xref: /openbmc/linux/drivers/of/base.c (revision e2f1cf25)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 int of_n_addr_cells(struct device_node *np)
58 {
59 	const __be32 *ip;
60 
61 	do {
62 		if (np->parent)
63 			np = np->parent;
64 		ip = of_get_property(np, "#address-cells", NULL);
65 		if (ip)
66 			return be32_to_cpup(ip);
67 	} while (np->parent);
68 	/* No #address-cells property for the root node */
69 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72 
73 int of_n_size_cells(struct device_node *np)
74 {
75 	const __be32 *ip;
76 
77 	do {
78 		if (np->parent)
79 			np = np->parent;
80 		ip = of_get_property(np, "#size-cells", NULL);
81 		if (ip)
82 			return be32_to_cpup(ip);
83 	} while (np->parent);
84 	/* No #size-cells property for the root node */
85 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88 
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 	return NUMA_NO_NODE;
93 }
94 #endif
95 
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102 
103 struct kobj_type of_node_ktype = {
104 	.release = of_node_release,
105 };
106 
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 				struct bin_attribute *bin_attr, char *buf,
109 				loff_t offset, size_t count)
110 {
111 	struct property *pp = container_of(bin_attr, struct property, attr);
112 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114 
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 	const char *name = orig_name;
118 	struct kernfs_node *kn;
119 	int i = 0;
120 
121 	/* don't be a hero. After 16 tries give up */
122 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 		sysfs_put(kn);
124 		if (name != orig_name)
125 			kfree(name);
126 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 	}
128 
129 	if (name != orig_name)
130 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 			kobject_name(kobj), name);
132 	return name;
133 }
134 
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 	int rc;
138 
139 	/* Important: Don't leak passwords */
140 	bool secure = strncmp(pp->name, "security-", 9) == 0;
141 
142 	if (!IS_ENABLED(CONFIG_SYSFS))
143 		return 0;
144 
145 	if (!of_kset || !of_node_is_attached(np))
146 		return 0;
147 
148 	sysfs_bin_attr_init(&pp->attr);
149 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 	pp->attr.size = secure ? 0 : pp->length;
152 	pp->attr.read = of_node_property_read;
153 
154 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 	return rc;
157 }
158 
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 	const char *name;
162 	struct property *pp;
163 	int rc;
164 
165 	if (!IS_ENABLED(CONFIG_SYSFS))
166 		return 0;
167 
168 	if (!of_kset)
169 		return 0;
170 
171 	np->kobj.kset = of_kset;
172 	if (!np->parent) {
173 		/* Nodes without parents are new top level trees */
174 		rc = kobject_add(&np->kobj, NULL, "%s",
175 				 safe_name(&of_kset->kobj, "base"));
176 	} else {
177 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 		if (!name || !name[0])
179 			return -EINVAL;
180 
181 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 	}
183 	if (rc)
184 		return rc;
185 
186 	for_each_property_of_node(np, pp)
187 		__of_add_property_sysfs(np, pp);
188 
189 	return 0;
190 }
191 
192 void __init of_core_init(void)
193 {
194 	struct device_node *np;
195 
196 	/* Create the kset, and register existing nodes */
197 	mutex_lock(&of_mutex);
198 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 	if (!of_kset) {
200 		mutex_unlock(&of_mutex);
201 		pr_err("devicetree: failed to register existing nodes\n");
202 		return;
203 	}
204 	for_each_of_allnodes(np)
205 		__of_attach_node_sysfs(np);
206 	mutex_unlock(&of_mutex);
207 
208 	/* Symlink in /proc as required by userspace ABI */
209 	if (of_root)
210 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
211 }
212 
213 static struct property *__of_find_property(const struct device_node *np,
214 					   const char *name, int *lenp)
215 {
216 	struct property *pp;
217 
218 	if (!np)
219 		return NULL;
220 
221 	for (pp = np->properties; pp; pp = pp->next) {
222 		if (of_prop_cmp(pp->name, name) == 0) {
223 			if (lenp)
224 				*lenp = pp->length;
225 			break;
226 		}
227 	}
228 
229 	return pp;
230 }
231 
232 struct property *of_find_property(const struct device_node *np,
233 				  const char *name,
234 				  int *lenp)
235 {
236 	struct property *pp;
237 	unsigned long flags;
238 
239 	raw_spin_lock_irqsave(&devtree_lock, flags);
240 	pp = __of_find_property(np, name, lenp);
241 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
242 
243 	return pp;
244 }
245 EXPORT_SYMBOL(of_find_property);
246 
247 struct device_node *__of_find_all_nodes(struct device_node *prev)
248 {
249 	struct device_node *np;
250 	if (!prev) {
251 		np = of_root;
252 	} else if (prev->child) {
253 		np = prev->child;
254 	} else {
255 		/* Walk back up looking for a sibling, or the end of the structure */
256 		np = prev;
257 		while (np->parent && !np->sibling)
258 			np = np->parent;
259 		np = np->sibling; /* Might be null at the end of the tree */
260 	}
261 	return np;
262 }
263 
264 /**
265  * of_find_all_nodes - Get next node in global list
266  * @prev:	Previous node or NULL to start iteration
267  *		of_node_put() will be called on it
268  *
269  * Returns a node pointer with refcount incremented, use
270  * of_node_put() on it when done.
271  */
272 struct device_node *of_find_all_nodes(struct device_node *prev)
273 {
274 	struct device_node *np;
275 	unsigned long flags;
276 
277 	raw_spin_lock_irqsave(&devtree_lock, flags);
278 	np = __of_find_all_nodes(prev);
279 	of_node_get(np);
280 	of_node_put(prev);
281 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 	return np;
283 }
284 EXPORT_SYMBOL(of_find_all_nodes);
285 
286 /*
287  * Find a property with a given name for a given node
288  * and return the value.
289  */
290 const void *__of_get_property(const struct device_node *np,
291 			      const char *name, int *lenp)
292 {
293 	struct property *pp = __of_find_property(np, name, lenp);
294 
295 	return pp ? pp->value : NULL;
296 }
297 
298 /*
299  * Find a property with a given name for a given node
300  * and return the value.
301  */
302 const void *of_get_property(const struct device_node *np, const char *name,
303 			    int *lenp)
304 {
305 	struct property *pp = of_find_property(np, name, lenp);
306 
307 	return pp ? pp->value : NULL;
308 }
309 EXPORT_SYMBOL(of_get_property);
310 
311 /*
312  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313  *
314  * @cpu: logical cpu index of a core/thread
315  * @phys_id: physical identifier of a core/thread
316  *
317  * CPU logical to physical index mapping is architecture specific.
318  * However this __weak function provides a default match of physical
319  * id to logical cpu index. phys_id provided here is usually values read
320  * from the device tree which must match the hardware internal registers.
321  *
322  * Returns true if the physical identifier and the logical cpu index
323  * correspond to the same core/thread, false otherwise.
324  */
325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326 {
327 	return (u32)phys_id == cpu;
328 }
329 
330 /**
331  * Checks if the given "prop_name" property holds the physical id of the
332  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333  * NULL, local thread number within the core is returned in it.
334  */
335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 			const char *prop_name, int cpu, unsigned int *thread)
337 {
338 	const __be32 *cell;
339 	int ac, prop_len, tid;
340 	u64 hwid;
341 
342 	ac = of_n_addr_cells(cpun);
343 	cell = of_get_property(cpun, prop_name, &prop_len);
344 	if (!cell || !ac)
345 		return false;
346 	prop_len /= sizeof(*cell) * ac;
347 	for (tid = 0; tid < prop_len; tid++) {
348 		hwid = of_read_number(cell, ac);
349 		if (arch_match_cpu_phys_id(cpu, hwid)) {
350 			if (thread)
351 				*thread = tid;
352 			return true;
353 		}
354 		cell += ac;
355 	}
356 	return false;
357 }
358 
359 /*
360  * arch_find_n_match_cpu_physical_id - See if the given device node is
361  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
362  * else false.  If 'thread' is non-NULL, the local thread number within the
363  * core is returned in it.
364  */
365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366 					      int cpu, unsigned int *thread)
367 {
368 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
369 	 * for thread ids on PowerPC. If it doesn't exist fallback to
370 	 * standard "reg" property.
371 	 */
372 	if (IS_ENABLED(CONFIG_PPC) &&
373 	    __of_find_n_match_cpu_property(cpun,
374 					   "ibm,ppc-interrupt-server#s",
375 					   cpu, thread))
376 		return true;
377 
378 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
379 		return true;
380 
381 	return false;
382 }
383 
384 /**
385  * of_get_cpu_node - Get device node associated with the given logical CPU
386  *
387  * @cpu: CPU number(logical index) for which device node is required
388  * @thread: if not NULL, local thread number within the physical core is
389  *          returned
390  *
391  * The main purpose of this function is to retrieve the device node for the
392  * given logical CPU index. It should be used to initialize the of_node in
393  * cpu device. Once of_node in cpu device is populated, all the further
394  * references can use that instead.
395  *
396  * CPU logical to physical index mapping is architecture specific and is built
397  * before booting secondary cores. This function uses arch_match_cpu_phys_id
398  * which can be overridden by architecture specific implementation.
399  *
400  * Returns a node pointer for the logical cpu if found, else NULL.
401  */
402 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
403 {
404 	struct device_node *cpun;
405 
406 	for_each_node_by_type(cpun, "cpu") {
407 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
408 			return cpun;
409 	}
410 	return NULL;
411 }
412 EXPORT_SYMBOL(of_get_cpu_node);
413 
414 /**
415  * __of_device_is_compatible() - Check if the node matches given constraints
416  * @device: pointer to node
417  * @compat: required compatible string, NULL or "" for any match
418  * @type: required device_type value, NULL or "" for any match
419  * @name: required node name, NULL or "" for any match
420  *
421  * Checks if the given @compat, @type and @name strings match the
422  * properties of the given @device. A constraints can be skipped by
423  * passing NULL or an empty string as the constraint.
424  *
425  * Returns 0 for no match, and a positive integer on match. The return
426  * value is a relative score with larger values indicating better
427  * matches. The score is weighted for the most specific compatible value
428  * to get the highest score. Matching type is next, followed by matching
429  * name. Practically speaking, this results in the following priority
430  * order for matches:
431  *
432  * 1. specific compatible && type && name
433  * 2. specific compatible && type
434  * 3. specific compatible && name
435  * 4. specific compatible
436  * 5. general compatible && type && name
437  * 6. general compatible && type
438  * 7. general compatible && name
439  * 8. general compatible
440  * 9. type && name
441  * 10. type
442  * 11. name
443  */
444 static int __of_device_is_compatible(const struct device_node *device,
445 				     const char *compat, const char *type, const char *name)
446 {
447 	struct property *prop;
448 	const char *cp;
449 	int index = 0, score = 0;
450 
451 	/* Compatible match has highest priority */
452 	if (compat && compat[0]) {
453 		prop = __of_find_property(device, "compatible", NULL);
454 		for (cp = of_prop_next_string(prop, NULL); cp;
455 		     cp = of_prop_next_string(prop, cp), index++) {
456 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
457 				score = INT_MAX/2 - (index << 2);
458 				break;
459 			}
460 		}
461 		if (!score)
462 			return 0;
463 	}
464 
465 	/* Matching type is better than matching name */
466 	if (type && type[0]) {
467 		if (!device->type || of_node_cmp(type, device->type))
468 			return 0;
469 		score += 2;
470 	}
471 
472 	/* Matching name is a bit better than not */
473 	if (name && name[0]) {
474 		if (!device->name || of_node_cmp(name, device->name))
475 			return 0;
476 		score++;
477 	}
478 
479 	return score;
480 }
481 
482 /** Checks if the given "compat" string matches one of the strings in
483  * the device's "compatible" property
484  */
485 int of_device_is_compatible(const struct device_node *device,
486 		const char *compat)
487 {
488 	unsigned long flags;
489 	int res;
490 
491 	raw_spin_lock_irqsave(&devtree_lock, flags);
492 	res = __of_device_is_compatible(device, compat, NULL, NULL);
493 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
494 	return res;
495 }
496 EXPORT_SYMBOL(of_device_is_compatible);
497 
498 /**
499  * of_machine_is_compatible - Test root of device tree for a given compatible value
500  * @compat: compatible string to look for in root node's compatible property.
501  *
502  * Returns a positive integer if the root node has the given value in its
503  * compatible property.
504  */
505 int of_machine_is_compatible(const char *compat)
506 {
507 	struct device_node *root;
508 	int rc = 0;
509 
510 	root = of_find_node_by_path("/");
511 	if (root) {
512 		rc = of_device_is_compatible(root, compat);
513 		of_node_put(root);
514 	}
515 	return rc;
516 }
517 EXPORT_SYMBOL(of_machine_is_compatible);
518 
519 /**
520  *  __of_device_is_available - check if a device is available for use
521  *
522  *  @device: Node to check for availability, with locks already held
523  *
524  *  Returns true if the status property is absent or set to "okay" or "ok",
525  *  false otherwise
526  */
527 static bool __of_device_is_available(const struct device_node *device)
528 {
529 	const char *status;
530 	int statlen;
531 
532 	if (!device)
533 		return false;
534 
535 	status = __of_get_property(device, "status", &statlen);
536 	if (status == NULL)
537 		return true;
538 
539 	if (statlen > 0) {
540 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
541 			return true;
542 	}
543 
544 	return false;
545 }
546 
547 /**
548  *  of_device_is_available - check if a device is available for use
549  *
550  *  @device: Node to check for availability
551  *
552  *  Returns true if the status property is absent or set to "okay" or "ok",
553  *  false otherwise
554  */
555 bool of_device_is_available(const struct device_node *device)
556 {
557 	unsigned long flags;
558 	bool res;
559 
560 	raw_spin_lock_irqsave(&devtree_lock, flags);
561 	res = __of_device_is_available(device);
562 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
563 	return res;
564 
565 }
566 EXPORT_SYMBOL(of_device_is_available);
567 
568 /**
569  *  of_device_is_big_endian - check if a device has BE registers
570  *
571  *  @device: Node to check for endianness
572  *
573  *  Returns true if the device has a "big-endian" property, or if the kernel
574  *  was compiled for BE *and* the device has a "native-endian" property.
575  *  Returns false otherwise.
576  *
577  *  Callers would nominally use ioread32be/iowrite32be if
578  *  of_device_is_big_endian() == true, or readl/writel otherwise.
579  */
580 bool of_device_is_big_endian(const struct device_node *device)
581 {
582 	if (of_property_read_bool(device, "big-endian"))
583 		return true;
584 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
585 	    of_property_read_bool(device, "native-endian"))
586 		return true;
587 	return false;
588 }
589 EXPORT_SYMBOL(of_device_is_big_endian);
590 
591 /**
592  *	of_get_parent - Get a node's parent if any
593  *	@node:	Node to get parent
594  *
595  *	Returns a node pointer with refcount incremented, use
596  *	of_node_put() on it when done.
597  */
598 struct device_node *of_get_parent(const struct device_node *node)
599 {
600 	struct device_node *np;
601 	unsigned long flags;
602 
603 	if (!node)
604 		return NULL;
605 
606 	raw_spin_lock_irqsave(&devtree_lock, flags);
607 	np = of_node_get(node->parent);
608 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
609 	return np;
610 }
611 EXPORT_SYMBOL(of_get_parent);
612 
613 /**
614  *	of_get_next_parent - Iterate to a node's parent
615  *	@node:	Node to get parent of
616  *
617  *	This is like of_get_parent() except that it drops the
618  *	refcount on the passed node, making it suitable for iterating
619  *	through a node's parents.
620  *
621  *	Returns a node pointer with refcount incremented, use
622  *	of_node_put() on it when done.
623  */
624 struct device_node *of_get_next_parent(struct device_node *node)
625 {
626 	struct device_node *parent;
627 	unsigned long flags;
628 
629 	if (!node)
630 		return NULL;
631 
632 	raw_spin_lock_irqsave(&devtree_lock, flags);
633 	parent = of_node_get(node->parent);
634 	of_node_put(node);
635 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
636 	return parent;
637 }
638 EXPORT_SYMBOL(of_get_next_parent);
639 
640 static struct device_node *__of_get_next_child(const struct device_node *node,
641 						struct device_node *prev)
642 {
643 	struct device_node *next;
644 
645 	if (!node)
646 		return NULL;
647 
648 	next = prev ? prev->sibling : node->child;
649 	for (; next; next = next->sibling)
650 		if (of_node_get(next))
651 			break;
652 	of_node_put(prev);
653 	return next;
654 }
655 #define __for_each_child_of_node(parent, child) \
656 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
657 	     child = __of_get_next_child(parent, child))
658 
659 /**
660  *	of_get_next_child - Iterate a node childs
661  *	@node:	parent node
662  *	@prev:	previous child of the parent node, or NULL to get first
663  *
664  *	Returns a node pointer with refcount incremented, use of_node_put() on
665  *	it when done. Returns NULL when prev is the last child. Decrements the
666  *	refcount of prev.
667  */
668 struct device_node *of_get_next_child(const struct device_node *node,
669 	struct device_node *prev)
670 {
671 	struct device_node *next;
672 	unsigned long flags;
673 
674 	raw_spin_lock_irqsave(&devtree_lock, flags);
675 	next = __of_get_next_child(node, prev);
676 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
677 	return next;
678 }
679 EXPORT_SYMBOL(of_get_next_child);
680 
681 /**
682  *	of_get_next_available_child - Find the next available child node
683  *	@node:	parent node
684  *	@prev:	previous child of the parent node, or NULL to get first
685  *
686  *      This function is like of_get_next_child(), except that it
687  *      automatically skips any disabled nodes (i.e. status = "disabled").
688  */
689 struct device_node *of_get_next_available_child(const struct device_node *node,
690 	struct device_node *prev)
691 {
692 	struct device_node *next;
693 	unsigned long flags;
694 
695 	if (!node)
696 		return NULL;
697 
698 	raw_spin_lock_irqsave(&devtree_lock, flags);
699 	next = prev ? prev->sibling : node->child;
700 	for (; next; next = next->sibling) {
701 		if (!__of_device_is_available(next))
702 			continue;
703 		if (of_node_get(next))
704 			break;
705 	}
706 	of_node_put(prev);
707 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
708 	return next;
709 }
710 EXPORT_SYMBOL(of_get_next_available_child);
711 
712 /**
713  *	of_get_child_by_name - Find the child node by name for a given parent
714  *	@node:	parent node
715  *	@name:	child name to look for.
716  *
717  *      This function looks for child node for given matching name
718  *
719  *	Returns a node pointer if found, with refcount incremented, use
720  *	of_node_put() on it when done.
721  *	Returns NULL if node is not found.
722  */
723 struct device_node *of_get_child_by_name(const struct device_node *node,
724 				const char *name)
725 {
726 	struct device_node *child;
727 
728 	for_each_child_of_node(node, child)
729 		if (child->name && (of_node_cmp(child->name, name) == 0))
730 			break;
731 	return child;
732 }
733 EXPORT_SYMBOL(of_get_child_by_name);
734 
735 static struct device_node *__of_find_node_by_path(struct device_node *parent,
736 						const char *path)
737 {
738 	struct device_node *child;
739 	int len;
740 
741 	len = strcspn(path, "/:");
742 	if (!len)
743 		return NULL;
744 
745 	__for_each_child_of_node(parent, child) {
746 		const char *name = strrchr(child->full_name, '/');
747 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
748 			continue;
749 		name++;
750 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
751 			return child;
752 	}
753 	return NULL;
754 }
755 
756 /**
757  *	of_find_node_opts_by_path - Find a node matching a full OF path
758  *	@path: Either the full path to match, or if the path does not
759  *	       start with '/', the name of a property of the /aliases
760  *	       node (an alias).  In the case of an alias, the node
761  *	       matching the alias' value will be returned.
762  *	@opts: Address of a pointer into which to store the start of
763  *	       an options string appended to the end of the path with
764  *	       a ':' separator.
765  *
766  *	Valid paths:
767  *		/foo/bar	Full path
768  *		foo		Valid alias
769  *		foo/bar		Valid alias + relative path
770  *
771  *	Returns a node pointer with refcount incremented, use
772  *	of_node_put() on it when done.
773  */
774 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
775 {
776 	struct device_node *np = NULL;
777 	struct property *pp;
778 	unsigned long flags;
779 	const char *separator = strchr(path, ':');
780 
781 	if (opts)
782 		*opts = separator ? separator + 1 : NULL;
783 
784 	if (strcmp(path, "/") == 0)
785 		return of_node_get(of_root);
786 
787 	/* The path could begin with an alias */
788 	if (*path != '/') {
789 		int len;
790 		const char *p = separator;
791 
792 		if (!p)
793 			p = strchrnul(path, '/');
794 		len = p - path;
795 
796 		/* of_aliases must not be NULL */
797 		if (!of_aliases)
798 			return NULL;
799 
800 		for_each_property_of_node(of_aliases, pp) {
801 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
802 				np = of_find_node_by_path(pp->value);
803 				break;
804 			}
805 		}
806 		if (!np)
807 			return NULL;
808 		path = p;
809 	}
810 
811 	/* Step down the tree matching path components */
812 	raw_spin_lock_irqsave(&devtree_lock, flags);
813 	if (!np)
814 		np = of_node_get(of_root);
815 	while (np && *path == '/') {
816 		path++; /* Increment past '/' delimiter */
817 		np = __of_find_node_by_path(np, path);
818 		path = strchrnul(path, '/');
819 		if (separator && separator < path)
820 			break;
821 	}
822 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
823 	return np;
824 }
825 EXPORT_SYMBOL(of_find_node_opts_by_path);
826 
827 /**
828  *	of_find_node_by_name - Find a node by its "name" property
829  *	@from:	The node to start searching from or NULL, the node
830  *		you pass will not be searched, only the next one
831  *		will; typically, you pass what the previous call
832  *		returned. of_node_put() will be called on it
833  *	@name:	The name string to match against
834  *
835  *	Returns a node pointer with refcount incremented, use
836  *	of_node_put() on it when done.
837  */
838 struct device_node *of_find_node_by_name(struct device_node *from,
839 	const char *name)
840 {
841 	struct device_node *np;
842 	unsigned long flags;
843 
844 	raw_spin_lock_irqsave(&devtree_lock, flags);
845 	for_each_of_allnodes_from(from, np)
846 		if (np->name && (of_node_cmp(np->name, name) == 0)
847 		    && of_node_get(np))
848 			break;
849 	of_node_put(from);
850 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
851 	return np;
852 }
853 EXPORT_SYMBOL(of_find_node_by_name);
854 
855 /**
856  *	of_find_node_by_type - Find a node by its "device_type" property
857  *	@from:	The node to start searching from, or NULL to start searching
858  *		the entire device tree. The node you pass will not be
859  *		searched, only the next one will; typically, you pass
860  *		what the previous call returned. of_node_put() will be
861  *		called on from for you.
862  *	@type:	The type string to match against
863  *
864  *	Returns a node pointer with refcount incremented, use
865  *	of_node_put() on it when done.
866  */
867 struct device_node *of_find_node_by_type(struct device_node *from,
868 	const char *type)
869 {
870 	struct device_node *np;
871 	unsigned long flags;
872 
873 	raw_spin_lock_irqsave(&devtree_lock, flags);
874 	for_each_of_allnodes_from(from, np)
875 		if (np->type && (of_node_cmp(np->type, type) == 0)
876 		    && of_node_get(np))
877 			break;
878 	of_node_put(from);
879 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
880 	return np;
881 }
882 EXPORT_SYMBOL(of_find_node_by_type);
883 
884 /**
885  *	of_find_compatible_node - Find a node based on type and one of the
886  *                                tokens in its "compatible" property
887  *	@from:		The node to start searching from or NULL, the node
888  *			you pass will not be searched, only the next one
889  *			will; typically, you pass what the previous call
890  *			returned. of_node_put() will be called on it
891  *	@type:		The type string to match "device_type" or NULL to ignore
892  *	@compatible:	The string to match to one of the tokens in the device
893  *			"compatible" list.
894  *
895  *	Returns a node pointer with refcount incremented, use
896  *	of_node_put() on it when done.
897  */
898 struct device_node *of_find_compatible_node(struct device_node *from,
899 	const char *type, const char *compatible)
900 {
901 	struct device_node *np;
902 	unsigned long flags;
903 
904 	raw_spin_lock_irqsave(&devtree_lock, flags);
905 	for_each_of_allnodes_from(from, np)
906 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
907 		    of_node_get(np))
908 			break;
909 	of_node_put(from);
910 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
911 	return np;
912 }
913 EXPORT_SYMBOL(of_find_compatible_node);
914 
915 /**
916  *	of_find_node_with_property - Find a node which has a property with
917  *                                   the given name.
918  *	@from:		The node to start searching from or NULL, the node
919  *			you pass will not be searched, only the next one
920  *			will; typically, you pass what the previous call
921  *			returned. of_node_put() will be called on it
922  *	@prop_name:	The name of the property to look for.
923  *
924  *	Returns a node pointer with refcount incremented, use
925  *	of_node_put() on it when done.
926  */
927 struct device_node *of_find_node_with_property(struct device_node *from,
928 	const char *prop_name)
929 {
930 	struct device_node *np;
931 	struct property *pp;
932 	unsigned long flags;
933 
934 	raw_spin_lock_irqsave(&devtree_lock, flags);
935 	for_each_of_allnodes_from(from, np) {
936 		for (pp = np->properties; pp; pp = pp->next) {
937 			if (of_prop_cmp(pp->name, prop_name) == 0) {
938 				of_node_get(np);
939 				goto out;
940 			}
941 		}
942 	}
943 out:
944 	of_node_put(from);
945 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
946 	return np;
947 }
948 EXPORT_SYMBOL(of_find_node_with_property);
949 
950 static
951 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
952 					   const struct device_node *node)
953 {
954 	const struct of_device_id *best_match = NULL;
955 	int score, best_score = 0;
956 
957 	if (!matches)
958 		return NULL;
959 
960 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
961 		score = __of_device_is_compatible(node, matches->compatible,
962 						  matches->type, matches->name);
963 		if (score > best_score) {
964 			best_match = matches;
965 			best_score = score;
966 		}
967 	}
968 
969 	return best_match;
970 }
971 
972 /**
973  * of_match_node - Tell if a device_node has a matching of_match structure
974  *	@matches:	array of of device match structures to search in
975  *	@node:		the of device structure to match against
976  *
977  *	Low level utility function used by device matching.
978  */
979 const struct of_device_id *of_match_node(const struct of_device_id *matches,
980 					 const struct device_node *node)
981 {
982 	const struct of_device_id *match;
983 	unsigned long flags;
984 
985 	raw_spin_lock_irqsave(&devtree_lock, flags);
986 	match = __of_match_node(matches, node);
987 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
988 	return match;
989 }
990 EXPORT_SYMBOL(of_match_node);
991 
992 /**
993  *	of_find_matching_node_and_match - Find a node based on an of_device_id
994  *					  match table.
995  *	@from:		The node to start searching from or NULL, the node
996  *			you pass will not be searched, only the next one
997  *			will; typically, you pass what the previous call
998  *			returned. of_node_put() will be called on it
999  *	@matches:	array of of device match structures to search in
1000  *	@match		Updated to point at the matches entry which matched
1001  *
1002  *	Returns a node pointer with refcount incremented, use
1003  *	of_node_put() on it when done.
1004  */
1005 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1006 					const struct of_device_id *matches,
1007 					const struct of_device_id **match)
1008 {
1009 	struct device_node *np;
1010 	const struct of_device_id *m;
1011 	unsigned long flags;
1012 
1013 	if (match)
1014 		*match = NULL;
1015 
1016 	raw_spin_lock_irqsave(&devtree_lock, flags);
1017 	for_each_of_allnodes_from(from, np) {
1018 		m = __of_match_node(matches, np);
1019 		if (m && of_node_get(np)) {
1020 			if (match)
1021 				*match = m;
1022 			break;
1023 		}
1024 	}
1025 	of_node_put(from);
1026 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1027 	return np;
1028 }
1029 EXPORT_SYMBOL(of_find_matching_node_and_match);
1030 
1031 /**
1032  * of_modalias_node - Lookup appropriate modalias for a device node
1033  * @node:	pointer to a device tree node
1034  * @modalias:	Pointer to buffer that modalias value will be copied into
1035  * @len:	Length of modalias value
1036  *
1037  * Based on the value of the compatible property, this routine will attempt
1038  * to choose an appropriate modalias value for a particular device tree node.
1039  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1040  * from the first entry in the compatible list property.
1041  *
1042  * This routine returns 0 on success, <0 on failure.
1043  */
1044 int of_modalias_node(struct device_node *node, char *modalias, int len)
1045 {
1046 	const char *compatible, *p;
1047 	int cplen;
1048 
1049 	compatible = of_get_property(node, "compatible", &cplen);
1050 	if (!compatible || strlen(compatible) > cplen)
1051 		return -ENODEV;
1052 	p = strchr(compatible, ',');
1053 	strlcpy(modalias, p ? p + 1 : compatible, len);
1054 	return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(of_modalias_node);
1057 
1058 /**
1059  * of_find_node_by_phandle - Find a node given a phandle
1060  * @handle:	phandle of the node to find
1061  *
1062  * Returns a node pointer with refcount incremented, use
1063  * of_node_put() on it when done.
1064  */
1065 struct device_node *of_find_node_by_phandle(phandle handle)
1066 {
1067 	struct device_node *np;
1068 	unsigned long flags;
1069 
1070 	if (!handle)
1071 		return NULL;
1072 
1073 	raw_spin_lock_irqsave(&devtree_lock, flags);
1074 	for_each_of_allnodes(np)
1075 		if (np->phandle == handle)
1076 			break;
1077 	of_node_get(np);
1078 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1079 	return np;
1080 }
1081 EXPORT_SYMBOL(of_find_node_by_phandle);
1082 
1083 /**
1084  * of_property_count_elems_of_size - Count the number of elements in a property
1085  *
1086  * @np:		device node from which the property value is to be read.
1087  * @propname:	name of the property to be searched.
1088  * @elem_size:	size of the individual element
1089  *
1090  * Search for a property in a device node and count the number of elements of
1091  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1092  * property does not exist or its length does not match a multiple of elem_size
1093  * and -ENODATA if the property does not have a value.
1094  */
1095 int of_property_count_elems_of_size(const struct device_node *np,
1096 				const char *propname, int elem_size)
1097 {
1098 	struct property *prop = of_find_property(np, propname, NULL);
1099 
1100 	if (!prop)
1101 		return -EINVAL;
1102 	if (!prop->value)
1103 		return -ENODATA;
1104 
1105 	if (prop->length % elem_size != 0) {
1106 		pr_err("size of %s in node %s is not a multiple of %d\n",
1107 		       propname, np->full_name, elem_size);
1108 		return -EINVAL;
1109 	}
1110 
1111 	return prop->length / elem_size;
1112 }
1113 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1114 
1115 /**
1116  * of_find_property_value_of_size
1117  *
1118  * @np:		device node from which the property value is to be read.
1119  * @propname:	name of the property to be searched.
1120  * @len:	requested length of property value
1121  *
1122  * Search for a property in a device node and valid the requested size.
1123  * Returns the property value on success, -EINVAL if the property does not
1124  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1125  * property data isn't large enough.
1126  *
1127  */
1128 static void *of_find_property_value_of_size(const struct device_node *np,
1129 			const char *propname, u32 len)
1130 {
1131 	struct property *prop = of_find_property(np, propname, NULL);
1132 
1133 	if (!prop)
1134 		return ERR_PTR(-EINVAL);
1135 	if (!prop->value)
1136 		return ERR_PTR(-ENODATA);
1137 	if (len > prop->length)
1138 		return ERR_PTR(-EOVERFLOW);
1139 
1140 	return prop->value;
1141 }
1142 
1143 /**
1144  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1145  *
1146  * @np:		device node from which the property value is to be read.
1147  * @propname:	name of the property to be searched.
1148  * @index:	index of the u32 in the list of values
1149  * @out_value:	pointer to return value, modified only if no error.
1150  *
1151  * Search for a property in a device node and read nth 32-bit value from
1152  * it. Returns 0 on success, -EINVAL if the property does not exist,
1153  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1154  * property data isn't large enough.
1155  *
1156  * The out_value is modified only if a valid u32 value can be decoded.
1157  */
1158 int of_property_read_u32_index(const struct device_node *np,
1159 				       const char *propname,
1160 				       u32 index, u32 *out_value)
1161 {
1162 	const u32 *val = of_find_property_value_of_size(np, propname,
1163 					((index + 1) * sizeof(*out_value)));
1164 
1165 	if (IS_ERR(val))
1166 		return PTR_ERR(val);
1167 
1168 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1172 
1173 /**
1174  * of_property_read_u8_array - Find and read an array of u8 from a property.
1175  *
1176  * @np:		device node from which the property value is to be read.
1177  * @propname:	name of the property to be searched.
1178  * @out_values:	pointer to return value, modified only if return value is 0.
1179  * @sz:		number of array elements to read
1180  *
1181  * Search for a property in a device node and read 8-bit value(s) from
1182  * it. Returns 0 on success, -EINVAL if the property does not exist,
1183  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1184  * property data isn't large enough.
1185  *
1186  * dts entry of array should be like:
1187  *	property = /bits/ 8 <0x50 0x60 0x70>;
1188  *
1189  * The out_values is modified only if a valid u8 value can be decoded.
1190  */
1191 int of_property_read_u8_array(const struct device_node *np,
1192 			const char *propname, u8 *out_values, size_t sz)
1193 {
1194 	const u8 *val = of_find_property_value_of_size(np, propname,
1195 						(sz * sizeof(*out_values)));
1196 
1197 	if (IS_ERR(val))
1198 		return PTR_ERR(val);
1199 
1200 	while (sz--)
1201 		*out_values++ = *val++;
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1205 
1206 /**
1207  * of_property_read_u16_array - Find and read an array of u16 from a property.
1208  *
1209  * @np:		device node from which the property value is to be read.
1210  * @propname:	name of the property to be searched.
1211  * @out_values:	pointer to return value, modified only if return value is 0.
1212  * @sz:		number of array elements to read
1213  *
1214  * Search for a property in a device node and read 16-bit value(s) from
1215  * it. Returns 0 on success, -EINVAL if the property does not exist,
1216  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1217  * property data isn't large enough.
1218  *
1219  * dts entry of array should be like:
1220  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1221  *
1222  * The out_values is modified only if a valid u16 value can be decoded.
1223  */
1224 int of_property_read_u16_array(const struct device_node *np,
1225 			const char *propname, u16 *out_values, size_t sz)
1226 {
1227 	const __be16 *val = of_find_property_value_of_size(np, propname,
1228 						(sz * sizeof(*out_values)));
1229 
1230 	if (IS_ERR(val))
1231 		return PTR_ERR(val);
1232 
1233 	while (sz--)
1234 		*out_values++ = be16_to_cpup(val++);
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1238 
1239 /**
1240  * of_property_read_u32_array - Find and read an array of 32 bit integers
1241  * from a property.
1242  *
1243  * @np:		device node from which the property value is to be read.
1244  * @propname:	name of the property to be searched.
1245  * @out_values:	pointer to return value, modified only if return value is 0.
1246  * @sz:		number of array elements to read
1247  *
1248  * Search for a property in a device node and read 32-bit value(s) from
1249  * it. Returns 0 on success, -EINVAL if the property does not exist,
1250  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1251  * property data isn't large enough.
1252  *
1253  * The out_values is modified only if a valid u32 value can be decoded.
1254  */
1255 int of_property_read_u32_array(const struct device_node *np,
1256 			       const char *propname, u32 *out_values,
1257 			       size_t sz)
1258 {
1259 	const __be32 *val = of_find_property_value_of_size(np, propname,
1260 						(sz * sizeof(*out_values)));
1261 
1262 	if (IS_ERR(val))
1263 		return PTR_ERR(val);
1264 
1265 	while (sz--)
1266 		*out_values++ = be32_to_cpup(val++);
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1270 
1271 /**
1272  * of_property_read_u64 - Find and read a 64 bit integer from a property
1273  * @np:		device node from which the property value is to be read.
1274  * @propname:	name of the property to be searched.
1275  * @out_value:	pointer to return value, modified only if return value is 0.
1276  *
1277  * Search for a property in a device node and read a 64-bit value from
1278  * it. Returns 0 on success, -EINVAL if the property does not exist,
1279  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1280  * property data isn't large enough.
1281  *
1282  * The out_value is modified only if a valid u64 value can be decoded.
1283  */
1284 int of_property_read_u64(const struct device_node *np, const char *propname,
1285 			 u64 *out_value)
1286 {
1287 	const __be32 *val = of_find_property_value_of_size(np, propname,
1288 						sizeof(*out_value));
1289 
1290 	if (IS_ERR(val))
1291 		return PTR_ERR(val);
1292 
1293 	*out_value = of_read_number(val, 2);
1294 	return 0;
1295 }
1296 EXPORT_SYMBOL_GPL(of_property_read_u64);
1297 
1298 /**
1299  * of_property_read_u64_array - Find and read an array of 64 bit integers
1300  * from a property.
1301  *
1302  * @np:		device node from which the property value is to be read.
1303  * @propname:	name of the property to be searched.
1304  * @out_values:	pointer to return value, modified only if return value is 0.
1305  * @sz:		number of array elements to read
1306  *
1307  * Search for a property in a device node and read 64-bit value(s) from
1308  * it. Returns 0 on success, -EINVAL if the property does not exist,
1309  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1310  * property data isn't large enough.
1311  *
1312  * The out_values is modified only if a valid u64 value can be decoded.
1313  */
1314 int of_property_read_u64_array(const struct device_node *np,
1315 			       const char *propname, u64 *out_values,
1316 			       size_t sz)
1317 {
1318 	const __be32 *val = of_find_property_value_of_size(np, propname,
1319 						(sz * sizeof(*out_values)));
1320 
1321 	if (IS_ERR(val))
1322 		return PTR_ERR(val);
1323 
1324 	while (sz--) {
1325 		*out_values++ = of_read_number(val, 2);
1326 		val += 2;
1327 	}
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1331 
1332 /**
1333  * of_property_read_string - Find and read a string from a property
1334  * @np:		device node from which the property value is to be read.
1335  * @propname:	name of the property to be searched.
1336  * @out_string:	pointer to null terminated return string, modified only if
1337  *		return value is 0.
1338  *
1339  * Search for a property in a device tree node and retrieve a null
1340  * terminated string value (pointer to data, not a copy). Returns 0 on
1341  * success, -EINVAL if the property does not exist, -ENODATA if property
1342  * does not have a value, and -EILSEQ if the string is not null-terminated
1343  * within the length of the property data.
1344  *
1345  * The out_string pointer is modified only if a valid string can be decoded.
1346  */
1347 int of_property_read_string(struct device_node *np, const char *propname,
1348 				const char **out_string)
1349 {
1350 	struct property *prop = of_find_property(np, propname, NULL);
1351 	if (!prop)
1352 		return -EINVAL;
1353 	if (!prop->value)
1354 		return -ENODATA;
1355 	if (strnlen(prop->value, prop->length) >= prop->length)
1356 		return -EILSEQ;
1357 	*out_string = prop->value;
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(of_property_read_string);
1361 
1362 /**
1363  * of_property_match_string() - Find string in a list and return index
1364  * @np: pointer to node containing string list property
1365  * @propname: string list property name
1366  * @string: pointer to string to search for in string list
1367  *
1368  * This function searches a string list property and returns the index
1369  * of a specific string value.
1370  */
1371 int of_property_match_string(struct device_node *np, const char *propname,
1372 			     const char *string)
1373 {
1374 	struct property *prop = of_find_property(np, propname, NULL);
1375 	size_t l;
1376 	int i;
1377 	const char *p, *end;
1378 
1379 	if (!prop)
1380 		return -EINVAL;
1381 	if (!prop->value)
1382 		return -ENODATA;
1383 
1384 	p = prop->value;
1385 	end = p + prop->length;
1386 
1387 	for (i = 0; p < end; i++, p += l) {
1388 		l = strnlen(p, end - p) + 1;
1389 		if (p + l > end)
1390 			return -EILSEQ;
1391 		pr_debug("comparing %s with %s\n", string, p);
1392 		if (strcmp(string, p) == 0)
1393 			return i; /* Found it; return index */
1394 	}
1395 	return -ENODATA;
1396 }
1397 EXPORT_SYMBOL_GPL(of_property_match_string);
1398 
1399 /**
1400  * of_property_read_string_helper() - Utility helper for parsing string properties
1401  * @np:		device node from which the property value is to be read.
1402  * @propname:	name of the property to be searched.
1403  * @out_strs:	output array of string pointers.
1404  * @sz:		number of array elements to read.
1405  * @skip:	Number of strings to skip over at beginning of list.
1406  *
1407  * Don't call this function directly. It is a utility helper for the
1408  * of_property_read_string*() family of functions.
1409  */
1410 int of_property_read_string_helper(struct device_node *np, const char *propname,
1411 				   const char **out_strs, size_t sz, int skip)
1412 {
1413 	struct property *prop = of_find_property(np, propname, NULL);
1414 	int l = 0, i = 0;
1415 	const char *p, *end;
1416 
1417 	if (!prop)
1418 		return -EINVAL;
1419 	if (!prop->value)
1420 		return -ENODATA;
1421 	p = prop->value;
1422 	end = p + prop->length;
1423 
1424 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1425 		l = strnlen(p, end - p) + 1;
1426 		if (p + l > end)
1427 			return -EILSEQ;
1428 		if (out_strs && i >= skip)
1429 			*out_strs++ = p;
1430 	}
1431 	i -= skip;
1432 	return i <= 0 ? -ENODATA : i;
1433 }
1434 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1435 
1436 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1437 {
1438 	int i;
1439 	printk("%s %s", msg, of_node_full_name(args->np));
1440 	for (i = 0; i < args->args_count; i++)
1441 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1442 	printk("\n");
1443 }
1444 
1445 static int __of_parse_phandle_with_args(const struct device_node *np,
1446 					const char *list_name,
1447 					const char *cells_name,
1448 					int cell_count, int index,
1449 					struct of_phandle_args *out_args)
1450 {
1451 	const __be32 *list, *list_end;
1452 	int rc = 0, size, cur_index = 0;
1453 	uint32_t count = 0;
1454 	struct device_node *node = NULL;
1455 	phandle phandle;
1456 
1457 	/* Retrieve the phandle list property */
1458 	list = of_get_property(np, list_name, &size);
1459 	if (!list)
1460 		return -ENOENT;
1461 	list_end = list + size / sizeof(*list);
1462 
1463 	/* Loop over the phandles until all the requested entry is found */
1464 	while (list < list_end) {
1465 		rc = -EINVAL;
1466 		count = 0;
1467 
1468 		/*
1469 		 * If phandle is 0, then it is an empty entry with no
1470 		 * arguments.  Skip forward to the next entry.
1471 		 */
1472 		phandle = be32_to_cpup(list++);
1473 		if (phandle) {
1474 			/*
1475 			 * Find the provider node and parse the #*-cells
1476 			 * property to determine the argument length.
1477 			 *
1478 			 * This is not needed if the cell count is hard-coded
1479 			 * (i.e. cells_name not set, but cell_count is set),
1480 			 * except when we're going to return the found node
1481 			 * below.
1482 			 */
1483 			if (cells_name || cur_index == index) {
1484 				node = of_find_node_by_phandle(phandle);
1485 				if (!node) {
1486 					pr_err("%s: could not find phandle\n",
1487 						np->full_name);
1488 					goto err;
1489 				}
1490 			}
1491 
1492 			if (cells_name) {
1493 				if (of_property_read_u32(node, cells_name,
1494 							 &count)) {
1495 					pr_err("%s: could not get %s for %s\n",
1496 						np->full_name, cells_name,
1497 						node->full_name);
1498 					goto err;
1499 				}
1500 			} else {
1501 				count = cell_count;
1502 			}
1503 
1504 			/*
1505 			 * Make sure that the arguments actually fit in the
1506 			 * remaining property data length
1507 			 */
1508 			if (list + count > list_end) {
1509 				pr_err("%s: arguments longer than property\n",
1510 					 np->full_name);
1511 				goto err;
1512 			}
1513 		}
1514 
1515 		/*
1516 		 * All of the error cases above bail out of the loop, so at
1517 		 * this point, the parsing is successful. If the requested
1518 		 * index matches, then fill the out_args structure and return,
1519 		 * or return -ENOENT for an empty entry.
1520 		 */
1521 		rc = -ENOENT;
1522 		if (cur_index == index) {
1523 			if (!phandle)
1524 				goto err;
1525 
1526 			if (out_args) {
1527 				int i;
1528 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1529 					count = MAX_PHANDLE_ARGS;
1530 				out_args->np = node;
1531 				out_args->args_count = count;
1532 				for (i = 0; i < count; i++)
1533 					out_args->args[i] = be32_to_cpup(list++);
1534 			} else {
1535 				of_node_put(node);
1536 			}
1537 
1538 			/* Found it! return success */
1539 			return 0;
1540 		}
1541 
1542 		of_node_put(node);
1543 		node = NULL;
1544 		list += count;
1545 		cur_index++;
1546 	}
1547 
1548 	/*
1549 	 * Unlock node before returning result; will be one of:
1550 	 * -ENOENT : index is for empty phandle
1551 	 * -EINVAL : parsing error on data
1552 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1553 	 */
1554 	rc = index < 0 ? cur_index : -ENOENT;
1555  err:
1556 	if (node)
1557 		of_node_put(node);
1558 	return rc;
1559 }
1560 
1561 /**
1562  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1563  * @np: Pointer to device node holding phandle property
1564  * @phandle_name: Name of property holding a phandle value
1565  * @index: For properties holding a table of phandles, this is the index into
1566  *         the table
1567  *
1568  * Returns the device_node pointer with refcount incremented.  Use
1569  * of_node_put() on it when done.
1570  */
1571 struct device_node *of_parse_phandle(const struct device_node *np,
1572 				     const char *phandle_name, int index)
1573 {
1574 	struct of_phandle_args args;
1575 
1576 	if (index < 0)
1577 		return NULL;
1578 
1579 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1580 					 index, &args))
1581 		return NULL;
1582 
1583 	return args.np;
1584 }
1585 EXPORT_SYMBOL(of_parse_phandle);
1586 
1587 /**
1588  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1589  * @np:		pointer to a device tree node containing a list
1590  * @list_name:	property name that contains a list
1591  * @cells_name:	property name that specifies phandles' arguments count
1592  * @index:	index of a phandle to parse out
1593  * @out_args:	optional pointer to output arguments structure (will be filled)
1594  *
1595  * This function is useful to parse lists of phandles and their arguments.
1596  * Returns 0 on success and fills out_args, on error returns appropriate
1597  * errno value.
1598  *
1599  * Caller is responsible to call of_node_put() on the returned out_args->np
1600  * pointer.
1601  *
1602  * Example:
1603  *
1604  * phandle1: node1 {
1605  *	#list-cells = <2>;
1606  * }
1607  *
1608  * phandle2: node2 {
1609  *	#list-cells = <1>;
1610  * }
1611  *
1612  * node3 {
1613  *	list = <&phandle1 1 2 &phandle2 3>;
1614  * }
1615  *
1616  * To get a device_node of the `node2' node you may call this:
1617  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1618  */
1619 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1620 				const char *cells_name, int index,
1621 				struct of_phandle_args *out_args)
1622 {
1623 	if (index < 0)
1624 		return -EINVAL;
1625 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1626 					    index, out_args);
1627 }
1628 EXPORT_SYMBOL(of_parse_phandle_with_args);
1629 
1630 /**
1631  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1632  * @np:		pointer to a device tree node containing a list
1633  * @list_name:	property name that contains a list
1634  * @cell_count: number of argument cells following the phandle
1635  * @index:	index of a phandle to parse out
1636  * @out_args:	optional pointer to output arguments structure (will be filled)
1637  *
1638  * This function is useful to parse lists of phandles and their arguments.
1639  * Returns 0 on success and fills out_args, on error returns appropriate
1640  * errno value.
1641  *
1642  * Caller is responsible to call of_node_put() on the returned out_args->np
1643  * pointer.
1644  *
1645  * Example:
1646  *
1647  * phandle1: node1 {
1648  * }
1649  *
1650  * phandle2: node2 {
1651  * }
1652  *
1653  * node3 {
1654  *	list = <&phandle1 0 2 &phandle2 2 3>;
1655  * }
1656  *
1657  * To get a device_node of the `node2' node you may call this:
1658  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1659  */
1660 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1661 				const char *list_name, int cell_count,
1662 				int index, struct of_phandle_args *out_args)
1663 {
1664 	if (index < 0)
1665 		return -EINVAL;
1666 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1667 					   index, out_args);
1668 }
1669 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1670 
1671 /**
1672  * of_count_phandle_with_args() - Find the number of phandles references in a property
1673  * @np:		pointer to a device tree node containing a list
1674  * @list_name:	property name that contains a list
1675  * @cells_name:	property name that specifies phandles' arguments count
1676  *
1677  * Returns the number of phandle + argument tuples within a property. It
1678  * is a typical pattern to encode a list of phandle and variable
1679  * arguments into a single property. The number of arguments is encoded
1680  * by a property in the phandle-target node. For example, a gpios
1681  * property would contain a list of GPIO specifies consisting of a
1682  * phandle and 1 or more arguments. The number of arguments are
1683  * determined by the #gpio-cells property in the node pointed to by the
1684  * phandle.
1685  */
1686 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1687 				const char *cells_name)
1688 {
1689 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1690 					    NULL);
1691 }
1692 EXPORT_SYMBOL(of_count_phandle_with_args);
1693 
1694 /**
1695  * __of_add_property - Add a property to a node without lock operations
1696  */
1697 int __of_add_property(struct device_node *np, struct property *prop)
1698 {
1699 	struct property **next;
1700 
1701 	prop->next = NULL;
1702 	next = &np->properties;
1703 	while (*next) {
1704 		if (strcmp(prop->name, (*next)->name) == 0)
1705 			/* duplicate ! don't insert it */
1706 			return -EEXIST;
1707 
1708 		next = &(*next)->next;
1709 	}
1710 	*next = prop;
1711 
1712 	return 0;
1713 }
1714 
1715 /**
1716  * of_add_property - Add a property to a node
1717  */
1718 int of_add_property(struct device_node *np, struct property *prop)
1719 {
1720 	unsigned long flags;
1721 	int rc;
1722 
1723 	mutex_lock(&of_mutex);
1724 
1725 	raw_spin_lock_irqsave(&devtree_lock, flags);
1726 	rc = __of_add_property(np, prop);
1727 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1728 
1729 	if (!rc)
1730 		__of_add_property_sysfs(np, prop);
1731 
1732 	mutex_unlock(&of_mutex);
1733 
1734 	if (!rc)
1735 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1736 
1737 	return rc;
1738 }
1739 
1740 int __of_remove_property(struct device_node *np, struct property *prop)
1741 {
1742 	struct property **next;
1743 
1744 	for (next = &np->properties; *next; next = &(*next)->next) {
1745 		if (*next == prop)
1746 			break;
1747 	}
1748 	if (*next == NULL)
1749 		return -ENODEV;
1750 
1751 	/* found the node */
1752 	*next = prop->next;
1753 	prop->next = np->deadprops;
1754 	np->deadprops = prop;
1755 
1756 	return 0;
1757 }
1758 
1759 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1760 {
1761 	if (!IS_ENABLED(CONFIG_SYSFS))
1762 		return;
1763 
1764 	/* at early boot, bail here and defer setup to of_init() */
1765 	if (of_kset && of_node_is_attached(np))
1766 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1767 }
1768 
1769 /**
1770  * of_remove_property - Remove a property from a node.
1771  *
1772  * Note that we don't actually remove it, since we have given out
1773  * who-knows-how-many pointers to the data using get-property.
1774  * Instead we just move the property to the "dead properties"
1775  * list, so it won't be found any more.
1776  */
1777 int of_remove_property(struct device_node *np, struct property *prop)
1778 {
1779 	unsigned long flags;
1780 	int rc;
1781 
1782 	mutex_lock(&of_mutex);
1783 
1784 	raw_spin_lock_irqsave(&devtree_lock, flags);
1785 	rc = __of_remove_property(np, prop);
1786 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1787 
1788 	if (!rc)
1789 		__of_remove_property_sysfs(np, prop);
1790 
1791 	mutex_unlock(&of_mutex);
1792 
1793 	if (!rc)
1794 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1795 
1796 	return rc;
1797 }
1798 
1799 int __of_update_property(struct device_node *np, struct property *newprop,
1800 		struct property **oldpropp)
1801 {
1802 	struct property **next, *oldprop;
1803 
1804 	for (next = &np->properties; *next; next = &(*next)->next) {
1805 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1806 			break;
1807 	}
1808 	*oldpropp = oldprop = *next;
1809 
1810 	if (oldprop) {
1811 		/* replace the node */
1812 		newprop->next = oldprop->next;
1813 		*next = newprop;
1814 		oldprop->next = np->deadprops;
1815 		np->deadprops = oldprop;
1816 	} else {
1817 		/* new node */
1818 		newprop->next = NULL;
1819 		*next = newprop;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1826 		struct property *oldprop)
1827 {
1828 	if (!IS_ENABLED(CONFIG_SYSFS))
1829 		return;
1830 
1831 	/* At early boot, bail out and defer setup to of_init() */
1832 	if (!of_kset)
1833 		return;
1834 
1835 	if (oldprop)
1836 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1837 	__of_add_property_sysfs(np, newprop);
1838 }
1839 
1840 /*
1841  * of_update_property - Update a property in a node, if the property does
1842  * not exist, add it.
1843  *
1844  * Note that we don't actually remove it, since we have given out
1845  * who-knows-how-many pointers to the data using get-property.
1846  * Instead we just move the property to the "dead properties" list,
1847  * and add the new property to the property list
1848  */
1849 int of_update_property(struct device_node *np, struct property *newprop)
1850 {
1851 	struct property *oldprop;
1852 	unsigned long flags;
1853 	int rc;
1854 
1855 	if (!newprop->name)
1856 		return -EINVAL;
1857 
1858 	mutex_lock(&of_mutex);
1859 
1860 	raw_spin_lock_irqsave(&devtree_lock, flags);
1861 	rc = __of_update_property(np, newprop, &oldprop);
1862 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1863 
1864 	if (!rc)
1865 		__of_update_property_sysfs(np, newprop, oldprop);
1866 
1867 	mutex_unlock(&of_mutex);
1868 
1869 	if (!rc)
1870 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1871 
1872 	return rc;
1873 }
1874 
1875 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1876 			 int id, const char *stem, int stem_len)
1877 {
1878 	ap->np = np;
1879 	ap->id = id;
1880 	strncpy(ap->stem, stem, stem_len);
1881 	ap->stem[stem_len] = 0;
1882 	list_add_tail(&ap->link, &aliases_lookup);
1883 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1884 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1885 }
1886 
1887 /**
1888  * of_alias_scan - Scan all properties of the 'aliases' node
1889  *
1890  * The function scans all the properties of the 'aliases' node and populates
1891  * the global lookup table with the properties.  It returns the
1892  * number of alias properties found, or an error code in case of failure.
1893  *
1894  * @dt_alloc:	An allocator that provides a virtual address to memory
1895  *		for storing the resulting tree
1896  */
1897 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1898 {
1899 	struct property *pp;
1900 
1901 	of_aliases = of_find_node_by_path("/aliases");
1902 	of_chosen = of_find_node_by_path("/chosen");
1903 	if (of_chosen == NULL)
1904 		of_chosen = of_find_node_by_path("/chosen@0");
1905 
1906 	if (of_chosen) {
1907 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1908 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1909 		if (!name)
1910 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1911 		if (IS_ENABLED(CONFIG_PPC) && !name)
1912 			name = of_get_property(of_aliases, "stdout", NULL);
1913 		if (name)
1914 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1915 	}
1916 
1917 	if (!of_aliases)
1918 		return;
1919 
1920 	for_each_property_of_node(of_aliases, pp) {
1921 		const char *start = pp->name;
1922 		const char *end = start + strlen(start);
1923 		struct device_node *np;
1924 		struct alias_prop *ap;
1925 		int id, len;
1926 
1927 		/* Skip those we do not want to proceed */
1928 		if (!strcmp(pp->name, "name") ||
1929 		    !strcmp(pp->name, "phandle") ||
1930 		    !strcmp(pp->name, "linux,phandle"))
1931 			continue;
1932 
1933 		np = of_find_node_by_path(pp->value);
1934 		if (!np)
1935 			continue;
1936 
1937 		/* walk the alias backwards to extract the id and work out
1938 		 * the 'stem' string */
1939 		while (isdigit(*(end-1)) && end > start)
1940 			end--;
1941 		len = end - start;
1942 
1943 		if (kstrtoint(end, 10, &id) < 0)
1944 			continue;
1945 
1946 		/* Allocate an alias_prop with enough space for the stem */
1947 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1948 		if (!ap)
1949 			continue;
1950 		memset(ap, 0, sizeof(*ap) + len + 1);
1951 		ap->alias = start;
1952 		of_alias_add(ap, np, id, start, len);
1953 	}
1954 }
1955 
1956 /**
1957  * of_alias_get_id - Get alias id for the given device_node
1958  * @np:		Pointer to the given device_node
1959  * @stem:	Alias stem of the given device_node
1960  *
1961  * The function travels the lookup table to get the alias id for the given
1962  * device_node and alias stem.  It returns the alias id if found.
1963  */
1964 int of_alias_get_id(struct device_node *np, const char *stem)
1965 {
1966 	struct alias_prop *app;
1967 	int id = -ENODEV;
1968 
1969 	mutex_lock(&of_mutex);
1970 	list_for_each_entry(app, &aliases_lookup, link) {
1971 		if (strcmp(app->stem, stem) != 0)
1972 			continue;
1973 
1974 		if (np == app->np) {
1975 			id = app->id;
1976 			break;
1977 		}
1978 	}
1979 	mutex_unlock(&of_mutex);
1980 
1981 	return id;
1982 }
1983 EXPORT_SYMBOL_GPL(of_alias_get_id);
1984 
1985 /**
1986  * of_alias_get_highest_id - Get highest alias id for the given stem
1987  * @stem:	Alias stem to be examined
1988  *
1989  * The function travels the lookup table to get the highest alias id for the
1990  * given alias stem.  It returns the alias id if found.
1991  */
1992 int of_alias_get_highest_id(const char *stem)
1993 {
1994 	struct alias_prop *app;
1995 	int id = -ENODEV;
1996 
1997 	mutex_lock(&of_mutex);
1998 	list_for_each_entry(app, &aliases_lookup, link) {
1999 		if (strcmp(app->stem, stem) != 0)
2000 			continue;
2001 
2002 		if (app->id > id)
2003 			id = app->id;
2004 	}
2005 	mutex_unlock(&of_mutex);
2006 
2007 	return id;
2008 }
2009 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2010 
2011 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2012 			       u32 *pu)
2013 {
2014 	const void *curv = cur;
2015 
2016 	if (!prop)
2017 		return NULL;
2018 
2019 	if (!cur) {
2020 		curv = prop->value;
2021 		goto out_val;
2022 	}
2023 
2024 	curv += sizeof(*cur);
2025 	if (curv >= prop->value + prop->length)
2026 		return NULL;
2027 
2028 out_val:
2029 	*pu = be32_to_cpup(curv);
2030 	return curv;
2031 }
2032 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2033 
2034 const char *of_prop_next_string(struct property *prop, const char *cur)
2035 {
2036 	const void *curv = cur;
2037 
2038 	if (!prop)
2039 		return NULL;
2040 
2041 	if (!cur)
2042 		return prop->value;
2043 
2044 	curv += strlen(cur) + 1;
2045 	if (curv >= prop->value + prop->length)
2046 		return NULL;
2047 
2048 	return curv;
2049 }
2050 EXPORT_SYMBOL_GPL(of_prop_next_string);
2051 
2052 /**
2053  * of_console_check() - Test and setup console for DT setup
2054  * @dn - Pointer to device node
2055  * @name - Name to use for preferred console without index. ex. "ttyS"
2056  * @index - Index to use for preferred console.
2057  *
2058  * Check if the given device node matches the stdout-path property in the
2059  * /chosen node. If it does then register it as the preferred console and return
2060  * TRUE. Otherwise return FALSE.
2061  */
2062 bool of_console_check(struct device_node *dn, char *name, int index)
2063 {
2064 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2065 		return false;
2066 	return !add_preferred_console(name, index,
2067 				      kstrdup(of_stdout_options, GFP_KERNEL));
2068 }
2069 EXPORT_SYMBOL_GPL(of_console_check);
2070 
2071 /**
2072  *	of_find_next_cache_node - Find a node's subsidiary cache
2073  *	@np:	node of type "cpu" or "cache"
2074  *
2075  *	Returns a node pointer with refcount incremented, use
2076  *	of_node_put() on it when done.  Caller should hold a reference
2077  *	to np.
2078  */
2079 struct device_node *of_find_next_cache_node(const struct device_node *np)
2080 {
2081 	struct device_node *child;
2082 	const phandle *handle;
2083 
2084 	handle = of_get_property(np, "l2-cache", NULL);
2085 	if (!handle)
2086 		handle = of_get_property(np, "next-level-cache", NULL);
2087 
2088 	if (handle)
2089 		return of_find_node_by_phandle(be32_to_cpup(handle));
2090 
2091 	/* OF on pmac has nodes instead of properties named "l2-cache"
2092 	 * beneath CPU nodes.
2093 	 */
2094 	if (!strcmp(np->type, "cpu"))
2095 		for_each_child_of_node(np, child)
2096 			if (!strcmp(child->type, "cache"))
2097 				return child;
2098 
2099 	return NULL;
2100 }
2101 
2102 /**
2103  * of_graph_parse_endpoint() - parse common endpoint node properties
2104  * @node: pointer to endpoint device_node
2105  * @endpoint: pointer to the OF endpoint data structure
2106  *
2107  * The caller should hold a reference to @node.
2108  */
2109 int of_graph_parse_endpoint(const struct device_node *node,
2110 			    struct of_endpoint *endpoint)
2111 {
2112 	struct device_node *port_node = of_get_parent(node);
2113 
2114 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2115 		  __func__, node->full_name);
2116 
2117 	memset(endpoint, 0, sizeof(*endpoint));
2118 
2119 	endpoint->local_node = node;
2120 	/*
2121 	 * It doesn't matter whether the two calls below succeed.
2122 	 * If they don't then the default value 0 is used.
2123 	 */
2124 	of_property_read_u32(port_node, "reg", &endpoint->port);
2125 	of_property_read_u32(node, "reg", &endpoint->id);
2126 
2127 	of_node_put(port_node);
2128 
2129 	return 0;
2130 }
2131 EXPORT_SYMBOL(of_graph_parse_endpoint);
2132 
2133 /**
2134  * of_graph_get_port_by_id() - get the port matching a given id
2135  * @parent: pointer to the parent device node
2136  * @id: id of the port
2137  *
2138  * Return: A 'port' node pointer with refcount incremented. The caller
2139  * has to use of_node_put() on it when done.
2140  */
2141 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2142 {
2143 	struct device_node *node, *port;
2144 
2145 	node = of_get_child_by_name(parent, "ports");
2146 	if (node)
2147 		parent = node;
2148 
2149 	for_each_child_of_node(parent, port) {
2150 		u32 port_id = 0;
2151 
2152 		if (of_node_cmp(port->name, "port") != 0)
2153 			continue;
2154 		of_property_read_u32(port, "reg", &port_id);
2155 		if (id == port_id)
2156 			break;
2157 	}
2158 
2159 	of_node_put(node);
2160 
2161 	return port;
2162 }
2163 EXPORT_SYMBOL(of_graph_get_port_by_id);
2164 
2165 /**
2166  * of_graph_get_next_endpoint() - get next endpoint node
2167  * @parent: pointer to the parent device node
2168  * @prev: previous endpoint node, or NULL to get first
2169  *
2170  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2171  * of the passed @prev node is decremented.
2172  */
2173 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2174 					struct device_node *prev)
2175 {
2176 	struct device_node *endpoint;
2177 	struct device_node *port;
2178 
2179 	if (!parent)
2180 		return NULL;
2181 
2182 	/*
2183 	 * Start by locating the port node. If no previous endpoint is specified
2184 	 * search for the first port node, otherwise get the previous endpoint
2185 	 * parent port node.
2186 	 */
2187 	if (!prev) {
2188 		struct device_node *node;
2189 
2190 		node = of_get_child_by_name(parent, "ports");
2191 		if (node)
2192 			parent = node;
2193 
2194 		port = of_get_child_by_name(parent, "port");
2195 		of_node_put(node);
2196 
2197 		if (!port) {
2198 			pr_err("%s(): no port node found in %s\n",
2199 			       __func__, parent->full_name);
2200 			return NULL;
2201 		}
2202 	} else {
2203 		port = of_get_parent(prev);
2204 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2205 			      __func__, prev->full_name))
2206 			return NULL;
2207 	}
2208 
2209 	while (1) {
2210 		/*
2211 		 * Now that we have a port node, get the next endpoint by
2212 		 * getting the next child. If the previous endpoint is NULL this
2213 		 * will return the first child.
2214 		 */
2215 		endpoint = of_get_next_child(port, prev);
2216 		if (endpoint) {
2217 			of_node_put(port);
2218 			return endpoint;
2219 		}
2220 
2221 		/* No more endpoints under this port, try the next one. */
2222 		prev = NULL;
2223 
2224 		do {
2225 			port = of_get_next_child(parent, port);
2226 			if (!port)
2227 				return NULL;
2228 		} while (of_node_cmp(port->name, "port"));
2229 	}
2230 }
2231 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2232 
2233 /**
2234  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2235  * @parent: pointer to the parent device node
2236  * @port_reg: identifier (value of reg property) of the parent port node
2237  * @reg: identifier (value of reg property) of the endpoint node
2238  *
2239  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2240  * is the child of a port node identified by port_reg. reg and port_reg are
2241  * ignored when they are -1.
2242  */
2243 struct device_node *of_graph_get_endpoint_by_regs(
2244 	const struct device_node *parent, int port_reg, int reg)
2245 {
2246 	struct of_endpoint endpoint;
2247 	struct device_node *node, *prev_node = NULL;
2248 
2249 	while (1) {
2250 		node = of_graph_get_next_endpoint(parent, prev_node);
2251 		of_node_put(prev_node);
2252 		if (!node)
2253 			break;
2254 
2255 		of_graph_parse_endpoint(node, &endpoint);
2256 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2257 			((reg == -1) || (endpoint.id == reg)))
2258 			return node;
2259 
2260 		prev_node = node;
2261 	}
2262 
2263 	return NULL;
2264 }
2265 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2266 
2267 /**
2268  * of_graph_get_remote_port_parent() - get remote port's parent node
2269  * @node: pointer to a local endpoint device_node
2270  *
2271  * Return: Remote device node associated with remote endpoint node linked
2272  *	   to @node. Use of_node_put() on it when done.
2273  */
2274 struct device_node *of_graph_get_remote_port_parent(
2275 			       const struct device_node *node)
2276 {
2277 	struct device_node *np;
2278 	unsigned int depth;
2279 
2280 	/* Get remote endpoint node. */
2281 	np = of_parse_phandle(node, "remote-endpoint", 0);
2282 
2283 	/* Walk 3 levels up only if there is 'ports' node. */
2284 	for (depth = 3; depth && np; depth--) {
2285 		np = of_get_next_parent(np);
2286 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2287 			break;
2288 	}
2289 	return np;
2290 }
2291 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2292 
2293 /**
2294  * of_graph_get_remote_port() - get remote port node
2295  * @node: pointer to a local endpoint device_node
2296  *
2297  * Return: Remote port node associated with remote endpoint node linked
2298  *	   to @node. Use of_node_put() on it when done.
2299  */
2300 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2301 {
2302 	struct device_node *np;
2303 
2304 	/* Get remote endpoint node. */
2305 	np = of_parse_phandle(node, "remote-endpoint", 0);
2306 	if (!np)
2307 		return NULL;
2308 	return of_get_next_parent(np);
2309 }
2310 EXPORT_SYMBOL(of_graph_get_remote_port);
2311