xref: /openbmc/linux/drivers/of/base.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 
171 	/* Create the kset, and register existing nodes */
172 	mutex_lock(&of_mutex);
173 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 	if (!of_kset) {
175 		mutex_unlock(&of_mutex);
176 		pr_err("failed to register existing nodes\n");
177 		return;
178 	}
179 	for_each_of_allnodes(np) {
180 		__of_attach_node_sysfs(np);
181 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 	}
184 	mutex_unlock(&of_mutex);
185 
186 	/* Symlink in /proc as required by userspace ABI */
187 	if (of_root)
188 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190 
191 static struct property *__of_find_property(const struct device_node *np,
192 					   const char *name, int *lenp)
193 {
194 	struct property *pp;
195 
196 	if (!np)
197 		return NULL;
198 
199 	for (pp = np->properties; pp; pp = pp->next) {
200 		if (of_prop_cmp(pp->name, name) == 0) {
201 			if (lenp)
202 				*lenp = pp->length;
203 			break;
204 		}
205 	}
206 
207 	return pp;
208 }
209 
210 struct property *of_find_property(const struct device_node *np,
211 				  const char *name,
212 				  int *lenp)
213 {
214 	struct property *pp;
215 	unsigned long flags;
216 
217 	raw_spin_lock_irqsave(&devtree_lock, flags);
218 	pp = __of_find_property(np, name, lenp);
219 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
220 
221 	return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224 
225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 	struct device_node *np;
228 	if (!prev) {
229 		np = of_root;
230 	} else if (prev->child) {
231 		np = prev->child;
232 	} else {
233 		/* Walk back up looking for a sibling, or the end of the structure */
234 		np = prev;
235 		while (np->parent && !np->sibling)
236 			np = np->parent;
237 		np = np->sibling; /* Might be null at the end of the tree */
238 	}
239 	return np;
240 }
241 
242 /**
243  * of_find_all_nodes - Get next node in global list
244  * @prev:	Previous node or NULL to start iteration
245  *		of_node_put() will be called on it
246  *
247  * Return: A node pointer with refcount incremented, use
248  * of_node_put() on it when done.
249  */
250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 	struct device_node *np;
253 	unsigned long flags;
254 
255 	raw_spin_lock_irqsave(&devtree_lock, flags);
256 	np = __of_find_all_nodes(prev);
257 	of_node_get(np);
258 	of_node_put(prev);
259 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 	return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263 
264 /*
265  * Find a property with a given name for a given node
266  * and return the value.
267  */
268 const void *__of_get_property(const struct device_node *np,
269 			      const char *name, int *lenp)
270 {
271 	struct property *pp = __of_find_property(np, name, lenp);
272 
273 	return pp ? pp->value : NULL;
274 }
275 
276 /*
277  * Find a property with a given name for a given node
278  * and return the value.
279  */
280 const void *of_get_property(const struct device_node *np, const char *name,
281 			    int *lenp)
282 {
283 	struct property *pp = of_find_property(np, name, lenp);
284 
285 	return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288 
289 /*
290  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
291  *
292  * @cpu: logical cpu index of a core/thread
293  * @phys_id: physical identifier of a core/thread
294  *
295  * CPU logical to physical index mapping is architecture specific.
296  * However this __weak function provides a default match of physical
297  * id to logical cpu index. phys_id provided here is usually values read
298  * from the device tree which must match the hardware internal registers.
299  *
300  * Returns true if the physical identifier and the logical cpu index
301  * correspond to the same core/thread, false otherwise.
302  */
303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
304 {
305 	return (u32)phys_id == cpu;
306 }
307 
308 /*
309  * Checks if the given "prop_name" property holds the physical id of the
310  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311  * NULL, local thread number within the core is returned in it.
312  */
313 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314 			const char *prop_name, int cpu, unsigned int *thread)
315 {
316 	const __be32 *cell;
317 	int ac, prop_len, tid;
318 	u64 hwid;
319 
320 	ac = of_n_addr_cells(cpun);
321 	cell = of_get_property(cpun, prop_name, &prop_len);
322 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
323 		return true;
324 	if (!cell || !ac)
325 		return false;
326 	prop_len /= sizeof(*cell) * ac;
327 	for (tid = 0; tid < prop_len; tid++) {
328 		hwid = of_read_number(cell, ac);
329 		if (arch_match_cpu_phys_id(cpu, hwid)) {
330 			if (thread)
331 				*thread = tid;
332 			return true;
333 		}
334 		cell += ac;
335 	}
336 	return false;
337 }
338 
339 /*
340  * arch_find_n_match_cpu_physical_id - See if the given device node is
341  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
342  * else false.  If 'thread' is non-NULL, the local thread number within the
343  * core is returned in it.
344  */
345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 					      int cpu, unsigned int *thread)
347 {
348 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 	 * for thread ids on PowerPC. If it doesn't exist fallback to
350 	 * standard "reg" property.
351 	 */
352 	if (IS_ENABLED(CONFIG_PPC) &&
353 	    __of_find_n_match_cpu_property(cpun,
354 					   "ibm,ppc-interrupt-server#s",
355 					   cpu, thread))
356 		return true;
357 
358 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359 }
360 
361 /**
362  * of_get_cpu_node - Get device node associated with the given logical CPU
363  *
364  * @cpu: CPU number(logical index) for which device node is required
365  * @thread: if not NULL, local thread number within the physical core is
366  *          returned
367  *
368  * The main purpose of this function is to retrieve the device node for the
369  * given logical CPU index. It should be used to initialize the of_node in
370  * cpu device. Once of_node in cpu device is populated, all the further
371  * references can use that instead.
372  *
373  * CPU logical to physical index mapping is architecture specific and is built
374  * before booting secondary cores. This function uses arch_match_cpu_phys_id
375  * which can be overridden by architecture specific implementation.
376  *
377  * Return: A node pointer for the logical cpu with refcount incremented, use
378  * of_node_put() on it when done. Returns NULL if not found.
379  */
380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
381 {
382 	struct device_node *cpun;
383 
384 	for_each_of_cpu_node(cpun) {
385 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 			return cpun;
387 	}
388 	return NULL;
389 }
390 EXPORT_SYMBOL(of_get_cpu_node);
391 
392 /**
393  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
394  *
395  * @cpu_node: Pointer to the device_node for CPU.
396  *
397  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
398  * CPU is not found.
399  */
400 int of_cpu_node_to_id(struct device_node *cpu_node)
401 {
402 	int cpu;
403 	bool found = false;
404 	struct device_node *np;
405 
406 	for_each_possible_cpu(cpu) {
407 		np = of_cpu_device_node_get(cpu);
408 		found = (cpu_node == np);
409 		of_node_put(np);
410 		if (found)
411 			return cpu;
412 	}
413 
414 	return -ENODEV;
415 }
416 EXPORT_SYMBOL(of_cpu_node_to_id);
417 
418 /**
419  * of_get_cpu_state_node - Get CPU's idle state node at the given index
420  *
421  * @cpu_node: The device node for the CPU
422  * @index: The index in the list of the idle states
423  *
424  * Two generic methods can be used to describe a CPU's idle states, either via
425  * a flattened description through the "cpu-idle-states" binding or via the
426  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
427  * bindings. This function check for both and returns the idle state node for
428  * the requested index.
429  *
430  * Return: An idle state node if found at @index. The refcount is incremented
431  * for it, so call of_node_put() on it when done. Returns NULL if not found.
432  */
433 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
434 					  int index)
435 {
436 	struct of_phandle_args args;
437 	int err;
438 
439 	err = of_parse_phandle_with_args(cpu_node, "power-domains",
440 					"#power-domain-cells", 0, &args);
441 	if (!err) {
442 		struct device_node *state_node =
443 			of_parse_phandle(args.np, "domain-idle-states", index);
444 
445 		of_node_put(args.np);
446 		if (state_node)
447 			return state_node;
448 	}
449 
450 	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
451 }
452 EXPORT_SYMBOL(of_get_cpu_state_node);
453 
454 /**
455  * __of_device_is_compatible() - Check if the node matches given constraints
456  * @device: pointer to node
457  * @compat: required compatible string, NULL or "" for any match
458  * @type: required device_type value, NULL or "" for any match
459  * @name: required node name, NULL or "" for any match
460  *
461  * Checks if the given @compat, @type and @name strings match the
462  * properties of the given @device. A constraints can be skipped by
463  * passing NULL or an empty string as the constraint.
464  *
465  * Returns 0 for no match, and a positive integer on match. The return
466  * value is a relative score with larger values indicating better
467  * matches. The score is weighted for the most specific compatible value
468  * to get the highest score. Matching type is next, followed by matching
469  * name. Practically speaking, this results in the following priority
470  * order for matches:
471  *
472  * 1. specific compatible && type && name
473  * 2. specific compatible && type
474  * 3. specific compatible && name
475  * 4. specific compatible
476  * 5. general compatible && type && name
477  * 6. general compatible && type
478  * 7. general compatible && name
479  * 8. general compatible
480  * 9. type && name
481  * 10. type
482  * 11. name
483  */
484 static int __of_device_is_compatible(const struct device_node *device,
485 				     const char *compat, const char *type, const char *name)
486 {
487 	struct property *prop;
488 	const char *cp;
489 	int index = 0, score = 0;
490 
491 	/* Compatible match has highest priority */
492 	if (compat && compat[0]) {
493 		prop = __of_find_property(device, "compatible", NULL);
494 		for (cp = of_prop_next_string(prop, NULL); cp;
495 		     cp = of_prop_next_string(prop, cp), index++) {
496 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
497 				score = INT_MAX/2 - (index << 2);
498 				break;
499 			}
500 		}
501 		if (!score)
502 			return 0;
503 	}
504 
505 	/* Matching type is better than matching name */
506 	if (type && type[0]) {
507 		if (!__of_node_is_type(device, type))
508 			return 0;
509 		score += 2;
510 	}
511 
512 	/* Matching name is a bit better than not */
513 	if (name && name[0]) {
514 		if (!of_node_name_eq(device, name))
515 			return 0;
516 		score++;
517 	}
518 
519 	return score;
520 }
521 
522 /** Checks if the given "compat" string matches one of the strings in
523  * the device's "compatible" property
524  */
525 int of_device_is_compatible(const struct device_node *device,
526 		const char *compat)
527 {
528 	unsigned long flags;
529 	int res;
530 
531 	raw_spin_lock_irqsave(&devtree_lock, flags);
532 	res = __of_device_is_compatible(device, compat, NULL, NULL);
533 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
534 	return res;
535 }
536 EXPORT_SYMBOL(of_device_is_compatible);
537 
538 /** Checks if the device is compatible with any of the entries in
539  *  a NULL terminated array of strings. Returns the best match
540  *  score or 0.
541  */
542 int of_device_compatible_match(struct device_node *device,
543 			       const char *const *compat)
544 {
545 	unsigned int tmp, score = 0;
546 
547 	if (!compat)
548 		return 0;
549 
550 	while (*compat) {
551 		tmp = of_device_is_compatible(device, *compat);
552 		if (tmp > score)
553 			score = tmp;
554 		compat++;
555 	}
556 
557 	return score;
558 }
559 
560 /**
561  * of_machine_is_compatible - Test root of device tree for a given compatible value
562  * @compat: compatible string to look for in root node's compatible property.
563  *
564  * Return: A positive integer if the root node has the given value in its
565  * compatible property.
566  */
567 int of_machine_is_compatible(const char *compat)
568 {
569 	struct device_node *root;
570 	int rc = 0;
571 
572 	root = of_find_node_by_path("/");
573 	if (root) {
574 		rc = of_device_is_compatible(root, compat);
575 		of_node_put(root);
576 	}
577 	return rc;
578 }
579 EXPORT_SYMBOL(of_machine_is_compatible);
580 
581 /**
582  *  __of_device_is_available - check if a device is available for use
583  *
584  *  @device: Node to check for availability, with locks already held
585  *
586  *  Return: True if the status property is absent or set to "okay" or "ok",
587  *  false otherwise
588  */
589 static bool __of_device_is_available(const struct device_node *device)
590 {
591 	const char *status;
592 	int statlen;
593 
594 	if (!device)
595 		return false;
596 
597 	status = __of_get_property(device, "status", &statlen);
598 	if (status == NULL)
599 		return true;
600 
601 	if (statlen > 0) {
602 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603 			return true;
604 	}
605 
606 	return false;
607 }
608 
609 /**
610  *  of_device_is_available - check if a device is available for use
611  *
612  *  @device: Node to check for availability
613  *
614  *  Return: True if the status property is absent or set to "okay" or "ok",
615  *  false otherwise
616  */
617 bool of_device_is_available(const struct device_node *device)
618 {
619 	unsigned long flags;
620 	bool res;
621 
622 	raw_spin_lock_irqsave(&devtree_lock, flags);
623 	res = __of_device_is_available(device);
624 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
625 	return res;
626 
627 }
628 EXPORT_SYMBOL(of_device_is_available);
629 
630 /**
631  *  of_device_is_big_endian - check if a device has BE registers
632  *
633  *  @device: Node to check for endianness
634  *
635  *  Return: True if the device has a "big-endian" property, or if the kernel
636  *  was compiled for BE *and* the device has a "native-endian" property.
637  *  Returns false otherwise.
638  *
639  *  Callers would nominally use ioread32be/iowrite32be if
640  *  of_device_is_big_endian() == true, or readl/writel otherwise.
641  */
642 bool of_device_is_big_endian(const struct device_node *device)
643 {
644 	if (of_property_read_bool(device, "big-endian"))
645 		return true;
646 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
647 	    of_property_read_bool(device, "native-endian"))
648 		return true;
649 	return false;
650 }
651 EXPORT_SYMBOL(of_device_is_big_endian);
652 
653 /**
654  * of_get_parent - Get a node's parent if any
655  * @node:	Node to get parent
656  *
657  * Return: A node pointer with refcount incremented, use
658  * of_node_put() on it when done.
659  */
660 struct device_node *of_get_parent(const struct device_node *node)
661 {
662 	struct device_node *np;
663 	unsigned long flags;
664 
665 	if (!node)
666 		return NULL;
667 
668 	raw_spin_lock_irqsave(&devtree_lock, flags);
669 	np = of_node_get(node->parent);
670 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
671 	return np;
672 }
673 EXPORT_SYMBOL(of_get_parent);
674 
675 /**
676  * of_get_next_parent - Iterate to a node's parent
677  * @node:	Node to get parent of
678  *
679  * This is like of_get_parent() except that it drops the
680  * refcount on the passed node, making it suitable for iterating
681  * through a node's parents.
682  *
683  * Return: A node pointer with refcount incremented, use
684  * of_node_put() on it when done.
685  */
686 struct device_node *of_get_next_parent(struct device_node *node)
687 {
688 	struct device_node *parent;
689 	unsigned long flags;
690 
691 	if (!node)
692 		return NULL;
693 
694 	raw_spin_lock_irqsave(&devtree_lock, flags);
695 	parent = of_node_get(node->parent);
696 	of_node_put(node);
697 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
698 	return parent;
699 }
700 EXPORT_SYMBOL(of_get_next_parent);
701 
702 static struct device_node *__of_get_next_child(const struct device_node *node,
703 						struct device_node *prev)
704 {
705 	struct device_node *next;
706 
707 	if (!node)
708 		return NULL;
709 
710 	next = prev ? prev->sibling : node->child;
711 	of_node_get(next);
712 	of_node_put(prev);
713 	return next;
714 }
715 #define __for_each_child_of_node(parent, child) \
716 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
717 	     child = __of_get_next_child(parent, child))
718 
719 /**
720  * of_get_next_child - Iterate a node childs
721  * @node:	parent node
722  * @prev:	previous child of the parent node, or NULL to get first
723  *
724  * Return: A node pointer with refcount incremented, use of_node_put() on
725  * it when done. Returns NULL when prev is the last child. Decrements the
726  * refcount of prev.
727  */
728 struct device_node *of_get_next_child(const struct device_node *node,
729 	struct device_node *prev)
730 {
731 	struct device_node *next;
732 	unsigned long flags;
733 
734 	raw_spin_lock_irqsave(&devtree_lock, flags);
735 	next = __of_get_next_child(node, prev);
736 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
737 	return next;
738 }
739 EXPORT_SYMBOL(of_get_next_child);
740 
741 /**
742  * of_get_next_available_child - Find the next available child node
743  * @node:	parent node
744  * @prev:	previous child of the parent node, or NULL to get first
745  *
746  * This function is like of_get_next_child(), except that it
747  * automatically skips any disabled nodes (i.e. status = "disabled").
748  */
749 struct device_node *of_get_next_available_child(const struct device_node *node,
750 	struct device_node *prev)
751 {
752 	struct device_node *next;
753 	unsigned long flags;
754 
755 	if (!node)
756 		return NULL;
757 
758 	raw_spin_lock_irqsave(&devtree_lock, flags);
759 	next = prev ? prev->sibling : node->child;
760 	for (; next; next = next->sibling) {
761 		if (!__of_device_is_available(next))
762 			continue;
763 		if (of_node_get(next))
764 			break;
765 	}
766 	of_node_put(prev);
767 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
768 	return next;
769 }
770 EXPORT_SYMBOL(of_get_next_available_child);
771 
772 /**
773  * of_get_next_cpu_node - Iterate on cpu nodes
774  * @prev:	previous child of the /cpus node, or NULL to get first
775  *
776  * Return: A cpu node pointer with refcount incremented, use of_node_put()
777  * on it when done. Returns NULL when prev is the last child. Decrements
778  * the refcount of prev.
779  */
780 struct device_node *of_get_next_cpu_node(struct device_node *prev)
781 {
782 	struct device_node *next = NULL;
783 	unsigned long flags;
784 	struct device_node *node;
785 
786 	if (!prev)
787 		node = of_find_node_by_path("/cpus");
788 
789 	raw_spin_lock_irqsave(&devtree_lock, flags);
790 	if (prev)
791 		next = prev->sibling;
792 	else if (node) {
793 		next = node->child;
794 		of_node_put(node);
795 	}
796 	for (; next; next = next->sibling) {
797 		if (!(of_node_name_eq(next, "cpu") ||
798 		      __of_node_is_type(next, "cpu")))
799 			continue;
800 		if (of_node_get(next))
801 			break;
802 	}
803 	of_node_put(prev);
804 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
805 	return next;
806 }
807 EXPORT_SYMBOL(of_get_next_cpu_node);
808 
809 /**
810  * of_get_compatible_child - Find compatible child node
811  * @parent:	parent node
812  * @compatible:	compatible string
813  *
814  * Lookup child node whose compatible property contains the given compatible
815  * string.
816  *
817  * Return: a node pointer with refcount incremented, use of_node_put() on it
818  * when done; or NULL if not found.
819  */
820 struct device_node *of_get_compatible_child(const struct device_node *parent,
821 				const char *compatible)
822 {
823 	struct device_node *child;
824 
825 	for_each_child_of_node(parent, child) {
826 		if (of_device_is_compatible(child, compatible))
827 			break;
828 	}
829 
830 	return child;
831 }
832 EXPORT_SYMBOL(of_get_compatible_child);
833 
834 /**
835  * of_get_child_by_name - Find the child node by name for a given parent
836  * @node:	parent node
837  * @name:	child name to look for.
838  *
839  * This function looks for child node for given matching name
840  *
841  * Return: A node pointer if found, with refcount incremented, use
842  * of_node_put() on it when done.
843  * Returns NULL if node is not found.
844  */
845 struct device_node *of_get_child_by_name(const struct device_node *node,
846 				const char *name)
847 {
848 	struct device_node *child;
849 
850 	for_each_child_of_node(node, child)
851 		if (of_node_name_eq(child, name))
852 			break;
853 	return child;
854 }
855 EXPORT_SYMBOL(of_get_child_by_name);
856 
857 struct device_node *__of_find_node_by_path(struct device_node *parent,
858 						const char *path)
859 {
860 	struct device_node *child;
861 	int len;
862 
863 	len = strcspn(path, "/:");
864 	if (!len)
865 		return NULL;
866 
867 	__for_each_child_of_node(parent, child) {
868 		const char *name = kbasename(child->full_name);
869 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
870 			return child;
871 	}
872 	return NULL;
873 }
874 
875 struct device_node *__of_find_node_by_full_path(struct device_node *node,
876 						const char *path)
877 {
878 	const char *separator = strchr(path, ':');
879 
880 	while (node && *path == '/') {
881 		struct device_node *tmp = node;
882 
883 		path++; /* Increment past '/' delimiter */
884 		node = __of_find_node_by_path(node, path);
885 		of_node_put(tmp);
886 		path = strchrnul(path, '/');
887 		if (separator && separator < path)
888 			break;
889 	}
890 	return node;
891 }
892 
893 /**
894  * of_find_node_opts_by_path - Find a node matching a full OF path
895  * @path: Either the full path to match, or if the path does not
896  *       start with '/', the name of a property of the /aliases
897  *       node (an alias).  In the case of an alias, the node
898  *       matching the alias' value will be returned.
899  * @opts: Address of a pointer into which to store the start of
900  *       an options string appended to the end of the path with
901  *       a ':' separator.
902  *
903  * Valid paths:
904  *  * /foo/bar	Full path
905  *  * foo	Valid alias
906  *  * foo/bar	Valid alias + relative path
907  *
908  * Return: A node pointer with refcount incremented, use
909  * of_node_put() on it when done.
910  */
911 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
912 {
913 	struct device_node *np = NULL;
914 	struct property *pp;
915 	unsigned long flags;
916 	const char *separator = strchr(path, ':');
917 
918 	if (opts)
919 		*opts = separator ? separator + 1 : NULL;
920 
921 	if (strcmp(path, "/") == 0)
922 		return of_node_get(of_root);
923 
924 	/* The path could begin with an alias */
925 	if (*path != '/') {
926 		int len;
927 		const char *p = separator;
928 
929 		if (!p)
930 			p = strchrnul(path, '/');
931 		len = p - path;
932 
933 		/* of_aliases must not be NULL */
934 		if (!of_aliases)
935 			return NULL;
936 
937 		for_each_property_of_node(of_aliases, pp) {
938 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
939 				np = of_find_node_by_path(pp->value);
940 				break;
941 			}
942 		}
943 		if (!np)
944 			return NULL;
945 		path = p;
946 	}
947 
948 	/* Step down the tree matching path components */
949 	raw_spin_lock_irqsave(&devtree_lock, flags);
950 	if (!np)
951 		np = of_node_get(of_root);
952 	np = __of_find_node_by_full_path(np, path);
953 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
954 	return np;
955 }
956 EXPORT_SYMBOL(of_find_node_opts_by_path);
957 
958 /**
959  * of_find_node_by_name - Find a node by its "name" property
960  * @from:	The node to start searching from or NULL; the node
961  *		you pass will not be searched, only the next one
962  *		will. Typically, you pass what the previous call
963  *		returned. of_node_put() will be called on @from.
964  * @name:	The name string to match against
965  *
966  * Return: A node pointer with refcount incremented, use
967  * of_node_put() on it when done.
968  */
969 struct device_node *of_find_node_by_name(struct device_node *from,
970 	const char *name)
971 {
972 	struct device_node *np;
973 	unsigned long flags;
974 
975 	raw_spin_lock_irqsave(&devtree_lock, flags);
976 	for_each_of_allnodes_from(from, np)
977 		if (of_node_name_eq(np, name) && of_node_get(np))
978 			break;
979 	of_node_put(from);
980 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
981 	return np;
982 }
983 EXPORT_SYMBOL(of_find_node_by_name);
984 
985 /**
986  * of_find_node_by_type - Find a node by its "device_type" property
987  * @from:	The node to start searching from, or NULL to start searching
988  *		the entire device tree. The node you pass will not be
989  *		searched, only the next one will; typically, you pass
990  *		what the previous call returned. of_node_put() will be
991  *		called on from for you.
992  * @type:	The type string to match against
993  *
994  * Return: A node pointer with refcount incremented, use
995  * of_node_put() on it when done.
996  */
997 struct device_node *of_find_node_by_type(struct device_node *from,
998 	const char *type)
999 {
1000 	struct device_node *np;
1001 	unsigned long flags;
1002 
1003 	raw_spin_lock_irqsave(&devtree_lock, flags);
1004 	for_each_of_allnodes_from(from, np)
1005 		if (__of_node_is_type(np, type) && of_node_get(np))
1006 			break;
1007 	of_node_put(from);
1008 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 	return np;
1010 }
1011 EXPORT_SYMBOL(of_find_node_by_type);
1012 
1013 /**
1014  * of_find_compatible_node - Find a node based on type and one of the
1015  *                                tokens in its "compatible" property
1016  * @from:	The node to start searching from or NULL, the node
1017  *		you pass will not be searched, only the next one
1018  *		will; typically, you pass what the previous call
1019  *		returned. of_node_put() will be called on it
1020  * @type:	The type string to match "device_type" or NULL to ignore
1021  * @compatible:	The string to match to one of the tokens in the device
1022  *		"compatible" list.
1023  *
1024  * Return: A node pointer with refcount incremented, use
1025  * of_node_put() on it when done.
1026  */
1027 struct device_node *of_find_compatible_node(struct device_node *from,
1028 	const char *type, const char *compatible)
1029 {
1030 	struct device_node *np;
1031 	unsigned long flags;
1032 
1033 	raw_spin_lock_irqsave(&devtree_lock, flags);
1034 	for_each_of_allnodes_from(from, np)
1035 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1036 		    of_node_get(np))
1037 			break;
1038 	of_node_put(from);
1039 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1040 	return np;
1041 }
1042 EXPORT_SYMBOL(of_find_compatible_node);
1043 
1044 /**
1045  * of_find_node_with_property - Find a node which has a property with
1046  *                              the given name.
1047  * @from:	The node to start searching from or NULL, the node
1048  *		you pass will not be searched, only the next one
1049  *		will; typically, you pass what the previous call
1050  *		returned. of_node_put() will be called on it
1051  * @prop_name:	The name of the property to look for.
1052  *
1053  * Return: A node pointer with refcount incremented, use
1054  * of_node_put() on it when done.
1055  */
1056 struct device_node *of_find_node_with_property(struct device_node *from,
1057 	const char *prop_name)
1058 {
1059 	struct device_node *np;
1060 	struct property *pp;
1061 	unsigned long flags;
1062 
1063 	raw_spin_lock_irqsave(&devtree_lock, flags);
1064 	for_each_of_allnodes_from(from, np) {
1065 		for (pp = np->properties; pp; pp = pp->next) {
1066 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1067 				of_node_get(np);
1068 				goto out;
1069 			}
1070 		}
1071 	}
1072 out:
1073 	of_node_put(from);
1074 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1075 	return np;
1076 }
1077 EXPORT_SYMBOL(of_find_node_with_property);
1078 
1079 static
1080 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1081 					   const struct device_node *node)
1082 {
1083 	const struct of_device_id *best_match = NULL;
1084 	int score, best_score = 0;
1085 
1086 	if (!matches)
1087 		return NULL;
1088 
1089 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1090 		score = __of_device_is_compatible(node, matches->compatible,
1091 						  matches->type, matches->name);
1092 		if (score > best_score) {
1093 			best_match = matches;
1094 			best_score = score;
1095 		}
1096 	}
1097 
1098 	return best_match;
1099 }
1100 
1101 /**
1102  * of_match_node - Tell if a device_node has a matching of_match structure
1103  * @matches:	array of of device match structures to search in
1104  * @node:	the of device structure to match against
1105  *
1106  * Low level utility function used by device matching.
1107  */
1108 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1109 					 const struct device_node *node)
1110 {
1111 	const struct of_device_id *match;
1112 	unsigned long flags;
1113 
1114 	raw_spin_lock_irqsave(&devtree_lock, flags);
1115 	match = __of_match_node(matches, node);
1116 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1117 	return match;
1118 }
1119 EXPORT_SYMBOL(of_match_node);
1120 
1121 /**
1122  * of_find_matching_node_and_match - Find a node based on an of_device_id
1123  *				     match table.
1124  * @from:	The node to start searching from or NULL, the node
1125  *		you pass will not be searched, only the next one
1126  *		will; typically, you pass what the previous call
1127  *		returned. of_node_put() will be called on it
1128  * @matches:	array of of device match structures to search in
1129  * @match:	Updated to point at the matches entry which matched
1130  *
1131  * Return: A node pointer with refcount incremented, use
1132  * of_node_put() on it when done.
1133  */
1134 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1135 					const struct of_device_id *matches,
1136 					const struct of_device_id **match)
1137 {
1138 	struct device_node *np;
1139 	const struct of_device_id *m;
1140 	unsigned long flags;
1141 
1142 	if (match)
1143 		*match = NULL;
1144 
1145 	raw_spin_lock_irqsave(&devtree_lock, flags);
1146 	for_each_of_allnodes_from(from, np) {
1147 		m = __of_match_node(matches, np);
1148 		if (m && of_node_get(np)) {
1149 			if (match)
1150 				*match = m;
1151 			break;
1152 		}
1153 	}
1154 	of_node_put(from);
1155 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1156 	return np;
1157 }
1158 EXPORT_SYMBOL(of_find_matching_node_and_match);
1159 
1160 /**
1161  * of_modalias_node - Lookup appropriate modalias for a device node
1162  * @node:	pointer to a device tree node
1163  * @modalias:	Pointer to buffer that modalias value will be copied into
1164  * @len:	Length of modalias value
1165  *
1166  * Based on the value of the compatible property, this routine will attempt
1167  * to choose an appropriate modalias value for a particular device tree node.
1168  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1169  * from the first entry in the compatible list property.
1170  *
1171  * Return: This routine returns 0 on success, <0 on failure.
1172  */
1173 int of_modalias_node(struct device_node *node, char *modalias, int len)
1174 {
1175 	const char *compatible, *p;
1176 	int cplen;
1177 
1178 	compatible = of_get_property(node, "compatible", &cplen);
1179 	if (!compatible || strlen(compatible) > cplen)
1180 		return -ENODEV;
1181 	p = strchr(compatible, ',');
1182 	strlcpy(modalias, p ? p + 1 : compatible, len);
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(of_modalias_node);
1186 
1187 /**
1188  * of_find_node_by_phandle - Find a node given a phandle
1189  * @handle:	phandle of the node to find
1190  *
1191  * Return: A node pointer with refcount incremented, use
1192  * of_node_put() on it when done.
1193  */
1194 struct device_node *of_find_node_by_phandle(phandle handle)
1195 {
1196 	struct device_node *np = NULL;
1197 	unsigned long flags;
1198 	u32 handle_hash;
1199 
1200 	if (!handle)
1201 		return NULL;
1202 
1203 	handle_hash = of_phandle_cache_hash(handle);
1204 
1205 	raw_spin_lock_irqsave(&devtree_lock, flags);
1206 
1207 	if (phandle_cache[handle_hash] &&
1208 	    handle == phandle_cache[handle_hash]->phandle)
1209 		np = phandle_cache[handle_hash];
1210 
1211 	if (!np) {
1212 		for_each_of_allnodes(np)
1213 			if (np->phandle == handle &&
1214 			    !of_node_check_flag(np, OF_DETACHED)) {
1215 				phandle_cache[handle_hash] = np;
1216 				break;
1217 			}
1218 	}
1219 
1220 	of_node_get(np);
1221 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1222 	return np;
1223 }
1224 EXPORT_SYMBOL(of_find_node_by_phandle);
1225 
1226 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1227 {
1228 	int i;
1229 	printk("%s %pOF", msg, args->np);
1230 	for (i = 0; i < args->args_count; i++) {
1231 		const char delim = i ? ',' : ':';
1232 
1233 		pr_cont("%c%08x", delim, args->args[i]);
1234 	}
1235 	pr_cont("\n");
1236 }
1237 
1238 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1239 		const struct device_node *np,
1240 		const char *list_name,
1241 		const char *cells_name,
1242 		int cell_count)
1243 {
1244 	const __be32 *list;
1245 	int size;
1246 
1247 	memset(it, 0, sizeof(*it));
1248 
1249 	/*
1250 	 * one of cell_count or cells_name must be provided to determine the
1251 	 * argument length.
1252 	 */
1253 	if (cell_count < 0 && !cells_name)
1254 		return -EINVAL;
1255 
1256 	list = of_get_property(np, list_name, &size);
1257 	if (!list)
1258 		return -ENOENT;
1259 
1260 	it->cells_name = cells_name;
1261 	it->cell_count = cell_count;
1262 	it->parent = np;
1263 	it->list_end = list + size / sizeof(*list);
1264 	it->phandle_end = list;
1265 	it->cur = list;
1266 
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1270 
1271 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1272 {
1273 	uint32_t count = 0;
1274 
1275 	if (it->node) {
1276 		of_node_put(it->node);
1277 		it->node = NULL;
1278 	}
1279 
1280 	if (!it->cur || it->phandle_end >= it->list_end)
1281 		return -ENOENT;
1282 
1283 	it->cur = it->phandle_end;
1284 
1285 	/* If phandle is 0, then it is an empty entry with no arguments. */
1286 	it->phandle = be32_to_cpup(it->cur++);
1287 
1288 	if (it->phandle) {
1289 
1290 		/*
1291 		 * Find the provider node and parse the #*-cells property to
1292 		 * determine the argument length.
1293 		 */
1294 		it->node = of_find_node_by_phandle(it->phandle);
1295 
1296 		if (it->cells_name) {
1297 			if (!it->node) {
1298 				pr_err("%pOF: could not find phandle %d\n",
1299 				       it->parent, it->phandle);
1300 				goto err;
1301 			}
1302 
1303 			if (of_property_read_u32(it->node, it->cells_name,
1304 						 &count)) {
1305 				/*
1306 				 * If both cell_count and cells_name is given,
1307 				 * fall back to cell_count in absence
1308 				 * of the cells_name property
1309 				 */
1310 				if (it->cell_count >= 0) {
1311 					count = it->cell_count;
1312 				} else {
1313 					pr_err("%pOF: could not get %s for %pOF\n",
1314 					       it->parent,
1315 					       it->cells_name,
1316 					       it->node);
1317 					goto err;
1318 				}
1319 			}
1320 		} else {
1321 			count = it->cell_count;
1322 		}
1323 
1324 		/*
1325 		 * Make sure that the arguments actually fit in the remaining
1326 		 * property data length
1327 		 */
1328 		if (it->cur + count > it->list_end) {
1329 			pr_err("%pOF: %s = %d found %d\n",
1330 			       it->parent, it->cells_name,
1331 			       count, it->cell_count);
1332 			goto err;
1333 		}
1334 	}
1335 
1336 	it->phandle_end = it->cur + count;
1337 	it->cur_count = count;
1338 
1339 	return 0;
1340 
1341 err:
1342 	if (it->node) {
1343 		of_node_put(it->node);
1344 		it->node = NULL;
1345 	}
1346 
1347 	return -EINVAL;
1348 }
1349 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1350 
1351 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1352 			     uint32_t *args,
1353 			     int size)
1354 {
1355 	int i, count;
1356 
1357 	count = it->cur_count;
1358 
1359 	if (WARN_ON(size < count))
1360 		count = size;
1361 
1362 	for (i = 0; i < count; i++)
1363 		args[i] = be32_to_cpup(it->cur++);
1364 
1365 	return count;
1366 }
1367 
1368 static int __of_parse_phandle_with_args(const struct device_node *np,
1369 					const char *list_name,
1370 					const char *cells_name,
1371 					int cell_count, int index,
1372 					struct of_phandle_args *out_args)
1373 {
1374 	struct of_phandle_iterator it;
1375 	int rc, cur_index = 0;
1376 
1377 	/* Loop over the phandles until all the requested entry is found */
1378 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1379 		/*
1380 		 * All of the error cases bail out of the loop, so at
1381 		 * this point, the parsing is successful. If the requested
1382 		 * index matches, then fill the out_args structure and return,
1383 		 * or return -ENOENT for an empty entry.
1384 		 */
1385 		rc = -ENOENT;
1386 		if (cur_index == index) {
1387 			if (!it.phandle)
1388 				goto err;
1389 
1390 			if (out_args) {
1391 				int c;
1392 
1393 				c = of_phandle_iterator_args(&it,
1394 							     out_args->args,
1395 							     MAX_PHANDLE_ARGS);
1396 				out_args->np = it.node;
1397 				out_args->args_count = c;
1398 			} else {
1399 				of_node_put(it.node);
1400 			}
1401 
1402 			/* Found it! return success */
1403 			return 0;
1404 		}
1405 
1406 		cur_index++;
1407 	}
1408 
1409 	/*
1410 	 * Unlock node before returning result; will be one of:
1411 	 * -ENOENT : index is for empty phandle
1412 	 * -EINVAL : parsing error on data
1413 	 */
1414 
1415  err:
1416 	of_node_put(it.node);
1417 	return rc;
1418 }
1419 
1420 /**
1421  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1422  * @np: Pointer to device node holding phandle property
1423  * @phandle_name: Name of property holding a phandle value
1424  * @index: For properties holding a table of phandles, this is the index into
1425  *         the table
1426  *
1427  * Return: The device_node pointer with refcount incremented.  Use
1428  * of_node_put() on it when done.
1429  */
1430 struct device_node *of_parse_phandle(const struct device_node *np,
1431 				     const char *phandle_name, int index)
1432 {
1433 	struct of_phandle_args args;
1434 
1435 	if (index < 0)
1436 		return NULL;
1437 
1438 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1439 					 index, &args))
1440 		return NULL;
1441 
1442 	return args.np;
1443 }
1444 EXPORT_SYMBOL(of_parse_phandle);
1445 
1446 /**
1447  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1448  * @np:		pointer to a device tree node containing a list
1449  * @list_name:	property name that contains a list
1450  * @cells_name:	property name that specifies phandles' arguments count
1451  * @index:	index of a phandle to parse out
1452  * @out_args:	optional pointer to output arguments structure (will be filled)
1453  *
1454  * This function is useful to parse lists of phandles and their arguments.
1455  * Returns 0 on success and fills out_args, on error returns appropriate
1456  * errno value.
1457  *
1458  * Caller is responsible to call of_node_put() on the returned out_args->np
1459  * pointer.
1460  *
1461  * Example::
1462  *
1463  *  phandle1: node1 {
1464  *	#list-cells = <2>;
1465  *  };
1466  *
1467  *  phandle2: node2 {
1468  *	#list-cells = <1>;
1469  *  };
1470  *
1471  *  node3 {
1472  *	list = <&phandle1 1 2 &phandle2 3>;
1473  *  };
1474  *
1475  * To get a device_node of the ``node2`` node you may call this:
1476  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1477  */
1478 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1479 				const char *cells_name, int index,
1480 				struct of_phandle_args *out_args)
1481 {
1482 	int cell_count = -1;
1483 
1484 	if (index < 0)
1485 		return -EINVAL;
1486 
1487 	/* If cells_name is NULL we assume a cell count of 0 */
1488 	if (!cells_name)
1489 		cell_count = 0;
1490 
1491 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1492 					    cell_count, index, out_args);
1493 }
1494 EXPORT_SYMBOL(of_parse_phandle_with_args);
1495 
1496 /**
1497  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1498  * @np:		pointer to a device tree node containing a list
1499  * @list_name:	property name that contains a list
1500  * @stem_name:	stem of property names that specify phandles' arguments count
1501  * @index:	index of a phandle to parse out
1502  * @out_args:	optional pointer to output arguments structure (will be filled)
1503  *
1504  * This function is useful to parse lists of phandles and their arguments.
1505  * Returns 0 on success and fills out_args, on error returns appropriate errno
1506  * value. The difference between this function and of_parse_phandle_with_args()
1507  * is that this API remaps a phandle if the node the phandle points to has
1508  * a <@stem_name>-map property.
1509  *
1510  * Caller is responsible to call of_node_put() on the returned out_args->np
1511  * pointer.
1512  *
1513  * Example::
1514  *
1515  *  phandle1: node1 {
1516  *  	#list-cells = <2>;
1517  *  };
1518  *
1519  *  phandle2: node2 {
1520  *  	#list-cells = <1>;
1521  *  };
1522  *
1523  *  phandle3: node3 {
1524  *  	#list-cells = <1>;
1525  *  	list-map = <0 &phandle2 3>,
1526  *  		   <1 &phandle2 2>,
1527  *  		   <2 &phandle1 5 1>;
1528  *  	list-map-mask = <0x3>;
1529  *  };
1530  *
1531  *  node4 {
1532  *  	list = <&phandle1 1 2 &phandle3 0>;
1533  *  };
1534  *
1535  * To get a device_node of the ``node2`` node you may call this:
1536  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1537  */
1538 int of_parse_phandle_with_args_map(const struct device_node *np,
1539 				   const char *list_name,
1540 				   const char *stem_name,
1541 				   int index, struct of_phandle_args *out_args)
1542 {
1543 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1544 	char *pass_name = NULL;
1545 	struct device_node *cur, *new = NULL;
1546 	const __be32 *map, *mask, *pass;
1547 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1548 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1549 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1550 	const __be32 *match_array = initial_match_array;
1551 	int i, ret, map_len, match;
1552 	u32 list_size, new_size;
1553 
1554 	if (index < 0)
1555 		return -EINVAL;
1556 
1557 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1558 	if (!cells_name)
1559 		return -ENOMEM;
1560 
1561 	ret = -ENOMEM;
1562 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1563 	if (!map_name)
1564 		goto free;
1565 
1566 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1567 	if (!mask_name)
1568 		goto free;
1569 
1570 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1571 	if (!pass_name)
1572 		goto free;
1573 
1574 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1575 					   out_args);
1576 	if (ret)
1577 		goto free;
1578 
1579 	/* Get the #<list>-cells property */
1580 	cur = out_args->np;
1581 	ret = of_property_read_u32(cur, cells_name, &list_size);
1582 	if (ret < 0)
1583 		goto put;
1584 
1585 	/* Precalculate the match array - this simplifies match loop */
1586 	for (i = 0; i < list_size; i++)
1587 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1588 
1589 	ret = -EINVAL;
1590 	while (cur) {
1591 		/* Get the <list>-map property */
1592 		map = of_get_property(cur, map_name, &map_len);
1593 		if (!map) {
1594 			ret = 0;
1595 			goto free;
1596 		}
1597 		map_len /= sizeof(u32);
1598 
1599 		/* Get the <list>-map-mask property (optional) */
1600 		mask = of_get_property(cur, mask_name, NULL);
1601 		if (!mask)
1602 			mask = dummy_mask;
1603 		/* Iterate through <list>-map property */
1604 		match = 0;
1605 		while (map_len > (list_size + 1) && !match) {
1606 			/* Compare specifiers */
1607 			match = 1;
1608 			for (i = 0; i < list_size; i++, map_len--)
1609 				match &= !((match_array[i] ^ *map++) & mask[i]);
1610 
1611 			of_node_put(new);
1612 			new = of_find_node_by_phandle(be32_to_cpup(map));
1613 			map++;
1614 			map_len--;
1615 
1616 			/* Check if not found */
1617 			if (!new)
1618 				goto put;
1619 
1620 			if (!of_device_is_available(new))
1621 				match = 0;
1622 
1623 			ret = of_property_read_u32(new, cells_name, &new_size);
1624 			if (ret)
1625 				goto put;
1626 
1627 			/* Check for malformed properties */
1628 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1629 				goto put;
1630 			if (map_len < new_size)
1631 				goto put;
1632 
1633 			/* Move forward by new node's #<list>-cells amount */
1634 			map += new_size;
1635 			map_len -= new_size;
1636 		}
1637 		if (!match)
1638 			goto put;
1639 
1640 		/* Get the <list>-map-pass-thru property (optional) */
1641 		pass = of_get_property(cur, pass_name, NULL);
1642 		if (!pass)
1643 			pass = dummy_pass;
1644 
1645 		/*
1646 		 * Successfully parsed a <list>-map translation; copy new
1647 		 * specifier into the out_args structure, keeping the
1648 		 * bits specified in <list>-map-pass-thru.
1649 		 */
1650 		match_array = map - new_size;
1651 		for (i = 0; i < new_size; i++) {
1652 			__be32 val = *(map - new_size + i);
1653 
1654 			if (i < list_size) {
1655 				val &= ~pass[i];
1656 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1657 			}
1658 
1659 			out_args->args[i] = be32_to_cpu(val);
1660 		}
1661 		out_args->args_count = list_size = new_size;
1662 		/* Iterate again with new provider */
1663 		out_args->np = new;
1664 		of_node_put(cur);
1665 		cur = new;
1666 	}
1667 put:
1668 	of_node_put(cur);
1669 	of_node_put(new);
1670 free:
1671 	kfree(mask_name);
1672 	kfree(map_name);
1673 	kfree(cells_name);
1674 	kfree(pass_name);
1675 
1676 	return ret;
1677 }
1678 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1679 
1680 /**
1681  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1682  * @np:		pointer to a device tree node containing a list
1683  * @list_name:	property name that contains a list
1684  * @cell_count: number of argument cells following the phandle
1685  * @index:	index of a phandle to parse out
1686  * @out_args:	optional pointer to output arguments structure (will be filled)
1687  *
1688  * This function is useful to parse lists of phandles and their arguments.
1689  * Returns 0 on success and fills out_args, on error returns appropriate
1690  * errno value.
1691  *
1692  * Caller is responsible to call of_node_put() on the returned out_args->np
1693  * pointer.
1694  *
1695  * Example::
1696  *
1697  *  phandle1: node1 {
1698  *  };
1699  *
1700  *  phandle2: node2 {
1701  *  };
1702  *
1703  *  node3 {
1704  *  	list = <&phandle1 0 2 &phandle2 2 3>;
1705  *  };
1706  *
1707  * To get a device_node of the ``node2`` node you may call this:
1708  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1709  */
1710 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1711 				const char *list_name, int cell_count,
1712 				int index, struct of_phandle_args *out_args)
1713 {
1714 	if (index < 0)
1715 		return -EINVAL;
1716 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1717 					   index, out_args);
1718 }
1719 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1720 
1721 /**
1722  * of_count_phandle_with_args() - Find the number of phandles references in a property
1723  * @np:		pointer to a device tree node containing a list
1724  * @list_name:	property name that contains a list
1725  * @cells_name:	property name that specifies phandles' arguments count
1726  *
1727  * Return: The number of phandle + argument tuples within a property. It
1728  * is a typical pattern to encode a list of phandle and variable
1729  * arguments into a single property. The number of arguments is encoded
1730  * by a property in the phandle-target node. For example, a gpios
1731  * property would contain a list of GPIO specifies consisting of a
1732  * phandle and 1 or more arguments. The number of arguments are
1733  * determined by the #gpio-cells property in the node pointed to by the
1734  * phandle.
1735  */
1736 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1737 				const char *cells_name)
1738 {
1739 	struct of_phandle_iterator it;
1740 	int rc, cur_index = 0;
1741 
1742 	/*
1743 	 * If cells_name is NULL we assume a cell count of 0. This makes
1744 	 * counting the phandles trivial as each 32bit word in the list is a
1745 	 * phandle and no arguments are to consider. So we don't iterate through
1746 	 * the list but just use the length to determine the phandle count.
1747 	 */
1748 	if (!cells_name) {
1749 		const __be32 *list;
1750 		int size;
1751 
1752 		list = of_get_property(np, list_name, &size);
1753 		if (!list)
1754 			return -ENOENT;
1755 
1756 		return size / sizeof(*list);
1757 	}
1758 
1759 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1760 	if (rc)
1761 		return rc;
1762 
1763 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1764 		cur_index += 1;
1765 
1766 	if (rc != -ENOENT)
1767 		return rc;
1768 
1769 	return cur_index;
1770 }
1771 EXPORT_SYMBOL(of_count_phandle_with_args);
1772 
1773 /**
1774  * __of_add_property - Add a property to a node without lock operations
1775  * @np:		Caller's Device Node
1776  * @prop:	Property to add
1777  */
1778 int __of_add_property(struct device_node *np, struct property *prop)
1779 {
1780 	struct property **next;
1781 
1782 	prop->next = NULL;
1783 	next = &np->properties;
1784 	while (*next) {
1785 		if (strcmp(prop->name, (*next)->name) == 0)
1786 			/* duplicate ! don't insert it */
1787 			return -EEXIST;
1788 
1789 		next = &(*next)->next;
1790 	}
1791 	*next = prop;
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * of_add_property - Add a property to a node
1798  * @np:		Caller's Device Node
1799  * @prop:	Property to add
1800  */
1801 int of_add_property(struct device_node *np, struct property *prop)
1802 {
1803 	unsigned long flags;
1804 	int rc;
1805 
1806 	mutex_lock(&of_mutex);
1807 
1808 	raw_spin_lock_irqsave(&devtree_lock, flags);
1809 	rc = __of_add_property(np, prop);
1810 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1811 
1812 	if (!rc)
1813 		__of_add_property_sysfs(np, prop);
1814 
1815 	mutex_unlock(&of_mutex);
1816 
1817 	if (!rc)
1818 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1819 
1820 	return rc;
1821 }
1822 EXPORT_SYMBOL_GPL(of_add_property);
1823 
1824 int __of_remove_property(struct device_node *np, struct property *prop)
1825 {
1826 	struct property **next;
1827 
1828 	for (next = &np->properties; *next; next = &(*next)->next) {
1829 		if (*next == prop)
1830 			break;
1831 	}
1832 	if (*next == NULL)
1833 		return -ENODEV;
1834 
1835 	/* found the node */
1836 	*next = prop->next;
1837 	prop->next = np->deadprops;
1838 	np->deadprops = prop;
1839 
1840 	return 0;
1841 }
1842 
1843 /**
1844  * of_remove_property - Remove a property from a node.
1845  * @np:		Caller's Device Node
1846  * @prop:	Property to remove
1847  *
1848  * Note that we don't actually remove it, since we have given out
1849  * who-knows-how-many pointers to the data using get-property.
1850  * Instead we just move the property to the "dead properties"
1851  * list, so it won't be found any more.
1852  */
1853 int of_remove_property(struct device_node *np, struct property *prop)
1854 {
1855 	unsigned long flags;
1856 	int rc;
1857 
1858 	if (!prop)
1859 		return -ENODEV;
1860 
1861 	mutex_lock(&of_mutex);
1862 
1863 	raw_spin_lock_irqsave(&devtree_lock, flags);
1864 	rc = __of_remove_property(np, prop);
1865 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1866 
1867 	if (!rc)
1868 		__of_remove_property_sysfs(np, prop);
1869 
1870 	mutex_unlock(&of_mutex);
1871 
1872 	if (!rc)
1873 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1874 
1875 	return rc;
1876 }
1877 EXPORT_SYMBOL_GPL(of_remove_property);
1878 
1879 int __of_update_property(struct device_node *np, struct property *newprop,
1880 		struct property **oldpropp)
1881 {
1882 	struct property **next, *oldprop;
1883 
1884 	for (next = &np->properties; *next; next = &(*next)->next) {
1885 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1886 			break;
1887 	}
1888 	*oldpropp = oldprop = *next;
1889 
1890 	if (oldprop) {
1891 		/* replace the node */
1892 		newprop->next = oldprop->next;
1893 		*next = newprop;
1894 		oldprop->next = np->deadprops;
1895 		np->deadprops = oldprop;
1896 	} else {
1897 		/* new node */
1898 		newprop->next = NULL;
1899 		*next = newprop;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 /*
1906  * of_update_property - Update a property in a node, if the property does
1907  * not exist, add it.
1908  *
1909  * Note that we don't actually remove it, since we have given out
1910  * who-knows-how-many pointers to the data using get-property.
1911  * Instead we just move the property to the "dead properties" list,
1912  * and add the new property to the property list
1913  */
1914 int of_update_property(struct device_node *np, struct property *newprop)
1915 {
1916 	struct property *oldprop;
1917 	unsigned long flags;
1918 	int rc;
1919 
1920 	if (!newprop->name)
1921 		return -EINVAL;
1922 
1923 	mutex_lock(&of_mutex);
1924 
1925 	raw_spin_lock_irqsave(&devtree_lock, flags);
1926 	rc = __of_update_property(np, newprop, &oldprop);
1927 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1928 
1929 	if (!rc)
1930 		__of_update_property_sysfs(np, newprop, oldprop);
1931 
1932 	mutex_unlock(&of_mutex);
1933 
1934 	if (!rc)
1935 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1936 
1937 	return rc;
1938 }
1939 
1940 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1941 			 int id, const char *stem, int stem_len)
1942 {
1943 	ap->np = np;
1944 	ap->id = id;
1945 	strncpy(ap->stem, stem, stem_len);
1946 	ap->stem[stem_len] = 0;
1947 	list_add_tail(&ap->link, &aliases_lookup);
1948 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1949 		 ap->alias, ap->stem, ap->id, np);
1950 }
1951 
1952 /**
1953  * of_alias_scan - Scan all properties of the 'aliases' node
1954  * @dt_alloc:	An allocator that provides a virtual address to memory
1955  *		for storing the resulting tree
1956  *
1957  * The function scans all the properties of the 'aliases' node and populates
1958  * the global lookup table with the properties.  It returns the
1959  * number of alias properties found, or an error code in case of failure.
1960  */
1961 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1962 {
1963 	struct property *pp;
1964 
1965 	of_aliases = of_find_node_by_path("/aliases");
1966 	of_chosen = of_find_node_by_path("/chosen");
1967 	if (of_chosen == NULL)
1968 		of_chosen = of_find_node_by_path("/chosen@0");
1969 
1970 	if (of_chosen) {
1971 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1972 		const char *name = NULL;
1973 
1974 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1975 			of_property_read_string(of_chosen, "linux,stdout-path",
1976 						&name);
1977 		if (IS_ENABLED(CONFIG_PPC) && !name)
1978 			of_property_read_string(of_aliases, "stdout", &name);
1979 		if (name)
1980 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1981 	}
1982 
1983 	if (!of_aliases)
1984 		return;
1985 
1986 	for_each_property_of_node(of_aliases, pp) {
1987 		const char *start = pp->name;
1988 		const char *end = start + strlen(start);
1989 		struct device_node *np;
1990 		struct alias_prop *ap;
1991 		int id, len;
1992 
1993 		/* Skip those we do not want to proceed */
1994 		if (!strcmp(pp->name, "name") ||
1995 		    !strcmp(pp->name, "phandle") ||
1996 		    !strcmp(pp->name, "linux,phandle"))
1997 			continue;
1998 
1999 		np = of_find_node_by_path(pp->value);
2000 		if (!np)
2001 			continue;
2002 
2003 		/* walk the alias backwards to extract the id and work out
2004 		 * the 'stem' string */
2005 		while (isdigit(*(end-1)) && end > start)
2006 			end--;
2007 		len = end - start;
2008 
2009 		if (kstrtoint(end, 10, &id) < 0)
2010 			continue;
2011 
2012 		/* Allocate an alias_prop with enough space for the stem */
2013 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2014 		if (!ap)
2015 			continue;
2016 		memset(ap, 0, sizeof(*ap) + len + 1);
2017 		ap->alias = start;
2018 		of_alias_add(ap, np, id, start, len);
2019 	}
2020 }
2021 
2022 /**
2023  * of_alias_get_id - Get alias id for the given device_node
2024  * @np:		Pointer to the given device_node
2025  * @stem:	Alias stem of the given device_node
2026  *
2027  * The function travels the lookup table to get the alias id for the given
2028  * device_node and alias stem.
2029  *
2030  * Return: The alias id if found.
2031  */
2032 int of_alias_get_id(struct device_node *np, const char *stem)
2033 {
2034 	struct alias_prop *app;
2035 	int id = -ENODEV;
2036 
2037 	mutex_lock(&of_mutex);
2038 	list_for_each_entry(app, &aliases_lookup, link) {
2039 		if (strcmp(app->stem, stem) != 0)
2040 			continue;
2041 
2042 		if (np == app->np) {
2043 			id = app->id;
2044 			break;
2045 		}
2046 	}
2047 	mutex_unlock(&of_mutex);
2048 
2049 	return id;
2050 }
2051 EXPORT_SYMBOL_GPL(of_alias_get_id);
2052 
2053 /**
2054  * of_alias_get_alias_list - Get alias list for the given device driver
2055  * @matches:	Array of OF device match structures to search in
2056  * @stem:	Alias stem of the given device_node
2057  * @bitmap:	Bitmap field pointer
2058  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2059  *
2060  * The function travels the lookup table to record alias ids for the given
2061  * device match structures and alias stem.
2062  *
2063  * Return:	0 or -ENOSYS when !CONFIG_OF or
2064  *		-EOVERFLOW if alias ID is greater then allocated nbits
2065  */
2066 int of_alias_get_alias_list(const struct of_device_id *matches,
2067 			     const char *stem, unsigned long *bitmap,
2068 			     unsigned int nbits)
2069 {
2070 	struct alias_prop *app;
2071 	int ret = 0;
2072 
2073 	/* Zero bitmap field to make sure that all the time it is clean */
2074 	bitmap_zero(bitmap, nbits);
2075 
2076 	mutex_lock(&of_mutex);
2077 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2078 	list_for_each_entry(app, &aliases_lookup, link) {
2079 		pr_debug("%s: stem: %s, id: %d\n",
2080 			 __func__, app->stem, app->id);
2081 
2082 		if (strcmp(app->stem, stem) != 0) {
2083 			pr_debug("%s: stem comparison didn't pass %s\n",
2084 				 __func__, app->stem);
2085 			continue;
2086 		}
2087 
2088 		if (of_match_node(matches, app->np)) {
2089 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2090 
2091 			if (app->id >= nbits) {
2092 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2093 					__func__, app->id, nbits);
2094 				ret = -EOVERFLOW;
2095 			} else {
2096 				set_bit(app->id, bitmap);
2097 			}
2098 		}
2099 	}
2100 	mutex_unlock(&of_mutex);
2101 
2102 	return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2105 
2106 /**
2107  * of_alias_get_highest_id - Get highest alias id for the given stem
2108  * @stem:	Alias stem to be examined
2109  *
2110  * The function travels the lookup table to get the highest alias id for the
2111  * given alias stem.  It returns the alias id if found.
2112  */
2113 int of_alias_get_highest_id(const char *stem)
2114 {
2115 	struct alias_prop *app;
2116 	int id = -ENODEV;
2117 
2118 	mutex_lock(&of_mutex);
2119 	list_for_each_entry(app, &aliases_lookup, link) {
2120 		if (strcmp(app->stem, stem) != 0)
2121 			continue;
2122 
2123 		if (app->id > id)
2124 			id = app->id;
2125 	}
2126 	mutex_unlock(&of_mutex);
2127 
2128 	return id;
2129 }
2130 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2131 
2132 /**
2133  * of_console_check() - Test and setup console for DT setup
2134  * @dn: Pointer to device node
2135  * @name: Name to use for preferred console without index. ex. "ttyS"
2136  * @index: Index to use for preferred console.
2137  *
2138  * Check if the given device node matches the stdout-path property in the
2139  * /chosen node. If it does then register it as the preferred console.
2140  *
2141  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2142  */
2143 bool of_console_check(struct device_node *dn, char *name, int index)
2144 {
2145 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2146 		return false;
2147 
2148 	/*
2149 	 * XXX: cast `options' to char pointer to suppress complication
2150 	 * warnings: printk, UART and console drivers expect char pointer.
2151 	 */
2152 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2153 }
2154 EXPORT_SYMBOL_GPL(of_console_check);
2155 
2156 /**
2157  * of_find_next_cache_node - Find a node's subsidiary cache
2158  * @np:	node of type "cpu" or "cache"
2159  *
2160  * Return: A node pointer with refcount incremented, use
2161  * of_node_put() on it when done.  Caller should hold a reference
2162  * to np.
2163  */
2164 struct device_node *of_find_next_cache_node(const struct device_node *np)
2165 {
2166 	struct device_node *child, *cache_node;
2167 
2168 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2169 	if (!cache_node)
2170 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2171 
2172 	if (cache_node)
2173 		return cache_node;
2174 
2175 	/* OF on pmac has nodes instead of properties named "l2-cache"
2176 	 * beneath CPU nodes.
2177 	 */
2178 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2179 		for_each_child_of_node(np, child)
2180 			if (of_node_is_type(child, "cache"))
2181 				return child;
2182 
2183 	return NULL;
2184 }
2185 
2186 /**
2187  * of_find_last_cache_level - Find the level at which the last cache is
2188  * 		present for the given logical cpu
2189  *
2190  * @cpu: cpu number(logical index) for which the last cache level is needed
2191  *
2192  * Return: The the level at which the last cache is present. It is exactly
2193  * same as  the total number of cache levels for the given logical cpu.
2194  */
2195 int of_find_last_cache_level(unsigned int cpu)
2196 {
2197 	u32 cache_level = 0;
2198 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2199 
2200 	while (np) {
2201 		prev = np;
2202 		of_node_put(np);
2203 		np = of_find_next_cache_node(np);
2204 	}
2205 
2206 	of_property_read_u32(prev, "cache-level", &cache_level);
2207 
2208 	return cache_level;
2209 }
2210 
2211 /**
2212  * of_map_id - Translate an ID through a downstream mapping.
2213  * @np: root complex device node.
2214  * @id: device ID to map.
2215  * @map_name: property name of the map to use.
2216  * @map_mask_name: optional property name of the mask to use.
2217  * @target: optional pointer to a target device node.
2218  * @id_out: optional pointer to receive the translated ID.
2219  *
2220  * Given a device ID, look up the appropriate implementation-defined
2221  * platform ID and/or the target device which receives transactions on that
2222  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2223  * @id_out may be NULL if only the other is required. If @target points to
2224  * a non-NULL device node pointer, only entries targeting that node will be
2225  * matched; if it points to a NULL value, it will receive the device node of
2226  * the first matching target phandle, with a reference held.
2227  *
2228  * Return: 0 on success or a standard error code on failure.
2229  */
2230 int of_map_id(struct device_node *np, u32 id,
2231 	       const char *map_name, const char *map_mask_name,
2232 	       struct device_node **target, u32 *id_out)
2233 {
2234 	u32 map_mask, masked_id;
2235 	int map_len;
2236 	const __be32 *map = NULL;
2237 
2238 	if (!np || !map_name || (!target && !id_out))
2239 		return -EINVAL;
2240 
2241 	map = of_get_property(np, map_name, &map_len);
2242 	if (!map) {
2243 		if (target)
2244 			return -ENODEV;
2245 		/* Otherwise, no map implies no translation */
2246 		*id_out = id;
2247 		return 0;
2248 	}
2249 
2250 	if (!map_len || map_len % (4 * sizeof(*map))) {
2251 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2252 			map_name, map_len);
2253 		return -EINVAL;
2254 	}
2255 
2256 	/* The default is to select all bits. */
2257 	map_mask = 0xffffffff;
2258 
2259 	/*
2260 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2261 	 * If of_property_read_u32() fails, the default is used.
2262 	 */
2263 	if (map_mask_name)
2264 		of_property_read_u32(np, map_mask_name, &map_mask);
2265 
2266 	masked_id = map_mask & id;
2267 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2268 		struct device_node *phandle_node;
2269 		u32 id_base = be32_to_cpup(map + 0);
2270 		u32 phandle = be32_to_cpup(map + 1);
2271 		u32 out_base = be32_to_cpup(map + 2);
2272 		u32 id_len = be32_to_cpup(map + 3);
2273 
2274 		if (id_base & ~map_mask) {
2275 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2276 				np, map_name, map_name,
2277 				map_mask, id_base);
2278 			return -EFAULT;
2279 		}
2280 
2281 		if (masked_id < id_base || masked_id >= id_base + id_len)
2282 			continue;
2283 
2284 		phandle_node = of_find_node_by_phandle(phandle);
2285 		if (!phandle_node)
2286 			return -ENODEV;
2287 
2288 		if (target) {
2289 			if (*target)
2290 				of_node_put(phandle_node);
2291 			else
2292 				*target = phandle_node;
2293 
2294 			if (*target != phandle_node)
2295 				continue;
2296 		}
2297 
2298 		if (id_out)
2299 			*id_out = masked_id - id_base + out_base;
2300 
2301 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2302 			np, map_name, map_mask, id_base, out_base,
2303 			id_len, id, masked_id - id_base + out_base);
2304 		return 0;
2305 	}
2306 
2307 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2308 		id, target && *target ? *target : NULL);
2309 
2310 	/* Bypasses translation */
2311 	if (id_out)
2312 		*id_out = id;
2313 	return 0;
2314 }
2315 EXPORT_SYMBOL_GPL(of_map_id);
2316