xref: /openbmc/linux/drivers/of/base.c (revision de6e9190)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 	u32 cells;
93 
94 	for (; np; np = np->parent)
95 		if (!of_property_read_u32(np, "#address-cells", &cells))
96 			return cells;
97 
98 	/* No #address-cells property for the root node */
99 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101 
102 int of_n_addr_cells(struct device_node *np)
103 {
104 	if (np->parent)
105 		np = np->parent;
106 
107 	return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110 
111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 	u32 cells;
114 
115 	for (; np; np = np->parent)
116 		if (!of_property_read_u32(np, "#size-cells", &cells))
117 			return cells;
118 
119 	/* No #size-cells property for the root node */
120 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122 
123 int of_n_size_cells(struct device_node *np)
124 {
125 	if (np->parent)
126 		np = np->parent;
127 
128 	return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131 
132 #ifdef CONFIG_NUMA
133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 	return NUMA_NO_NODE;
136 }
137 #endif
138 
139 #define OF_PHANDLE_CACHE_BITS	7
140 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
141 
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143 
144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148 
149 /*
150  * Caller must hold devtree_lock.
151  */
152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 	u32 handle_hash;
155 	struct device_node *np;
156 
157 	if (!handle)
158 		return;
159 
160 	handle_hash = of_phandle_cache_hash(handle);
161 
162 	np = phandle_cache[handle_hash];
163 	if (np && handle == np->phandle)
164 		phandle_cache[handle_hash] = NULL;
165 }
166 
167 void __init of_core_init(void)
168 {
169 	struct device_node *np;
170 
171 
172 	/* Create the kset, and register existing nodes */
173 	mutex_lock(&of_mutex);
174 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 	if (!of_kset) {
176 		mutex_unlock(&of_mutex);
177 		pr_err("failed to register existing nodes\n");
178 		return;
179 	}
180 	for_each_of_allnodes(np) {
181 		__of_attach_node_sysfs(np);
182 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 	}
185 	mutex_unlock(&of_mutex);
186 
187 	/* Symlink in /proc as required by userspace ABI */
188 	if (of_root)
189 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191 
192 static struct property *__of_find_property(const struct device_node *np,
193 					   const char *name, int *lenp)
194 {
195 	struct property *pp;
196 
197 	if (!np)
198 		return NULL;
199 
200 	for (pp = np->properties; pp; pp = pp->next) {
201 		if (of_prop_cmp(pp->name, name) == 0) {
202 			if (lenp)
203 				*lenp = pp->length;
204 			break;
205 		}
206 	}
207 
208 	return pp;
209 }
210 
211 struct property *of_find_property(const struct device_node *np,
212 				  const char *name,
213 				  int *lenp)
214 {
215 	struct property *pp;
216 	unsigned long flags;
217 
218 	raw_spin_lock_irqsave(&devtree_lock, flags);
219 	pp = __of_find_property(np, name, lenp);
220 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
221 
222 	return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225 
226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 	struct device_node *np;
229 	if (!prev) {
230 		np = of_root;
231 	} else if (prev->child) {
232 		np = prev->child;
233 	} else {
234 		/* Walk back up looking for a sibling, or the end of the structure */
235 		np = prev;
236 		while (np->parent && !np->sibling)
237 			np = np->parent;
238 		np = np->sibling; /* Might be null at the end of the tree */
239 	}
240 	return np;
241 }
242 
243 /**
244  * of_find_all_nodes - Get next node in global list
245  * @prev:	Previous node or NULL to start iteration
246  *		of_node_put() will be called on it
247  *
248  * Return: A node pointer with refcount incremented, use
249  * of_node_put() on it when done.
250  */
251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 	struct device_node *np;
254 	unsigned long flags;
255 
256 	raw_spin_lock_irqsave(&devtree_lock, flags);
257 	np = __of_find_all_nodes(prev);
258 	of_node_get(np);
259 	of_node_put(prev);
260 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 	return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264 
265 /*
266  * Find a property with a given name for a given node
267  * and return the value.
268  */
269 const void *__of_get_property(const struct device_node *np,
270 			      const char *name, int *lenp)
271 {
272 	struct property *pp = __of_find_property(np, name, lenp);
273 
274 	return pp ? pp->value : NULL;
275 }
276 
277 /*
278  * Find a property with a given name for a given node
279  * and return the value.
280  */
281 const void *of_get_property(const struct device_node *np, const char *name,
282 			    int *lenp)
283 {
284 	struct property *pp = of_find_property(np, name, lenp);
285 
286 	return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289 
290 /*
291  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
292  *
293  * @cpu: logical cpu index of a core/thread
294  * @phys_id: physical identifier of a core/thread
295  *
296  * CPU logical to physical index mapping is architecture specific.
297  * However this __weak function provides a default match of physical
298  * id to logical cpu index. phys_id provided here is usually values read
299  * from the device tree which must match the hardware internal registers.
300  *
301  * Returns true if the physical identifier and the logical cpu index
302  * correspond to the same core/thread, false otherwise.
303  */
304 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
305 {
306 	return (u32)phys_id == cpu;
307 }
308 
309 /*
310  * Checks if the given "prop_name" property holds the physical id of the
311  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
312  * NULL, local thread number within the core is returned in it.
313  */
314 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
315 			const char *prop_name, int cpu, unsigned int *thread)
316 {
317 	const __be32 *cell;
318 	int ac, prop_len, tid;
319 	u64 hwid;
320 
321 	ac = of_n_addr_cells(cpun);
322 	cell = of_get_property(cpun, prop_name, &prop_len);
323 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
324 		return true;
325 	if (!cell || !ac)
326 		return false;
327 	prop_len /= sizeof(*cell) * ac;
328 	for (tid = 0; tid < prop_len; tid++) {
329 		hwid = of_read_number(cell, ac);
330 		if (arch_match_cpu_phys_id(cpu, hwid)) {
331 			if (thread)
332 				*thread = tid;
333 			return true;
334 		}
335 		cell += ac;
336 	}
337 	return false;
338 }
339 
340 /*
341  * arch_find_n_match_cpu_physical_id - See if the given device node is
342  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
343  * else false.  If 'thread' is non-NULL, the local thread number within the
344  * core is returned in it.
345  */
346 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
347 					      int cpu, unsigned int *thread)
348 {
349 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
350 	 * for thread ids on PowerPC. If it doesn't exist fallback to
351 	 * standard "reg" property.
352 	 */
353 	if (IS_ENABLED(CONFIG_PPC) &&
354 	    __of_find_n_match_cpu_property(cpun,
355 					   "ibm,ppc-interrupt-server#s",
356 					   cpu, thread))
357 		return true;
358 
359 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
360 }
361 
362 /**
363  * of_get_cpu_node - Get device node associated with the given logical CPU
364  *
365  * @cpu: CPU number(logical index) for which device node is required
366  * @thread: if not NULL, local thread number within the physical core is
367  *          returned
368  *
369  * The main purpose of this function is to retrieve the device node for the
370  * given logical CPU index. It should be used to initialize the of_node in
371  * cpu device. Once of_node in cpu device is populated, all the further
372  * references can use that instead.
373  *
374  * CPU logical to physical index mapping is architecture specific and is built
375  * before booting secondary cores. This function uses arch_match_cpu_phys_id
376  * which can be overridden by architecture specific implementation.
377  *
378  * Return: A node pointer for the logical cpu with refcount incremented, use
379  * of_node_put() on it when done. Returns NULL if not found.
380  */
381 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
382 {
383 	struct device_node *cpun;
384 
385 	for_each_of_cpu_node(cpun) {
386 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
387 			return cpun;
388 	}
389 	return NULL;
390 }
391 EXPORT_SYMBOL(of_get_cpu_node);
392 
393 /**
394  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
395  *
396  * @cpu_node: Pointer to the device_node for CPU.
397  *
398  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
399  * CPU is not found.
400  */
401 int of_cpu_node_to_id(struct device_node *cpu_node)
402 {
403 	int cpu;
404 	bool found = false;
405 	struct device_node *np;
406 
407 	for_each_possible_cpu(cpu) {
408 		np = of_cpu_device_node_get(cpu);
409 		found = (cpu_node == np);
410 		of_node_put(np);
411 		if (found)
412 			return cpu;
413 	}
414 
415 	return -ENODEV;
416 }
417 EXPORT_SYMBOL(of_cpu_node_to_id);
418 
419 /**
420  * of_get_cpu_state_node - Get CPU's idle state node at the given index
421  *
422  * @cpu_node: The device node for the CPU
423  * @index: The index in the list of the idle states
424  *
425  * Two generic methods can be used to describe a CPU's idle states, either via
426  * a flattened description through the "cpu-idle-states" binding or via the
427  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
428  * bindings. This function check for both and returns the idle state node for
429  * the requested index.
430  *
431  * Return: An idle state node if found at @index. The refcount is incremented
432  * for it, so call of_node_put() on it when done. Returns NULL if not found.
433  */
434 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
435 					  int index)
436 {
437 	struct of_phandle_args args;
438 	int err;
439 
440 	err = of_parse_phandle_with_args(cpu_node, "power-domains",
441 					"#power-domain-cells", 0, &args);
442 	if (!err) {
443 		struct device_node *state_node =
444 			of_parse_phandle(args.np, "domain-idle-states", index);
445 
446 		of_node_put(args.np);
447 		if (state_node)
448 			return state_node;
449 	}
450 
451 	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
452 }
453 EXPORT_SYMBOL(of_get_cpu_state_node);
454 
455 /**
456  * __of_device_is_compatible() - Check if the node matches given constraints
457  * @device: pointer to node
458  * @compat: required compatible string, NULL or "" for any match
459  * @type: required device_type value, NULL or "" for any match
460  * @name: required node name, NULL or "" for any match
461  *
462  * Checks if the given @compat, @type and @name strings match the
463  * properties of the given @device. A constraints can be skipped by
464  * passing NULL or an empty string as the constraint.
465  *
466  * Returns 0 for no match, and a positive integer on match. The return
467  * value is a relative score with larger values indicating better
468  * matches. The score is weighted for the most specific compatible value
469  * to get the highest score. Matching type is next, followed by matching
470  * name. Practically speaking, this results in the following priority
471  * order for matches:
472  *
473  * 1. specific compatible && type && name
474  * 2. specific compatible && type
475  * 3. specific compatible && name
476  * 4. specific compatible
477  * 5. general compatible && type && name
478  * 6. general compatible && type
479  * 7. general compatible && name
480  * 8. general compatible
481  * 9. type && name
482  * 10. type
483  * 11. name
484  */
485 static int __of_device_is_compatible(const struct device_node *device,
486 				     const char *compat, const char *type, const char *name)
487 {
488 	struct property *prop;
489 	const char *cp;
490 	int index = 0, score = 0;
491 
492 	/* Compatible match has highest priority */
493 	if (compat && compat[0]) {
494 		prop = __of_find_property(device, "compatible", NULL);
495 		for (cp = of_prop_next_string(prop, NULL); cp;
496 		     cp = of_prop_next_string(prop, cp), index++) {
497 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
498 				score = INT_MAX/2 - (index << 2);
499 				break;
500 			}
501 		}
502 		if (!score)
503 			return 0;
504 	}
505 
506 	/* Matching type is better than matching name */
507 	if (type && type[0]) {
508 		if (!__of_node_is_type(device, type))
509 			return 0;
510 		score += 2;
511 	}
512 
513 	/* Matching name is a bit better than not */
514 	if (name && name[0]) {
515 		if (!of_node_name_eq(device, name))
516 			return 0;
517 		score++;
518 	}
519 
520 	return score;
521 }
522 
523 /** Checks if the given "compat" string matches one of the strings in
524  * the device's "compatible" property
525  */
526 int of_device_is_compatible(const struct device_node *device,
527 		const char *compat)
528 {
529 	unsigned long flags;
530 	int res;
531 
532 	raw_spin_lock_irqsave(&devtree_lock, flags);
533 	res = __of_device_is_compatible(device, compat, NULL, NULL);
534 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 	return res;
536 }
537 EXPORT_SYMBOL(of_device_is_compatible);
538 
539 /** Checks if the device is compatible with any of the entries in
540  *  a NULL terminated array of strings. Returns the best match
541  *  score or 0.
542  */
543 int of_device_compatible_match(struct device_node *device,
544 			       const char *const *compat)
545 {
546 	unsigned int tmp, score = 0;
547 
548 	if (!compat)
549 		return 0;
550 
551 	while (*compat) {
552 		tmp = of_device_is_compatible(device, *compat);
553 		if (tmp > score)
554 			score = tmp;
555 		compat++;
556 	}
557 
558 	return score;
559 }
560 
561 /**
562  * of_machine_is_compatible - Test root of device tree for a given compatible value
563  * @compat: compatible string to look for in root node's compatible property.
564  *
565  * Return: A positive integer if the root node has the given value in its
566  * compatible property.
567  */
568 int of_machine_is_compatible(const char *compat)
569 {
570 	struct device_node *root;
571 	int rc = 0;
572 
573 	root = of_find_node_by_path("/");
574 	if (root) {
575 		rc = of_device_is_compatible(root, compat);
576 		of_node_put(root);
577 	}
578 	return rc;
579 }
580 EXPORT_SYMBOL(of_machine_is_compatible);
581 
582 /**
583  *  __of_device_is_available - check if a device is available for use
584  *
585  *  @device: Node to check for availability, with locks already held
586  *
587  *  Return: True if the status property is absent or set to "okay" or "ok",
588  *  false otherwise
589  */
590 static bool __of_device_is_available(const struct device_node *device)
591 {
592 	const char *status;
593 	int statlen;
594 
595 	if (!device)
596 		return false;
597 
598 	status = __of_get_property(device, "status", &statlen);
599 	if (status == NULL)
600 		return true;
601 
602 	if (statlen > 0) {
603 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
604 			return true;
605 	}
606 
607 	return false;
608 }
609 
610 /**
611  *  of_device_is_available - check if a device is available for use
612  *
613  *  @device: Node to check for availability
614  *
615  *  Return: True if the status property is absent or set to "okay" or "ok",
616  *  false otherwise
617  */
618 bool of_device_is_available(const struct device_node *device)
619 {
620 	unsigned long flags;
621 	bool res;
622 
623 	raw_spin_lock_irqsave(&devtree_lock, flags);
624 	res = __of_device_is_available(device);
625 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 	return res;
627 
628 }
629 EXPORT_SYMBOL(of_device_is_available);
630 
631 /**
632  *  of_device_is_big_endian - check if a device has BE registers
633  *
634  *  @device: Node to check for endianness
635  *
636  *  Return: True if the device has a "big-endian" property, or if the kernel
637  *  was compiled for BE *and* the device has a "native-endian" property.
638  *  Returns false otherwise.
639  *
640  *  Callers would nominally use ioread32be/iowrite32be if
641  *  of_device_is_big_endian() == true, or readl/writel otherwise.
642  */
643 bool of_device_is_big_endian(const struct device_node *device)
644 {
645 	if (of_property_read_bool(device, "big-endian"))
646 		return true;
647 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
648 	    of_property_read_bool(device, "native-endian"))
649 		return true;
650 	return false;
651 }
652 EXPORT_SYMBOL(of_device_is_big_endian);
653 
654 /**
655  * of_get_parent - Get a node's parent if any
656  * @node:	Node to get parent
657  *
658  * Return: A node pointer with refcount incremented, use
659  * of_node_put() on it when done.
660  */
661 struct device_node *of_get_parent(const struct device_node *node)
662 {
663 	struct device_node *np;
664 	unsigned long flags;
665 
666 	if (!node)
667 		return NULL;
668 
669 	raw_spin_lock_irqsave(&devtree_lock, flags);
670 	np = of_node_get(node->parent);
671 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 	return np;
673 }
674 EXPORT_SYMBOL(of_get_parent);
675 
676 /**
677  * of_get_next_parent - Iterate to a node's parent
678  * @node:	Node to get parent of
679  *
680  * This is like of_get_parent() except that it drops the
681  * refcount on the passed node, making it suitable for iterating
682  * through a node's parents.
683  *
684  * Return: A node pointer with refcount incremented, use
685  * of_node_put() on it when done.
686  */
687 struct device_node *of_get_next_parent(struct device_node *node)
688 {
689 	struct device_node *parent;
690 	unsigned long flags;
691 
692 	if (!node)
693 		return NULL;
694 
695 	raw_spin_lock_irqsave(&devtree_lock, flags);
696 	parent = of_node_get(node->parent);
697 	of_node_put(node);
698 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
699 	return parent;
700 }
701 EXPORT_SYMBOL(of_get_next_parent);
702 
703 static struct device_node *__of_get_next_child(const struct device_node *node,
704 						struct device_node *prev)
705 {
706 	struct device_node *next;
707 
708 	if (!node)
709 		return NULL;
710 
711 	next = prev ? prev->sibling : node->child;
712 	of_node_get(next);
713 	of_node_put(prev);
714 	return next;
715 }
716 #define __for_each_child_of_node(parent, child) \
717 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
718 	     child = __of_get_next_child(parent, child))
719 
720 /**
721  * of_get_next_child - Iterate a node childs
722  * @node:	parent node
723  * @prev:	previous child of the parent node, or NULL to get first
724  *
725  * Return: A node pointer with refcount incremented, use of_node_put() on
726  * it when done. Returns NULL when prev is the last child. Decrements the
727  * refcount of prev.
728  */
729 struct device_node *of_get_next_child(const struct device_node *node,
730 	struct device_node *prev)
731 {
732 	struct device_node *next;
733 	unsigned long flags;
734 
735 	raw_spin_lock_irqsave(&devtree_lock, flags);
736 	next = __of_get_next_child(node, prev);
737 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 	return next;
739 }
740 EXPORT_SYMBOL(of_get_next_child);
741 
742 /**
743  * of_get_next_available_child - Find the next available child node
744  * @node:	parent node
745  * @prev:	previous child of the parent node, or NULL to get first
746  *
747  * This function is like of_get_next_child(), except that it
748  * automatically skips any disabled nodes (i.e. status = "disabled").
749  */
750 struct device_node *of_get_next_available_child(const struct device_node *node,
751 	struct device_node *prev)
752 {
753 	struct device_node *next;
754 	unsigned long flags;
755 
756 	if (!node)
757 		return NULL;
758 
759 	raw_spin_lock_irqsave(&devtree_lock, flags);
760 	next = prev ? prev->sibling : node->child;
761 	for (; next; next = next->sibling) {
762 		if (!__of_device_is_available(next))
763 			continue;
764 		if (of_node_get(next))
765 			break;
766 	}
767 	of_node_put(prev);
768 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
769 	return next;
770 }
771 EXPORT_SYMBOL(of_get_next_available_child);
772 
773 /**
774  * of_get_next_cpu_node - Iterate on cpu nodes
775  * @prev:	previous child of the /cpus node, or NULL to get first
776  *
777  * Return: A cpu node pointer with refcount incremented, use of_node_put()
778  * on it when done. Returns NULL when prev is the last child. Decrements
779  * the refcount of prev.
780  */
781 struct device_node *of_get_next_cpu_node(struct device_node *prev)
782 {
783 	struct device_node *next = NULL;
784 	unsigned long flags;
785 	struct device_node *node;
786 
787 	if (!prev)
788 		node = of_find_node_by_path("/cpus");
789 
790 	raw_spin_lock_irqsave(&devtree_lock, flags);
791 	if (prev)
792 		next = prev->sibling;
793 	else if (node) {
794 		next = node->child;
795 		of_node_put(node);
796 	}
797 	for (; next; next = next->sibling) {
798 		if (!(of_node_name_eq(next, "cpu") ||
799 		      __of_node_is_type(next, "cpu")))
800 			continue;
801 		if (of_node_get(next))
802 			break;
803 	}
804 	of_node_put(prev);
805 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
806 	return next;
807 }
808 EXPORT_SYMBOL(of_get_next_cpu_node);
809 
810 /**
811  * of_get_compatible_child - Find compatible child node
812  * @parent:	parent node
813  * @compatible:	compatible string
814  *
815  * Lookup child node whose compatible property contains the given compatible
816  * string.
817  *
818  * Return: a node pointer with refcount incremented, use of_node_put() on it
819  * when done; or NULL if not found.
820  */
821 struct device_node *of_get_compatible_child(const struct device_node *parent,
822 				const char *compatible)
823 {
824 	struct device_node *child;
825 
826 	for_each_child_of_node(parent, child) {
827 		if (of_device_is_compatible(child, compatible))
828 			break;
829 	}
830 
831 	return child;
832 }
833 EXPORT_SYMBOL(of_get_compatible_child);
834 
835 /**
836  * of_get_child_by_name - Find the child node by name for a given parent
837  * @node:	parent node
838  * @name:	child name to look for.
839  *
840  * This function looks for child node for given matching name
841  *
842  * Return: A node pointer if found, with refcount incremented, use
843  * of_node_put() on it when done.
844  * Returns NULL if node is not found.
845  */
846 struct device_node *of_get_child_by_name(const struct device_node *node,
847 				const char *name)
848 {
849 	struct device_node *child;
850 
851 	for_each_child_of_node(node, child)
852 		if (of_node_name_eq(child, name))
853 			break;
854 	return child;
855 }
856 EXPORT_SYMBOL(of_get_child_by_name);
857 
858 struct device_node *__of_find_node_by_path(struct device_node *parent,
859 						const char *path)
860 {
861 	struct device_node *child;
862 	int len;
863 
864 	len = strcspn(path, "/:");
865 	if (!len)
866 		return NULL;
867 
868 	__for_each_child_of_node(parent, child) {
869 		const char *name = kbasename(child->full_name);
870 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
871 			return child;
872 	}
873 	return NULL;
874 }
875 
876 struct device_node *__of_find_node_by_full_path(struct device_node *node,
877 						const char *path)
878 {
879 	const char *separator = strchr(path, ':');
880 
881 	while (node && *path == '/') {
882 		struct device_node *tmp = node;
883 
884 		path++; /* Increment past '/' delimiter */
885 		node = __of_find_node_by_path(node, path);
886 		of_node_put(tmp);
887 		path = strchrnul(path, '/');
888 		if (separator && separator < path)
889 			break;
890 	}
891 	return node;
892 }
893 
894 /**
895  * of_find_node_opts_by_path - Find a node matching a full OF path
896  * @path: Either the full path to match, or if the path does not
897  *       start with '/', the name of a property of the /aliases
898  *       node (an alias).  In the case of an alias, the node
899  *       matching the alias' value will be returned.
900  * @opts: Address of a pointer into which to store the start of
901  *       an options string appended to the end of the path with
902  *       a ':' separator.
903  *
904  * Valid paths:
905  *  * /foo/bar	Full path
906  *  * foo	Valid alias
907  *  * foo/bar	Valid alias + relative path
908  *
909  * Return: A node pointer with refcount incremented, use
910  * of_node_put() on it when done.
911  */
912 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
913 {
914 	struct device_node *np = NULL;
915 	struct property *pp;
916 	unsigned long flags;
917 	const char *separator = strchr(path, ':');
918 
919 	if (opts)
920 		*opts = separator ? separator + 1 : NULL;
921 
922 	if (strcmp(path, "/") == 0)
923 		return of_node_get(of_root);
924 
925 	/* The path could begin with an alias */
926 	if (*path != '/') {
927 		int len;
928 		const char *p = separator;
929 
930 		if (!p)
931 			p = strchrnul(path, '/');
932 		len = p - path;
933 
934 		/* of_aliases must not be NULL */
935 		if (!of_aliases)
936 			return NULL;
937 
938 		for_each_property_of_node(of_aliases, pp) {
939 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
940 				np = of_find_node_by_path(pp->value);
941 				break;
942 			}
943 		}
944 		if (!np)
945 			return NULL;
946 		path = p;
947 	}
948 
949 	/* Step down the tree matching path components */
950 	raw_spin_lock_irqsave(&devtree_lock, flags);
951 	if (!np)
952 		np = of_node_get(of_root);
953 	np = __of_find_node_by_full_path(np, path);
954 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
955 	return np;
956 }
957 EXPORT_SYMBOL(of_find_node_opts_by_path);
958 
959 /**
960  * of_find_node_by_name - Find a node by its "name" property
961  * @from:	The node to start searching from or NULL; the node
962  *		you pass will not be searched, only the next one
963  *		will. Typically, you pass what the previous call
964  *		returned. of_node_put() will be called on @from.
965  * @name:	The name string to match against
966  *
967  * Return: A node pointer with refcount incremented, use
968  * of_node_put() on it when done.
969  */
970 struct device_node *of_find_node_by_name(struct device_node *from,
971 	const char *name)
972 {
973 	struct device_node *np;
974 	unsigned long flags;
975 
976 	raw_spin_lock_irqsave(&devtree_lock, flags);
977 	for_each_of_allnodes_from(from, np)
978 		if (of_node_name_eq(np, name) && of_node_get(np))
979 			break;
980 	of_node_put(from);
981 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
982 	return np;
983 }
984 EXPORT_SYMBOL(of_find_node_by_name);
985 
986 /**
987  * of_find_node_by_type - Find a node by its "device_type" property
988  * @from:	The node to start searching from, or NULL to start searching
989  *		the entire device tree. The node you pass will not be
990  *		searched, only the next one will; typically, you pass
991  *		what the previous call returned. of_node_put() will be
992  *		called on from for you.
993  * @type:	The type string to match against
994  *
995  * Return: A node pointer with refcount incremented, use
996  * of_node_put() on it when done.
997  */
998 struct device_node *of_find_node_by_type(struct device_node *from,
999 	const char *type)
1000 {
1001 	struct device_node *np;
1002 	unsigned long flags;
1003 
1004 	raw_spin_lock_irqsave(&devtree_lock, flags);
1005 	for_each_of_allnodes_from(from, np)
1006 		if (__of_node_is_type(np, type) && of_node_get(np))
1007 			break;
1008 	of_node_put(from);
1009 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1010 	return np;
1011 }
1012 EXPORT_SYMBOL(of_find_node_by_type);
1013 
1014 /**
1015  * of_find_compatible_node - Find a node based on type and one of the
1016  *                                tokens in its "compatible" property
1017  * @from:	The node to start searching from or NULL, the node
1018  *		you pass will not be searched, only the next one
1019  *		will; typically, you pass what the previous call
1020  *		returned. of_node_put() will be called on it
1021  * @type:	The type string to match "device_type" or NULL to ignore
1022  * @compatible:	The string to match to one of the tokens in the device
1023  *		"compatible" list.
1024  *
1025  * Return: A node pointer with refcount incremented, use
1026  * of_node_put() on it when done.
1027  */
1028 struct device_node *of_find_compatible_node(struct device_node *from,
1029 	const char *type, const char *compatible)
1030 {
1031 	struct device_node *np;
1032 	unsigned long flags;
1033 
1034 	raw_spin_lock_irqsave(&devtree_lock, flags);
1035 	for_each_of_allnodes_from(from, np)
1036 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1037 		    of_node_get(np))
1038 			break;
1039 	of_node_put(from);
1040 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1041 	return np;
1042 }
1043 EXPORT_SYMBOL(of_find_compatible_node);
1044 
1045 /**
1046  * of_find_node_with_property - Find a node which has a property with
1047  *                              the given name.
1048  * @from:	The node to start searching from or NULL, the node
1049  *		you pass will not be searched, only the next one
1050  *		will; typically, you pass what the previous call
1051  *		returned. of_node_put() will be called on it
1052  * @prop_name:	The name of the property to look for.
1053  *
1054  * Return: A node pointer with refcount incremented, use
1055  * of_node_put() on it when done.
1056  */
1057 struct device_node *of_find_node_with_property(struct device_node *from,
1058 	const char *prop_name)
1059 {
1060 	struct device_node *np;
1061 	struct property *pp;
1062 	unsigned long flags;
1063 
1064 	raw_spin_lock_irqsave(&devtree_lock, flags);
1065 	for_each_of_allnodes_from(from, np) {
1066 		for (pp = np->properties; pp; pp = pp->next) {
1067 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1068 				of_node_get(np);
1069 				goto out;
1070 			}
1071 		}
1072 	}
1073 out:
1074 	of_node_put(from);
1075 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076 	return np;
1077 }
1078 EXPORT_SYMBOL(of_find_node_with_property);
1079 
1080 static
1081 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1082 					   const struct device_node *node)
1083 {
1084 	const struct of_device_id *best_match = NULL;
1085 	int score, best_score = 0;
1086 
1087 	if (!matches)
1088 		return NULL;
1089 
1090 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1091 		score = __of_device_is_compatible(node, matches->compatible,
1092 						  matches->type, matches->name);
1093 		if (score > best_score) {
1094 			best_match = matches;
1095 			best_score = score;
1096 		}
1097 	}
1098 
1099 	return best_match;
1100 }
1101 
1102 /**
1103  * of_match_node - Tell if a device_node has a matching of_match structure
1104  * @matches:	array of of device match structures to search in
1105  * @node:	the of device structure to match against
1106  *
1107  * Low level utility function used by device matching.
1108  */
1109 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1110 					 const struct device_node *node)
1111 {
1112 	const struct of_device_id *match;
1113 	unsigned long flags;
1114 
1115 	raw_spin_lock_irqsave(&devtree_lock, flags);
1116 	match = __of_match_node(matches, node);
1117 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1118 	return match;
1119 }
1120 EXPORT_SYMBOL(of_match_node);
1121 
1122 /**
1123  * of_find_matching_node_and_match - Find a node based on an of_device_id
1124  *				     match table.
1125  * @from:	The node to start searching from or NULL, the node
1126  *		you pass will not be searched, only the next one
1127  *		will; typically, you pass what the previous call
1128  *		returned. of_node_put() will be called on it
1129  * @matches:	array of of device match structures to search in
1130  * @match:	Updated to point at the matches entry which matched
1131  *
1132  * Return: A node pointer with refcount incremented, use
1133  * of_node_put() on it when done.
1134  */
1135 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1136 					const struct of_device_id *matches,
1137 					const struct of_device_id **match)
1138 {
1139 	struct device_node *np;
1140 	const struct of_device_id *m;
1141 	unsigned long flags;
1142 
1143 	if (match)
1144 		*match = NULL;
1145 
1146 	raw_spin_lock_irqsave(&devtree_lock, flags);
1147 	for_each_of_allnodes_from(from, np) {
1148 		m = __of_match_node(matches, np);
1149 		if (m && of_node_get(np)) {
1150 			if (match)
1151 				*match = m;
1152 			break;
1153 		}
1154 	}
1155 	of_node_put(from);
1156 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157 	return np;
1158 }
1159 EXPORT_SYMBOL(of_find_matching_node_and_match);
1160 
1161 /**
1162  * of_modalias_node - Lookup appropriate modalias for a device node
1163  * @node:	pointer to a device tree node
1164  * @modalias:	Pointer to buffer that modalias value will be copied into
1165  * @len:	Length of modalias value
1166  *
1167  * Based on the value of the compatible property, this routine will attempt
1168  * to choose an appropriate modalias value for a particular device tree node.
1169  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1170  * from the first entry in the compatible list property.
1171  *
1172  * Return: This routine returns 0 on success, <0 on failure.
1173  */
1174 int of_modalias_node(struct device_node *node, char *modalias, int len)
1175 {
1176 	const char *compatible, *p;
1177 	int cplen;
1178 
1179 	compatible = of_get_property(node, "compatible", &cplen);
1180 	if (!compatible || strlen(compatible) > cplen)
1181 		return -ENODEV;
1182 	p = strchr(compatible, ',');
1183 	strlcpy(modalias, p ? p + 1 : compatible, len);
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(of_modalias_node);
1187 
1188 /**
1189  * of_find_node_by_phandle - Find a node given a phandle
1190  * @handle:	phandle of the node to find
1191  *
1192  * Return: A node pointer with refcount incremented, use
1193  * of_node_put() on it when done.
1194  */
1195 struct device_node *of_find_node_by_phandle(phandle handle)
1196 {
1197 	struct device_node *np = NULL;
1198 	unsigned long flags;
1199 	u32 handle_hash;
1200 
1201 	if (!handle)
1202 		return NULL;
1203 
1204 	handle_hash = of_phandle_cache_hash(handle);
1205 
1206 	raw_spin_lock_irqsave(&devtree_lock, flags);
1207 
1208 	if (phandle_cache[handle_hash] &&
1209 	    handle == phandle_cache[handle_hash]->phandle)
1210 		np = phandle_cache[handle_hash];
1211 
1212 	if (!np) {
1213 		for_each_of_allnodes(np)
1214 			if (np->phandle == handle &&
1215 			    !of_node_check_flag(np, OF_DETACHED)) {
1216 				phandle_cache[handle_hash] = np;
1217 				break;
1218 			}
1219 	}
1220 
1221 	of_node_get(np);
1222 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1223 	return np;
1224 }
1225 EXPORT_SYMBOL(of_find_node_by_phandle);
1226 
1227 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1228 {
1229 	int i;
1230 	printk("%s %pOF", msg, args->np);
1231 	for (i = 0; i < args->args_count; i++) {
1232 		const char delim = i ? ',' : ':';
1233 
1234 		pr_cont("%c%08x", delim, args->args[i]);
1235 	}
1236 	pr_cont("\n");
1237 }
1238 
1239 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1240 		const struct device_node *np,
1241 		const char *list_name,
1242 		const char *cells_name,
1243 		int cell_count)
1244 {
1245 	const __be32 *list;
1246 	int size;
1247 
1248 	memset(it, 0, sizeof(*it));
1249 
1250 	/*
1251 	 * one of cell_count or cells_name must be provided to determine the
1252 	 * argument length.
1253 	 */
1254 	if (cell_count < 0 && !cells_name)
1255 		return -EINVAL;
1256 
1257 	list = of_get_property(np, list_name, &size);
1258 	if (!list)
1259 		return -ENOENT;
1260 
1261 	it->cells_name = cells_name;
1262 	it->cell_count = cell_count;
1263 	it->parent = np;
1264 	it->list_end = list + size / sizeof(*list);
1265 	it->phandle_end = list;
1266 	it->cur = list;
1267 
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1271 
1272 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1273 {
1274 	uint32_t count = 0;
1275 
1276 	if (it->node) {
1277 		of_node_put(it->node);
1278 		it->node = NULL;
1279 	}
1280 
1281 	if (!it->cur || it->phandle_end >= it->list_end)
1282 		return -ENOENT;
1283 
1284 	it->cur = it->phandle_end;
1285 
1286 	/* If phandle is 0, then it is an empty entry with no arguments. */
1287 	it->phandle = be32_to_cpup(it->cur++);
1288 
1289 	if (it->phandle) {
1290 
1291 		/*
1292 		 * Find the provider node and parse the #*-cells property to
1293 		 * determine the argument length.
1294 		 */
1295 		it->node = of_find_node_by_phandle(it->phandle);
1296 
1297 		if (it->cells_name) {
1298 			if (!it->node) {
1299 				pr_err("%pOF: could not find phandle %d\n",
1300 				       it->parent, it->phandle);
1301 				goto err;
1302 			}
1303 
1304 			if (of_property_read_u32(it->node, it->cells_name,
1305 						 &count)) {
1306 				/*
1307 				 * If both cell_count and cells_name is given,
1308 				 * fall back to cell_count in absence
1309 				 * of the cells_name property
1310 				 */
1311 				if (it->cell_count >= 0) {
1312 					count = it->cell_count;
1313 				} else {
1314 					pr_err("%pOF: could not get %s for %pOF\n",
1315 					       it->parent,
1316 					       it->cells_name,
1317 					       it->node);
1318 					goto err;
1319 				}
1320 			}
1321 		} else {
1322 			count = it->cell_count;
1323 		}
1324 
1325 		/*
1326 		 * Make sure that the arguments actually fit in the remaining
1327 		 * property data length
1328 		 */
1329 		if (it->cur + count > it->list_end) {
1330 			pr_err("%pOF: %s = %d found %d\n",
1331 			       it->parent, it->cells_name,
1332 			       count, it->cell_count);
1333 			goto err;
1334 		}
1335 	}
1336 
1337 	it->phandle_end = it->cur + count;
1338 	it->cur_count = count;
1339 
1340 	return 0;
1341 
1342 err:
1343 	if (it->node) {
1344 		of_node_put(it->node);
1345 		it->node = NULL;
1346 	}
1347 
1348 	return -EINVAL;
1349 }
1350 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1351 
1352 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1353 			     uint32_t *args,
1354 			     int size)
1355 {
1356 	int i, count;
1357 
1358 	count = it->cur_count;
1359 
1360 	if (WARN_ON(size < count))
1361 		count = size;
1362 
1363 	for (i = 0; i < count; i++)
1364 		args[i] = be32_to_cpup(it->cur++);
1365 
1366 	return count;
1367 }
1368 
1369 static int __of_parse_phandle_with_args(const struct device_node *np,
1370 					const char *list_name,
1371 					const char *cells_name,
1372 					int cell_count, int index,
1373 					struct of_phandle_args *out_args)
1374 {
1375 	struct of_phandle_iterator it;
1376 	int rc, cur_index = 0;
1377 
1378 	/* Loop over the phandles until all the requested entry is found */
1379 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1380 		/*
1381 		 * All of the error cases bail out of the loop, so at
1382 		 * this point, the parsing is successful. If the requested
1383 		 * index matches, then fill the out_args structure and return,
1384 		 * or return -ENOENT for an empty entry.
1385 		 */
1386 		rc = -ENOENT;
1387 		if (cur_index == index) {
1388 			if (!it.phandle)
1389 				goto err;
1390 
1391 			if (out_args) {
1392 				int c;
1393 
1394 				c = of_phandle_iterator_args(&it,
1395 							     out_args->args,
1396 							     MAX_PHANDLE_ARGS);
1397 				out_args->np = it.node;
1398 				out_args->args_count = c;
1399 			} else {
1400 				of_node_put(it.node);
1401 			}
1402 
1403 			/* Found it! return success */
1404 			return 0;
1405 		}
1406 
1407 		cur_index++;
1408 	}
1409 
1410 	/*
1411 	 * Unlock node before returning result; will be one of:
1412 	 * -ENOENT : index is for empty phandle
1413 	 * -EINVAL : parsing error on data
1414 	 */
1415 
1416  err:
1417 	of_node_put(it.node);
1418 	return rc;
1419 }
1420 
1421 /**
1422  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1423  * @np: Pointer to device node holding phandle property
1424  * @phandle_name: Name of property holding a phandle value
1425  * @index: For properties holding a table of phandles, this is the index into
1426  *         the table
1427  *
1428  * Return: The device_node pointer with refcount incremented.  Use
1429  * of_node_put() on it when done.
1430  */
1431 struct device_node *of_parse_phandle(const struct device_node *np,
1432 				     const char *phandle_name, int index)
1433 {
1434 	struct of_phandle_args args;
1435 
1436 	if (index < 0)
1437 		return NULL;
1438 
1439 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1440 					 index, &args))
1441 		return NULL;
1442 
1443 	return args.np;
1444 }
1445 EXPORT_SYMBOL(of_parse_phandle);
1446 
1447 /**
1448  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1449  * @np:		pointer to a device tree node containing a list
1450  * @list_name:	property name that contains a list
1451  * @cells_name:	property name that specifies phandles' arguments count
1452  * @index:	index of a phandle to parse out
1453  * @out_args:	optional pointer to output arguments structure (will be filled)
1454  *
1455  * This function is useful to parse lists of phandles and their arguments.
1456  * Returns 0 on success and fills out_args, on error returns appropriate
1457  * errno value.
1458  *
1459  * Caller is responsible to call of_node_put() on the returned out_args->np
1460  * pointer.
1461  *
1462  * Example::
1463  *
1464  *  phandle1: node1 {
1465  *	#list-cells = <2>;
1466  *  };
1467  *
1468  *  phandle2: node2 {
1469  *	#list-cells = <1>;
1470  *  };
1471  *
1472  *  node3 {
1473  *	list = <&phandle1 1 2 &phandle2 3>;
1474  *  };
1475  *
1476  * To get a device_node of the ``node2`` node you may call this:
1477  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1478  */
1479 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1480 				const char *cells_name, int index,
1481 				struct of_phandle_args *out_args)
1482 {
1483 	int cell_count = -1;
1484 
1485 	if (index < 0)
1486 		return -EINVAL;
1487 
1488 	/* If cells_name is NULL we assume a cell count of 0 */
1489 	if (!cells_name)
1490 		cell_count = 0;
1491 
1492 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1493 					    cell_count, index, out_args);
1494 }
1495 EXPORT_SYMBOL(of_parse_phandle_with_args);
1496 
1497 /**
1498  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1499  * @np:		pointer to a device tree node containing a list
1500  * @list_name:	property name that contains a list
1501  * @stem_name:	stem of property names that specify phandles' arguments count
1502  * @index:	index of a phandle to parse out
1503  * @out_args:	optional pointer to output arguments structure (will be filled)
1504  *
1505  * This function is useful to parse lists of phandles and their arguments.
1506  * Returns 0 on success and fills out_args, on error returns appropriate errno
1507  * value. The difference between this function and of_parse_phandle_with_args()
1508  * is that this API remaps a phandle if the node the phandle points to has
1509  * a <@stem_name>-map property.
1510  *
1511  * Caller is responsible to call of_node_put() on the returned out_args->np
1512  * pointer.
1513  *
1514  * Example::
1515  *
1516  *  phandle1: node1 {
1517  *  	#list-cells = <2>;
1518  *  };
1519  *
1520  *  phandle2: node2 {
1521  *  	#list-cells = <1>;
1522  *  };
1523  *
1524  *  phandle3: node3 {
1525  *  	#list-cells = <1>;
1526  *  	list-map = <0 &phandle2 3>,
1527  *  		   <1 &phandle2 2>,
1528  *  		   <2 &phandle1 5 1>;
1529  *  	list-map-mask = <0x3>;
1530  *  };
1531  *
1532  *  node4 {
1533  *  	list = <&phandle1 1 2 &phandle3 0>;
1534  *  };
1535  *
1536  * To get a device_node of the ``node2`` node you may call this:
1537  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1538  */
1539 int of_parse_phandle_with_args_map(const struct device_node *np,
1540 				   const char *list_name,
1541 				   const char *stem_name,
1542 				   int index, struct of_phandle_args *out_args)
1543 {
1544 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1545 	char *pass_name = NULL;
1546 	struct device_node *cur, *new = NULL;
1547 	const __be32 *map, *mask, *pass;
1548 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1549 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1550 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1551 	const __be32 *match_array = initial_match_array;
1552 	int i, ret, map_len, match;
1553 	u32 list_size, new_size;
1554 
1555 	if (index < 0)
1556 		return -EINVAL;
1557 
1558 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1559 	if (!cells_name)
1560 		return -ENOMEM;
1561 
1562 	ret = -ENOMEM;
1563 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1564 	if (!map_name)
1565 		goto free;
1566 
1567 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1568 	if (!mask_name)
1569 		goto free;
1570 
1571 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1572 	if (!pass_name)
1573 		goto free;
1574 
1575 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1576 					   out_args);
1577 	if (ret)
1578 		goto free;
1579 
1580 	/* Get the #<list>-cells property */
1581 	cur = out_args->np;
1582 	ret = of_property_read_u32(cur, cells_name, &list_size);
1583 	if (ret < 0)
1584 		goto put;
1585 
1586 	/* Precalculate the match array - this simplifies match loop */
1587 	for (i = 0; i < list_size; i++)
1588 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1589 
1590 	ret = -EINVAL;
1591 	while (cur) {
1592 		/* Get the <list>-map property */
1593 		map = of_get_property(cur, map_name, &map_len);
1594 		if (!map) {
1595 			ret = 0;
1596 			goto free;
1597 		}
1598 		map_len /= sizeof(u32);
1599 
1600 		/* Get the <list>-map-mask property (optional) */
1601 		mask = of_get_property(cur, mask_name, NULL);
1602 		if (!mask)
1603 			mask = dummy_mask;
1604 		/* Iterate through <list>-map property */
1605 		match = 0;
1606 		while (map_len > (list_size + 1) && !match) {
1607 			/* Compare specifiers */
1608 			match = 1;
1609 			for (i = 0; i < list_size; i++, map_len--)
1610 				match &= !((match_array[i] ^ *map++) & mask[i]);
1611 
1612 			of_node_put(new);
1613 			new = of_find_node_by_phandle(be32_to_cpup(map));
1614 			map++;
1615 			map_len--;
1616 
1617 			/* Check if not found */
1618 			if (!new)
1619 				goto put;
1620 
1621 			if (!of_device_is_available(new))
1622 				match = 0;
1623 
1624 			ret = of_property_read_u32(new, cells_name, &new_size);
1625 			if (ret)
1626 				goto put;
1627 
1628 			/* Check for malformed properties */
1629 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1630 				goto put;
1631 			if (map_len < new_size)
1632 				goto put;
1633 
1634 			/* Move forward by new node's #<list>-cells amount */
1635 			map += new_size;
1636 			map_len -= new_size;
1637 		}
1638 		if (!match)
1639 			goto put;
1640 
1641 		/* Get the <list>-map-pass-thru property (optional) */
1642 		pass = of_get_property(cur, pass_name, NULL);
1643 		if (!pass)
1644 			pass = dummy_pass;
1645 
1646 		/*
1647 		 * Successfully parsed a <list>-map translation; copy new
1648 		 * specifier into the out_args structure, keeping the
1649 		 * bits specified in <list>-map-pass-thru.
1650 		 */
1651 		match_array = map - new_size;
1652 		for (i = 0; i < new_size; i++) {
1653 			__be32 val = *(map - new_size + i);
1654 
1655 			if (i < list_size) {
1656 				val &= ~pass[i];
1657 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1658 			}
1659 
1660 			out_args->args[i] = be32_to_cpu(val);
1661 		}
1662 		out_args->args_count = list_size = new_size;
1663 		/* Iterate again with new provider */
1664 		out_args->np = new;
1665 		of_node_put(cur);
1666 		cur = new;
1667 	}
1668 put:
1669 	of_node_put(cur);
1670 	of_node_put(new);
1671 free:
1672 	kfree(mask_name);
1673 	kfree(map_name);
1674 	kfree(cells_name);
1675 	kfree(pass_name);
1676 
1677 	return ret;
1678 }
1679 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1680 
1681 /**
1682  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1683  * @np:		pointer to a device tree node containing a list
1684  * @list_name:	property name that contains a list
1685  * @cell_count: number of argument cells following the phandle
1686  * @index:	index of a phandle to parse out
1687  * @out_args:	optional pointer to output arguments structure (will be filled)
1688  *
1689  * This function is useful to parse lists of phandles and their arguments.
1690  * Returns 0 on success and fills out_args, on error returns appropriate
1691  * errno value.
1692  *
1693  * Caller is responsible to call of_node_put() on the returned out_args->np
1694  * pointer.
1695  *
1696  * Example::
1697  *
1698  *  phandle1: node1 {
1699  *  };
1700  *
1701  *  phandle2: node2 {
1702  *  };
1703  *
1704  *  node3 {
1705  *  	list = <&phandle1 0 2 &phandle2 2 3>;
1706  *  };
1707  *
1708  * To get a device_node of the ``node2`` node you may call this:
1709  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1710  */
1711 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1712 				const char *list_name, int cell_count,
1713 				int index, struct of_phandle_args *out_args)
1714 {
1715 	if (index < 0)
1716 		return -EINVAL;
1717 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1718 					   index, out_args);
1719 }
1720 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1721 
1722 /**
1723  * of_count_phandle_with_args() - Find the number of phandles references in a property
1724  * @np:		pointer to a device tree node containing a list
1725  * @list_name:	property name that contains a list
1726  * @cells_name:	property name that specifies phandles' arguments count
1727  *
1728  * Return: The number of phandle + argument tuples within a property. It
1729  * is a typical pattern to encode a list of phandle and variable
1730  * arguments into a single property. The number of arguments is encoded
1731  * by a property in the phandle-target node. For example, a gpios
1732  * property would contain a list of GPIO specifies consisting of a
1733  * phandle and 1 or more arguments. The number of arguments are
1734  * determined by the #gpio-cells property in the node pointed to by the
1735  * phandle.
1736  */
1737 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1738 				const char *cells_name)
1739 {
1740 	struct of_phandle_iterator it;
1741 	int rc, cur_index = 0;
1742 
1743 	/*
1744 	 * If cells_name is NULL we assume a cell count of 0. This makes
1745 	 * counting the phandles trivial as each 32bit word in the list is a
1746 	 * phandle and no arguments are to consider. So we don't iterate through
1747 	 * the list but just use the length to determine the phandle count.
1748 	 */
1749 	if (!cells_name) {
1750 		const __be32 *list;
1751 		int size;
1752 
1753 		list = of_get_property(np, list_name, &size);
1754 		if (!list)
1755 			return -ENOENT;
1756 
1757 		return size / sizeof(*list);
1758 	}
1759 
1760 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1761 	if (rc)
1762 		return rc;
1763 
1764 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1765 		cur_index += 1;
1766 
1767 	if (rc != -ENOENT)
1768 		return rc;
1769 
1770 	return cur_index;
1771 }
1772 EXPORT_SYMBOL(of_count_phandle_with_args);
1773 
1774 /**
1775  * __of_add_property - Add a property to a node without lock operations
1776  * @np:		Caller's Device Node
1777  * @prop:	Property to add
1778  */
1779 int __of_add_property(struct device_node *np, struct property *prop)
1780 {
1781 	struct property **next;
1782 
1783 	prop->next = NULL;
1784 	next = &np->properties;
1785 	while (*next) {
1786 		if (strcmp(prop->name, (*next)->name) == 0)
1787 			/* duplicate ! don't insert it */
1788 			return -EEXIST;
1789 
1790 		next = &(*next)->next;
1791 	}
1792 	*next = prop;
1793 
1794 	return 0;
1795 }
1796 
1797 /**
1798  * of_add_property - Add a property to a node
1799  * @np:		Caller's Device Node
1800  * @prop:	Property to add
1801  */
1802 int of_add_property(struct device_node *np, struct property *prop)
1803 {
1804 	unsigned long flags;
1805 	int rc;
1806 
1807 	mutex_lock(&of_mutex);
1808 
1809 	raw_spin_lock_irqsave(&devtree_lock, flags);
1810 	rc = __of_add_property(np, prop);
1811 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1812 
1813 	if (!rc)
1814 		__of_add_property_sysfs(np, prop);
1815 
1816 	mutex_unlock(&of_mutex);
1817 
1818 	if (!rc)
1819 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1820 
1821 	return rc;
1822 }
1823 EXPORT_SYMBOL_GPL(of_add_property);
1824 
1825 int __of_remove_property(struct device_node *np, struct property *prop)
1826 {
1827 	struct property **next;
1828 
1829 	for (next = &np->properties; *next; next = &(*next)->next) {
1830 		if (*next == prop)
1831 			break;
1832 	}
1833 	if (*next == NULL)
1834 		return -ENODEV;
1835 
1836 	/* found the node */
1837 	*next = prop->next;
1838 	prop->next = np->deadprops;
1839 	np->deadprops = prop;
1840 
1841 	return 0;
1842 }
1843 
1844 /**
1845  * of_remove_property - Remove a property from a node.
1846  * @np:		Caller's Device Node
1847  * @prop:	Property to remove
1848  *
1849  * Note that we don't actually remove it, since we have given out
1850  * who-knows-how-many pointers to the data using get-property.
1851  * Instead we just move the property to the "dead properties"
1852  * list, so it won't be found any more.
1853  */
1854 int of_remove_property(struct device_node *np, struct property *prop)
1855 {
1856 	unsigned long flags;
1857 	int rc;
1858 
1859 	if (!prop)
1860 		return -ENODEV;
1861 
1862 	mutex_lock(&of_mutex);
1863 
1864 	raw_spin_lock_irqsave(&devtree_lock, flags);
1865 	rc = __of_remove_property(np, prop);
1866 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1867 
1868 	if (!rc)
1869 		__of_remove_property_sysfs(np, prop);
1870 
1871 	mutex_unlock(&of_mutex);
1872 
1873 	if (!rc)
1874 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1875 
1876 	return rc;
1877 }
1878 EXPORT_SYMBOL_GPL(of_remove_property);
1879 
1880 int __of_update_property(struct device_node *np, struct property *newprop,
1881 		struct property **oldpropp)
1882 {
1883 	struct property **next, *oldprop;
1884 
1885 	for (next = &np->properties; *next; next = &(*next)->next) {
1886 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1887 			break;
1888 	}
1889 	*oldpropp = oldprop = *next;
1890 
1891 	if (oldprop) {
1892 		/* replace the node */
1893 		newprop->next = oldprop->next;
1894 		*next = newprop;
1895 		oldprop->next = np->deadprops;
1896 		np->deadprops = oldprop;
1897 	} else {
1898 		/* new node */
1899 		newprop->next = NULL;
1900 		*next = newprop;
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 /*
1907  * of_update_property - Update a property in a node, if the property does
1908  * not exist, add it.
1909  *
1910  * Note that we don't actually remove it, since we have given out
1911  * who-knows-how-many pointers to the data using get-property.
1912  * Instead we just move the property to the "dead properties" list,
1913  * and add the new property to the property list
1914  */
1915 int of_update_property(struct device_node *np, struct property *newprop)
1916 {
1917 	struct property *oldprop;
1918 	unsigned long flags;
1919 	int rc;
1920 
1921 	if (!newprop->name)
1922 		return -EINVAL;
1923 
1924 	mutex_lock(&of_mutex);
1925 
1926 	raw_spin_lock_irqsave(&devtree_lock, flags);
1927 	rc = __of_update_property(np, newprop, &oldprop);
1928 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1929 
1930 	if (!rc)
1931 		__of_update_property_sysfs(np, newprop, oldprop);
1932 
1933 	mutex_unlock(&of_mutex);
1934 
1935 	if (!rc)
1936 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1937 
1938 	return rc;
1939 }
1940 
1941 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1942 			 int id, const char *stem, int stem_len)
1943 {
1944 	ap->np = np;
1945 	ap->id = id;
1946 	strncpy(ap->stem, stem, stem_len);
1947 	ap->stem[stem_len] = 0;
1948 	list_add_tail(&ap->link, &aliases_lookup);
1949 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1950 		 ap->alias, ap->stem, ap->id, np);
1951 }
1952 
1953 /**
1954  * of_alias_scan - Scan all properties of the 'aliases' node
1955  * @dt_alloc:	An allocator that provides a virtual address to memory
1956  *		for storing the resulting tree
1957  *
1958  * The function scans all the properties of the 'aliases' node and populates
1959  * the global lookup table with the properties.  It returns the
1960  * number of alias properties found, or an error code in case of failure.
1961  */
1962 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1963 {
1964 	struct property *pp;
1965 
1966 	of_aliases = of_find_node_by_path("/aliases");
1967 	of_chosen = of_find_node_by_path("/chosen");
1968 	if (of_chosen == NULL)
1969 		of_chosen = of_find_node_by_path("/chosen@0");
1970 
1971 	if (of_chosen) {
1972 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1973 		const char *name = NULL;
1974 
1975 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1976 			of_property_read_string(of_chosen, "linux,stdout-path",
1977 						&name);
1978 		if (IS_ENABLED(CONFIG_PPC) && !name)
1979 			of_property_read_string(of_aliases, "stdout", &name);
1980 		if (name)
1981 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1982 	}
1983 
1984 	if (!of_aliases)
1985 		return;
1986 
1987 	for_each_property_of_node(of_aliases, pp) {
1988 		const char *start = pp->name;
1989 		const char *end = start + strlen(start);
1990 		struct device_node *np;
1991 		struct alias_prop *ap;
1992 		int id, len;
1993 
1994 		/* Skip those we do not want to proceed */
1995 		if (!strcmp(pp->name, "name") ||
1996 		    !strcmp(pp->name, "phandle") ||
1997 		    !strcmp(pp->name, "linux,phandle"))
1998 			continue;
1999 
2000 		np = of_find_node_by_path(pp->value);
2001 		if (!np)
2002 			continue;
2003 
2004 		/* walk the alias backwards to extract the id and work out
2005 		 * the 'stem' string */
2006 		while (isdigit(*(end-1)) && end > start)
2007 			end--;
2008 		len = end - start;
2009 
2010 		if (kstrtoint(end, 10, &id) < 0)
2011 			continue;
2012 
2013 		/* Allocate an alias_prop with enough space for the stem */
2014 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2015 		if (!ap)
2016 			continue;
2017 		memset(ap, 0, sizeof(*ap) + len + 1);
2018 		ap->alias = start;
2019 		of_alias_add(ap, np, id, start, len);
2020 	}
2021 }
2022 
2023 /**
2024  * of_alias_get_id - Get alias id for the given device_node
2025  * @np:		Pointer to the given device_node
2026  * @stem:	Alias stem of the given device_node
2027  *
2028  * The function travels the lookup table to get the alias id for the given
2029  * device_node and alias stem.
2030  *
2031  * Return: The alias id if found.
2032  */
2033 int of_alias_get_id(struct device_node *np, const char *stem)
2034 {
2035 	struct alias_prop *app;
2036 	int id = -ENODEV;
2037 
2038 	mutex_lock(&of_mutex);
2039 	list_for_each_entry(app, &aliases_lookup, link) {
2040 		if (strcmp(app->stem, stem) != 0)
2041 			continue;
2042 
2043 		if (np == app->np) {
2044 			id = app->id;
2045 			break;
2046 		}
2047 	}
2048 	mutex_unlock(&of_mutex);
2049 
2050 	return id;
2051 }
2052 EXPORT_SYMBOL_GPL(of_alias_get_id);
2053 
2054 /**
2055  * of_alias_get_alias_list - Get alias list for the given device driver
2056  * @matches:	Array of OF device match structures to search in
2057  * @stem:	Alias stem of the given device_node
2058  * @bitmap:	Bitmap field pointer
2059  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2060  *
2061  * The function travels the lookup table to record alias ids for the given
2062  * device match structures and alias stem.
2063  *
2064  * Return:	0 or -ENOSYS when !CONFIG_OF or
2065  *		-EOVERFLOW if alias ID is greater then allocated nbits
2066  */
2067 int of_alias_get_alias_list(const struct of_device_id *matches,
2068 			     const char *stem, unsigned long *bitmap,
2069 			     unsigned int nbits)
2070 {
2071 	struct alias_prop *app;
2072 	int ret = 0;
2073 
2074 	/* Zero bitmap field to make sure that all the time it is clean */
2075 	bitmap_zero(bitmap, nbits);
2076 
2077 	mutex_lock(&of_mutex);
2078 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2079 	list_for_each_entry(app, &aliases_lookup, link) {
2080 		pr_debug("%s: stem: %s, id: %d\n",
2081 			 __func__, app->stem, app->id);
2082 
2083 		if (strcmp(app->stem, stem) != 0) {
2084 			pr_debug("%s: stem comparison didn't pass %s\n",
2085 				 __func__, app->stem);
2086 			continue;
2087 		}
2088 
2089 		if (of_match_node(matches, app->np)) {
2090 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2091 
2092 			if (app->id >= nbits) {
2093 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2094 					__func__, app->id, nbits);
2095 				ret = -EOVERFLOW;
2096 			} else {
2097 				set_bit(app->id, bitmap);
2098 			}
2099 		}
2100 	}
2101 	mutex_unlock(&of_mutex);
2102 
2103 	return ret;
2104 }
2105 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2106 
2107 /**
2108  * of_alias_get_highest_id - Get highest alias id for the given stem
2109  * @stem:	Alias stem to be examined
2110  *
2111  * The function travels the lookup table to get the highest alias id for the
2112  * given alias stem.  It returns the alias id if found.
2113  */
2114 int of_alias_get_highest_id(const char *stem)
2115 {
2116 	struct alias_prop *app;
2117 	int id = -ENODEV;
2118 
2119 	mutex_lock(&of_mutex);
2120 	list_for_each_entry(app, &aliases_lookup, link) {
2121 		if (strcmp(app->stem, stem) != 0)
2122 			continue;
2123 
2124 		if (app->id > id)
2125 			id = app->id;
2126 	}
2127 	mutex_unlock(&of_mutex);
2128 
2129 	return id;
2130 }
2131 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2132 
2133 /**
2134  * of_console_check() - Test and setup console for DT setup
2135  * @dn: Pointer to device node
2136  * @name: Name to use for preferred console without index. ex. "ttyS"
2137  * @index: Index to use for preferred console.
2138  *
2139  * Check if the given device node matches the stdout-path property in the
2140  * /chosen node. If it does then register it as the preferred console.
2141  *
2142  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2143  */
2144 bool of_console_check(struct device_node *dn, char *name, int index)
2145 {
2146 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2147 		return false;
2148 
2149 	/*
2150 	 * XXX: cast `options' to char pointer to suppress complication
2151 	 * warnings: printk, UART and console drivers expect char pointer.
2152 	 */
2153 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2154 }
2155 EXPORT_SYMBOL_GPL(of_console_check);
2156 
2157 /**
2158  * of_find_next_cache_node - Find a node's subsidiary cache
2159  * @np:	node of type "cpu" or "cache"
2160  *
2161  * Return: A node pointer with refcount incremented, use
2162  * of_node_put() on it when done.  Caller should hold a reference
2163  * to np.
2164  */
2165 struct device_node *of_find_next_cache_node(const struct device_node *np)
2166 {
2167 	struct device_node *child, *cache_node;
2168 
2169 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2170 	if (!cache_node)
2171 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2172 
2173 	if (cache_node)
2174 		return cache_node;
2175 
2176 	/* OF on pmac has nodes instead of properties named "l2-cache"
2177 	 * beneath CPU nodes.
2178 	 */
2179 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2180 		for_each_child_of_node(np, child)
2181 			if (of_node_is_type(child, "cache"))
2182 				return child;
2183 
2184 	return NULL;
2185 }
2186 
2187 /**
2188  * of_find_last_cache_level - Find the level at which the last cache is
2189  * 		present for the given logical cpu
2190  *
2191  * @cpu: cpu number(logical index) for which the last cache level is needed
2192  *
2193  * Return: The the level at which the last cache is present. It is exactly
2194  * same as  the total number of cache levels for the given logical cpu.
2195  */
2196 int of_find_last_cache_level(unsigned int cpu)
2197 {
2198 	u32 cache_level = 0;
2199 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2200 
2201 	while (np) {
2202 		prev = np;
2203 		of_node_put(np);
2204 		np = of_find_next_cache_node(np);
2205 	}
2206 
2207 	of_property_read_u32(prev, "cache-level", &cache_level);
2208 
2209 	return cache_level;
2210 }
2211 
2212 /**
2213  * of_map_id - Translate an ID through a downstream mapping.
2214  * @np: root complex device node.
2215  * @id: device ID to map.
2216  * @map_name: property name of the map to use.
2217  * @map_mask_name: optional property name of the mask to use.
2218  * @target: optional pointer to a target device node.
2219  * @id_out: optional pointer to receive the translated ID.
2220  *
2221  * Given a device ID, look up the appropriate implementation-defined
2222  * platform ID and/or the target device which receives transactions on that
2223  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2224  * @id_out may be NULL if only the other is required. If @target points to
2225  * a non-NULL device node pointer, only entries targeting that node will be
2226  * matched; if it points to a NULL value, it will receive the device node of
2227  * the first matching target phandle, with a reference held.
2228  *
2229  * Return: 0 on success or a standard error code on failure.
2230  */
2231 int of_map_id(struct device_node *np, u32 id,
2232 	       const char *map_name, const char *map_mask_name,
2233 	       struct device_node **target, u32 *id_out)
2234 {
2235 	u32 map_mask, masked_id;
2236 	int map_len;
2237 	const __be32 *map = NULL;
2238 
2239 	if (!np || !map_name || (!target && !id_out))
2240 		return -EINVAL;
2241 
2242 	map = of_get_property(np, map_name, &map_len);
2243 	if (!map) {
2244 		if (target)
2245 			return -ENODEV;
2246 		/* Otherwise, no map implies no translation */
2247 		*id_out = id;
2248 		return 0;
2249 	}
2250 
2251 	if (!map_len || map_len % (4 * sizeof(*map))) {
2252 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2253 			map_name, map_len);
2254 		return -EINVAL;
2255 	}
2256 
2257 	/* The default is to select all bits. */
2258 	map_mask = 0xffffffff;
2259 
2260 	/*
2261 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2262 	 * If of_property_read_u32() fails, the default is used.
2263 	 */
2264 	if (map_mask_name)
2265 		of_property_read_u32(np, map_mask_name, &map_mask);
2266 
2267 	masked_id = map_mask & id;
2268 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2269 		struct device_node *phandle_node;
2270 		u32 id_base = be32_to_cpup(map + 0);
2271 		u32 phandle = be32_to_cpup(map + 1);
2272 		u32 out_base = be32_to_cpup(map + 2);
2273 		u32 id_len = be32_to_cpup(map + 3);
2274 
2275 		if (id_base & ~map_mask) {
2276 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2277 				np, map_name, map_name,
2278 				map_mask, id_base);
2279 			return -EFAULT;
2280 		}
2281 
2282 		if (masked_id < id_base || masked_id >= id_base + id_len)
2283 			continue;
2284 
2285 		phandle_node = of_find_node_by_phandle(phandle);
2286 		if (!phandle_node)
2287 			return -ENODEV;
2288 
2289 		if (target) {
2290 			if (*target)
2291 				of_node_put(phandle_node);
2292 			else
2293 				*target = phandle_node;
2294 
2295 			if (*target != phandle_node)
2296 				continue;
2297 		}
2298 
2299 		if (id_out)
2300 			*id_out = masked_id - id_base + out_base;
2301 
2302 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2303 			np, map_name, map_mask, id_base, out_base,
2304 			id_len, id, masked_id - id_base + out_base);
2305 		return 0;
2306 	}
2307 
2308 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2309 		id, target && *target ? *target : NULL);
2310 
2311 	/* Bypasses translation */
2312 	if (id_out)
2313 		*id_out = id;
2314 	return 0;
2315 }
2316 EXPORT_SYMBOL_GPL(of_map_id);
2317