540 	raw_spin_lock_irqsave(&devtree_lock, flags);
541 	res = __of_device_is_available(device);
542 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
543 	return res;
544 
545 }
546 EXPORT_SYMBOL(of_device_is_available);
547 
548 /**
549  *	of_get_parent - Get a node's parent if any
550  *	@node:	Node to get parent
551  *
552  *	Returns a node pointer with refcount incremented, use
553  *	of_node_put() on it when done.
554  */
555 struct device_node *of_get_parent(const struct device_node *node)
556 {
557 	struct device_node *np;
558 	unsigned long flags;
559 
560 	if (!node)
561 		return NULL;
562 
563 	raw_spin_lock_irqsave(&devtree_lock, flags);
564 	np = of_node_get(node->parent);
565 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
566 	return np;
567 }
568 EXPORT_SYMBOL(of_get_parent);
569 
570 /**
571  *	of_get_next_parent - Iterate to a node's parent
572  *	@node:	Node to get parent of
573  *
574  * 	This is like of_get_parent() except that it drops the
575  * 	refcount on the passed node, making it suitable for iterating
576  * 	through a node's parents.
577  *
578  *	Returns a node pointer with refcount incremented, use
579  *	of_node_put() on it when done.
580  */
581 struct device_node *of_get_next_parent(struct device_node *node)
582 {
583 	struct device_node *parent;
584 	unsigned long flags;
585 
586 	if (!node)
587 		return NULL;
588 
589 	raw_spin_lock_irqsave(&devtree_lock, flags);
590 	parent = of_node_get(node->parent);
591 	of_node_put(node);
592 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 	return parent;
594 }
595 EXPORT_SYMBOL(of_get_next_parent);
596 
597 static struct device_node *__of_get_next_child(const struct device_node *node,
598 						struct device_node *prev)
599 {
600 	struct device_node *next;
601 
602 	if (!node)
603 		return NULL;
604 
605 	next = prev ? prev->sibling : node->child;
606 	for (; next; next = next->sibling)
607 		if (of_node_get(next))
608 			break;
609 	of_node_put(prev);
610 	return next;
611 }
612 #define __for_each_child_of_node(parent, child) \
613 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
614 	     child = __of_get_next_child(parent, child))
615 
616 /**
617  *	of_get_next_child - Iterate a node childs
618  *	@node:	parent node
619  *	@prev:	previous child of the parent node, or NULL to get first
620  *
621  *	Returns a node pointer with refcount incremented, use
622  *	of_node_put() on it when done.
623  */
624 struct device_node *of_get_next_child(const struct device_node *node,
625 	struct device_node *prev)
626 {
627 	struct device_node *next;
628 	unsigned long flags;
629 
630 	raw_spin_lock_irqsave(&devtree_lock, flags);
631 	next = __of_get_next_child(node, prev);
632 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
633 	return next;
634 }
635 EXPORT_SYMBOL(of_get_next_child);
636 
637 /**
638  *	of_get_next_available_child - Find the next available child node
639  *	@node:	parent node
640  *	@prev:	previous child of the parent node, or NULL to get first
641  *
642  *      This function is like of_get_next_child(), except that it
643  *      automatically skips any disabled nodes (i.e. status = "disabled").
644  */
645 struct device_node *of_get_next_available_child(const struct device_node *node,
646 	struct device_node *prev)
647 {
648 	struct device_node *next;
649 	unsigned long flags;
650 
651 	if (!node)
652 		return NULL;
653 
654 	raw_spin_lock_irqsave(&devtree_lock, flags);
655 	next = prev ? prev->sibling : node->child;
656 	for (; next; next = next->sibling) {
657 		if (!__of_device_is_available(next))
658 			continue;
659 		if (of_node_get(next))
660 			break;
661 	}
662 	of_node_put(prev);
663 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
664 	return next;
665 }
666 EXPORT_SYMBOL(of_get_next_available_child);
667 
668 /**
669  *	of_get_child_by_name - Find the child node by name for a given parent
670  *	@node:	parent node
671  *	@name:	child name to look for.
672  *
673  *      This function looks for child node for given matching name
674  *
675  *	Returns a node pointer if found, with refcount incremented, use
676  *	of_node_put() on it when done.
677  *	Returns NULL if node is not found.
678  */
679 struct device_node *of_get_child_by_name(const struct device_node *node,
680 				const char *name)
681 {
682 	struct device_node *child;
683 
684 	for_each_child_of_node(node, child)
685 		if (child->name && (of_node_cmp(child->name, name) == 0))
686 			break;
687 	return child;
688 }
689 EXPORT_SYMBOL(of_get_child_by_name);
690 
691 static struct device_node *__of_find_node_by_path(struct device_node *parent,
692 						const char *path)
693 {
694 	struct device_node *child;
695 	int len = strchrnul(path, '/') - path;
696 
697 	if (!len)
698 		return NULL;
699 
700 	__for_each_child_of_node(parent, child) {
701 		const char *name = strrchr(child->full_name, '/');
702 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
703 			continue;
704 		name++;
705 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
706 			return child;
707 	}
708 	return NULL;
709 }
710 
711 /**
712  *	of_find_node_by_path - Find a node matching a full OF path
713  *	@path: Either the full path to match, or if the path does not
714  *	       start with '/', the name of a property of the /aliases
715  *	       node (an alias).  In the case of an alias, the node
716  *	       matching the alias' value will be returned.
717  *
718  *	Valid paths:
719  *		/foo/bar	Full path
720  *		foo		Valid alias
721  *		foo/bar		Valid alias + relative path
722  *
723  *	Returns a node pointer with refcount incremented, use
724  *	of_node_put() on it when done.
725  */
726 struct device_node *of_find_node_by_path(const char *path)
727 {
728 	struct device_node *np = NULL;
729 	struct property *pp;
730 	unsigned long flags;
731 
732 	if (strcmp(path, "/") == 0)
733 		return of_node_get(of_allnodes);
734 
735 	/* The path could begin with an alias */
736 	if (*path != '/') {
737 		char *p = strchrnul(path, '/');
738 		int len = p - path;
739 
740 		/* of_aliases must not be NULL */
741 		if (!of_aliases)
742 			return NULL;
743 
744 		for_each_property_of_node(of_aliases, pp) {
745 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
746 				np = of_find_node_by_path(pp->value);
747 				break;
748 			}
749 		}
750 		if (!np)
751 			return NULL;
752 		path = p;
753 	}
754 
755 	/* Step down the tree matching path components */
756 	raw_spin_lock_irqsave(&devtree_lock, flags);
757 	if (!np)
758 		np = of_node_get(of_allnodes);
759 	while (np && *path == '/') {
760 		path++; /* Increment past '/' delimiter */
761 		np = __of_find_node_by_path(np, path);
762 		path = strchrnul(path, '/');
763 	}
764 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
765 	return np;
766 }
767 EXPORT_SYMBOL(of_find_node_by_path);
768 
769 /**
770  *	of_find_node_by_name - Find a node by its "name" property
771  *	@from:	The node to start searching from or NULL, the node
772  *		you pass will not be searched, only the next one
773  *		will; typically, you pass what the previous call
774  *		returned. of_node_put() will be called on it
775  *	@name:	The name string to match against
776  *
777  *	Returns a node pointer with refcount incremented, use
778  *	of_node_put() on it when done.
779  */
780 struct device_node *of_find_node_by_name(struct device_node *from,
781 	const char *name)
782 {
783 	struct device_node *np;
784 	unsigned long flags;
785 
786 	raw_spin_lock_irqsave(&devtree_lock, flags);
787 	np = from ? from->allnext : of_allnodes;
788 	for (; np; np = np->allnext)
789 		if (np->name && (of_node_cmp(np->name, name) == 0)
790 		    && of_node_get(np))
791 			break;
792 	of_node_put(from);
793 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
794 	return np;
795 }
796 EXPORT_SYMBOL(of_find_node_by_name);
797 
798 /**
799  *	of_find_node_by_type - Find a node by its "device_type" property
800  *	@from:	The node to start searching from, or NULL to start searching
801  *		the entire device tree. The node you pass will not be
802  *		searched, only the next one will; typically, you pass
803  *		what the previous call returned. of_node_put() will be
804  *		called on from for you.
805  *	@type:	The type string to match against
806  *
807  *	Returns a node pointer with refcount incremented, use
808  *	of_node_put() on it when done.
809  */
810 struct device_node *of_find_node_by_type(struct device_node *from,
811 	const char *type)
812 {
813 	struct device_node *np;
814 	unsigned long flags;
815 
816 	raw_spin_lock_irqsave(&devtree_lock, flags);
817 	np = from ? from->allnext : of_allnodes;
818 	for (; np; np = np->allnext)
819 		if (np->type && (of_node_cmp(np->type, type) == 0)
820 		    && of_node_get(np))
821 			break;
822 	of_node_put(from);
823 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
824 	return np;
825 }
826 EXPORT_SYMBOL(of_find_node_by_type);
827 
828 /**
829  *	of_find_compatible_node - Find a node based on type and one of the
830  *                                tokens in its "compatible" property
831  *	@from:		The node to start searching from or NULL, the node
832  *			you pass will not be searched, only the next one
833  *			will; typically, you pass what the previous call
834  *			returned. of_node_put() will be called on it
835  *	@type:		The type string to match "device_type" or NULL to ignore
836  *	@compatible:	The string to match to one of the tokens in the device
837  *			"compatible" list.
838  *
839  *	Returns a node pointer with refcount incremented, use
840  *	of_node_put() on it when done.
841  */
842 struct device_node *of_find_compatible_node(struct device_node *from,
843 	const char *type, const char *compatible)
844 {
845 	struct device_node *np;
846 	unsigned long flags;
847 
848 	raw_spin_lock_irqsave(&devtree_lock, flags);
849 	np = from ? from->allnext : of_allnodes;
850 	for (; np; np = np->allnext) {
851 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
852 		    of_node_get(np))
853 			break;
854 	}
855 	of_node_put(from);
856 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
857 	return np;
858 }
859 EXPORT_SYMBOL(of_find_compatible_node);
860 
861 /**
862  *	of_find_node_with_property - Find a node which has a property with
863  *                                   the given name.
864  *	@from:		The node to start searching from or NULL, the node
865  *			you pass will not be searched, only the next one
866  *			will; typically, you pass what the previous call
867  *			returned. of_node_put() will be called on it
868  *	@prop_name:	The name of the property to look for.
869  *
870  *	Returns a node pointer with refcount incremented, use
871  *	of_node_put() on it when done.
872  */
873 struct device_node *of_find_node_with_property(struct device_node *from,
874 	const char *prop_name)
875 {
876 	struct device_node *np;
877 	struct property *pp;
878 	unsigned long flags;
879 
880 	raw_spin_lock_irqsave(&devtree_lock, flags);
881 	np = from ? from->allnext : of_allnodes;
882 	for (; np; np = np->allnext) {
883 		for (pp = np->properties; pp; pp = pp->next) {
884 			if (of_prop_cmp(pp->name, prop_name) == 0) {
885 				of_node_get(np);
886 				goto out;
887 			}
888 		}
889 	}
890 out:
891 	of_node_put(from);
892 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
893 	return np;
894 }
895 EXPORT_SYMBOL(of_find_node_with_property);
896 
897 static
898 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
899 					   const struct device_node *node)
900 {
901 	const struct of_device_id *best_match = NULL;
902 	int score, best_score = 0;
903 
904 	if (!matches)
905 		return NULL;
906 
907 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
908 		score = __of_device_is_compatible(node, matches->compatible,
909 						  matches->type, matches->name);
910 		if (score > best_score) {
911 			best_match = matches;
912 			best_score = score;
913 		}
914 	}
915 
916 	return best_match;
917 }
918 
919 /**
920  * of_match_node - Tell if an device_node has a matching of_match structure
921  *	@matches:	array of of device match structures to search in
922  *	@node:		the of device structure to match against
923  *
924  *	Low level utility function used by device matching.
925  */
926 const struct of_device_id *of_match_node(const struct of_device_id *matches,
927 					 const struct device_node *node)
928 {
929 	const struct of_device_id *match;
930 	unsigned long flags;
931 
932 	raw_spin_lock_irqsave(&devtree_lock, flags);
933 	match = __of_match_node(matches, node);
934 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
935 	return match;
936 }
937 EXPORT_SYMBOL(of_match_node);
938 
939 /**
940  *	of_find_matching_node_and_match - Find a node based on an of_device_id
941  *					  match table.
942  *	@from:		The node to start searching from or NULL, the node
943  *			you pass will not be searched, only the next one
944  *			will; typically, you pass what the previous call
945  *			returned. of_node_put() will be called on it
946  *	@matches:	array of of device match structures to search in
947  *	@match		Updated to point at the matches entry which matched
948  *
949  *	Returns a node pointer with refcount incremented, use
950  *	of_node_put() on it when done.
951  */
952 struct device_node *of_find_matching_node_and_match(struct device_node *from,
953 					const struct of_device_id *matches,
954 					const struct of_device_id **match)
955 {
956 	struct device_node *np;
957 	const struct of_device_id *m;
958 	unsigned long flags;
959 
960 	if (match)
961 		*match = NULL;
962 
963 	raw_spin_lock_irqsave(&devtree_lock, flags);
964 	np = from ? from->allnext : of_allnodes;
965 	for (; np; np = np->allnext) {
966 		m = __of_match_node(matches, np);
967 		if (m && of_node_get(np)) {
968 			if (match)
969 				*match = m;
970 			break;
971 		}
972 	}
973 	of_node_put(from);
974 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 	return np;
976 }
977 EXPORT_SYMBOL(of_find_matching_node_and_match);
978 
979 /**
980  * of_modalias_node - Lookup appropriate modalias for a device node
981  * @node:	pointer to a device tree node
982  * @modalias:	Pointer to buffer that modalias value will be copied into
983  * @len:	Length of modalias value
984  *
985  * Based on the value of the compatible property, this routine will attempt
986  * to choose an appropriate modalias value for a particular device tree node.
987  * It does this by stripping the manufacturer prefix (as delimited by a ',')
988  * from the first entry in the compatible list property.
989  *
990  * This routine returns 0 on success, <0 on failure.
991  */
992 int of_modalias_node(struct device_node *node, char *modalias, int len)
993 {
994 	const char *compatible, *p;
995 	int cplen;
996 
997 	compatible = of_get_property(node, "compatible", &cplen);
998 	if (!compatible || strlen(compatible) > cplen)
999 		return -ENODEV;
1000 	p = strchr(compatible, ',');
1001 	strlcpy(modalias, p ? p + 1 : compatible, len);
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(of_modalias_node);
1005 
1006 /**
1007  * of_find_node_by_phandle - Find a node given a phandle
1008  * @handle:	phandle of the node to find
1009  *
1010  * Returns a node pointer with refcount incremented, use
1011  * of_node_put() on it when done.
1012  */
1013 struct device_node *of_find_node_by_phandle(phandle handle)
1014 {
1015 	struct device_node *np;
1016 	unsigned long flags;
1017 
1018 	raw_spin_lock_irqsave(&devtree_lock, flags);
1019 	for (np = of_allnodes; np; np = np->allnext)
1020 		if (np->phandle == handle)
1021 			break;
1022 	of_node_get(np);
1023 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1024 	return np;
1025 }
1026 EXPORT_SYMBOL(of_find_node_by_phandle);
1027 
1028 /**
1029  * of_property_count_elems_of_size - Count the number of elements in a property
1030  *
1031  * @np:		device node from which the property value is to be read.
1032  * @propname:	name of the property to be searched.
1033  * @elem_size:	size of the individual element
1034  *
1035  * Search for a property in a device node and count the number of elements of
1036  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1037  * property does not exist or its length does not match a multiple of elem_size
1038  * and -ENODATA if the property does not have a value.
1039  */
1040 int of_property_count_elems_of_size(const struct device_node *np,
1041 				const char *propname, int elem_size)
1042 {
1043 	struct property *prop = of_find_property(np, propname, NULL);
1044 
1045 	if (!prop)
1046 		return -EINVAL;
1047 	if (!prop->value)
1048 		return -ENODATA;
1049 
1050 	if (prop->length % elem_size != 0) {
1051 		pr_err("size of %s in node %s is not a multiple of %d\n",
1052 		       propname, np->full_name, elem_size);
1053 		return -EINVAL;
1054 	}
1055 
1056 	return prop->length / elem_size;
1057 }
1058 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1059 
1060 /**
1061  * of_find_property_value_of_size
1062  *
1063  * @np:		device node from which the property value is to be read.
1064  * @propname:	name of the property to be searched.
1065  * @len:	requested length of property value
1066  *
1067  * Search for a property in a device node and valid the requested size.
1068  * Returns the property value on success, -EINVAL if the property does not
1069  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1070  * property data isn't large enough.
1071  *
1072  */
1073 static void *of_find_property_value_of_size(const struct device_node *np,
1074 			const char *propname, u32 len)
1075 {
1076 	struct property *prop = of_find_property(np, propname, NULL);
1077 
1078 	if (!prop)
1079 		return ERR_PTR(-EINVAL);
1080 	if (!prop->value)
1081 		return ERR_PTR(-ENODATA);
1082 	if (len > prop->length)
1083 		return ERR_PTR(-EOVERFLOW);
1084 
1085 	return prop->value;
1086 }
1087 
1088 /**
1089  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1090  *
1091  * @np:		device node from which the property value is to be read.
1092  * @propname:	name of the property to be searched.
1093  * @index:	index of the u32 in the list of values
1094  * @out_value:	pointer to return value, modified only if no error.
1095  *
1096  * Search for a property in a device node and read nth 32-bit value from
1097  * it. Returns 0 on success, -EINVAL if the property does not exist,
1098  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1099  * property data isn't large enough.
1100  *
1101  * The out_value is modified only if a valid u32 value can be decoded.
1102  */
1103 int of_property_read_u32_index(const struct device_node *np,
1104 				       const char *propname,
1105 				       u32 index, u32 *out_value)
1106 {
1107 	const u32 *val = of_find_property_value_of_size(np, propname,
1108 					((index + 1) * sizeof(*out_value)));
1109 
1110 	if (IS_ERR(val))
1111 		return PTR_ERR(val);
1112 
1113 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1114 	return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1117 
1118 /**
1119  * of_property_read_u8_array - Find and read an array of u8 from a property.
1120  *
1121  * @np:		device node from which the property value is to be read.
1122  * @propname:	name of the property to be searched.
1123  * @out_values:	pointer to return value, modified only if return value is 0.
1124  * @sz:		number of array elements to read
1125  *
1126  * Search for a property in a device node and read 8-bit value(s) from
1127  * it. Returns 0 on success, -EINVAL if the property does not exist,
1128  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1129  * property data isn't large enough.
1130  *
1131  * dts entry of array should be like:
1132  *	property = /bits/ 8 <0x50 0x60 0x70>;
1133  *
1134  * The out_values is modified only if a valid u8 value can be decoded.
1135  */
1136 int of_property_read_u8_array(const struct device_node *np,
1137 			const char *propname, u8 *out_values, size_t sz)
1138 {
1139 	const u8 *val = of_find_property_value_of_size(np, propname,
1140 						(sz * sizeof(*out_values)));
1141 
1142 	if (IS_ERR(val))
1143 		return PTR_ERR(val);
1144 
1145 	while (sz--)
1146 		*out_values++ = *val++;
1147 	return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1150 
1151 /**
1152  * of_property_read_u16_array - Find and read an array of u16 from a property.
1153  *
1154  * @np:		device node from which the property value is to be read.
1155  * @propname:	name of the property to be searched.
1156  * @out_values:	pointer to return value, modified only if return value is 0.
1157  * @sz:		number of array elements to read
1158  *
1159  * Search for a property in a device node and read 16-bit value(s) from
1160  * it. Returns 0 on success, -EINVAL if the property does not exist,
1161  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1162  * property data isn't large enough.
1163  *
1164  * dts entry of array should be like:
1165  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1166  *
1167  * The out_values is modified only if a valid u16 value can be decoded.
1168  */
1169 int of_property_read_u16_array(const struct device_node *np,
1170 			const char *propname, u16 *out_values, size_t sz)
1171 {
1172 	const __be16 *val = of_find_property_value_of_size(np, propname,
1173 						(sz * sizeof(*out_values)));
1174 
1175 	if (IS_ERR(val))
1176 		return PTR_ERR(val);
1177 
1178 	while (sz--)
1179 		*out_values++ = be16_to_cpup(val++);
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1183 
1184 /**
1185  * of_property_read_u32_array - Find and read an array of 32 bit integers
1186  * from a property.
1187  *
1188  * @np:		device node from which the property value is to be read.
1189  * @propname:	name of the property to be searched.
1190  * @out_values:	pointer to return value, modified only if return value is 0.
1191  * @sz:		number of array elements to read
1192  *
1193  * Search for a property in a device node and read 32-bit value(s) from
1194  * it. Returns 0 on success, -EINVAL if the property does not exist,
1195  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1196  * property data isn't large enough.
1197  *
1198  * The out_values is modified only if a valid u32 value can be decoded.
1199  */
1200 int of_property_read_u32_array(const struct device_node *np,
1201 			       const char *propname, u32 *out_values,
1202 			       size_t sz)
1203 {
1204 	const __be32 *val = of_find_property_value_of_size(np, propname,
1205 						(sz * sizeof(*out_values)));
1206 
1207 	if (IS_ERR(val))
1208 		return PTR_ERR(val);
1209 
1210 	while (sz--)
1211 		*out_values++ = be32_to_cpup(val++);
1212 	return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1215 
1216 /**
1217  * of_property_read_u64 - Find and read a 64 bit integer from a property
1218  * @np:		device node from which the property value is to be read.
1219  * @propname:	name of the property to be searched.
1220  * @out_value:	pointer to return value, modified only if return value is 0.
1221  *
1222  * Search for a property in a device node and read a 64-bit value from
1223  * it. Returns 0 on success, -EINVAL if the property does not exist,
1224  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1225  * property data isn't large enough.
1226  *
1227  * The out_value is modified only if a valid u64 value can be decoded.
1228  */
1229 int of_property_read_u64(const struct device_node *np, const char *propname,
1230 			 u64 *out_value)
1231 {
1232 	const __be32 *val = of_find_property_value_of_size(np, propname,
1233 						sizeof(*out_value));
1234 
1235 	if (IS_ERR(val))
1236 		return PTR_ERR(val);
1237 
1238 	*out_value = of_read_number(val, 2);
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(of_property_read_u64);
1242 
1243 /**
1244  * of_property_read_string - Find and read a string from a property
1245  * @np:		device node from which the property value is to be read.
1246  * @propname:	name of the property to be searched.
1247  * @out_string:	pointer to null terminated return string, modified only if
1248  *		return value is 0.
1249  *
1250  * Search for a property in a device tree node and retrieve a null
1251  * terminated string value (pointer to data, not a copy). Returns 0 on
1252  * success, -EINVAL if the property does not exist, -ENODATA if property
1253  * does not have a value, and -EILSEQ if the string is not null-terminated
1254  * within the length of the property data.
1255  *
1256  * The out_string pointer is modified only if a valid string can be decoded.
1257  */
1258 int of_property_read_string(struct device_node *np, const char *propname,
1259 				const char **out_string)
1260 {
1261 	struct property *prop = of_find_property(np, propname, NULL);
1262 	if (!prop)
1263 		return -EINVAL;
1264 	if (!prop->value)
1265 		return -ENODATA;
1266 	if (strnlen(prop->value, prop->length) >= prop->length)
1267 		return -EILSEQ;
1268 	*out_string = prop->value;
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(of_property_read_string);
1272 
1273 /**
1274  * of_property_read_string_index - Find and read a string from a multiple
1275  * strings property.
1276  * @np:		device node from which the property value is to be read.
1277  * @propname:	name of the property to be searched.
1278  * @index:	index of the string in the list of strings
1279  * @out_string:	pointer to null terminated return string, modified only if
1280  *		return value is 0.
1281  *
1282  * Search for a property in a device tree node and retrieve a null
1283  * terminated string value (pointer to data, not a copy) in the list of strings
1284  * contained in that property.
1285  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1286  * property does not have a value, and -EILSEQ if the string is not
1287  * null-terminated within the length of the property data.
1288  *
1289  * The out_string pointer is modified only if a valid string can be decoded.
1290  */
1291 int of_property_read_string_index(struct device_node *np, const char *propname,
1292 				  int index, const char **output)
1293 {
1294 	struct property *prop = of_find_property(np, propname, NULL);
1295 	int i = 0;
1296 	size_t l = 0, total = 0;
1297 	const char *p;
1298 
1299 	if (!prop)
1300 		return -EINVAL;
1301 	if (!prop->value)
1302 		return -ENODATA;
1303 	if (strnlen(prop->value, prop->length) >= prop->length)
1304 		return -EILSEQ;
1305 
1306 	p = prop->value;
1307 
1308 	for (i = 0; total < prop->length; total += l, p += l) {
1309 		l = strlen(p) + 1;
1310 		if (i++ == index) {
1311 			*output = p;
1312 			return 0;
1313 		}
1314 	}
1315 	return -ENODATA;
1316 }
1317 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1318 
1319 /**
1320  * of_property_match_string() - Find string in a list and return index
1321  * @np: pointer to node containing string list property
1322  * @propname: string list property name
1323  * @string: pointer to string to search for in string list
1324  *
1325  * This function searches a string list property and returns the index
1326  * of a specific string value.
1327  */
1328 int of_property_match_string(struct device_node *np, const char *propname,
1329 			     const char *string)
1330 {
1331 	struct property *prop = of_find_property(np, propname, NULL);
1332 	size_t l;
1333 	int i;
1334 	const char *p, *end;
1335 
1336 	if (!prop)
1337 		return -EINVAL;
1338 	if (!prop->value)
1339 		return -ENODATA;
1340 
1341 	p = prop->value;
1342 	end = p + prop->length;
1343 
1344 	for (i = 0; p < end; i++, p += l) {
1345 		l = strlen(p) + 1;
1346 		if (p + l > end)
1347 			return -EILSEQ;
1348 		pr_debug("comparing %s with %s\n", string, p);
1349 		if (strcmp(string, p) == 0)
1350 			return i; /* Found it; return index */
1351 	}
1352 	return -ENODATA;
1353 }
1354 EXPORT_SYMBOL_GPL(of_property_match_string);
1355 
1356 /**
1357  * of_property_count_strings - Find and return the number of strings from a
1358  * multiple strings property.
1359  * @np:		device node from which the property value is to be read.
1360  * @propname:	name of the property to be searched.
1361  *
1362  * Search for a property in a device tree node and retrieve the number of null
1363  * terminated string contain in it. Returns the number of strings on
1364  * success, -EINVAL if the property does not exist, -ENODATA if property
1365  * does not have a value, and -EILSEQ if the string is not null-terminated
1366  * within the length of the property data.
1367  */
1368 int of_property_count_strings(struct device_node *np, const char *propname)
1369 {
1370 	struct property *prop = of_find_property(np, propname, NULL);
1371 	int i = 0;
1372 	size_t l = 0, total = 0;
1373 	const char *p;
1374 
1375 	if (!prop)
1376 		return -EINVAL;
1377 	if (!prop->value)
1378 		return -ENODATA;
1379 	if (strnlen(prop->value, prop->length) >= prop->length)
1380 		return -EILSEQ;
1381 
1382 	p = prop->value;
1383 
1384 	for (i = 0; total < prop->length; total += l, p += l, i++)
1385 		l = strlen(p) + 1;
1386 
1387 	return i;
1388 }
1389 EXPORT_SYMBOL_GPL(of_property_count_strings);
1390 
1391 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1392 {
1393 	int i;
1394 	printk("%s %s", msg, of_node_full_name(args->np));
1395 	for (i = 0; i < args->args_count; i++)
1396 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1397 	printk("\n");
1398 }
1399 
1400 static int __of_parse_phandle_with_args(const struct device_node *np,
1401 					const char *list_name,
1402 					const char *cells_name,
1403 					int cell_count, int index,
1404 					struct of_phandle_args *out_args)
1405 {
1406 	const __be32 *list, *list_end;
1407 	int rc = 0, size, cur_index = 0;
1408 	uint32_t count = 0;
1409 	struct device_node *node = NULL;
1410 	phandle phandle;
1411 
1412 	/* Retrieve the phandle list property */
1413 	list = of_get_property(np, list_name, &size);
1414 	if (!list)
1415 		return -ENOENT;
1416 	list_end = list + size / sizeof(*list);
1417 
1418 	/* Loop over the phandles until all the requested entry is found */
1419 	while (list < list_end) {
1420 		rc = -EINVAL;
1421 		count = 0;
1422 
1423 		/*
1424 		 * If phandle is 0, then it is an empty entry with no
1425 		 * arguments.  Skip forward to the next entry.
1426 		 */
1427 		phandle = be32_to_cpup(list++);
1428 		if (phandle) {
1429 			/*
1430 			 * Find the provider node and parse the #*-cells
1431 			 * property to determine the argument length.
1432 			 *
1433 			 * This is not needed if the cell count is hard-coded
1434 			 * (i.e. cells_name not set, but cell_count is set),
1435 			 * except when we're going to return the found node
1436 			 * below.
1437 			 */
1438 			if (cells_name || cur_index == index) {
1439 				node = of_find_node_by_phandle(phandle);
1440 				if (!node) {
1441 					pr_err("%s: could not find phandle\n",
1442 						np->full_name);
1443 					goto err;
1444 				}
1445 			}
1446 
1447 			if (cells_name) {
1448 				if (of_property_read_u32(node, cells_name,
1449 							 &count)) {
1450 					pr_err("%s: could not get %s for %s\n",
1451 						np->full_name, cells_name,
1452 						node->full_name);
1453 					goto err;
1454 				}
1455 			} else {
1456 				count = cell_count;
1457 			}
1458 
1459 			/*
1460 			 * Make sure that the arguments actually fit in the
1461 			 * remaining property data length
1462 			 */
1463 			if (list + count > list_end) {
1464 				pr_err("%s: arguments longer than property\n",
1465 					 np->full_name);
1466 				goto err;
1467 			}
1468 		}
1469 
1470 		/*
1471 		 * All of the error cases above bail out of the loop, so at
1472 		 * this point, the parsing is successful. If the requested
1473 		 * index matches, then fill the out_args structure and return,
1474 		 * or return -ENOENT for an empty entry.
1475 		 */
1476 		rc = -ENOENT;
1477 		if (cur_index == index) {
1478 			if (!phandle)
1479 				goto err;
1480 
1481 			if (out_args) {
1482 				int i;
1483 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1484 					count = MAX_PHANDLE_ARGS;
1485 				out_args->np = node;
1486 				out_args->args_count = count;
1487 				for (i = 0; i < count; i++)
1488 					out_args->args[i] = be32_to_cpup(list++);
1489 			} else {
1490 				of_node_put(node);
1491 			}
1492 
1493 			/* Found it! return success */
1494 			return 0;
1495 		}
1496 
1497 		of_node_put(node);
1498 		node = NULL;
1499 		list += count;
1500 		cur_index++;
1501 	}
1502 
1503 	/*
1504 	 * Unlock node before returning result; will be one of:
1505 	 * -ENOENT : index is for empty phandle
1506 	 * -EINVAL : parsing error on data
1507 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1508 	 */
1509 	rc = index < 0 ? cur_index : -ENOENT;
1510  err:
1511 	if (node)
1512 		of_node_put(node);
1513 	return rc;
1514 }
1515 
1516 /**
1517  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1518  * @np: Pointer to device node holding phandle property
1519  * @phandle_name: Name of property holding a phandle value
1520  * @index: For properties holding a table of phandles, this is the index into
1521  *         the table
1522  *
1523  * Returns the device_node pointer with refcount incremented.  Use
1524  * of_node_put() on it when done.
1525  */
1526 struct device_node *of_parse_phandle(const struct device_node *np,
1527 				     const char *phandle_name, int index)
1528 {
1529 	struct of_phandle_args args;
1530 
1531 	if (index < 0)
1532 		return NULL;
1533 
1534 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1535 					 index, &args))
1536 		return NULL;
1537 
1538 	return args.np;
1539 }
1540 EXPORT_SYMBOL(of_parse_phandle);
1541 
1542 /**
1543  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1544  * @np:		pointer to a device tree node containing a list
1545  * @list_name:	property name that contains a list
1546  * @cells_name:	property name that specifies phandles' arguments count
1547  * @index:	index of a phandle to parse out
1548  * @out_args:	optional pointer to output arguments structure (will be filled)
1549  *
1550  * This function is useful to parse lists of phandles and their arguments.
1551  * Returns 0 on success and fills out_args, on error returns appropriate
1552  * errno value.
1553  *
1554  * Caller is responsible to call of_node_put() on the returned out_args->node
1555  * pointer.
1556  *
1557  * Example:
1558  *
1559  * phandle1: node1 {
1560  * 	#list-cells = <2>;
1561  * }
1562  *
1563  * phandle2: node2 {
1564  * 	#list-cells = <1>;
1565  * }
1566  *
1567  * node3 {
1568  * 	list = <&phandle1 1 2 &phandle2 3>;
1569  * }
1570  *
1571  * To get a device_node of the `node2' node you may call this:
1572  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1573  */
1574 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1575 				const char *cells_name, int index,
1576 				struct of_phandle_args *out_args)
1577 {
1578 	if (index < 0)
1579 		return -EINVAL;
1580 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1581 					    index, out_args);
1582 }
1583 EXPORT_SYMBOL(of_parse_phandle_with_args);
1584 
1585 /**
1586  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1587  * @np:		pointer to a device tree node containing a list
1588  * @list_name:	property name that contains a list
1589  * @cell_count: number of argument cells following the phandle
1590  * @index:	index of a phandle to parse out
1591  * @out_args:	optional pointer to output arguments structure (will be filled)
1592  *
1593  * This function is useful to parse lists of phandles and their arguments.
1594  * Returns 0 on success and fills out_args, on error returns appropriate
1595  * errno value.
1596  *
1597  * Caller is responsible to call of_node_put() on the returned out_args->node
1598  * pointer.
1599  *
1600  * Example:
1601  *
1602  * phandle1: node1 {
1603  * }
1604  *
1605  * phandle2: node2 {
1606  * }
1607  *
1608  * node3 {
1609  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1610  * }
1611  *
1612  * To get a device_node of the `node2' node you may call this:
1613  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1614  */
1615 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1616 				const char *list_name, int cell_count,
1617 				int index, struct of_phandle_args *out_args)
1618 {
1619 	if (index < 0)
1620 		return -EINVAL;
1621 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1622 					   index, out_args);
1623 }
1624 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1625 
1626 /**
1627  * of_count_phandle_with_args() - Find the number of phandles references in a property
1628  * @np:		pointer to a device tree node containing a list
1629  * @list_name:	property name that contains a list
1630  * @cells_name:	property name that specifies phandles' arguments count
1631  *
1632  * Returns the number of phandle + argument tuples within a property. It
1633  * is a typical pattern to encode a list of phandle and variable
1634  * arguments into a single property. The number of arguments is encoded
1635  * by a property in the phandle-target node. For example, a gpios
1636  * property would contain a list of GPIO specifies consisting of a
1637  * phandle and 1 or more arguments. The number of arguments are
1638  * determined by the #gpio-cells property in the node pointed to by the
1639  * phandle.
1640  */
1641 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1642 				const char *cells_name)
1643 {
1644 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1645 					    NULL);
1646 }
1647 EXPORT_SYMBOL(of_count_phandle_with_args);
1648 
1649 /**
1650  * __of_add_property - Add a property to a node without lock operations
1651  */
1652 int __of_add_property(struct device_node *np, struct property *prop)
1653 {
1654 	struct property **next;
1655 
1656 	prop->next = NULL;
1657 	next = &np->properties;
1658 	while (*next) {
1659 		if (strcmp(prop->name, (*next)->name) == 0)
1660 			/* duplicate ! don't insert it */
1661 			return -EEXIST;
1662 
1663 		next = &(*next)->next;
1664 	}
1665 	*next = prop;
1666 
1667 	return 0;
1668 }
1669 
1670 /**
1671  * of_add_property - Add a property to a node
1672  */
1673 int of_add_property(struct device_node *np, struct property *prop)
1674 {
1675 	unsigned long flags;
1676 	int rc;
1677 
1678 	mutex_lock(&of_mutex);
1679 
1680 	raw_spin_lock_irqsave(&devtree_lock, flags);
1681 	rc = __of_add_property(np, prop);
1682 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1683 
1684 	if (!rc)
1685 		__of_add_property_sysfs(np, prop);
1686 
1687 	mutex_unlock(&of_mutex);
1688 
1689 	if (!rc)
1690 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1691 
1692 	return rc;
1693 }
1694 
1695 int __of_remove_property(struct device_node *np, struct property *prop)
1696 {
1697 	struct property **next;
1698 
1699 	for (next = &np->properties; *next; next = &(*next)->next) {
1700 		if (*next == prop)
1701 			break;
1702 	}
1703 	if (*next == NULL)
1704 		return -ENODEV;
1705 
1706 	/* found the node */
1707 	*next = prop->next;
1708 	prop->next = np->deadprops;
1709 	np->deadprops = prop;
1710 
1711 	return 0;
1712 }
1713 
1714 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1715 {
1716 	/* at early boot, bail here and defer setup to of_init() */
1717 	if (of_kset && of_node_is_attached(np))
1718 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1719 }
1720 
1721 /**
1722  * of_remove_property - Remove a property from a node.
1723  *
1724  * Note that we don't actually remove it, since we have given out
1725  * who-knows-how-many pointers to the data using get-property.
1726  * Instead we just move the property to the "dead properties"
1727  * list, so it won't be found any more.
1728  */
1729 int of_remove_property(struct device_node *np, struct property *prop)
1730 {
1731 	unsigned long flags;
1732 	int rc;
1733 
1734 	mutex_lock(&of_mutex);
1735 
1736 	raw_spin_lock_irqsave(&devtree_lock, flags);
1737 	rc = __of_remove_property(np, prop);
1738 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1739 
1740 	if (!rc)
1741 		__of_remove_property_sysfs(np, prop);
1742 
1743 	mutex_unlock(&of_mutex);
1744 
1745 	if (!rc)
1746 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1747 
1748 	return rc;
1749 }
1750 
1751 int __of_update_property(struct device_node *np, struct property *newprop,
1752 		struct property **oldpropp)
1753 {
1754 	struct property **next, *oldprop;
1755 
1756 	for (next = &np->properties; *next; next = &(*next)->next) {
1757 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1758 			break;
1759 	}
1760 	*oldpropp = oldprop = *next;
1761 
1762 	if (oldprop) {
1763 		/* replace the node */
1764 		newprop->next = oldprop->next;
1765 		*next = newprop;
1766 		oldprop->next = np->deadprops;
1767 		np->deadprops = oldprop;
1768 	} else {
1769 		/* new node */
1770 		newprop->next = NULL;
1771 		*next = newprop;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1778 		struct property *oldprop)
1779 {
1780 	/* At early boot, bail out and defer setup to of_init() */
1781 	if (!of_kset)
1782 		return;
1783 
1784 	if (oldprop)
1785 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1786 	__of_add_property_sysfs(np, newprop);
1787 }
1788 
1789 /*
1790  * of_update_property - Update a property in a node, if the property does
1791  * not exist, add it.
1792  *
1793  * Note that we don't actually remove it, since we have given out
1794  * who-knows-how-many pointers to the data using get-property.
1795  * Instead we just move the property to the "dead properties" list,
1796  * and add the new property to the property list
1797  */
1798 int of_update_property(struct device_node *np, struct property *newprop)
1799 {
1800 	struct property *oldprop;
1801 	unsigned long flags;
1802 	int rc;
1803 
1804 	if (!newprop->name)
1805 		return -EINVAL;
1806 
1807 	mutex_lock(&of_mutex);
1808 
1809 	raw_spin_lock_irqsave(&devtree_lock, flags);
1810 	rc = __of_update_property(np, newprop, &oldprop);
1811 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1812 
1813 	if (!rc)
1814 		__of_update_property_sysfs(np, newprop, oldprop);
1815 
1816 	mutex_unlock(&of_mutex);
1817 
1818 	if (!rc)
1819 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1820 
1821 	return rc;
1822 }
1823 
1824 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1825 			 int id, const char *stem, int stem_len)
1826 {
1827 	ap->np = np;
1828 	ap->id = id;
1829 	strncpy(ap->stem, stem, stem_len);
1830 	ap->stem[stem_len] = 0;
1831 	list_add_tail(&ap->link, &aliases_lookup);
1832 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1833 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1834 }
1835 
1836 /**
1837  * of_alias_scan - Scan all properties of 'aliases' node
1838  *
1839  * The function scans all the properties of 'aliases' node and populate
1840  * the the global lookup table with the properties.  It returns the
1841  * number of alias_prop found, or error code in error case.
1842  *
1843  * @dt_alloc:	An allocator that provides a virtual address to memory
1844  *		for the resulting tree
1845  */
1846 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1847 {
1848 	struct property *pp;
1849 
1850 	of_chosen = of_find_node_by_path("/chosen");
1851 	if (of_chosen == NULL)
1852 		of_chosen = of_find_node_by_path("/chosen@0");
1853 
1854 	if (of_chosen) {
1855 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1856 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1857 		if (!name)
1858 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1859 		if (IS_ENABLED(CONFIG_PPC) && !name)
1860 			name = of_get_property(of_aliases, "stdout", NULL);
1861 		if (name)
1862 			of_stdout = of_find_node_by_path(name);
1863 	}
1864 
1865 	of_aliases = of_find_node_by_path("/aliases");
1866 	if (!of_aliases)
1867 		return;
1868 
1869 	for_each_property_of_node(of_aliases, pp) {
1870 		const char *start = pp->name;
1871 		const char *end = start + strlen(start);
1872 		struct device_node *np;
1873 		struct alias_prop *ap;
1874 		int id, len;
1875 
1876 		/* Skip those we do not want to proceed */
1877 		if (!strcmp(pp->name, "name") ||
1878 		    !strcmp(pp->name, "phandle") ||
1879 		    !strcmp(pp->name, "linux,phandle"))
1880 			continue;
1881 
1882 		np = of_find_node_by_path(pp->value);
1883 		if (!np)
1884 			continue;
1885 
1886 		/* walk the alias backwards to extract the id and work out
1887 		 * the 'stem' string */
1888 		while (isdigit(*(end-1)) && end > start)
1889 			end--;
1890 		len = end - start;
1891 
1892 		if (kstrtoint(end, 10, &id) < 0)
1893 			continue;
1894 
1895 		/* Allocate an alias_prop with enough space for the stem */
1896 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1897 		if (!ap)
1898 			continue;
1899 		memset(ap, 0, sizeof(*ap) + len + 1);
1900 		ap->alias = start;
1901 		of_alias_add(ap, np, id, start, len);
1902 	}
1903 }
1904 
1905 /**
1906  * of_alias_get_id - Get alias id for the given device_node
1907  * @np:		Pointer to the given device_node
1908  * @stem:	Alias stem of the given device_node
1909  *
1910  * The function travels the lookup table to get the alias id for the given
1911  * device_node and alias stem.  It returns the alias id if found.
1912  */
1913 int of_alias_get_id(struct device_node *np, const char *stem)
1914 {
1915 	struct alias_prop *app;
1916 	int id = -ENODEV;
1917 
1918 	mutex_lock(&of_mutex);
1919 	list_for_each_entry(app, &aliases_lookup, link) {
1920 		if (strcmp(app->stem, stem) != 0)
1921 			continue;
1922 
1923 		if (np == app->np) {
1924 			id = app->id;
1925 			break;
1926 		}
1927 	}
1928 	mutex_unlock(&of_mutex);
1929 
1930 	return id;
1931 }
1932 EXPORT_SYMBOL_GPL(of_alias_get_id);
1933 
1934 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1935 			       u32 *pu)
1936 {
1937 	const void *curv = cur;
1938 
1939 	if (!prop)
1940 		return NULL;
1941 
1942 	if (!cur) {
1943 		curv = prop->value;
1944 		goto out_val;
1945 	}
1946 
1947 	curv += sizeof(*cur);
1948 	if (curv >= prop->value + prop->length)
1949 		return NULL;
1950 
1951 out_val:
1952 	*pu = be32_to_cpup(curv);
1953 	return curv;
1954 }
1955 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1956 
1957 const char *of_prop_next_string(struct property *prop, const char *cur)
1958 {
1959 	const void *curv = cur;
1960 
1961 	if (!prop)
1962 		return NULL;
1963 
1964 	if (!cur)
1965 		return prop->value;
1966 
1967 	curv += strlen(cur) + 1;
1968 	if (curv >= prop->value + prop->length)
1969 		return NULL;
1970 
1971 	return curv;
1972 }
1973 EXPORT_SYMBOL_GPL(of_prop_next_string);
1974 
1975 /**
1976  * of_console_check() - Test and setup console for DT setup
1977  * @dn - Pointer to device node
1978  * @name - Name to use for preferred console without index. ex. "ttyS"
1979  * @index - Index to use for preferred console.
1980  *
1981  * Check if the given device node matches the stdout-path property in the
1982  * /chosen node. If it does then register it as the preferred console and return
1983  * TRUE. Otherwise return FALSE.
1984  */
1985 bool of_console_check(struct device_node *dn, char *name, int index)
1986 {
1987 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1988 		return false;
1989 	return add_preferred_console(name, index, NULL);
1990 }
1991 EXPORT_SYMBOL_GPL(of_console_check);
1992 
1993 /**
1994  *	of_find_next_cache_node - Find a node's subsidiary cache
1995  *	@np:	node of type "cpu" or "cache"
1996  *
1997  *	Returns a node pointer with refcount incremented, use
1998  *	of_node_put() on it when done.  Caller should hold a reference
1999  *	to np.
2000  */
2001 struct device_node *of_find_next_cache_node(const struct device_node *np)
2002 {
2003 	struct device_node *child;
2004 	const phandle *handle;
2005 
2006 	handle = of_get_property(np, "l2-cache", NULL);
2007 	if (!handle)
2008 		handle = of_get_property(np, "next-level-cache", NULL);
2009 
2010 	if (handle)
2011 		return of_find_node_by_phandle(be32_to_cpup(handle));
2012 
2013 	/* OF on pmac has nodes instead of properties named "l2-cache"
2014 	 * beneath CPU nodes.
2015 	 */
2016 	if (!strcmp(np->type, "cpu"))
2017 		for_each_child_of_node(np, child)
2018 			if (!strcmp(child->type, "cache"))
2019 				return child;
2020 
2021 	return NULL;
2022 }
2023 
2024 /**
2025  * of_graph_parse_endpoint() - parse common endpoint node properties
2026  * @node: pointer to endpoint device_node
2027  * @endpoint: pointer to the OF endpoint data structure
2028  *
2029  * The caller should hold a reference to @node.
2030  */
2031 int of_graph_parse_endpoint(const struct device_node *node,
2032 			    struct of_endpoint *endpoint)
2033 {
2034 	struct device_node *port_node = of_get_parent(node);
2035 
2036 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2037 		  __func__, node->full_name);
2038 
2039 	memset(endpoint, 0, sizeof(*endpoint));
2040 
2041 	endpoint->local_node = node;
2042 	/*
2043 	 * It doesn't matter whether the two calls below succeed.
2044 	 * If they don't then the default value 0 is used.
2045 	 */
2046 	of_property_read_u32(port_node, "reg", &endpoint->port);
2047 	of_property_read_u32(node, "reg", &endpoint->id);
2048 
2049 	of_node_put(port_node);
2050 
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL(of_graph_parse_endpoint);
2054 
2055 /**
2056  * of_graph_get_next_endpoint() - get next endpoint node
2057  * @parent: pointer to the parent device node
2058  * @prev: previous endpoint node, or NULL to get first
2059  *
2060  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2061  * of the passed @prev node is not decremented, the caller have to use
2062  * of_node_put() on it when done.
2063  */
2064 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2065 					struct device_node *prev)
2066 {
2067 	struct device_node *endpoint;
2068 	struct device_node *port;
2069 
2070 	if (!parent)
2071 		return NULL;
2072 
2073 	/*
2074 	 * Start by locating the port node. If no previous endpoint is specified
2075 	 * search for the first port node, otherwise get the previous endpoint
2076 	 * parent port node.
2077 	 */
2078 	if (!prev) {
2079 		struct device_node *node;
2080 
2081 		node = of_get_child_by_name(parent, "ports");
2082 		if (node)
2083 			parent = node;
2084 
2085 		port = of_get_child_by_name(parent, "port");
2086 		of_node_put(node);
2087 
2088 		if (!port) {
2089 			pr_err("%s(): no port node found in %s\n",
2090 			       __func__, parent->full_name);
2091 			return NULL;
2092 		}
2093 	} else {
2094 		port = of_get_parent(prev);
2095 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2096 			      __func__, prev->full_name))
2097 			return NULL;
2098 
2099 		/*
2100 		 * Avoid dropping prev node refcount to 0 when getting the next
2101 		 * child below.
2102 		 */
2103 		of_node_get(prev);
2104 	}
2105 
2106 	while (1) {
2107 		/*
2108 		 * Now that we have a port node, get the next endpoint by
2109 		 * getting the next child. If the previous endpoint is NULL this
2110 		 * will return the first child.
2111 		 */
2112 		endpoint = of_get_next_child(port, prev);
2113 		if (endpoint) {
2114 			of_node_put(port);
2115 			return endpoint;
2116 		}
2117 
2118 		/* No more endpoints under this port, try the next one. */
2119 		prev = NULL;
2120 
2121 		do {
2122 			port = of_get_next_child(parent, port);
2123 			if (!port)
2124 				return NULL;
2125 		} while (of_node_cmp(port->name, "port"));
2126 	}
2127 }
2128 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2129 
2130 /**
2131  * of_graph_get_remote_port_parent() - get remote port's parent node
2132  * @node: pointer to a local endpoint device_node
2133  *
2134  * Return: Remote device node associated with remote endpoint node linked
2135  *	   to @node. Use of_node_put() on it when done.
2136  */
2137 struct device_node *of_graph_get_remote_port_parent(
2138 			       const struct device_node *node)
2139 {
2140 	struct device_node *np;
2141 	unsigned int depth;
2142 
2143 	/* Get remote endpoint node. */
2144 	np = of_parse_phandle(node, "remote-endpoint", 0);
2145 
2146 	/* Walk 3 levels up only if there is 'ports' node. */
2147 	for (depth = 3; depth && np; depth--) {
2148 		np = of_get_next_parent(np);
2149 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2150 			break;
2151 	}
2152 	return np;
2153 }
2154 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2155 
2156 /**
2157  * of_graph_get_remote_port() - get remote port node
2158  * @node: pointer to a local endpoint device_node
2159  *
2160  * Return: Remote port node associated with remote endpoint node linked
2161  *	   to @node. Use of_node_put() on it when done.
2162  */
2163 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2164 {
2165 	struct device_node *np;
2166 
2167 	/* Get remote endpoint node. */
2168 	np = of_parse_phandle(node, "remote-endpoint", 0);
2169 	if (!np)
2170 		return NULL;
2171 	return of_get_next_parent(np);
2172 }
2173 EXPORT_SYMBOL(of_graph_get_remote_port);
2174