1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_graph.h> 25 #include <linux/spinlock.h> 26 #include <linux/slab.h> 27 #include <linux/string.h> 28 #include <linux/proc_fs.h> 29 30 #include "of_private.h" 31 32 LIST_HEAD(aliases_lookup); 33 34 struct device_node *of_allnodes; 35 EXPORT_SYMBOL(of_allnodes); 36 struct device_node *of_chosen; 37 struct device_node *of_aliases; 38 static struct device_node *of_stdout; 39 40 static struct kset *of_kset; 41 42 /* 43 * Used to protect the of_aliases; but also overloaded to hold off addition of 44 * nodes to sysfs 45 */ 46 DEFINE_MUTEX(of_aliases_mutex); 47 48 /* use when traversing tree through the allnext, child, sibling, 49 * or parent members of struct device_node. 50 */ 51 DEFINE_RAW_SPINLOCK(devtree_lock); 52 53 int of_n_addr_cells(struct device_node *np) 54 { 55 const __be32 *ip; 56 57 do { 58 if (np->parent) 59 np = np->parent; 60 ip = of_get_property(np, "#address-cells", NULL); 61 if (ip) 62 return be32_to_cpup(ip); 63 } while (np->parent); 64 /* No #address-cells property for the root node */ 65 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 66 } 67 EXPORT_SYMBOL(of_n_addr_cells); 68 69 int of_n_size_cells(struct device_node *np) 70 { 71 const __be32 *ip; 72 73 do { 74 if (np->parent) 75 np = np->parent; 76 ip = of_get_property(np, "#size-cells", NULL); 77 if (ip) 78 return be32_to_cpup(ip); 79 } while (np->parent); 80 /* No #size-cells property for the root node */ 81 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 82 } 83 EXPORT_SYMBOL(of_n_size_cells); 84 85 #ifdef CONFIG_NUMA 86 int __weak of_node_to_nid(struct device_node *np) 87 { 88 return numa_node_id(); 89 } 90 #endif 91 92 #if defined(CONFIG_OF_DYNAMIC) 93 /** 94 * of_node_get - Increment refcount of a node 95 * @node: Node to inc refcount, NULL is supported to 96 * simplify writing of callers 97 * 98 * Returns node. 99 */ 100 struct device_node *of_node_get(struct device_node *node) 101 { 102 if (node) 103 kobject_get(&node->kobj); 104 return node; 105 } 106 EXPORT_SYMBOL(of_node_get); 107 108 static inline struct device_node *kobj_to_device_node(struct kobject *kobj) 109 { 110 return container_of(kobj, struct device_node, kobj); 111 } 112 113 /** 114 * of_node_release - release a dynamically allocated node 115 * @kref: kref element of the node to be released 116 * 117 * In of_node_put() this function is passed to kref_put() 118 * as the destructor. 119 */ 120 static void of_node_release(struct kobject *kobj) 121 { 122 struct device_node *node = kobj_to_device_node(kobj); 123 struct property *prop = node->properties; 124 125 /* We should never be releasing nodes that haven't been detached. */ 126 if (!of_node_check_flag(node, OF_DETACHED)) { 127 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); 128 dump_stack(); 129 return; 130 } 131 132 if (!of_node_check_flag(node, OF_DYNAMIC)) 133 return; 134 135 while (prop) { 136 struct property *next = prop->next; 137 kfree(prop->name); 138 kfree(prop->value); 139 kfree(prop); 140 prop = next; 141 142 if (!prop) { 143 prop = node->deadprops; 144 node->deadprops = NULL; 145 } 146 } 147 kfree(node->full_name); 148 kfree(node->data); 149 kfree(node); 150 } 151 152 /** 153 * of_node_put - Decrement refcount of a node 154 * @node: Node to dec refcount, NULL is supported to 155 * simplify writing of callers 156 * 157 */ 158 void of_node_put(struct device_node *node) 159 { 160 if (node) 161 kobject_put(&node->kobj); 162 } 163 EXPORT_SYMBOL(of_node_put); 164 #else 165 static void of_node_release(struct kobject *kobj) 166 { 167 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 168 } 169 #endif /* CONFIG_OF_DYNAMIC */ 170 171 struct kobj_type of_node_ktype = { 172 .release = of_node_release, 173 }; 174 175 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 176 struct bin_attribute *bin_attr, char *buf, 177 loff_t offset, size_t count) 178 { 179 struct property *pp = container_of(bin_attr, struct property, attr); 180 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 181 } 182 183 static const char *safe_name(struct kobject *kobj, const char *orig_name) 184 { 185 const char *name = orig_name; 186 struct kernfs_node *kn; 187 int i = 0; 188 189 /* don't be a hero. After 16 tries give up */ 190 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 191 sysfs_put(kn); 192 if (name != orig_name) 193 kfree(name); 194 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 195 } 196 197 if (name != orig_name) 198 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 199 kobject_name(kobj), name); 200 return name; 201 } 202 203 static int __of_add_property_sysfs(struct device_node *np, struct property *pp) 204 { 205 int rc; 206 207 /* Important: Don't leak passwords */ 208 bool secure = strncmp(pp->name, "security-", 9) == 0; 209 210 sysfs_bin_attr_init(&pp->attr); 211 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 212 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 213 pp->attr.size = secure ? 0 : pp->length; 214 pp->attr.read = of_node_property_read; 215 216 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 217 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 218 return rc; 219 } 220 221 static int __of_node_add(struct device_node *np) 222 { 223 const char *name; 224 struct property *pp; 225 int rc; 226 227 np->kobj.kset = of_kset; 228 if (!np->parent) { 229 /* Nodes without parents are new top level trees */ 230 rc = kobject_add(&np->kobj, NULL, "%s", 231 safe_name(&of_kset->kobj, "base")); 232 } else { 233 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 234 if (!name || !name[0]) 235 return -EINVAL; 236 237 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 238 } 239 if (rc) 240 return rc; 241 242 for_each_property_of_node(np, pp) 243 __of_add_property_sysfs(np, pp); 244 245 return 0; 246 } 247 248 int of_node_add(struct device_node *np) 249 { 250 int rc = 0; 251 252 BUG_ON(!of_node_is_initialized(np)); 253 254 /* 255 * Grab the mutex here so that in a race condition between of_init() and 256 * of_node_add(), node addition will still be consistent. 257 */ 258 mutex_lock(&of_aliases_mutex); 259 if (of_kset) 260 rc = __of_node_add(np); 261 else 262 /* This scenario may be perfectly valid, but report it anyway */ 263 pr_info("of_node_add(%s) before of_init()\n", np->full_name); 264 mutex_unlock(&of_aliases_mutex); 265 return rc; 266 } 267 268 #if defined(CONFIG_OF_DYNAMIC) 269 static void of_node_remove(struct device_node *np) 270 { 271 struct property *pp; 272 273 BUG_ON(!of_node_is_initialized(np)); 274 275 /* only remove properties if on sysfs */ 276 if (of_node_is_attached(np)) { 277 for_each_property_of_node(np, pp) 278 sysfs_remove_bin_file(&np->kobj, &pp->attr); 279 kobject_del(&np->kobj); 280 } 281 282 /* finally remove the kobj_init ref */ 283 of_node_put(np); 284 } 285 #endif 286 287 static int __init of_init(void) 288 { 289 struct device_node *np; 290 291 /* Create the kset, and register existing nodes */ 292 mutex_lock(&of_aliases_mutex); 293 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 294 if (!of_kset) { 295 mutex_unlock(&of_aliases_mutex); 296 return -ENOMEM; 297 } 298 for_each_of_allnodes(np) 299 __of_node_add(np); 300 mutex_unlock(&of_aliases_mutex); 301 302 /* Symlink in /proc as required by userspace ABI */ 303 if (of_allnodes) 304 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 305 306 return 0; 307 } 308 core_initcall(of_init); 309 310 static struct property *__of_find_property(const struct device_node *np, 311 const char *name, int *lenp) 312 { 313 struct property *pp; 314 315 if (!np) 316 return NULL; 317 318 for (pp = np->properties; pp; pp = pp->next) { 319 if (of_prop_cmp(pp->name, name) == 0) { 320 if (lenp) 321 *lenp = pp->length; 322 break; 323 } 324 } 325 326 return pp; 327 } 328 329 struct property *of_find_property(const struct device_node *np, 330 const char *name, 331 int *lenp) 332 { 333 struct property *pp; 334 unsigned long flags; 335 336 raw_spin_lock_irqsave(&devtree_lock, flags); 337 pp = __of_find_property(np, name, lenp); 338 raw_spin_unlock_irqrestore(&devtree_lock, flags); 339 340 return pp; 341 } 342 EXPORT_SYMBOL(of_find_property); 343 344 /** 345 * of_find_all_nodes - Get next node in global list 346 * @prev: Previous node or NULL to start iteration 347 * of_node_put() will be called on it 348 * 349 * Returns a node pointer with refcount incremented, use 350 * of_node_put() on it when done. 351 */ 352 struct device_node *of_find_all_nodes(struct device_node *prev) 353 { 354 struct device_node *np; 355 unsigned long flags; 356 357 raw_spin_lock_irqsave(&devtree_lock, flags); 358 np = prev ? prev->allnext : of_allnodes; 359 for (; np != NULL; np = np->allnext) 360 if (of_node_get(np)) 361 break; 362 of_node_put(prev); 363 raw_spin_unlock_irqrestore(&devtree_lock, flags); 364 return np; 365 } 366 EXPORT_SYMBOL(of_find_all_nodes); 367 368 /* 369 * Find a property with a given name for a given node 370 * and return the value. 371 */ 372 static const void *__of_get_property(const struct device_node *np, 373 const char *name, int *lenp) 374 { 375 struct property *pp = __of_find_property(np, name, lenp); 376 377 return pp ? pp->value : NULL; 378 } 379 380 /* 381 * Find a property with a given name for a given node 382 * and return the value. 383 */ 384 const void *of_get_property(const struct device_node *np, const char *name, 385 int *lenp) 386 { 387 struct property *pp = of_find_property(np, name, lenp); 388 389 return pp ? pp->value : NULL; 390 } 391 EXPORT_SYMBOL(of_get_property); 392 393 /* 394 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 395 * 396 * @cpu: logical cpu index of a core/thread 397 * @phys_id: physical identifier of a core/thread 398 * 399 * CPU logical to physical index mapping is architecture specific. 400 * However this __weak function provides a default match of physical 401 * id to logical cpu index. phys_id provided here is usually values read 402 * from the device tree which must match the hardware internal registers. 403 * 404 * Returns true if the physical identifier and the logical cpu index 405 * correspond to the same core/thread, false otherwise. 406 */ 407 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 408 { 409 return (u32)phys_id == cpu; 410 } 411 412 /** 413 * Checks if the given "prop_name" property holds the physical id of the 414 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 415 * NULL, local thread number within the core is returned in it. 416 */ 417 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 418 const char *prop_name, int cpu, unsigned int *thread) 419 { 420 const __be32 *cell; 421 int ac, prop_len, tid; 422 u64 hwid; 423 424 ac = of_n_addr_cells(cpun); 425 cell = of_get_property(cpun, prop_name, &prop_len); 426 if (!cell || !ac) 427 return false; 428 prop_len /= sizeof(*cell) * ac; 429 for (tid = 0; tid < prop_len; tid++) { 430 hwid = of_read_number(cell, ac); 431 if (arch_match_cpu_phys_id(cpu, hwid)) { 432 if (thread) 433 *thread = tid; 434 return true; 435 } 436 cell += ac; 437 } 438 return false; 439 } 440 441 /* 442 * arch_find_n_match_cpu_physical_id - See if the given device node is 443 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 444 * else false. If 'thread' is non-NULL, the local thread number within the 445 * core is returned in it. 446 */ 447 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 448 int cpu, unsigned int *thread) 449 { 450 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 451 * for thread ids on PowerPC. If it doesn't exist fallback to 452 * standard "reg" property. 453 */ 454 if (IS_ENABLED(CONFIG_PPC) && 455 __of_find_n_match_cpu_property(cpun, 456 "ibm,ppc-interrupt-server#s", 457 cpu, thread)) 458 return true; 459 460 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 461 return true; 462 463 return false; 464 } 465 466 /** 467 * of_get_cpu_node - Get device node associated with the given logical CPU 468 * 469 * @cpu: CPU number(logical index) for which device node is required 470 * @thread: if not NULL, local thread number within the physical core is 471 * returned 472 * 473 * The main purpose of this function is to retrieve the device node for the 474 * given logical CPU index. It should be used to initialize the of_node in 475 * cpu device. Once of_node in cpu device is populated, all the further 476 * references can use that instead. 477 * 478 * CPU logical to physical index mapping is architecture specific and is built 479 * before booting secondary cores. This function uses arch_match_cpu_phys_id 480 * which can be overridden by architecture specific implementation. 481 * 482 * Returns a node pointer for the logical cpu if found, else NULL. 483 */ 484 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 485 { 486 struct device_node *cpun; 487 488 for_each_node_by_type(cpun, "cpu") { 489 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 490 return cpun; 491 } 492 return NULL; 493 } 494 EXPORT_SYMBOL(of_get_cpu_node); 495 496 /** 497 * __of_device_is_compatible() - Check if the node matches given constraints 498 * @device: pointer to node 499 * @compat: required compatible string, NULL or "" for any match 500 * @type: required device_type value, NULL or "" for any match 501 * @name: required node name, NULL or "" for any match 502 * 503 * Checks if the given @compat, @type and @name strings match the 504 * properties of the given @device. A constraints can be skipped by 505 * passing NULL or an empty string as the constraint. 506 * 507 * Returns 0 for no match, and a positive integer on match. The return 508 * value is a relative score with larger values indicating better 509 * matches. The score is weighted for the most specific compatible value 510 * to get the highest score. Matching type is next, followed by matching 511 * name. Practically speaking, this results in the following priority 512 * order for matches: 513 * 514 * 1. specific compatible && type && name 515 * 2. specific compatible && type 516 * 3. specific compatible && name 517 * 4. specific compatible 518 * 5. general compatible && type && name 519 * 6. general compatible && type 520 * 7. general compatible && name 521 * 8. general compatible 522 * 9. type && name 523 * 10. type 524 * 11. name 525 */ 526 static int __of_device_is_compatible(const struct device_node *device, 527 const char *compat, const char *type, const char *name) 528 { 529 struct property *prop; 530 const char *cp; 531 int index = 0, score = 0; 532 533 /* Compatible match has highest priority */ 534 if (compat && compat[0]) { 535 prop = __of_find_property(device, "compatible", NULL); 536 for (cp = of_prop_next_string(prop, NULL); cp; 537 cp = of_prop_next_string(prop, cp), index++) { 538 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 539 score = INT_MAX/2 - (index << 2); 540 break; 541 } 542 } 543 if (!score) 544 return 0; 545 } 546 547 /* Matching type is better than matching name */ 548 if (type && type[0]) { 549 if (!device->type || of_node_cmp(type, device->type)) 550 return 0; 551 score += 2; 552 } 553 554 /* Matching name is a bit better than not */ 555 if (name && name[0]) { 556 if (!device->name || of_node_cmp(name, device->name)) 557 return 0; 558 score++; 559 } 560 561 return score; 562 } 563 564 /** Checks if the given "compat" string matches one of the strings in 565 * the device's "compatible" property 566 */ 567 int of_device_is_compatible(const struct device_node *device, 568 const char *compat) 569 { 570 unsigned long flags; 571 int res; 572 573 raw_spin_lock_irqsave(&devtree_lock, flags); 574 res = __of_device_is_compatible(device, compat, NULL, NULL); 575 raw_spin_unlock_irqrestore(&devtree_lock, flags); 576 return res; 577 } 578 EXPORT_SYMBOL(of_device_is_compatible); 579 580 /** 581 * of_machine_is_compatible - Test root of device tree for a given compatible value 582 * @compat: compatible string to look for in root node's compatible property. 583 * 584 * Returns true if the root node has the given value in its 585 * compatible property. 586 */ 587 int of_machine_is_compatible(const char *compat) 588 { 589 struct device_node *root; 590 int rc = 0; 591 592 root = of_find_node_by_path("/"); 593 if (root) { 594 rc = of_device_is_compatible(root, compat); 595 of_node_put(root); 596 } 597 return rc; 598 } 599 EXPORT_SYMBOL(of_machine_is_compatible); 600 601 /** 602 * __of_device_is_available - check if a device is available for use 603 * 604 * @device: Node to check for availability, with locks already held 605 * 606 * Returns 1 if the status property is absent or set to "okay" or "ok", 607 * 0 otherwise 608 */ 609 static int __of_device_is_available(const struct device_node *device) 610 { 611 const char *status; 612 int statlen; 613 614 if (!device) 615 return 0; 616 617 status = __of_get_property(device, "status", &statlen); 618 if (status == NULL) 619 return 1; 620 621 if (statlen > 0) { 622 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 623 return 1; 624 } 625 626 return 0; 627 } 628 629 /** 630 * of_device_is_available - check if a device is available for use 631 * 632 * @device: Node to check for availability 633 * 634 * Returns 1 if the status property is absent or set to "okay" or "ok", 635 * 0 otherwise 636 */ 637 int of_device_is_available(const struct device_node *device) 638 { 639 unsigned long flags; 640 int res; 641 642 raw_spin_lock_irqsave(&devtree_lock, flags); 643 res = __of_device_is_available(device); 644 raw_spin_unlock_irqrestore(&devtree_lock, flags); 645 return res; 646 647 } 648 EXPORT_SYMBOL(of_device_is_available); 649 650 /** 651 * of_get_parent - Get a node's parent if any 652 * @node: Node to get parent 653 * 654 * Returns a node pointer with refcount incremented, use 655 * of_node_put() on it when done. 656 */ 657 struct device_node *of_get_parent(const struct device_node *node) 658 { 659 struct device_node *np; 660 unsigned long flags; 661 662 if (!node) 663 return NULL; 664 665 raw_spin_lock_irqsave(&devtree_lock, flags); 666 np = of_node_get(node->parent); 667 raw_spin_unlock_irqrestore(&devtree_lock, flags); 668 return np; 669 } 670 EXPORT_SYMBOL(of_get_parent); 671 672 /** 673 * of_get_next_parent - Iterate to a node's parent 674 * @node: Node to get parent of 675 * 676 * This is like of_get_parent() except that it drops the 677 * refcount on the passed node, making it suitable for iterating 678 * through a node's parents. 679 * 680 * Returns a node pointer with refcount incremented, use 681 * of_node_put() on it when done. 682 */ 683 struct device_node *of_get_next_parent(struct device_node *node) 684 { 685 struct device_node *parent; 686 unsigned long flags; 687 688 if (!node) 689 return NULL; 690 691 raw_spin_lock_irqsave(&devtree_lock, flags); 692 parent = of_node_get(node->parent); 693 of_node_put(node); 694 raw_spin_unlock_irqrestore(&devtree_lock, flags); 695 return parent; 696 } 697 EXPORT_SYMBOL(of_get_next_parent); 698 699 static struct device_node *__of_get_next_child(const struct device_node *node, 700 struct device_node *prev) 701 { 702 struct device_node *next; 703 704 if (!node) 705 return NULL; 706 707 next = prev ? prev->sibling : node->child; 708 for (; next; next = next->sibling) 709 if (of_node_get(next)) 710 break; 711 of_node_put(prev); 712 return next; 713 } 714 #define __for_each_child_of_node(parent, child) \ 715 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 716 child = __of_get_next_child(parent, child)) 717 718 /** 719 * of_get_next_child - Iterate a node childs 720 * @node: parent node 721 * @prev: previous child of the parent node, or NULL to get first 722 * 723 * Returns a node pointer with refcount incremented, use 724 * of_node_put() on it when done. 725 */ 726 struct device_node *of_get_next_child(const struct device_node *node, 727 struct device_node *prev) 728 { 729 struct device_node *next; 730 unsigned long flags; 731 732 raw_spin_lock_irqsave(&devtree_lock, flags); 733 next = __of_get_next_child(node, prev); 734 raw_spin_unlock_irqrestore(&devtree_lock, flags); 735 return next; 736 } 737 EXPORT_SYMBOL(of_get_next_child); 738 739 /** 740 * of_get_next_available_child - Find the next available child node 741 * @node: parent node 742 * @prev: previous child of the parent node, or NULL to get first 743 * 744 * This function is like of_get_next_child(), except that it 745 * automatically skips any disabled nodes (i.e. status = "disabled"). 746 */ 747 struct device_node *of_get_next_available_child(const struct device_node *node, 748 struct device_node *prev) 749 { 750 struct device_node *next; 751 unsigned long flags; 752 753 if (!node) 754 return NULL; 755 756 raw_spin_lock_irqsave(&devtree_lock, flags); 757 next = prev ? prev->sibling : node->child; 758 for (; next; next = next->sibling) { 759 if (!__of_device_is_available(next)) 760 continue; 761 if (of_node_get(next)) 762 break; 763 } 764 of_node_put(prev); 765 raw_spin_unlock_irqrestore(&devtree_lock, flags); 766 return next; 767 } 768 EXPORT_SYMBOL(of_get_next_available_child); 769 770 /** 771 * of_get_child_by_name - Find the child node by name for a given parent 772 * @node: parent node 773 * @name: child name to look for. 774 * 775 * This function looks for child node for given matching name 776 * 777 * Returns a node pointer if found, with refcount incremented, use 778 * of_node_put() on it when done. 779 * Returns NULL if node is not found. 780 */ 781 struct device_node *of_get_child_by_name(const struct device_node *node, 782 const char *name) 783 { 784 struct device_node *child; 785 786 for_each_child_of_node(node, child) 787 if (child->name && (of_node_cmp(child->name, name) == 0)) 788 break; 789 return child; 790 } 791 EXPORT_SYMBOL(of_get_child_by_name); 792 793 static struct device_node *__of_find_node_by_path(struct device_node *parent, 794 const char *path) 795 { 796 struct device_node *child; 797 int len = strchrnul(path, '/') - path; 798 799 if (!len) 800 return NULL; 801 802 __for_each_child_of_node(parent, child) { 803 const char *name = strrchr(child->full_name, '/'); 804 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 805 continue; 806 name++; 807 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 808 return child; 809 } 810 return NULL; 811 } 812 813 /** 814 * of_find_node_by_path - Find a node matching a full OF path 815 * @path: Either the full path to match, or if the path does not 816 * start with '/', the name of a property of the /aliases 817 * node (an alias). In the case of an alias, the node 818 * matching the alias' value will be returned. 819 * 820 * Valid paths: 821 * /foo/bar Full path 822 * foo Valid alias 823 * foo/bar Valid alias + relative path 824 * 825 * Returns a node pointer with refcount incremented, use 826 * of_node_put() on it when done. 827 */ 828 struct device_node *of_find_node_by_path(const char *path) 829 { 830 struct device_node *np = NULL; 831 struct property *pp; 832 unsigned long flags; 833 834 if (strcmp(path, "/") == 0) 835 return of_node_get(of_allnodes); 836 837 /* The path could begin with an alias */ 838 if (*path != '/') { 839 char *p = strchrnul(path, '/'); 840 int len = p - path; 841 842 /* of_aliases must not be NULL */ 843 if (!of_aliases) 844 return NULL; 845 846 for_each_property_of_node(of_aliases, pp) { 847 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 848 np = of_find_node_by_path(pp->value); 849 break; 850 } 851 } 852 if (!np) 853 return NULL; 854 path = p; 855 } 856 857 /* Step down the tree matching path components */ 858 raw_spin_lock_irqsave(&devtree_lock, flags); 859 if (!np) 860 np = of_node_get(of_allnodes); 861 while (np && *path == '/') { 862 path++; /* Increment past '/' delimiter */ 863 np = __of_find_node_by_path(np, path); 864 path = strchrnul(path, '/'); 865 } 866 raw_spin_unlock_irqrestore(&devtree_lock, flags); 867 return np; 868 } 869 EXPORT_SYMBOL(of_find_node_by_path); 870 871 /** 872 * of_find_node_by_name - Find a node by its "name" property 873 * @from: The node to start searching from or NULL, the node 874 * you pass will not be searched, only the next one 875 * will; typically, you pass what the previous call 876 * returned. of_node_put() will be called on it 877 * @name: The name string to match against 878 * 879 * Returns a node pointer with refcount incremented, use 880 * of_node_put() on it when done. 881 */ 882 struct device_node *of_find_node_by_name(struct device_node *from, 883 const char *name) 884 { 885 struct device_node *np; 886 unsigned long flags; 887 888 raw_spin_lock_irqsave(&devtree_lock, flags); 889 np = from ? from->allnext : of_allnodes; 890 for (; np; np = np->allnext) 891 if (np->name && (of_node_cmp(np->name, name) == 0) 892 && of_node_get(np)) 893 break; 894 of_node_put(from); 895 raw_spin_unlock_irqrestore(&devtree_lock, flags); 896 return np; 897 } 898 EXPORT_SYMBOL(of_find_node_by_name); 899 900 /** 901 * of_find_node_by_type - Find a node by its "device_type" property 902 * @from: The node to start searching from, or NULL to start searching 903 * the entire device tree. The node you pass will not be 904 * searched, only the next one will; typically, you pass 905 * what the previous call returned. of_node_put() will be 906 * called on from for you. 907 * @type: The type string to match against 908 * 909 * Returns a node pointer with refcount incremented, use 910 * of_node_put() on it when done. 911 */ 912 struct device_node *of_find_node_by_type(struct device_node *from, 913 const char *type) 914 { 915 struct device_node *np; 916 unsigned long flags; 917 918 raw_spin_lock_irqsave(&devtree_lock, flags); 919 np = from ? from->allnext : of_allnodes; 920 for (; np; np = np->allnext) 921 if (np->type && (of_node_cmp(np->type, type) == 0) 922 && of_node_get(np)) 923 break; 924 of_node_put(from); 925 raw_spin_unlock_irqrestore(&devtree_lock, flags); 926 return np; 927 } 928 EXPORT_SYMBOL(of_find_node_by_type); 929 930 /** 931 * of_find_compatible_node - Find a node based on type and one of the 932 * tokens in its "compatible" property 933 * @from: The node to start searching from or NULL, the node 934 * you pass will not be searched, only the next one 935 * will; typically, you pass what the previous call 936 * returned. of_node_put() will be called on it 937 * @type: The type string to match "device_type" or NULL to ignore 938 * @compatible: The string to match to one of the tokens in the device 939 * "compatible" list. 940 * 941 * Returns a node pointer with refcount incremented, use 942 * of_node_put() on it when done. 943 */ 944 struct device_node *of_find_compatible_node(struct device_node *from, 945 const char *type, const char *compatible) 946 { 947 struct device_node *np; 948 unsigned long flags; 949 950 raw_spin_lock_irqsave(&devtree_lock, flags); 951 np = from ? from->allnext : of_allnodes; 952 for (; np; np = np->allnext) { 953 if (__of_device_is_compatible(np, compatible, type, NULL) && 954 of_node_get(np)) 955 break; 956 } 957 of_node_put(from); 958 raw_spin_unlock_irqrestore(&devtree_lock, flags); 959 return np; 960 } 961 EXPORT_SYMBOL(of_find_compatible_node); 962 963 /** 964 * of_find_node_with_property - Find a node which has a property with 965 * the given name. 966 * @from: The node to start searching from or NULL, the node 967 * you pass will not be searched, only the next one 968 * will; typically, you pass what the previous call 969 * returned. of_node_put() will be called on it 970 * @prop_name: The name of the property to look for. 971 * 972 * Returns a node pointer with refcount incremented, use 973 * of_node_put() on it when done. 974 */ 975 struct device_node *of_find_node_with_property(struct device_node *from, 976 const char *prop_name) 977 { 978 struct device_node *np; 979 struct property *pp; 980 unsigned long flags; 981 982 raw_spin_lock_irqsave(&devtree_lock, flags); 983 np = from ? from->allnext : of_allnodes; 984 for (; np; np = np->allnext) { 985 for (pp = np->properties; pp; pp = pp->next) { 986 if (of_prop_cmp(pp->name, prop_name) == 0) { 987 of_node_get(np); 988 goto out; 989 } 990 } 991 } 992 out: 993 of_node_put(from); 994 raw_spin_unlock_irqrestore(&devtree_lock, flags); 995 return np; 996 } 997 EXPORT_SYMBOL(of_find_node_with_property); 998 999 static 1000 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1001 const struct device_node *node) 1002 { 1003 const struct of_device_id *best_match = NULL; 1004 int score, best_score = 0; 1005 1006 if (!matches) 1007 return NULL; 1008 1009 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1010 score = __of_device_is_compatible(node, matches->compatible, 1011 matches->type, matches->name); 1012 if (score > best_score) { 1013 best_match = matches; 1014 best_score = score; 1015 } 1016 } 1017 1018 return best_match; 1019 } 1020 1021 /** 1022 * of_match_node - Tell if an device_node has a matching of_match structure 1023 * @matches: array of of device match structures to search in 1024 * @node: the of device structure to match against 1025 * 1026 * Low level utility function used by device matching. 1027 */ 1028 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1029 const struct device_node *node) 1030 { 1031 const struct of_device_id *match; 1032 unsigned long flags; 1033 1034 raw_spin_lock_irqsave(&devtree_lock, flags); 1035 match = __of_match_node(matches, node); 1036 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1037 return match; 1038 } 1039 EXPORT_SYMBOL(of_match_node); 1040 1041 /** 1042 * of_find_matching_node_and_match - Find a node based on an of_device_id 1043 * match table. 1044 * @from: The node to start searching from or NULL, the node 1045 * you pass will not be searched, only the next one 1046 * will; typically, you pass what the previous call 1047 * returned. of_node_put() will be called on it 1048 * @matches: array of of device match structures to search in 1049 * @match Updated to point at the matches entry which matched 1050 * 1051 * Returns a node pointer with refcount incremented, use 1052 * of_node_put() on it when done. 1053 */ 1054 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1055 const struct of_device_id *matches, 1056 const struct of_device_id **match) 1057 { 1058 struct device_node *np; 1059 const struct of_device_id *m; 1060 unsigned long flags; 1061 1062 if (match) 1063 *match = NULL; 1064 1065 raw_spin_lock_irqsave(&devtree_lock, flags); 1066 np = from ? from->allnext : of_allnodes; 1067 for (; np; np = np->allnext) { 1068 m = __of_match_node(matches, np); 1069 if (m && of_node_get(np)) { 1070 if (match) 1071 *match = m; 1072 break; 1073 } 1074 } 1075 of_node_put(from); 1076 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1077 return np; 1078 } 1079 EXPORT_SYMBOL(of_find_matching_node_and_match); 1080 1081 /** 1082 * of_modalias_node - Lookup appropriate modalias for a device node 1083 * @node: pointer to a device tree node 1084 * @modalias: Pointer to buffer that modalias value will be copied into 1085 * @len: Length of modalias value 1086 * 1087 * Based on the value of the compatible property, this routine will attempt 1088 * to choose an appropriate modalias value for a particular device tree node. 1089 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1090 * from the first entry in the compatible list property. 1091 * 1092 * This routine returns 0 on success, <0 on failure. 1093 */ 1094 int of_modalias_node(struct device_node *node, char *modalias, int len) 1095 { 1096 const char *compatible, *p; 1097 int cplen; 1098 1099 compatible = of_get_property(node, "compatible", &cplen); 1100 if (!compatible || strlen(compatible) > cplen) 1101 return -ENODEV; 1102 p = strchr(compatible, ','); 1103 strlcpy(modalias, p ? p + 1 : compatible, len); 1104 return 0; 1105 } 1106 EXPORT_SYMBOL_GPL(of_modalias_node); 1107 1108 /** 1109 * of_find_node_by_phandle - Find a node given a phandle 1110 * @handle: phandle of the node to find 1111 * 1112 * Returns a node pointer with refcount incremented, use 1113 * of_node_put() on it when done. 1114 */ 1115 struct device_node *of_find_node_by_phandle(phandle handle) 1116 { 1117 struct device_node *np; 1118 unsigned long flags; 1119 1120 raw_spin_lock_irqsave(&devtree_lock, flags); 1121 for (np = of_allnodes; np; np = np->allnext) 1122 if (np->phandle == handle) 1123 break; 1124 of_node_get(np); 1125 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1126 return np; 1127 } 1128 EXPORT_SYMBOL(of_find_node_by_phandle); 1129 1130 /** 1131 * of_property_count_elems_of_size - Count the number of elements in a property 1132 * 1133 * @np: device node from which the property value is to be read. 1134 * @propname: name of the property to be searched. 1135 * @elem_size: size of the individual element 1136 * 1137 * Search for a property in a device node and count the number of elements of 1138 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1139 * property does not exist or its length does not match a multiple of elem_size 1140 * and -ENODATA if the property does not have a value. 1141 */ 1142 int of_property_count_elems_of_size(const struct device_node *np, 1143 const char *propname, int elem_size) 1144 { 1145 struct property *prop = of_find_property(np, propname, NULL); 1146 1147 if (!prop) 1148 return -EINVAL; 1149 if (!prop->value) 1150 return -ENODATA; 1151 1152 if (prop->length % elem_size != 0) { 1153 pr_err("size of %s in node %s is not a multiple of %d\n", 1154 propname, np->full_name, elem_size); 1155 return -EINVAL; 1156 } 1157 1158 return prop->length / elem_size; 1159 } 1160 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1161 1162 /** 1163 * of_find_property_value_of_size 1164 * 1165 * @np: device node from which the property value is to be read. 1166 * @propname: name of the property to be searched. 1167 * @len: requested length of property value 1168 * 1169 * Search for a property in a device node and valid the requested size. 1170 * Returns the property value on success, -EINVAL if the property does not 1171 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1172 * property data isn't large enough. 1173 * 1174 */ 1175 static void *of_find_property_value_of_size(const struct device_node *np, 1176 const char *propname, u32 len) 1177 { 1178 struct property *prop = of_find_property(np, propname, NULL); 1179 1180 if (!prop) 1181 return ERR_PTR(-EINVAL); 1182 if (!prop->value) 1183 return ERR_PTR(-ENODATA); 1184 if (len > prop->length) 1185 return ERR_PTR(-EOVERFLOW); 1186 1187 return prop->value; 1188 } 1189 1190 /** 1191 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1192 * 1193 * @np: device node from which the property value is to be read. 1194 * @propname: name of the property to be searched. 1195 * @index: index of the u32 in the list of values 1196 * @out_value: pointer to return value, modified only if no error. 1197 * 1198 * Search for a property in a device node and read nth 32-bit value from 1199 * it. Returns 0 on success, -EINVAL if the property does not exist, 1200 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1201 * property data isn't large enough. 1202 * 1203 * The out_value is modified only if a valid u32 value can be decoded. 1204 */ 1205 int of_property_read_u32_index(const struct device_node *np, 1206 const char *propname, 1207 u32 index, u32 *out_value) 1208 { 1209 const u32 *val = of_find_property_value_of_size(np, propname, 1210 ((index + 1) * sizeof(*out_value))); 1211 1212 if (IS_ERR(val)) 1213 return PTR_ERR(val); 1214 1215 *out_value = be32_to_cpup(((__be32 *)val) + index); 1216 return 0; 1217 } 1218 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1219 1220 /** 1221 * of_property_read_u8_array - Find and read an array of u8 from a property. 1222 * 1223 * @np: device node from which the property value is to be read. 1224 * @propname: name of the property to be searched. 1225 * @out_values: pointer to return value, modified only if return value is 0. 1226 * @sz: number of array elements to read 1227 * 1228 * Search for a property in a device node and read 8-bit value(s) from 1229 * it. Returns 0 on success, -EINVAL if the property does not exist, 1230 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1231 * property data isn't large enough. 1232 * 1233 * dts entry of array should be like: 1234 * property = /bits/ 8 <0x50 0x60 0x70>; 1235 * 1236 * The out_values is modified only if a valid u8 value can be decoded. 1237 */ 1238 int of_property_read_u8_array(const struct device_node *np, 1239 const char *propname, u8 *out_values, size_t sz) 1240 { 1241 const u8 *val = of_find_property_value_of_size(np, propname, 1242 (sz * sizeof(*out_values))); 1243 1244 if (IS_ERR(val)) 1245 return PTR_ERR(val); 1246 1247 while (sz--) 1248 *out_values++ = *val++; 1249 return 0; 1250 } 1251 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1252 1253 /** 1254 * of_property_read_u16_array - Find and read an array of u16 from a property. 1255 * 1256 * @np: device node from which the property value is to be read. 1257 * @propname: name of the property to be searched. 1258 * @out_values: pointer to return value, modified only if return value is 0. 1259 * @sz: number of array elements to read 1260 * 1261 * Search for a property in a device node and read 16-bit value(s) from 1262 * it. Returns 0 on success, -EINVAL if the property does not exist, 1263 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1264 * property data isn't large enough. 1265 * 1266 * dts entry of array should be like: 1267 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1268 * 1269 * The out_values is modified only if a valid u16 value can be decoded. 1270 */ 1271 int of_property_read_u16_array(const struct device_node *np, 1272 const char *propname, u16 *out_values, size_t sz) 1273 { 1274 const __be16 *val = of_find_property_value_of_size(np, propname, 1275 (sz * sizeof(*out_values))); 1276 1277 if (IS_ERR(val)) 1278 return PTR_ERR(val); 1279 1280 while (sz--) 1281 *out_values++ = be16_to_cpup(val++); 1282 return 0; 1283 } 1284 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1285 1286 /** 1287 * of_property_read_u32_array - Find and read an array of 32 bit integers 1288 * from a property. 1289 * 1290 * @np: device node from which the property value is to be read. 1291 * @propname: name of the property to be searched. 1292 * @out_values: pointer to return value, modified only if return value is 0. 1293 * @sz: number of array elements to read 1294 * 1295 * Search for a property in a device node and read 32-bit value(s) from 1296 * it. Returns 0 on success, -EINVAL if the property does not exist, 1297 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1298 * property data isn't large enough. 1299 * 1300 * The out_values is modified only if a valid u32 value can be decoded. 1301 */ 1302 int of_property_read_u32_array(const struct device_node *np, 1303 const char *propname, u32 *out_values, 1304 size_t sz) 1305 { 1306 const __be32 *val = of_find_property_value_of_size(np, propname, 1307 (sz * sizeof(*out_values))); 1308 1309 if (IS_ERR(val)) 1310 return PTR_ERR(val); 1311 1312 while (sz--) 1313 *out_values++ = be32_to_cpup(val++); 1314 return 0; 1315 } 1316 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1317 1318 /** 1319 * of_property_read_u64 - Find and read a 64 bit integer from a property 1320 * @np: device node from which the property value is to be read. 1321 * @propname: name of the property to be searched. 1322 * @out_value: pointer to return value, modified only if return value is 0. 1323 * 1324 * Search for a property in a device node and read a 64-bit value from 1325 * it. Returns 0 on success, -EINVAL if the property does not exist, 1326 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1327 * property data isn't large enough. 1328 * 1329 * The out_value is modified only if a valid u64 value can be decoded. 1330 */ 1331 int of_property_read_u64(const struct device_node *np, const char *propname, 1332 u64 *out_value) 1333 { 1334 const __be32 *val = of_find_property_value_of_size(np, propname, 1335 sizeof(*out_value)); 1336 1337 if (IS_ERR(val)) 1338 return PTR_ERR(val); 1339 1340 *out_value = of_read_number(val, 2); 1341 return 0; 1342 } 1343 EXPORT_SYMBOL_GPL(of_property_read_u64); 1344 1345 /** 1346 * of_property_read_string - Find and read a string from a property 1347 * @np: device node from which the property value is to be read. 1348 * @propname: name of the property to be searched. 1349 * @out_string: pointer to null terminated return string, modified only if 1350 * return value is 0. 1351 * 1352 * Search for a property in a device tree node and retrieve a null 1353 * terminated string value (pointer to data, not a copy). Returns 0 on 1354 * success, -EINVAL if the property does not exist, -ENODATA if property 1355 * does not have a value, and -EILSEQ if the string is not null-terminated 1356 * within the length of the property data. 1357 * 1358 * The out_string pointer is modified only if a valid string can be decoded. 1359 */ 1360 int of_property_read_string(struct device_node *np, const char *propname, 1361 const char **out_string) 1362 { 1363 struct property *prop = of_find_property(np, propname, NULL); 1364 if (!prop) 1365 return -EINVAL; 1366 if (!prop->value) 1367 return -ENODATA; 1368 if (strnlen(prop->value, prop->length) >= prop->length) 1369 return -EILSEQ; 1370 *out_string = prop->value; 1371 return 0; 1372 } 1373 EXPORT_SYMBOL_GPL(of_property_read_string); 1374 1375 /** 1376 * of_property_read_string_index - Find and read a string from a multiple 1377 * strings property. 1378 * @np: device node from which the property value is to be read. 1379 * @propname: name of the property to be searched. 1380 * @index: index of the string in the list of strings 1381 * @out_string: pointer to null terminated return string, modified only if 1382 * return value is 0. 1383 * 1384 * Search for a property in a device tree node and retrieve a null 1385 * terminated string value (pointer to data, not a copy) in the list of strings 1386 * contained in that property. 1387 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if 1388 * property does not have a value, and -EILSEQ if the string is not 1389 * null-terminated within the length of the property data. 1390 * 1391 * The out_string pointer is modified only if a valid string can be decoded. 1392 */ 1393 int of_property_read_string_index(struct device_node *np, const char *propname, 1394 int index, const char **output) 1395 { 1396 struct property *prop = of_find_property(np, propname, NULL); 1397 int i = 0; 1398 size_t l = 0, total = 0; 1399 const char *p; 1400 1401 if (!prop) 1402 return -EINVAL; 1403 if (!prop->value) 1404 return -ENODATA; 1405 if (strnlen(prop->value, prop->length) >= prop->length) 1406 return -EILSEQ; 1407 1408 p = prop->value; 1409 1410 for (i = 0; total < prop->length; total += l, p += l) { 1411 l = strlen(p) + 1; 1412 if (i++ == index) { 1413 *output = p; 1414 return 0; 1415 } 1416 } 1417 return -ENODATA; 1418 } 1419 EXPORT_SYMBOL_GPL(of_property_read_string_index); 1420 1421 /** 1422 * of_property_match_string() - Find string in a list and return index 1423 * @np: pointer to node containing string list property 1424 * @propname: string list property name 1425 * @string: pointer to string to search for in string list 1426 * 1427 * This function searches a string list property and returns the index 1428 * of a specific string value. 1429 */ 1430 int of_property_match_string(struct device_node *np, const char *propname, 1431 const char *string) 1432 { 1433 struct property *prop = of_find_property(np, propname, NULL); 1434 size_t l; 1435 int i; 1436 const char *p, *end; 1437 1438 if (!prop) 1439 return -EINVAL; 1440 if (!prop->value) 1441 return -ENODATA; 1442 1443 p = prop->value; 1444 end = p + prop->length; 1445 1446 for (i = 0; p < end; i++, p += l) { 1447 l = strlen(p) + 1; 1448 if (p + l > end) 1449 return -EILSEQ; 1450 pr_debug("comparing %s with %s\n", string, p); 1451 if (strcmp(string, p) == 0) 1452 return i; /* Found it; return index */ 1453 } 1454 return -ENODATA; 1455 } 1456 EXPORT_SYMBOL_GPL(of_property_match_string); 1457 1458 /** 1459 * of_property_count_strings - Find and return the number of strings from a 1460 * multiple strings property. 1461 * @np: device node from which the property value is to be read. 1462 * @propname: name of the property to be searched. 1463 * 1464 * Search for a property in a device tree node and retrieve the number of null 1465 * terminated string contain in it. Returns the number of strings on 1466 * success, -EINVAL if the property does not exist, -ENODATA if property 1467 * does not have a value, and -EILSEQ if the string is not null-terminated 1468 * within the length of the property data. 1469 */ 1470 int of_property_count_strings(struct device_node *np, const char *propname) 1471 { 1472 struct property *prop = of_find_property(np, propname, NULL); 1473 int i = 0; 1474 size_t l = 0, total = 0; 1475 const char *p; 1476 1477 if (!prop) 1478 return -EINVAL; 1479 if (!prop->value) 1480 return -ENODATA; 1481 if (strnlen(prop->value, prop->length) >= prop->length) 1482 return -EILSEQ; 1483 1484 p = prop->value; 1485 1486 for (i = 0; total < prop->length; total += l, p += l, i++) 1487 l = strlen(p) + 1; 1488 1489 return i; 1490 } 1491 EXPORT_SYMBOL_GPL(of_property_count_strings); 1492 1493 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1494 { 1495 int i; 1496 printk("%s %s", msg, of_node_full_name(args->np)); 1497 for (i = 0; i < args->args_count; i++) 1498 printk(i ? ",%08x" : ":%08x", args->args[i]); 1499 printk("\n"); 1500 } 1501 1502 static int __of_parse_phandle_with_args(const struct device_node *np, 1503 const char *list_name, 1504 const char *cells_name, 1505 int cell_count, int index, 1506 struct of_phandle_args *out_args) 1507 { 1508 const __be32 *list, *list_end; 1509 int rc = 0, size, cur_index = 0; 1510 uint32_t count = 0; 1511 struct device_node *node = NULL; 1512 phandle phandle; 1513 1514 /* Retrieve the phandle list property */ 1515 list = of_get_property(np, list_name, &size); 1516 if (!list) 1517 return -ENOENT; 1518 list_end = list + size / sizeof(*list); 1519 1520 /* Loop over the phandles until all the requested entry is found */ 1521 while (list < list_end) { 1522 rc = -EINVAL; 1523 count = 0; 1524 1525 /* 1526 * If phandle is 0, then it is an empty entry with no 1527 * arguments. Skip forward to the next entry. 1528 */ 1529 phandle = be32_to_cpup(list++); 1530 if (phandle) { 1531 /* 1532 * Find the provider node and parse the #*-cells 1533 * property to determine the argument length. 1534 * 1535 * This is not needed if the cell count is hard-coded 1536 * (i.e. cells_name not set, but cell_count is set), 1537 * except when we're going to return the found node 1538 * below. 1539 */ 1540 if (cells_name || cur_index == index) { 1541 node = of_find_node_by_phandle(phandle); 1542 if (!node) { 1543 pr_err("%s: could not find phandle\n", 1544 np->full_name); 1545 goto err; 1546 } 1547 } 1548 1549 if (cells_name) { 1550 if (of_property_read_u32(node, cells_name, 1551 &count)) { 1552 pr_err("%s: could not get %s for %s\n", 1553 np->full_name, cells_name, 1554 node->full_name); 1555 goto err; 1556 } 1557 } else { 1558 count = cell_count; 1559 } 1560 1561 /* 1562 * Make sure that the arguments actually fit in the 1563 * remaining property data length 1564 */ 1565 if (list + count > list_end) { 1566 pr_err("%s: arguments longer than property\n", 1567 np->full_name); 1568 goto err; 1569 } 1570 } 1571 1572 /* 1573 * All of the error cases above bail out of the loop, so at 1574 * this point, the parsing is successful. If the requested 1575 * index matches, then fill the out_args structure and return, 1576 * or return -ENOENT for an empty entry. 1577 */ 1578 rc = -ENOENT; 1579 if (cur_index == index) { 1580 if (!phandle) 1581 goto err; 1582 1583 if (out_args) { 1584 int i; 1585 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1586 count = MAX_PHANDLE_ARGS; 1587 out_args->np = node; 1588 out_args->args_count = count; 1589 for (i = 0; i < count; i++) 1590 out_args->args[i] = be32_to_cpup(list++); 1591 } else { 1592 of_node_put(node); 1593 } 1594 1595 /* Found it! return success */ 1596 return 0; 1597 } 1598 1599 of_node_put(node); 1600 node = NULL; 1601 list += count; 1602 cur_index++; 1603 } 1604 1605 /* 1606 * Unlock node before returning result; will be one of: 1607 * -ENOENT : index is for empty phandle 1608 * -EINVAL : parsing error on data 1609 * [1..n] : Number of phandle (count mode; when index = -1) 1610 */ 1611 rc = index < 0 ? cur_index : -ENOENT; 1612 err: 1613 if (node) 1614 of_node_put(node); 1615 return rc; 1616 } 1617 1618 /** 1619 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1620 * @np: Pointer to device node holding phandle property 1621 * @phandle_name: Name of property holding a phandle value 1622 * @index: For properties holding a table of phandles, this is the index into 1623 * the table 1624 * 1625 * Returns the device_node pointer with refcount incremented. Use 1626 * of_node_put() on it when done. 1627 */ 1628 struct device_node *of_parse_phandle(const struct device_node *np, 1629 const char *phandle_name, int index) 1630 { 1631 struct of_phandle_args args; 1632 1633 if (index < 0) 1634 return NULL; 1635 1636 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1637 index, &args)) 1638 return NULL; 1639 1640 return args.np; 1641 } 1642 EXPORT_SYMBOL(of_parse_phandle); 1643 1644 /** 1645 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1646 * @np: pointer to a device tree node containing a list 1647 * @list_name: property name that contains a list 1648 * @cells_name: property name that specifies phandles' arguments count 1649 * @index: index of a phandle to parse out 1650 * @out_args: optional pointer to output arguments structure (will be filled) 1651 * 1652 * This function is useful to parse lists of phandles and their arguments. 1653 * Returns 0 on success and fills out_args, on error returns appropriate 1654 * errno value. 1655 * 1656 * Caller is responsible to call of_node_put() on the returned out_args->node 1657 * pointer. 1658 * 1659 * Example: 1660 * 1661 * phandle1: node1 { 1662 * #list-cells = <2>; 1663 * } 1664 * 1665 * phandle2: node2 { 1666 * #list-cells = <1>; 1667 * } 1668 * 1669 * node3 { 1670 * list = <&phandle1 1 2 &phandle2 3>; 1671 * } 1672 * 1673 * To get a device_node of the `node2' node you may call this: 1674 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1675 */ 1676 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1677 const char *cells_name, int index, 1678 struct of_phandle_args *out_args) 1679 { 1680 if (index < 0) 1681 return -EINVAL; 1682 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1683 index, out_args); 1684 } 1685 EXPORT_SYMBOL(of_parse_phandle_with_args); 1686 1687 /** 1688 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1689 * @np: pointer to a device tree node containing a list 1690 * @list_name: property name that contains a list 1691 * @cell_count: number of argument cells following the phandle 1692 * @index: index of a phandle to parse out 1693 * @out_args: optional pointer to output arguments structure (will be filled) 1694 * 1695 * This function is useful to parse lists of phandles and their arguments. 1696 * Returns 0 on success and fills out_args, on error returns appropriate 1697 * errno value. 1698 * 1699 * Caller is responsible to call of_node_put() on the returned out_args->node 1700 * pointer. 1701 * 1702 * Example: 1703 * 1704 * phandle1: node1 { 1705 * } 1706 * 1707 * phandle2: node2 { 1708 * } 1709 * 1710 * node3 { 1711 * list = <&phandle1 0 2 &phandle2 2 3>; 1712 * } 1713 * 1714 * To get a device_node of the `node2' node you may call this: 1715 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1716 */ 1717 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1718 const char *list_name, int cell_count, 1719 int index, struct of_phandle_args *out_args) 1720 { 1721 if (index < 0) 1722 return -EINVAL; 1723 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1724 index, out_args); 1725 } 1726 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1727 1728 /** 1729 * of_count_phandle_with_args() - Find the number of phandles references in a property 1730 * @np: pointer to a device tree node containing a list 1731 * @list_name: property name that contains a list 1732 * @cells_name: property name that specifies phandles' arguments count 1733 * 1734 * Returns the number of phandle + argument tuples within a property. It 1735 * is a typical pattern to encode a list of phandle and variable 1736 * arguments into a single property. The number of arguments is encoded 1737 * by a property in the phandle-target node. For example, a gpios 1738 * property would contain a list of GPIO specifies consisting of a 1739 * phandle and 1 or more arguments. The number of arguments are 1740 * determined by the #gpio-cells property in the node pointed to by the 1741 * phandle. 1742 */ 1743 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1744 const char *cells_name) 1745 { 1746 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1747 NULL); 1748 } 1749 EXPORT_SYMBOL(of_count_phandle_with_args); 1750 1751 #if defined(CONFIG_OF_DYNAMIC) 1752 static int of_property_notify(int action, struct device_node *np, 1753 struct property *prop) 1754 { 1755 struct of_prop_reconfig pr; 1756 1757 /* only call notifiers if the node is attached */ 1758 if (!of_node_is_attached(np)) 1759 return 0; 1760 1761 pr.dn = np; 1762 pr.prop = prop; 1763 return of_reconfig_notify(action, &pr); 1764 } 1765 #else 1766 static int of_property_notify(int action, struct device_node *np, 1767 struct property *prop) 1768 { 1769 return 0; 1770 } 1771 #endif 1772 1773 /** 1774 * __of_add_property - Add a property to a node without lock operations 1775 */ 1776 static int __of_add_property(struct device_node *np, struct property *prop) 1777 { 1778 struct property **next; 1779 1780 prop->next = NULL; 1781 next = &np->properties; 1782 while (*next) { 1783 if (strcmp(prop->name, (*next)->name) == 0) 1784 /* duplicate ! don't insert it */ 1785 return -EEXIST; 1786 1787 next = &(*next)->next; 1788 } 1789 *next = prop; 1790 1791 return 0; 1792 } 1793 1794 /** 1795 * of_add_property - Add a property to a node 1796 */ 1797 int of_add_property(struct device_node *np, struct property *prop) 1798 { 1799 unsigned long flags; 1800 int rc; 1801 1802 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); 1803 if (rc) 1804 return rc; 1805 1806 raw_spin_lock_irqsave(&devtree_lock, flags); 1807 rc = __of_add_property(np, prop); 1808 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1809 if (rc) 1810 return rc; 1811 1812 if (of_node_is_attached(np)) 1813 __of_add_property_sysfs(np, prop); 1814 1815 return rc; 1816 } 1817 1818 /** 1819 * of_remove_property - Remove a property from a node. 1820 * 1821 * Note that we don't actually remove it, since we have given out 1822 * who-knows-how-many pointers to the data using get-property. 1823 * Instead we just move the property to the "dead properties" 1824 * list, so it won't be found any more. 1825 */ 1826 int of_remove_property(struct device_node *np, struct property *prop) 1827 { 1828 struct property **next; 1829 unsigned long flags; 1830 int found = 0; 1831 int rc; 1832 1833 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); 1834 if (rc) 1835 return rc; 1836 1837 raw_spin_lock_irqsave(&devtree_lock, flags); 1838 next = &np->properties; 1839 while (*next) { 1840 if (*next == prop) { 1841 /* found the node */ 1842 *next = prop->next; 1843 prop->next = np->deadprops; 1844 np->deadprops = prop; 1845 found = 1; 1846 break; 1847 } 1848 next = &(*next)->next; 1849 } 1850 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1851 1852 if (!found) 1853 return -ENODEV; 1854 1855 /* at early boot, bail hear and defer setup to of_init() */ 1856 if (!of_kset) 1857 return 0; 1858 1859 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1860 1861 return 0; 1862 } 1863 1864 /* 1865 * of_update_property - Update a property in a node, if the property does 1866 * not exist, add it. 1867 * 1868 * Note that we don't actually remove it, since we have given out 1869 * who-knows-how-many pointers to the data using get-property. 1870 * Instead we just move the property to the "dead properties" list, 1871 * and add the new property to the property list 1872 */ 1873 int of_update_property(struct device_node *np, struct property *newprop) 1874 { 1875 struct property **next, *oldprop; 1876 unsigned long flags; 1877 int rc; 1878 1879 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); 1880 if (rc) 1881 return rc; 1882 1883 if (!newprop->name) 1884 return -EINVAL; 1885 1886 raw_spin_lock_irqsave(&devtree_lock, flags); 1887 next = &np->properties; 1888 oldprop = __of_find_property(np, newprop->name, NULL); 1889 if (!oldprop) { 1890 /* add the new node */ 1891 rc = __of_add_property(np, newprop); 1892 } else while (*next) { 1893 /* replace the node */ 1894 if (*next == oldprop) { 1895 newprop->next = oldprop->next; 1896 *next = newprop; 1897 oldprop->next = np->deadprops; 1898 np->deadprops = oldprop; 1899 break; 1900 } 1901 next = &(*next)->next; 1902 } 1903 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1904 if (rc) 1905 return rc; 1906 1907 /* At early boot, bail out and defer setup to of_init() */ 1908 if (!of_kset) 1909 return 0; 1910 1911 /* Update the sysfs attribute */ 1912 if (oldprop) 1913 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1914 __of_add_property_sysfs(np, newprop); 1915 1916 return 0; 1917 } 1918 1919 #if defined(CONFIG_OF_DYNAMIC) 1920 /* 1921 * Support for dynamic device trees. 1922 * 1923 * On some platforms, the device tree can be manipulated at runtime. 1924 * The routines in this section support adding, removing and changing 1925 * device tree nodes. 1926 */ 1927 1928 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); 1929 1930 int of_reconfig_notifier_register(struct notifier_block *nb) 1931 { 1932 return blocking_notifier_chain_register(&of_reconfig_chain, nb); 1933 } 1934 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); 1935 1936 int of_reconfig_notifier_unregister(struct notifier_block *nb) 1937 { 1938 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); 1939 } 1940 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); 1941 1942 int of_reconfig_notify(unsigned long action, void *p) 1943 { 1944 int rc; 1945 1946 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); 1947 return notifier_to_errno(rc); 1948 } 1949 1950 /** 1951 * of_attach_node - Plug a device node into the tree and global list. 1952 */ 1953 int of_attach_node(struct device_node *np) 1954 { 1955 unsigned long flags; 1956 int rc; 1957 1958 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); 1959 if (rc) 1960 return rc; 1961 1962 raw_spin_lock_irqsave(&devtree_lock, flags); 1963 np->sibling = np->parent->child; 1964 np->allnext = np->parent->allnext; 1965 np->parent->allnext = np; 1966 np->parent->child = np; 1967 of_node_clear_flag(np, OF_DETACHED); 1968 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1969 1970 of_node_add(np); 1971 return 0; 1972 } 1973 1974 /** 1975 * of_detach_node - "Unplug" a node from the device tree. 1976 * 1977 * The caller must hold a reference to the node. The memory associated with 1978 * the node is not freed until its refcount goes to zero. 1979 */ 1980 int of_detach_node(struct device_node *np) 1981 { 1982 struct device_node *parent; 1983 unsigned long flags; 1984 int rc = 0; 1985 1986 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); 1987 if (rc) 1988 return rc; 1989 1990 raw_spin_lock_irqsave(&devtree_lock, flags); 1991 1992 if (of_node_check_flag(np, OF_DETACHED)) { 1993 /* someone already detached it */ 1994 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1995 return rc; 1996 } 1997 1998 parent = np->parent; 1999 if (!parent) { 2000 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2001 return rc; 2002 } 2003 2004 if (of_allnodes == np) 2005 of_allnodes = np->allnext; 2006 else { 2007 struct device_node *prev; 2008 for (prev = of_allnodes; 2009 prev->allnext != np; 2010 prev = prev->allnext) 2011 ; 2012 prev->allnext = np->allnext; 2013 } 2014 2015 if (parent->child == np) 2016 parent->child = np->sibling; 2017 else { 2018 struct device_node *prevsib; 2019 for (prevsib = np->parent->child; 2020 prevsib->sibling != np; 2021 prevsib = prevsib->sibling) 2022 ; 2023 prevsib->sibling = np->sibling; 2024 } 2025 2026 of_node_set_flag(np, OF_DETACHED); 2027 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2028 2029 of_node_remove(np); 2030 return rc; 2031 } 2032 #endif /* defined(CONFIG_OF_DYNAMIC) */ 2033 2034 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 2035 int id, const char *stem, int stem_len) 2036 { 2037 ap->np = np; 2038 ap->id = id; 2039 strncpy(ap->stem, stem, stem_len); 2040 ap->stem[stem_len] = 0; 2041 list_add_tail(&ap->link, &aliases_lookup); 2042 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 2043 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 2044 } 2045 2046 /** 2047 * of_alias_scan - Scan all properties of 'aliases' node 2048 * 2049 * The function scans all the properties of 'aliases' node and populate 2050 * the the global lookup table with the properties. It returns the 2051 * number of alias_prop found, or error code in error case. 2052 * 2053 * @dt_alloc: An allocator that provides a virtual address to memory 2054 * for the resulting tree 2055 */ 2056 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2057 { 2058 struct property *pp; 2059 2060 of_chosen = of_find_node_by_path("/chosen"); 2061 if (of_chosen == NULL) 2062 of_chosen = of_find_node_by_path("/chosen@0"); 2063 2064 if (of_chosen) { 2065 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 2066 if (!name) 2067 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 2068 if (name) 2069 of_stdout = of_find_node_by_path(name); 2070 } 2071 2072 of_aliases = of_find_node_by_path("/aliases"); 2073 if (!of_aliases) 2074 return; 2075 2076 for_each_property_of_node(of_aliases, pp) { 2077 const char *start = pp->name; 2078 const char *end = start + strlen(start); 2079 struct device_node *np; 2080 struct alias_prop *ap; 2081 int id, len; 2082 2083 /* Skip those we do not want to proceed */ 2084 if (!strcmp(pp->name, "name") || 2085 !strcmp(pp->name, "phandle") || 2086 !strcmp(pp->name, "linux,phandle")) 2087 continue; 2088 2089 np = of_find_node_by_path(pp->value); 2090 if (!np) 2091 continue; 2092 2093 /* walk the alias backwards to extract the id and work out 2094 * the 'stem' string */ 2095 while (isdigit(*(end-1)) && end > start) 2096 end--; 2097 len = end - start; 2098 2099 if (kstrtoint(end, 10, &id) < 0) 2100 continue; 2101 2102 /* Allocate an alias_prop with enough space for the stem */ 2103 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 2104 if (!ap) 2105 continue; 2106 memset(ap, 0, sizeof(*ap) + len + 1); 2107 ap->alias = start; 2108 of_alias_add(ap, np, id, start, len); 2109 } 2110 } 2111 2112 /** 2113 * of_alias_get_id - Get alias id for the given device_node 2114 * @np: Pointer to the given device_node 2115 * @stem: Alias stem of the given device_node 2116 * 2117 * The function travels the lookup table to get the alias id for the given 2118 * device_node and alias stem. It returns the alias id if found. 2119 */ 2120 int of_alias_get_id(struct device_node *np, const char *stem) 2121 { 2122 struct alias_prop *app; 2123 int id = -ENODEV; 2124 2125 mutex_lock(&of_aliases_mutex); 2126 list_for_each_entry(app, &aliases_lookup, link) { 2127 if (strcmp(app->stem, stem) != 0) 2128 continue; 2129 2130 if (np == app->np) { 2131 id = app->id; 2132 break; 2133 } 2134 } 2135 mutex_unlock(&of_aliases_mutex); 2136 2137 return id; 2138 } 2139 EXPORT_SYMBOL_GPL(of_alias_get_id); 2140 2141 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2142 u32 *pu) 2143 { 2144 const void *curv = cur; 2145 2146 if (!prop) 2147 return NULL; 2148 2149 if (!cur) { 2150 curv = prop->value; 2151 goto out_val; 2152 } 2153 2154 curv += sizeof(*cur); 2155 if (curv >= prop->value + prop->length) 2156 return NULL; 2157 2158 out_val: 2159 *pu = be32_to_cpup(curv); 2160 return curv; 2161 } 2162 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2163 2164 const char *of_prop_next_string(struct property *prop, const char *cur) 2165 { 2166 const void *curv = cur; 2167 2168 if (!prop) 2169 return NULL; 2170 2171 if (!cur) 2172 return prop->value; 2173 2174 curv += strlen(cur) + 1; 2175 if (curv >= prop->value + prop->length) 2176 return NULL; 2177 2178 return curv; 2179 } 2180 EXPORT_SYMBOL_GPL(of_prop_next_string); 2181 2182 /** 2183 * of_device_is_stdout_path - check if a device node matches the 2184 * linux,stdout-path property 2185 * 2186 * Check if this device node matches the linux,stdout-path property 2187 * in the chosen node. return true if yes, false otherwise. 2188 */ 2189 int of_device_is_stdout_path(struct device_node *dn) 2190 { 2191 if (!of_stdout) 2192 return false; 2193 2194 return of_stdout == dn; 2195 } 2196 EXPORT_SYMBOL_GPL(of_device_is_stdout_path); 2197 2198 /** 2199 * of_find_next_cache_node - Find a node's subsidiary cache 2200 * @np: node of type "cpu" or "cache" 2201 * 2202 * Returns a node pointer with refcount incremented, use 2203 * of_node_put() on it when done. Caller should hold a reference 2204 * to np. 2205 */ 2206 struct device_node *of_find_next_cache_node(const struct device_node *np) 2207 { 2208 struct device_node *child; 2209 const phandle *handle; 2210 2211 handle = of_get_property(np, "l2-cache", NULL); 2212 if (!handle) 2213 handle = of_get_property(np, "next-level-cache", NULL); 2214 2215 if (handle) 2216 return of_find_node_by_phandle(be32_to_cpup(handle)); 2217 2218 /* OF on pmac has nodes instead of properties named "l2-cache" 2219 * beneath CPU nodes. 2220 */ 2221 if (!strcmp(np->type, "cpu")) 2222 for_each_child_of_node(np, child) 2223 if (!strcmp(child->type, "cache")) 2224 return child; 2225 2226 return NULL; 2227 } 2228 2229 /** 2230 * of_graph_parse_endpoint() - parse common endpoint node properties 2231 * @node: pointer to endpoint device_node 2232 * @endpoint: pointer to the OF endpoint data structure 2233 * 2234 * The caller should hold a reference to @node. 2235 */ 2236 int of_graph_parse_endpoint(const struct device_node *node, 2237 struct of_endpoint *endpoint) 2238 { 2239 struct device_node *port_node = of_get_parent(node); 2240 2241 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2242 __func__, node->full_name); 2243 2244 memset(endpoint, 0, sizeof(*endpoint)); 2245 2246 endpoint->local_node = node; 2247 /* 2248 * It doesn't matter whether the two calls below succeed. 2249 * If they don't then the default value 0 is used. 2250 */ 2251 of_property_read_u32(port_node, "reg", &endpoint->port); 2252 of_property_read_u32(node, "reg", &endpoint->id); 2253 2254 of_node_put(port_node); 2255 2256 return 0; 2257 } 2258 EXPORT_SYMBOL(of_graph_parse_endpoint); 2259 2260 /** 2261 * of_graph_get_next_endpoint() - get next endpoint node 2262 * @parent: pointer to the parent device node 2263 * @prev: previous endpoint node, or NULL to get first 2264 * 2265 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2266 * of the passed @prev node is not decremented, the caller have to use 2267 * of_node_put() on it when done. 2268 */ 2269 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2270 struct device_node *prev) 2271 { 2272 struct device_node *endpoint; 2273 struct device_node *port; 2274 2275 if (!parent) 2276 return NULL; 2277 2278 /* 2279 * Start by locating the port node. If no previous endpoint is specified 2280 * search for the first port node, otherwise get the previous endpoint 2281 * parent port node. 2282 */ 2283 if (!prev) { 2284 struct device_node *node; 2285 2286 node = of_get_child_by_name(parent, "ports"); 2287 if (node) 2288 parent = node; 2289 2290 port = of_get_child_by_name(parent, "port"); 2291 of_node_put(node); 2292 2293 if (!port) { 2294 pr_err("%s(): no port node found in %s\n", 2295 __func__, parent->full_name); 2296 return NULL; 2297 } 2298 } else { 2299 port = of_get_parent(prev); 2300 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2301 __func__, prev->full_name)) 2302 return NULL; 2303 2304 /* 2305 * Avoid dropping prev node refcount to 0 when getting the next 2306 * child below. 2307 */ 2308 of_node_get(prev); 2309 } 2310 2311 while (1) { 2312 /* 2313 * Now that we have a port node, get the next endpoint by 2314 * getting the next child. If the previous endpoint is NULL this 2315 * will return the first child. 2316 */ 2317 endpoint = of_get_next_child(port, prev); 2318 if (endpoint) { 2319 of_node_put(port); 2320 return endpoint; 2321 } 2322 2323 /* No more endpoints under this port, try the next one. */ 2324 prev = NULL; 2325 2326 do { 2327 port = of_get_next_child(parent, port); 2328 if (!port) 2329 return NULL; 2330 } while (of_node_cmp(port->name, "port")); 2331 } 2332 } 2333 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2334 2335 /** 2336 * of_graph_get_remote_port_parent() - get remote port's parent node 2337 * @node: pointer to a local endpoint device_node 2338 * 2339 * Return: Remote device node associated with remote endpoint node linked 2340 * to @node. Use of_node_put() on it when done. 2341 */ 2342 struct device_node *of_graph_get_remote_port_parent( 2343 const struct device_node *node) 2344 { 2345 struct device_node *np; 2346 unsigned int depth; 2347 2348 /* Get remote endpoint node. */ 2349 np = of_parse_phandle(node, "remote-endpoint", 0); 2350 2351 /* Walk 3 levels up only if there is 'ports' node. */ 2352 for (depth = 3; depth && np; depth--) { 2353 np = of_get_next_parent(np); 2354 if (depth == 2 && of_node_cmp(np->name, "ports")) 2355 break; 2356 } 2357 return np; 2358 } 2359 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2360 2361 /** 2362 * of_graph_get_remote_port() - get remote port node 2363 * @node: pointer to a local endpoint device_node 2364 * 2365 * Return: Remote port node associated with remote endpoint node linked 2366 * to @node. Use of_node_put() on it when done. 2367 */ 2368 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2369 { 2370 struct device_node *np; 2371 2372 /* Get remote endpoint node. */ 2373 np = of_parse_phandle(node, "remote-endpoint", 0); 2374 if (!np) 2375 return NULL; 2376 return of_get_next_parent(np); 2377 } 2378 EXPORT_SYMBOL(of_graph_get_remote_port); 2379