1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 bool of_node_name_eq(const struct device_node *np, const char *name) 58 { 59 const char *node_name; 60 size_t len; 61 62 if (!np) 63 return false; 64 65 node_name = kbasename(np->full_name); 66 len = strchrnul(node_name, '@') - node_name; 67 68 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 69 } 70 71 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 72 { 73 if (!np) 74 return false; 75 76 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 77 } 78 79 int of_n_addr_cells(struct device_node *np) 80 { 81 u32 cells; 82 83 do { 84 if (np->parent) 85 np = np->parent; 86 if (!of_property_read_u32(np, "#address-cells", &cells)) 87 return cells; 88 } while (np->parent); 89 /* No #address-cells property for the root node */ 90 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 91 } 92 EXPORT_SYMBOL(of_n_addr_cells); 93 94 int of_n_size_cells(struct device_node *np) 95 { 96 u32 cells; 97 98 do { 99 if (np->parent) 100 np = np->parent; 101 if (!of_property_read_u32(np, "#size-cells", &cells)) 102 return cells; 103 } while (np->parent); 104 /* No #size-cells property for the root node */ 105 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 106 } 107 EXPORT_SYMBOL(of_n_size_cells); 108 109 #ifdef CONFIG_NUMA 110 int __weak of_node_to_nid(struct device_node *np) 111 { 112 return NUMA_NO_NODE; 113 } 114 #endif 115 116 static struct device_node **phandle_cache; 117 static u32 phandle_cache_mask; 118 119 /* 120 * Assumptions behind phandle_cache implementation: 121 * - phandle property values are in a contiguous range of 1..n 122 * 123 * If the assumptions do not hold, then 124 * - the phandle lookup overhead reduction provided by the cache 125 * will likely be less 126 */ 127 void of_populate_phandle_cache(void) 128 { 129 unsigned long flags; 130 u32 cache_entries; 131 struct device_node *np; 132 u32 phandles = 0; 133 134 raw_spin_lock_irqsave(&devtree_lock, flags); 135 136 kfree(phandle_cache); 137 phandle_cache = NULL; 138 139 for_each_of_allnodes(np) 140 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 141 phandles++; 142 143 if (!phandles) 144 goto out; 145 146 cache_entries = roundup_pow_of_two(phandles); 147 phandle_cache_mask = cache_entries - 1; 148 149 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), 150 GFP_ATOMIC); 151 if (!phandle_cache) 152 goto out; 153 154 for_each_of_allnodes(np) 155 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 156 phandle_cache[np->phandle & phandle_cache_mask] = np; 157 158 out: 159 raw_spin_unlock_irqrestore(&devtree_lock, flags); 160 } 161 162 int of_free_phandle_cache(void) 163 { 164 unsigned long flags; 165 166 raw_spin_lock_irqsave(&devtree_lock, flags); 167 168 kfree(phandle_cache); 169 phandle_cache = NULL; 170 171 raw_spin_unlock_irqrestore(&devtree_lock, flags); 172 173 return 0; 174 } 175 #if !defined(CONFIG_MODULES) 176 late_initcall_sync(of_free_phandle_cache); 177 #endif 178 179 void __init of_core_init(void) 180 { 181 struct device_node *np; 182 183 of_populate_phandle_cache(); 184 185 /* Create the kset, and register existing nodes */ 186 mutex_lock(&of_mutex); 187 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 188 if (!of_kset) { 189 mutex_unlock(&of_mutex); 190 pr_err("failed to register existing nodes\n"); 191 return; 192 } 193 for_each_of_allnodes(np) 194 __of_attach_node_sysfs(np); 195 mutex_unlock(&of_mutex); 196 197 /* Symlink in /proc as required by userspace ABI */ 198 if (of_root) 199 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 200 } 201 202 static struct property *__of_find_property(const struct device_node *np, 203 const char *name, int *lenp) 204 { 205 struct property *pp; 206 207 if (!np) 208 return NULL; 209 210 for (pp = np->properties; pp; pp = pp->next) { 211 if (of_prop_cmp(pp->name, name) == 0) { 212 if (lenp) 213 *lenp = pp->length; 214 break; 215 } 216 } 217 218 return pp; 219 } 220 221 struct property *of_find_property(const struct device_node *np, 222 const char *name, 223 int *lenp) 224 { 225 struct property *pp; 226 unsigned long flags; 227 228 raw_spin_lock_irqsave(&devtree_lock, flags); 229 pp = __of_find_property(np, name, lenp); 230 raw_spin_unlock_irqrestore(&devtree_lock, flags); 231 232 return pp; 233 } 234 EXPORT_SYMBOL(of_find_property); 235 236 struct device_node *__of_find_all_nodes(struct device_node *prev) 237 { 238 struct device_node *np; 239 if (!prev) { 240 np = of_root; 241 } else if (prev->child) { 242 np = prev->child; 243 } else { 244 /* Walk back up looking for a sibling, or the end of the structure */ 245 np = prev; 246 while (np->parent && !np->sibling) 247 np = np->parent; 248 np = np->sibling; /* Might be null at the end of the tree */ 249 } 250 return np; 251 } 252 253 /** 254 * of_find_all_nodes - Get next node in global list 255 * @prev: Previous node or NULL to start iteration 256 * of_node_put() will be called on it 257 * 258 * Returns a node pointer with refcount incremented, use 259 * of_node_put() on it when done. 260 */ 261 struct device_node *of_find_all_nodes(struct device_node *prev) 262 { 263 struct device_node *np; 264 unsigned long flags; 265 266 raw_spin_lock_irqsave(&devtree_lock, flags); 267 np = __of_find_all_nodes(prev); 268 of_node_get(np); 269 of_node_put(prev); 270 raw_spin_unlock_irqrestore(&devtree_lock, flags); 271 return np; 272 } 273 EXPORT_SYMBOL(of_find_all_nodes); 274 275 /* 276 * Find a property with a given name for a given node 277 * and return the value. 278 */ 279 const void *__of_get_property(const struct device_node *np, 280 const char *name, int *lenp) 281 { 282 struct property *pp = __of_find_property(np, name, lenp); 283 284 return pp ? pp->value : NULL; 285 } 286 287 /* 288 * Find a property with a given name for a given node 289 * and return the value. 290 */ 291 const void *of_get_property(const struct device_node *np, const char *name, 292 int *lenp) 293 { 294 struct property *pp = of_find_property(np, name, lenp); 295 296 return pp ? pp->value : NULL; 297 } 298 EXPORT_SYMBOL(of_get_property); 299 300 /* 301 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 302 * 303 * @cpu: logical cpu index of a core/thread 304 * @phys_id: physical identifier of a core/thread 305 * 306 * CPU logical to physical index mapping is architecture specific. 307 * However this __weak function provides a default match of physical 308 * id to logical cpu index. phys_id provided here is usually values read 309 * from the device tree which must match the hardware internal registers. 310 * 311 * Returns true if the physical identifier and the logical cpu index 312 * correspond to the same core/thread, false otherwise. 313 */ 314 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 315 { 316 return (u32)phys_id == cpu; 317 } 318 319 /** 320 * Checks if the given "prop_name" property holds the physical id of the 321 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 322 * NULL, local thread number within the core is returned in it. 323 */ 324 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 325 const char *prop_name, int cpu, unsigned int *thread) 326 { 327 const __be32 *cell; 328 int ac, prop_len, tid; 329 u64 hwid; 330 331 ac = of_n_addr_cells(cpun); 332 cell = of_get_property(cpun, prop_name, &prop_len); 333 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 334 return true; 335 if (!cell || !ac) 336 return false; 337 prop_len /= sizeof(*cell) * ac; 338 for (tid = 0; tid < prop_len; tid++) { 339 hwid = of_read_number(cell, ac); 340 if (arch_match_cpu_phys_id(cpu, hwid)) { 341 if (thread) 342 *thread = tid; 343 return true; 344 } 345 cell += ac; 346 } 347 return false; 348 } 349 350 /* 351 * arch_find_n_match_cpu_physical_id - See if the given device node is 352 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 353 * else false. If 'thread' is non-NULL, the local thread number within the 354 * core is returned in it. 355 */ 356 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 357 int cpu, unsigned int *thread) 358 { 359 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 360 * for thread ids on PowerPC. If it doesn't exist fallback to 361 * standard "reg" property. 362 */ 363 if (IS_ENABLED(CONFIG_PPC) && 364 __of_find_n_match_cpu_property(cpun, 365 "ibm,ppc-interrupt-server#s", 366 cpu, thread)) 367 return true; 368 369 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 370 } 371 372 /** 373 * of_get_cpu_node - Get device node associated with the given logical CPU 374 * 375 * @cpu: CPU number(logical index) for which device node is required 376 * @thread: if not NULL, local thread number within the physical core is 377 * returned 378 * 379 * The main purpose of this function is to retrieve the device node for the 380 * given logical CPU index. It should be used to initialize the of_node in 381 * cpu device. Once of_node in cpu device is populated, all the further 382 * references can use that instead. 383 * 384 * CPU logical to physical index mapping is architecture specific and is built 385 * before booting secondary cores. This function uses arch_match_cpu_phys_id 386 * which can be overridden by architecture specific implementation. 387 * 388 * Returns a node pointer for the logical cpu with refcount incremented, use 389 * of_node_put() on it when done. Returns NULL if not found. 390 */ 391 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 392 { 393 struct device_node *cpun; 394 395 for_each_of_cpu_node(cpun) { 396 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 397 return cpun; 398 } 399 return NULL; 400 } 401 EXPORT_SYMBOL(of_get_cpu_node); 402 403 /** 404 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 405 * 406 * @cpu_node: Pointer to the device_node for CPU. 407 * 408 * Returns the logical CPU number of the given CPU device_node. 409 * Returns -ENODEV if the CPU is not found. 410 */ 411 int of_cpu_node_to_id(struct device_node *cpu_node) 412 { 413 int cpu; 414 bool found = false; 415 struct device_node *np; 416 417 for_each_possible_cpu(cpu) { 418 np = of_cpu_device_node_get(cpu); 419 found = (cpu_node == np); 420 of_node_put(np); 421 if (found) 422 return cpu; 423 } 424 425 return -ENODEV; 426 } 427 EXPORT_SYMBOL(of_cpu_node_to_id); 428 429 /** 430 * __of_device_is_compatible() - Check if the node matches given constraints 431 * @device: pointer to node 432 * @compat: required compatible string, NULL or "" for any match 433 * @type: required device_type value, NULL or "" for any match 434 * @name: required node name, NULL or "" for any match 435 * 436 * Checks if the given @compat, @type and @name strings match the 437 * properties of the given @device. A constraints can be skipped by 438 * passing NULL or an empty string as the constraint. 439 * 440 * Returns 0 for no match, and a positive integer on match. The return 441 * value is a relative score with larger values indicating better 442 * matches. The score is weighted for the most specific compatible value 443 * to get the highest score. Matching type is next, followed by matching 444 * name. Practically speaking, this results in the following priority 445 * order for matches: 446 * 447 * 1. specific compatible && type && name 448 * 2. specific compatible && type 449 * 3. specific compatible && name 450 * 4. specific compatible 451 * 5. general compatible && type && name 452 * 6. general compatible && type 453 * 7. general compatible && name 454 * 8. general compatible 455 * 9. type && name 456 * 10. type 457 * 11. name 458 */ 459 static int __of_device_is_compatible(const struct device_node *device, 460 const char *compat, const char *type, const char *name) 461 { 462 struct property *prop; 463 const char *cp; 464 int index = 0, score = 0; 465 466 /* Compatible match has highest priority */ 467 if (compat && compat[0]) { 468 prop = __of_find_property(device, "compatible", NULL); 469 for (cp = of_prop_next_string(prop, NULL); cp; 470 cp = of_prop_next_string(prop, cp), index++) { 471 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 472 score = INT_MAX/2 - (index << 2); 473 break; 474 } 475 } 476 if (!score) 477 return 0; 478 } 479 480 /* Matching type is better than matching name */ 481 if (type && type[0]) { 482 if (!device->type || of_node_cmp(type, device->type)) 483 return 0; 484 score += 2; 485 } 486 487 /* Matching name is a bit better than not */ 488 if (name && name[0]) { 489 if (!device->name || of_node_cmp(name, device->name)) 490 return 0; 491 score++; 492 } 493 494 return score; 495 } 496 497 /** Checks if the given "compat" string matches one of the strings in 498 * the device's "compatible" property 499 */ 500 int of_device_is_compatible(const struct device_node *device, 501 const char *compat) 502 { 503 unsigned long flags; 504 int res; 505 506 raw_spin_lock_irqsave(&devtree_lock, flags); 507 res = __of_device_is_compatible(device, compat, NULL, NULL); 508 raw_spin_unlock_irqrestore(&devtree_lock, flags); 509 return res; 510 } 511 EXPORT_SYMBOL(of_device_is_compatible); 512 513 /** Checks if the device is compatible with any of the entries in 514 * a NULL terminated array of strings. Returns the best match 515 * score or 0. 516 */ 517 int of_device_compatible_match(struct device_node *device, 518 const char *const *compat) 519 { 520 unsigned int tmp, score = 0; 521 522 if (!compat) 523 return 0; 524 525 while (*compat) { 526 tmp = of_device_is_compatible(device, *compat); 527 if (tmp > score) 528 score = tmp; 529 compat++; 530 } 531 532 return score; 533 } 534 535 /** 536 * of_machine_is_compatible - Test root of device tree for a given compatible value 537 * @compat: compatible string to look for in root node's compatible property. 538 * 539 * Returns a positive integer if the root node has the given value in its 540 * compatible property. 541 */ 542 int of_machine_is_compatible(const char *compat) 543 { 544 struct device_node *root; 545 int rc = 0; 546 547 root = of_find_node_by_path("/"); 548 if (root) { 549 rc = of_device_is_compatible(root, compat); 550 of_node_put(root); 551 } 552 return rc; 553 } 554 EXPORT_SYMBOL(of_machine_is_compatible); 555 556 /** 557 * __of_device_is_available - check if a device is available for use 558 * 559 * @device: Node to check for availability, with locks already held 560 * 561 * Returns true if the status property is absent or set to "okay" or "ok", 562 * false otherwise 563 */ 564 static bool __of_device_is_available(const struct device_node *device) 565 { 566 const char *status; 567 int statlen; 568 569 if (!device) 570 return false; 571 572 status = __of_get_property(device, "status", &statlen); 573 if (status == NULL) 574 return true; 575 576 if (statlen > 0) { 577 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 578 return true; 579 } 580 581 return false; 582 } 583 584 /** 585 * of_device_is_available - check if a device is available for use 586 * 587 * @device: Node to check for availability 588 * 589 * Returns true if the status property is absent or set to "okay" or "ok", 590 * false otherwise 591 */ 592 bool of_device_is_available(const struct device_node *device) 593 { 594 unsigned long flags; 595 bool res; 596 597 raw_spin_lock_irqsave(&devtree_lock, flags); 598 res = __of_device_is_available(device); 599 raw_spin_unlock_irqrestore(&devtree_lock, flags); 600 return res; 601 602 } 603 EXPORT_SYMBOL(of_device_is_available); 604 605 /** 606 * of_device_is_big_endian - check if a device has BE registers 607 * 608 * @device: Node to check for endianness 609 * 610 * Returns true if the device has a "big-endian" property, or if the kernel 611 * was compiled for BE *and* the device has a "native-endian" property. 612 * Returns false otherwise. 613 * 614 * Callers would nominally use ioread32be/iowrite32be if 615 * of_device_is_big_endian() == true, or readl/writel otherwise. 616 */ 617 bool of_device_is_big_endian(const struct device_node *device) 618 { 619 if (of_property_read_bool(device, "big-endian")) 620 return true; 621 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 622 of_property_read_bool(device, "native-endian")) 623 return true; 624 return false; 625 } 626 EXPORT_SYMBOL(of_device_is_big_endian); 627 628 /** 629 * of_get_parent - Get a node's parent if any 630 * @node: Node to get parent 631 * 632 * Returns a node pointer with refcount incremented, use 633 * of_node_put() on it when done. 634 */ 635 struct device_node *of_get_parent(const struct device_node *node) 636 { 637 struct device_node *np; 638 unsigned long flags; 639 640 if (!node) 641 return NULL; 642 643 raw_spin_lock_irqsave(&devtree_lock, flags); 644 np = of_node_get(node->parent); 645 raw_spin_unlock_irqrestore(&devtree_lock, flags); 646 return np; 647 } 648 EXPORT_SYMBOL(of_get_parent); 649 650 /** 651 * of_get_next_parent - Iterate to a node's parent 652 * @node: Node to get parent of 653 * 654 * This is like of_get_parent() except that it drops the 655 * refcount on the passed node, making it suitable for iterating 656 * through a node's parents. 657 * 658 * Returns a node pointer with refcount incremented, use 659 * of_node_put() on it when done. 660 */ 661 struct device_node *of_get_next_parent(struct device_node *node) 662 { 663 struct device_node *parent; 664 unsigned long flags; 665 666 if (!node) 667 return NULL; 668 669 raw_spin_lock_irqsave(&devtree_lock, flags); 670 parent = of_node_get(node->parent); 671 of_node_put(node); 672 raw_spin_unlock_irqrestore(&devtree_lock, flags); 673 return parent; 674 } 675 EXPORT_SYMBOL(of_get_next_parent); 676 677 static struct device_node *__of_get_next_child(const struct device_node *node, 678 struct device_node *prev) 679 { 680 struct device_node *next; 681 682 if (!node) 683 return NULL; 684 685 next = prev ? prev->sibling : node->child; 686 for (; next; next = next->sibling) 687 if (of_node_get(next)) 688 break; 689 of_node_put(prev); 690 return next; 691 } 692 #define __for_each_child_of_node(parent, child) \ 693 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 694 child = __of_get_next_child(parent, child)) 695 696 /** 697 * of_get_next_child - Iterate a node childs 698 * @node: parent node 699 * @prev: previous child of the parent node, or NULL to get first 700 * 701 * Returns a node pointer with refcount incremented, use of_node_put() on 702 * it when done. Returns NULL when prev is the last child. Decrements the 703 * refcount of prev. 704 */ 705 struct device_node *of_get_next_child(const struct device_node *node, 706 struct device_node *prev) 707 { 708 struct device_node *next; 709 unsigned long flags; 710 711 raw_spin_lock_irqsave(&devtree_lock, flags); 712 next = __of_get_next_child(node, prev); 713 raw_spin_unlock_irqrestore(&devtree_lock, flags); 714 return next; 715 } 716 EXPORT_SYMBOL(of_get_next_child); 717 718 /** 719 * of_get_next_available_child - Find the next available child node 720 * @node: parent node 721 * @prev: previous child of the parent node, or NULL to get first 722 * 723 * This function is like of_get_next_child(), except that it 724 * automatically skips any disabled nodes (i.e. status = "disabled"). 725 */ 726 struct device_node *of_get_next_available_child(const struct device_node *node, 727 struct device_node *prev) 728 { 729 struct device_node *next; 730 unsigned long flags; 731 732 if (!node) 733 return NULL; 734 735 raw_spin_lock_irqsave(&devtree_lock, flags); 736 next = prev ? prev->sibling : node->child; 737 for (; next; next = next->sibling) { 738 if (!__of_device_is_available(next)) 739 continue; 740 if (of_node_get(next)) 741 break; 742 } 743 of_node_put(prev); 744 raw_spin_unlock_irqrestore(&devtree_lock, flags); 745 return next; 746 } 747 EXPORT_SYMBOL(of_get_next_available_child); 748 749 /** 750 * of_get_next_cpu_node - Iterate on cpu nodes 751 * @prev: previous child of the /cpus node, or NULL to get first 752 * 753 * Returns a cpu node pointer with refcount incremented, use of_node_put() 754 * on it when done. Returns NULL when prev is the last child. Decrements 755 * the refcount of prev. 756 */ 757 struct device_node *of_get_next_cpu_node(struct device_node *prev) 758 { 759 struct device_node *next = NULL; 760 unsigned long flags; 761 struct device_node *node; 762 763 if (!prev) 764 node = of_find_node_by_path("/cpus"); 765 766 raw_spin_lock_irqsave(&devtree_lock, flags); 767 if (prev) 768 next = prev->sibling; 769 else if (node) { 770 next = node->child; 771 of_node_put(node); 772 } 773 for (; next; next = next->sibling) { 774 if (!(of_node_name_eq(next, "cpu") || 775 (next->type && !of_node_cmp(next->type, "cpu")))) 776 continue; 777 if (!__of_device_is_available(next)) 778 continue; 779 if (of_node_get(next)) 780 break; 781 } 782 of_node_put(prev); 783 raw_spin_unlock_irqrestore(&devtree_lock, flags); 784 return next; 785 } 786 EXPORT_SYMBOL(of_get_next_cpu_node); 787 788 /** 789 * of_get_compatible_child - Find compatible child node 790 * @parent: parent node 791 * @compatible: compatible string 792 * 793 * Lookup child node whose compatible property contains the given compatible 794 * string. 795 * 796 * Returns a node pointer with refcount incremented, use of_node_put() on it 797 * when done; or NULL if not found. 798 */ 799 struct device_node *of_get_compatible_child(const struct device_node *parent, 800 const char *compatible) 801 { 802 struct device_node *child; 803 804 for_each_child_of_node(parent, child) { 805 if (of_device_is_compatible(child, compatible)) 806 break; 807 } 808 809 return child; 810 } 811 EXPORT_SYMBOL(of_get_compatible_child); 812 813 /** 814 * of_get_child_by_name - Find the child node by name for a given parent 815 * @node: parent node 816 * @name: child name to look for. 817 * 818 * This function looks for child node for given matching name 819 * 820 * Returns a node pointer if found, with refcount incremented, use 821 * of_node_put() on it when done. 822 * Returns NULL if node is not found. 823 */ 824 struct device_node *of_get_child_by_name(const struct device_node *node, 825 const char *name) 826 { 827 struct device_node *child; 828 829 for_each_child_of_node(node, child) 830 if (child->name && (of_node_cmp(child->name, name) == 0)) 831 break; 832 return child; 833 } 834 EXPORT_SYMBOL(of_get_child_by_name); 835 836 struct device_node *__of_find_node_by_path(struct device_node *parent, 837 const char *path) 838 { 839 struct device_node *child; 840 int len; 841 842 len = strcspn(path, "/:"); 843 if (!len) 844 return NULL; 845 846 __for_each_child_of_node(parent, child) { 847 const char *name = kbasename(child->full_name); 848 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 849 return child; 850 } 851 return NULL; 852 } 853 854 struct device_node *__of_find_node_by_full_path(struct device_node *node, 855 const char *path) 856 { 857 const char *separator = strchr(path, ':'); 858 859 while (node && *path == '/') { 860 struct device_node *tmp = node; 861 862 path++; /* Increment past '/' delimiter */ 863 node = __of_find_node_by_path(node, path); 864 of_node_put(tmp); 865 path = strchrnul(path, '/'); 866 if (separator && separator < path) 867 break; 868 } 869 return node; 870 } 871 872 /** 873 * of_find_node_opts_by_path - Find a node matching a full OF path 874 * @path: Either the full path to match, or if the path does not 875 * start with '/', the name of a property of the /aliases 876 * node (an alias). In the case of an alias, the node 877 * matching the alias' value will be returned. 878 * @opts: Address of a pointer into which to store the start of 879 * an options string appended to the end of the path with 880 * a ':' separator. 881 * 882 * Valid paths: 883 * /foo/bar Full path 884 * foo Valid alias 885 * foo/bar Valid alias + relative path 886 * 887 * Returns a node pointer with refcount incremented, use 888 * of_node_put() on it when done. 889 */ 890 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 891 { 892 struct device_node *np = NULL; 893 struct property *pp; 894 unsigned long flags; 895 const char *separator = strchr(path, ':'); 896 897 if (opts) 898 *opts = separator ? separator + 1 : NULL; 899 900 if (strcmp(path, "/") == 0) 901 return of_node_get(of_root); 902 903 /* The path could begin with an alias */ 904 if (*path != '/') { 905 int len; 906 const char *p = separator; 907 908 if (!p) 909 p = strchrnul(path, '/'); 910 len = p - path; 911 912 /* of_aliases must not be NULL */ 913 if (!of_aliases) 914 return NULL; 915 916 for_each_property_of_node(of_aliases, pp) { 917 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 918 np = of_find_node_by_path(pp->value); 919 break; 920 } 921 } 922 if (!np) 923 return NULL; 924 path = p; 925 } 926 927 /* Step down the tree matching path components */ 928 raw_spin_lock_irqsave(&devtree_lock, flags); 929 if (!np) 930 np = of_node_get(of_root); 931 np = __of_find_node_by_full_path(np, path); 932 raw_spin_unlock_irqrestore(&devtree_lock, flags); 933 return np; 934 } 935 EXPORT_SYMBOL(of_find_node_opts_by_path); 936 937 /** 938 * of_find_node_by_name - Find a node by its "name" property 939 * @from: The node to start searching from or NULL; the node 940 * you pass will not be searched, only the next one 941 * will. Typically, you pass what the previous call 942 * returned. of_node_put() will be called on @from. 943 * @name: The name string to match against 944 * 945 * Returns a node pointer with refcount incremented, use 946 * of_node_put() on it when done. 947 */ 948 struct device_node *of_find_node_by_name(struct device_node *from, 949 const char *name) 950 { 951 struct device_node *np; 952 unsigned long flags; 953 954 raw_spin_lock_irqsave(&devtree_lock, flags); 955 for_each_of_allnodes_from(from, np) 956 if (np->name && (of_node_cmp(np->name, name) == 0) 957 && of_node_get(np)) 958 break; 959 of_node_put(from); 960 raw_spin_unlock_irqrestore(&devtree_lock, flags); 961 return np; 962 } 963 EXPORT_SYMBOL(of_find_node_by_name); 964 965 /** 966 * of_find_node_by_type - Find a node by its "device_type" property 967 * @from: The node to start searching from, or NULL to start searching 968 * the entire device tree. The node you pass will not be 969 * searched, only the next one will; typically, you pass 970 * what the previous call returned. of_node_put() will be 971 * called on from for you. 972 * @type: The type string to match against 973 * 974 * Returns a node pointer with refcount incremented, use 975 * of_node_put() on it when done. 976 */ 977 struct device_node *of_find_node_by_type(struct device_node *from, 978 const char *type) 979 { 980 struct device_node *np; 981 unsigned long flags; 982 983 raw_spin_lock_irqsave(&devtree_lock, flags); 984 for_each_of_allnodes_from(from, np) 985 if (np->type && (of_node_cmp(np->type, type) == 0) 986 && of_node_get(np)) 987 break; 988 of_node_put(from); 989 raw_spin_unlock_irqrestore(&devtree_lock, flags); 990 return np; 991 } 992 EXPORT_SYMBOL(of_find_node_by_type); 993 994 /** 995 * of_find_compatible_node - Find a node based on type and one of the 996 * tokens in its "compatible" property 997 * @from: The node to start searching from or NULL, the node 998 * you pass will not be searched, only the next one 999 * will; typically, you pass what the previous call 1000 * returned. of_node_put() will be called on it 1001 * @type: The type string to match "device_type" or NULL to ignore 1002 * @compatible: The string to match to one of the tokens in the device 1003 * "compatible" list. 1004 * 1005 * Returns a node pointer with refcount incremented, use 1006 * of_node_put() on it when done. 1007 */ 1008 struct device_node *of_find_compatible_node(struct device_node *from, 1009 const char *type, const char *compatible) 1010 { 1011 struct device_node *np; 1012 unsigned long flags; 1013 1014 raw_spin_lock_irqsave(&devtree_lock, flags); 1015 for_each_of_allnodes_from(from, np) 1016 if (__of_device_is_compatible(np, compatible, type, NULL) && 1017 of_node_get(np)) 1018 break; 1019 of_node_put(from); 1020 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1021 return np; 1022 } 1023 EXPORT_SYMBOL(of_find_compatible_node); 1024 1025 /** 1026 * of_find_node_with_property - Find a node which has a property with 1027 * the given name. 1028 * @from: The node to start searching from or NULL, the node 1029 * you pass will not be searched, only the next one 1030 * will; typically, you pass what the previous call 1031 * returned. of_node_put() will be called on it 1032 * @prop_name: The name of the property to look for. 1033 * 1034 * Returns a node pointer with refcount incremented, use 1035 * of_node_put() on it when done. 1036 */ 1037 struct device_node *of_find_node_with_property(struct device_node *from, 1038 const char *prop_name) 1039 { 1040 struct device_node *np; 1041 struct property *pp; 1042 unsigned long flags; 1043 1044 raw_spin_lock_irqsave(&devtree_lock, flags); 1045 for_each_of_allnodes_from(from, np) { 1046 for (pp = np->properties; pp; pp = pp->next) { 1047 if (of_prop_cmp(pp->name, prop_name) == 0) { 1048 of_node_get(np); 1049 goto out; 1050 } 1051 } 1052 } 1053 out: 1054 of_node_put(from); 1055 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1056 return np; 1057 } 1058 EXPORT_SYMBOL(of_find_node_with_property); 1059 1060 static 1061 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1062 const struct device_node *node) 1063 { 1064 const struct of_device_id *best_match = NULL; 1065 int score, best_score = 0; 1066 1067 if (!matches) 1068 return NULL; 1069 1070 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1071 score = __of_device_is_compatible(node, matches->compatible, 1072 matches->type, matches->name); 1073 if (score > best_score) { 1074 best_match = matches; 1075 best_score = score; 1076 } 1077 } 1078 1079 return best_match; 1080 } 1081 1082 /** 1083 * of_match_node - Tell if a device_node has a matching of_match structure 1084 * @matches: array of of device match structures to search in 1085 * @node: the of device structure to match against 1086 * 1087 * Low level utility function used by device matching. 1088 */ 1089 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1090 const struct device_node *node) 1091 { 1092 const struct of_device_id *match; 1093 unsigned long flags; 1094 1095 raw_spin_lock_irqsave(&devtree_lock, flags); 1096 match = __of_match_node(matches, node); 1097 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1098 return match; 1099 } 1100 EXPORT_SYMBOL(of_match_node); 1101 1102 /** 1103 * of_find_matching_node_and_match - Find a node based on an of_device_id 1104 * match table. 1105 * @from: The node to start searching from or NULL, the node 1106 * you pass will not be searched, only the next one 1107 * will; typically, you pass what the previous call 1108 * returned. of_node_put() will be called on it 1109 * @matches: array of of device match structures to search in 1110 * @match Updated to point at the matches entry which matched 1111 * 1112 * Returns a node pointer with refcount incremented, use 1113 * of_node_put() on it when done. 1114 */ 1115 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1116 const struct of_device_id *matches, 1117 const struct of_device_id **match) 1118 { 1119 struct device_node *np; 1120 const struct of_device_id *m; 1121 unsigned long flags; 1122 1123 if (match) 1124 *match = NULL; 1125 1126 raw_spin_lock_irqsave(&devtree_lock, flags); 1127 for_each_of_allnodes_from(from, np) { 1128 m = __of_match_node(matches, np); 1129 if (m && of_node_get(np)) { 1130 if (match) 1131 *match = m; 1132 break; 1133 } 1134 } 1135 of_node_put(from); 1136 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1137 return np; 1138 } 1139 EXPORT_SYMBOL(of_find_matching_node_and_match); 1140 1141 /** 1142 * of_modalias_node - Lookup appropriate modalias for a device node 1143 * @node: pointer to a device tree node 1144 * @modalias: Pointer to buffer that modalias value will be copied into 1145 * @len: Length of modalias value 1146 * 1147 * Based on the value of the compatible property, this routine will attempt 1148 * to choose an appropriate modalias value for a particular device tree node. 1149 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1150 * from the first entry in the compatible list property. 1151 * 1152 * This routine returns 0 on success, <0 on failure. 1153 */ 1154 int of_modalias_node(struct device_node *node, char *modalias, int len) 1155 { 1156 const char *compatible, *p; 1157 int cplen; 1158 1159 compatible = of_get_property(node, "compatible", &cplen); 1160 if (!compatible || strlen(compatible) > cplen) 1161 return -ENODEV; 1162 p = strchr(compatible, ','); 1163 strlcpy(modalias, p ? p + 1 : compatible, len); 1164 return 0; 1165 } 1166 EXPORT_SYMBOL_GPL(of_modalias_node); 1167 1168 /** 1169 * of_find_node_by_phandle - Find a node given a phandle 1170 * @handle: phandle of the node to find 1171 * 1172 * Returns a node pointer with refcount incremented, use 1173 * of_node_put() on it when done. 1174 */ 1175 struct device_node *of_find_node_by_phandle(phandle handle) 1176 { 1177 struct device_node *np = NULL; 1178 unsigned long flags; 1179 phandle masked_handle; 1180 1181 if (!handle) 1182 return NULL; 1183 1184 raw_spin_lock_irqsave(&devtree_lock, flags); 1185 1186 masked_handle = handle & phandle_cache_mask; 1187 1188 if (phandle_cache) { 1189 if (phandle_cache[masked_handle] && 1190 handle == phandle_cache[masked_handle]->phandle) 1191 np = phandle_cache[masked_handle]; 1192 } 1193 1194 if (!np) { 1195 for_each_of_allnodes(np) 1196 if (np->phandle == handle) { 1197 if (phandle_cache) 1198 phandle_cache[masked_handle] = np; 1199 break; 1200 } 1201 } 1202 1203 of_node_get(np); 1204 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1205 return np; 1206 } 1207 EXPORT_SYMBOL(of_find_node_by_phandle); 1208 1209 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1210 { 1211 int i; 1212 printk("%s %pOF", msg, args->np); 1213 for (i = 0; i < args->args_count; i++) { 1214 const char delim = i ? ',' : ':'; 1215 1216 pr_cont("%c%08x", delim, args->args[i]); 1217 } 1218 pr_cont("\n"); 1219 } 1220 1221 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1222 const struct device_node *np, 1223 const char *list_name, 1224 const char *cells_name, 1225 int cell_count) 1226 { 1227 const __be32 *list; 1228 int size; 1229 1230 memset(it, 0, sizeof(*it)); 1231 1232 list = of_get_property(np, list_name, &size); 1233 if (!list) 1234 return -ENOENT; 1235 1236 it->cells_name = cells_name; 1237 it->cell_count = cell_count; 1238 it->parent = np; 1239 it->list_end = list + size / sizeof(*list); 1240 it->phandle_end = list; 1241 it->cur = list; 1242 1243 return 0; 1244 } 1245 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1246 1247 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1248 { 1249 uint32_t count = 0; 1250 1251 if (it->node) { 1252 of_node_put(it->node); 1253 it->node = NULL; 1254 } 1255 1256 if (!it->cur || it->phandle_end >= it->list_end) 1257 return -ENOENT; 1258 1259 it->cur = it->phandle_end; 1260 1261 /* If phandle is 0, then it is an empty entry with no arguments. */ 1262 it->phandle = be32_to_cpup(it->cur++); 1263 1264 if (it->phandle) { 1265 1266 /* 1267 * Find the provider node and parse the #*-cells property to 1268 * determine the argument length. 1269 */ 1270 it->node = of_find_node_by_phandle(it->phandle); 1271 1272 if (it->cells_name) { 1273 if (!it->node) { 1274 pr_err("%pOF: could not find phandle\n", 1275 it->parent); 1276 goto err; 1277 } 1278 1279 if (of_property_read_u32(it->node, it->cells_name, 1280 &count)) { 1281 pr_err("%pOF: could not get %s for %pOF\n", 1282 it->parent, 1283 it->cells_name, 1284 it->node); 1285 goto err; 1286 } 1287 } else { 1288 count = it->cell_count; 1289 } 1290 1291 /* 1292 * Make sure that the arguments actually fit in the remaining 1293 * property data length 1294 */ 1295 if (it->cur + count > it->list_end) { 1296 pr_err("%pOF: arguments longer than property\n", 1297 it->parent); 1298 goto err; 1299 } 1300 } 1301 1302 it->phandle_end = it->cur + count; 1303 it->cur_count = count; 1304 1305 return 0; 1306 1307 err: 1308 if (it->node) { 1309 of_node_put(it->node); 1310 it->node = NULL; 1311 } 1312 1313 return -EINVAL; 1314 } 1315 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1316 1317 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1318 uint32_t *args, 1319 int size) 1320 { 1321 int i, count; 1322 1323 count = it->cur_count; 1324 1325 if (WARN_ON(size < count)) 1326 count = size; 1327 1328 for (i = 0; i < count; i++) 1329 args[i] = be32_to_cpup(it->cur++); 1330 1331 return count; 1332 } 1333 1334 static int __of_parse_phandle_with_args(const struct device_node *np, 1335 const char *list_name, 1336 const char *cells_name, 1337 int cell_count, int index, 1338 struct of_phandle_args *out_args) 1339 { 1340 struct of_phandle_iterator it; 1341 int rc, cur_index = 0; 1342 1343 /* Loop over the phandles until all the requested entry is found */ 1344 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1345 /* 1346 * All of the error cases bail out of the loop, so at 1347 * this point, the parsing is successful. If the requested 1348 * index matches, then fill the out_args structure and return, 1349 * or return -ENOENT for an empty entry. 1350 */ 1351 rc = -ENOENT; 1352 if (cur_index == index) { 1353 if (!it.phandle) 1354 goto err; 1355 1356 if (out_args) { 1357 int c; 1358 1359 c = of_phandle_iterator_args(&it, 1360 out_args->args, 1361 MAX_PHANDLE_ARGS); 1362 out_args->np = it.node; 1363 out_args->args_count = c; 1364 } else { 1365 of_node_put(it.node); 1366 } 1367 1368 /* Found it! return success */ 1369 return 0; 1370 } 1371 1372 cur_index++; 1373 } 1374 1375 /* 1376 * Unlock node before returning result; will be one of: 1377 * -ENOENT : index is for empty phandle 1378 * -EINVAL : parsing error on data 1379 */ 1380 1381 err: 1382 of_node_put(it.node); 1383 return rc; 1384 } 1385 1386 /** 1387 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1388 * @np: Pointer to device node holding phandle property 1389 * @phandle_name: Name of property holding a phandle value 1390 * @index: For properties holding a table of phandles, this is the index into 1391 * the table 1392 * 1393 * Returns the device_node pointer with refcount incremented. Use 1394 * of_node_put() on it when done. 1395 */ 1396 struct device_node *of_parse_phandle(const struct device_node *np, 1397 const char *phandle_name, int index) 1398 { 1399 struct of_phandle_args args; 1400 1401 if (index < 0) 1402 return NULL; 1403 1404 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1405 index, &args)) 1406 return NULL; 1407 1408 return args.np; 1409 } 1410 EXPORT_SYMBOL(of_parse_phandle); 1411 1412 /** 1413 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1414 * @np: pointer to a device tree node containing a list 1415 * @list_name: property name that contains a list 1416 * @cells_name: property name that specifies phandles' arguments count 1417 * @index: index of a phandle to parse out 1418 * @out_args: optional pointer to output arguments structure (will be filled) 1419 * 1420 * This function is useful to parse lists of phandles and their arguments. 1421 * Returns 0 on success and fills out_args, on error returns appropriate 1422 * errno value. 1423 * 1424 * Caller is responsible to call of_node_put() on the returned out_args->np 1425 * pointer. 1426 * 1427 * Example: 1428 * 1429 * phandle1: node1 { 1430 * #list-cells = <2>; 1431 * } 1432 * 1433 * phandle2: node2 { 1434 * #list-cells = <1>; 1435 * } 1436 * 1437 * node3 { 1438 * list = <&phandle1 1 2 &phandle2 3>; 1439 * } 1440 * 1441 * To get a device_node of the `node2' node you may call this: 1442 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1443 */ 1444 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1445 const char *cells_name, int index, 1446 struct of_phandle_args *out_args) 1447 { 1448 if (index < 0) 1449 return -EINVAL; 1450 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1451 index, out_args); 1452 } 1453 EXPORT_SYMBOL(of_parse_phandle_with_args); 1454 1455 /** 1456 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1457 * @np: pointer to a device tree node containing a list 1458 * @list_name: property name that contains a list 1459 * @stem_name: stem of property names that specify phandles' arguments count 1460 * @index: index of a phandle to parse out 1461 * @out_args: optional pointer to output arguments structure (will be filled) 1462 * 1463 * This function is useful to parse lists of phandles and their arguments. 1464 * Returns 0 on success and fills out_args, on error returns appropriate errno 1465 * value. The difference between this function and of_parse_phandle_with_args() 1466 * is that this API remaps a phandle if the node the phandle points to has 1467 * a <@stem_name>-map property. 1468 * 1469 * Caller is responsible to call of_node_put() on the returned out_args->np 1470 * pointer. 1471 * 1472 * Example: 1473 * 1474 * phandle1: node1 { 1475 * #list-cells = <2>; 1476 * } 1477 * 1478 * phandle2: node2 { 1479 * #list-cells = <1>; 1480 * } 1481 * 1482 * phandle3: node3 { 1483 * #list-cells = <1>; 1484 * list-map = <0 &phandle2 3>, 1485 * <1 &phandle2 2>, 1486 * <2 &phandle1 5 1>; 1487 * list-map-mask = <0x3>; 1488 * }; 1489 * 1490 * node4 { 1491 * list = <&phandle1 1 2 &phandle3 0>; 1492 * } 1493 * 1494 * To get a device_node of the `node2' node you may call this: 1495 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1496 */ 1497 int of_parse_phandle_with_args_map(const struct device_node *np, 1498 const char *list_name, 1499 const char *stem_name, 1500 int index, struct of_phandle_args *out_args) 1501 { 1502 char *cells_name, *map_name = NULL, *mask_name = NULL; 1503 char *pass_name = NULL; 1504 struct device_node *cur, *new = NULL; 1505 const __be32 *map, *mask, *pass; 1506 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1507 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1508 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1509 const __be32 *match_array = initial_match_array; 1510 int i, ret, map_len, match; 1511 u32 list_size, new_size; 1512 1513 if (index < 0) 1514 return -EINVAL; 1515 1516 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1517 if (!cells_name) 1518 return -ENOMEM; 1519 1520 ret = -ENOMEM; 1521 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1522 if (!map_name) 1523 goto free; 1524 1525 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1526 if (!mask_name) 1527 goto free; 1528 1529 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1530 if (!pass_name) 1531 goto free; 1532 1533 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1534 out_args); 1535 if (ret) 1536 goto free; 1537 1538 /* Get the #<list>-cells property */ 1539 cur = out_args->np; 1540 ret = of_property_read_u32(cur, cells_name, &list_size); 1541 if (ret < 0) 1542 goto put; 1543 1544 /* Precalculate the match array - this simplifies match loop */ 1545 for (i = 0; i < list_size; i++) 1546 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1547 1548 ret = -EINVAL; 1549 while (cur) { 1550 /* Get the <list>-map property */ 1551 map = of_get_property(cur, map_name, &map_len); 1552 if (!map) { 1553 ret = 0; 1554 goto free; 1555 } 1556 map_len /= sizeof(u32); 1557 1558 /* Get the <list>-map-mask property (optional) */ 1559 mask = of_get_property(cur, mask_name, NULL); 1560 if (!mask) 1561 mask = dummy_mask; 1562 /* Iterate through <list>-map property */ 1563 match = 0; 1564 while (map_len > (list_size + 1) && !match) { 1565 /* Compare specifiers */ 1566 match = 1; 1567 for (i = 0; i < list_size; i++, map_len--) 1568 match &= !((match_array[i] ^ *map++) & mask[i]); 1569 1570 of_node_put(new); 1571 new = of_find_node_by_phandle(be32_to_cpup(map)); 1572 map++; 1573 map_len--; 1574 1575 /* Check if not found */ 1576 if (!new) 1577 goto put; 1578 1579 if (!of_device_is_available(new)) 1580 match = 0; 1581 1582 ret = of_property_read_u32(new, cells_name, &new_size); 1583 if (ret) 1584 goto put; 1585 1586 /* Check for malformed properties */ 1587 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1588 goto put; 1589 if (map_len < new_size) 1590 goto put; 1591 1592 /* Move forward by new node's #<list>-cells amount */ 1593 map += new_size; 1594 map_len -= new_size; 1595 } 1596 if (!match) 1597 goto put; 1598 1599 /* Get the <list>-map-pass-thru property (optional) */ 1600 pass = of_get_property(cur, pass_name, NULL); 1601 if (!pass) 1602 pass = dummy_pass; 1603 1604 /* 1605 * Successfully parsed a <list>-map translation; copy new 1606 * specifier into the out_args structure, keeping the 1607 * bits specified in <list>-map-pass-thru. 1608 */ 1609 match_array = map - new_size; 1610 for (i = 0; i < new_size; i++) { 1611 __be32 val = *(map - new_size + i); 1612 1613 if (i < list_size) { 1614 val &= ~pass[i]; 1615 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1616 } 1617 1618 out_args->args[i] = be32_to_cpu(val); 1619 } 1620 out_args->args_count = list_size = new_size; 1621 /* Iterate again with new provider */ 1622 out_args->np = new; 1623 of_node_put(cur); 1624 cur = new; 1625 } 1626 put: 1627 of_node_put(cur); 1628 of_node_put(new); 1629 free: 1630 kfree(mask_name); 1631 kfree(map_name); 1632 kfree(cells_name); 1633 kfree(pass_name); 1634 1635 return ret; 1636 } 1637 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1638 1639 /** 1640 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1641 * @np: pointer to a device tree node containing a list 1642 * @list_name: property name that contains a list 1643 * @cell_count: number of argument cells following the phandle 1644 * @index: index of a phandle to parse out 1645 * @out_args: optional pointer to output arguments structure (will be filled) 1646 * 1647 * This function is useful to parse lists of phandles and their arguments. 1648 * Returns 0 on success and fills out_args, on error returns appropriate 1649 * errno value. 1650 * 1651 * Caller is responsible to call of_node_put() on the returned out_args->np 1652 * pointer. 1653 * 1654 * Example: 1655 * 1656 * phandle1: node1 { 1657 * } 1658 * 1659 * phandle2: node2 { 1660 * } 1661 * 1662 * node3 { 1663 * list = <&phandle1 0 2 &phandle2 2 3>; 1664 * } 1665 * 1666 * To get a device_node of the `node2' node you may call this: 1667 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1668 */ 1669 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1670 const char *list_name, int cell_count, 1671 int index, struct of_phandle_args *out_args) 1672 { 1673 if (index < 0) 1674 return -EINVAL; 1675 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1676 index, out_args); 1677 } 1678 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1679 1680 /** 1681 * of_count_phandle_with_args() - Find the number of phandles references in a property 1682 * @np: pointer to a device tree node containing a list 1683 * @list_name: property name that contains a list 1684 * @cells_name: property name that specifies phandles' arguments count 1685 * 1686 * Returns the number of phandle + argument tuples within a property. It 1687 * is a typical pattern to encode a list of phandle and variable 1688 * arguments into a single property. The number of arguments is encoded 1689 * by a property in the phandle-target node. For example, a gpios 1690 * property would contain a list of GPIO specifies consisting of a 1691 * phandle and 1 or more arguments. The number of arguments are 1692 * determined by the #gpio-cells property in the node pointed to by the 1693 * phandle. 1694 */ 1695 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1696 const char *cells_name) 1697 { 1698 struct of_phandle_iterator it; 1699 int rc, cur_index = 0; 1700 1701 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1702 if (rc) 1703 return rc; 1704 1705 while ((rc = of_phandle_iterator_next(&it)) == 0) 1706 cur_index += 1; 1707 1708 if (rc != -ENOENT) 1709 return rc; 1710 1711 return cur_index; 1712 } 1713 EXPORT_SYMBOL(of_count_phandle_with_args); 1714 1715 /** 1716 * __of_add_property - Add a property to a node without lock operations 1717 */ 1718 int __of_add_property(struct device_node *np, struct property *prop) 1719 { 1720 struct property **next; 1721 1722 prop->next = NULL; 1723 next = &np->properties; 1724 while (*next) { 1725 if (strcmp(prop->name, (*next)->name) == 0) 1726 /* duplicate ! don't insert it */ 1727 return -EEXIST; 1728 1729 next = &(*next)->next; 1730 } 1731 *next = prop; 1732 1733 return 0; 1734 } 1735 1736 /** 1737 * of_add_property - Add a property to a node 1738 */ 1739 int of_add_property(struct device_node *np, struct property *prop) 1740 { 1741 unsigned long flags; 1742 int rc; 1743 1744 mutex_lock(&of_mutex); 1745 1746 raw_spin_lock_irqsave(&devtree_lock, flags); 1747 rc = __of_add_property(np, prop); 1748 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1749 1750 if (!rc) 1751 __of_add_property_sysfs(np, prop); 1752 1753 mutex_unlock(&of_mutex); 1754 1755 if (!rc) 1756 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1757 1758 return rc; 1759 } 1760 1761 int __of_remove_property(struct device_node *np, struct property *prop) 1762 { 1763 struct property **next; 1764 1765 for (next = &np->properties; *next; next = &(*next)->next) { 1766 if (*next == prop) 1767 break; 1768 } 1769 if (*next == NULL) 1770 return -ENODEV; 1771 1772 /* found the node */ 1773 *next = prop->next; 1774 prop->next = np->deadprops; 1775 np->deadprops = prop; 1776 1777 return 0; 1778 } 1779 1780 /** 1781 * of_remove_property - Remove a property from a node. 1782 * 1783 * Note that we don't actually remove it, since we have given out 1784 * who-knows-how-many pointers to the data using get-property. 1785 * Instead we just move the property to the "dead properties" 1786 * list, so it won't be found any more. 1787 */ 1788 int of_remove_property(struct device_node *np, struct property *prop) 1789 { 1790 unsigned long flags; 1791 int rc; 1792 1793 if (!prop) 1794 return -ENODEV; 1795 1796 mutex_lock(&of_mutex); 1797 1798 raw_spin_lock_irqsave(&devtree_lock, flags); 1799 rc = __of_remove_property(np, prop); 1800 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1801 1802 if (!rc) 1803 __of_remove_property_sysfs(np, prop); 1804 1805 mutex_unlock(&of_mutex); 1806 1807 if (!rc) 1808 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1809 1810 return rc; 1811 } 1812 1813 int __of_update_property(struct device_node *np, struct property *newprop, 1814 struct property **oldpropp) 1815 { 1816 struct property **next, *oldprop; 1817 1818 for (next = &np->properties; *next; next = &(*next)->next) { 1819 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1820 break; 1821 } 1822 *oldpropp = oldprop = *next; 1823 1824 if (oldprop) { 1825 /* replace the node */ 1826 newprop->next = oldprop->next; 1827 *next = newprop; 1828 oldprop->next = np->deadprops; 1829 np->deadprops = oldprop; 1830 } else { 1831 /* new node */ 1832 newprop->next = NULL; 1833 *next = newprop; 1834 } 1835 1836 return 0; 1837 } 1838 1839 /* 1840 * of_update_property - Update a property in a node, if the property does 1841 * not exist, add it. 1842 * 1843 * Note that we don't actually remove it, since we have given out 1844 * who-knows-how-many pointers to the data using get-property. 1845 * Instead we just move the property to the "dead properties" list, 1846 * and add the new property to the property list 1847 */ 1848 int of_update_property(struct device_node *np, struct property *newprop) 1849 { 1850 struct property *oldprop; 1851 unsigned long flags; 1852 int rc; 1853 1854 if (!newprop->name) 1855 return -EINVAL; 1856 1857 mutex_lock(&of_mutex); 1858 1859 raw_spin_lock_irqsave(&devtree_lock, flags); 1860 rc = __of_update_property(np, newprop, &oldprop); 1861 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1862 1863 if (!rc) 1864 __of_update_property_sysfs(np, newprop, oldprop); 1865 1866 mutex_unlock(&of_mutex); 1867 1868 if (!rc) 1869 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1870 1871 return rc; 1872 } 1873 1874 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1875 int id, const char *stem, int stem_len) 1876 { 1877 ap->np = np; 1878 ap->id = id; 1879 strncpy(ap->stem, stem, stem_len); 1880 ap->stem[stem_len] = 0; 1881 list_add_tail(&ap->link, &aliases_lookup); 1882 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1883 ap->alias, ap->stem, ap->id, np); 1884 } 1885 1886 /** 1887 * of_alias_scan - Scan all properties of the 'aliases' node 1888 * 1889 * The function scans all the properties of the 'aliases' node and populates 1890 * the global lookup table with the properties. It returns the 1891 * number of alias properties found, or an error code in case of failure. 1892 * 1893 * @dt_alloc: An allocator that provides a virtual address to memory 1894 * for storing the resulting tree 1895 */ 1896 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1897 { 1898 struct property *pp; 1899 1900 of_aliases = of_find_node_by_path("/aliases"); 1901 of_chosen = of_find_node_by_path("/chosen"); 1902 if (of_chosen == NULL) 1903 of_chosen = of_find_node_by_path("/chosen@0"); 1904 1905 if (of_chosen) { 1906 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1907 const char *name = NULL; 1908 1909 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1910 of_property_read_string(of_chosen, "linux,stdout-path", 1911 &name); 1912 if (IS_ENABLED(CONFIG_PPC) && !name) 1913 of_property_read_string(of_aliases, "stdout", &name); 1914 if (name) 1915 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1916 } 1917 1918 if (!of_aliases) 1919 return; 1920 1921 for_each_property_of_node(of_aliases, pp) { 1922 const char *start = pp->name; 1923 const char *end = start + strlen(start); 1924 struct device_node *np; 1925 struct alias_prop *ap; 1926 int id, len; 1927 1928 /* Skip those we do not want to proceed */ 1929 if (!strcmp(pp->name, "name") || 1930 !strcmp(pp->name, "phandle") || 1931 !strcmp(pp->name, "linux,phandle")) 1932 continue; 1933 1934 np = of_find_node_by_path(pp->value); 1935 if (!np) 1936 continue; 1937 1938 /* walk the alias backwards to extract the id and work out 1939 * the 'stem' string */ 1940 while (isdigit(*(end-1)) && end > start) 1941 end--; 1942 len = end - start; 1943 1944 if (kstrtoint(end, 10, &id) < 0) 1945 continue; 1946 1947 /* Allocate an alias_prop with enough space for the stem */ 1948 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1949 if (!ap) 1950 continue; 1951 memset(ap, 0, sizeof(*ap) + len + 1); 1952 ap->alias = start; 1953 of_alias_add(ap, np, id, start, len); 1954 } 1955 } 1956 1957 /** 1958 * of_alias_get_id - Get alias id for the given device_node 1959 * @np: Pointer to the given device_node 1960 * @stem: Alias stem of the given device_node 1961 * 1962 * The function travels the lookup table to get the alias id for the given 1963 * device_node and alias stem. It returns the alias id if found. 1964 */ 1965 int of_alias_get_id(struct device_node *np, const char *stem) 1966 { 1967 struct alias_prop *app; 1968 int id = -ENODEV; 1969 1970 mutex_lock(&of_mutex); 1971 list_for_each_entry(app, &aliases_lookup, link) { 1972 if (strcmp(app->stem, stem) != 0) 1973 continue; 1974 1975 if (np == app->np) { 1976 id = app->id; 1977 break; 1978 } 1979 } 1980 mutex_unlock(&of_mutex); 1981 1982 return id; 1983 } 1984 EXPORT_SYMBOL_GPL(of_alias_get_id); 1985 1986 /** 1987 * of_alias_get_highest_id - Get highest alias id for the given stem 1988 * @stem: Alias stem to be examined 1989 * 1990 * The function travels the lookup table to get the highest alias id for the 1991 * given alias stem. It returns the alias id if found. 1992 */ 1993 int of_alias_get_highest_id(const char *stem) 1994 { 1995 struct alias_prop *app; 1996 int id = -ENODEV; 1997 1998 mutex_lock(&of_mutex); 1999 list_for_each_entry(app, &aliases_lookup, link) { 2000 if (strcmp(app->stem, stem) != 0) 2001 continue; 2002 2003 if (app->id > id) 2004 id = app->id; 2005 } 2006 mutex_unlock(&of_mutex); 2007 2008 return id; 2009 } 2010 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2011 2012 /** 2013 * of_console_check() - Test and setup console for DT setup 2014 * @dn - Pointer to device node 2015 * @name - Name to use for preferred console without index. ex. "ttyS" 2016 * @index - Index to use for preferred console. 2017 * 2018 * Check if the given device node matches the stdout-path property in the 2019 * /chosen node. If it does then register it as the preferred console and return 2020 * TRUE. Otherwise return FALSE. 2021 */ 2022 bool of_console_check(struct device_node *dn, char *name, int index) 2023 { 2024 if (!dn || dn != of_stdout || console_set_on_cmdline) 2025 return false; 2026 2027 /* 2028 * XXX: cast `options' to char pointer to suppress complication 2029 * warnings: printk, UART and console drivers expect char pointer. 2030 */ 2031 return !add_preferred_console(name, index, (char *)of_stdout_options); 2032 } 2033 EXPORT_SYMBOL_GPL(of_console_check); 2034 2035 /** 2036 * of_find_next_cache_node - Find a node's subsidiary cache 2037 * @np: node of type "cpu" or "cache" 2038 * 2039 * Returns a node pointer with refcount incremented, use 2040 * of_node_put() on it when done. Caller should hold a reference 2041 * to np. 2042 */ 2043 struct device_node *of_find_next_cache_node(const struct device_node *np) 2044 { 2045 struct device_node *child, *cache_node; 2046 2047 cache_node = of_parse_phandle(np, "l2-cache", 0); 2048 if (!cache_node) 2049 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2050 2051 if (cache_node) 2052 return cache_node; 2053 2054 /* OF on pmac has nodes instead of properties named "l2-cache" 2055 * beneath CPU nodes. 2056 */ 2057 if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu")) 2058 for_each_child_of_node(np, child) 2059 if (!strcmp(child->type, "cache")) 2060 return child; 2061 2062 return NULL; 2063 } 2064 2065 /** 2066 * of_find_last_cache_level - Find the level at which the last cache is 2067 * present for the given logical cpu 2068 * 2069 * @cpu: cpu number(logical index) for which the last cache level is needed 2070 * 2071 * Returns the the level at which the last cache is present. It is exactly 2072 * same as the total number of cache levels for the given logical cpu. 2073 */ 2074 int of_find_last_cache_level(unsigned int cpu) 2075 { 2076 u32 cache_level = 0; 2077 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2078 2079 while (np) { 2080 prev = np; 2081 of_node_put(np); 2082 np = of_find_next_cache_node(np); 2083 } 2084 2085 of_property_read_u32(prev, "cache-level", &cache_level); 2086 2087 return cache_level; 2088 } 2089