1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/spinlock.h> 25 #include <linux/slab.h> 26 #include <linux/proc_fs.h> 27 28 #include "of_private.h" 29 30 LIST_HEAD(aliases_lookup); 31 32 struct device_node *of_allnodes; 33 EXPORT_SYMBOL(of_allnodes); 34 struct device_node *of_chosen; 35 struct device_node *of_aliases; 36 static struct device_node *of_stdout; 37 38 DEFINE_MUTEX(of_aliases_mutex); 39 40 /* use when traversing tree through the allnext, child, sibling, 41 * or parent members of struct device_node. 42 */ 43 DEFINE_RAW_SPINLOCK(devtree_lock); 44 45 int of_n_addr_cells(struct device_node *np) 46 { 47 const __be32 *ip; 48 49 do { 50 if (np->parent) 51 np = np->parent; 52 ip = of_get_property(np, "#address-cells", NULL); 53 if (ip) 54 return be32_to_cpup(ip); 55 } while (np->parent); 56 /* No #address-cells property for the root node */ 57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 58 } 59 EXPORT_SYMBOL(of_n_addr_cells); 60 61 int of_n_size_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#size-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #size-cells property for the root node */ 73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_size_cells); 76 77 #ifdef CONFIG_NUMA 78 int __weak of_node_to_nid(struct device_node *np) 79 { 80 return numa_node_id(); 81 } 82 #endif 83 84 #if defined(CONFIG_OF_DYNAMIC) 85 /** 86 * of_node_get - Increment refcount of a node 87 * @node: Node to inc refcount, NULL is supported to 88 * simplify writing of callers 89 * 90 * Returns node. 91 */ 92 struct device_node *of_node_get(struct device_node *node) 93 { 94 if (node) 95 kref_get(&node->kref); 96 return node; 97 } 98 EXPORT_SYMBOL(of_node_get); 99 100 static inline struct device_node *kref_to_device_node(struct kref *kref) 101 { 102 return container_of(kref, struct device_node, kref); 103 } 104 105 /** 106 * of_node_release - release a dynamically allocated node 107 * @kref: kref element of the node to be released 108 * 109 * In of_node_put() this function is passed to kref_put() 110 * as the destructor. 111 */ 112 static void of_node_release(struct kref *kref) 113 { 114 struct device_node *node = kref_to_device_node(kref); 115 struct property *prop = node->properties; 116 117 /* We should never be releasing nodes that haven't been detached. */ 118 if (!of_node_check_flag(node, OF_DETACHED)) { 119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); 120 dump_stack(); 121 kref_init(&node->kref); 122 return; 123 } 124 125 if (!of_node_check_flag(node, OF_DYNAMIC)) 126 return; 127 128 while (prop) { 129 struct property *next = prop->next; 130 kfree(prop->name); 131 kfree(prop->value); 132 kfree(prop); 133 prop = next; 134 135 if (!prop) { 136 prop = node->deadprops; 137 node->deadprops = NULL; 138 } 139 } 140 kfree(node->full_name); 141 kfree(node->data); 142 kfree(node); 143 } 144 145 /** 146 * of_node_put - Decrement refcount of a node 147 * @node: Node to dec refcount, NULL is supported to 148 * simplify writing of callers 149 * 150 */ 151 void of_node_put(struct device_node *node) 152 { 153 if (node) 154 kref_put(&node->kref, of_node_release); 155 } 156 EXPORT_SYMBOL(of_node_put); 157 #endif /* CONFIG_OF_DYNAMIC */ 158 159 static struct property *__of_find_property(const struct device_node *np, 160 const char *name, int *lenp) 161 { 162 struct property *pp; 163 164 if (!np) 165 return NULL; 166 167 for (pp = np->properties; pp; pp = pp->next) { 168 if (of_prop_cmp(pp->name, name) == 0) { 169 if (lenp) 170 *lenp = pp->length; 171 break; 172 } 173 } 174 175 return pp; 176 } 177 178 struct property *of_find_property(const struct device_node *np, 179 const char *name, 180 int *lenp) 181 { 182 struct property *pp; 183 unsigned long flags; 184 185 raw_spin_lock_irqsave(&devtree_lock, flags); 186 pp = __of_find_property(np, name, lenp); 187 raw_spin_unlock_irqrestore(&devtree_lock, flags); 188 189 return pp; 190 } 191 EXPORT_SYMBOL(of_find_property); 192 193 /** 194 * of_find_all_nodes - Get next node in global list 195 * @prev: Previous node or NULL to start iteration 196 * of_node_put() will be called on it 197 * 198 * Returns a node pointer with refcount incremented, use 199 * of_node_put() on it when done. 200 */ 201 struct device_node *of_find_all_nodes(struct device_node *prev) 202 { 203 struct device_node *np; 204 unsigned long flags; 205 206 raw_spin_lock_irqsave(&devtree_lock, flags); 207 np = prev ? prev->allnext : of_allnodes; 208 for (; np != NULL; np = np->allnext) 209 if (of_node_get(np)) 210 break; 211 of_node_put(prev); 212 raw_spin_unlock_irqrestore(&devtree_lock, flags); 213 return np; 214 } 215 EXPORT_SYMBOL(of_find_all_nodes); 216 217 /* 218 * Find a property with a given name for a given node 219 * and return the value. 220 */ 221 static const void *__of_get_property(const struct device_node *np, 222 const char *name, int *lenp) 223 { 224 struct property *pp = __of_find_property(np, name, lenp); 225 226 return pp ? pp->value : NULL; 227 } 228 229 /* 230 * Find a property with a given name for a given node 231 * and return the value. 232 */ 233 const void *of_get_property(const struct device_node *np, const char *name, 234 int *lenp) 235 { 236 struct property *pp = of_find_property(np, name, lenp); 237 238 return pp ? pp->value : NULL; 239 } 240 EXPORT_SYMBOL(of_get_property); 241 242 /* 243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 244 * 245 * @cpu: logical cpu index of a core/thread 246 * @phys_id: physical identifier of a core/thread 247 * 248 * CPU logical to physical index mapping is architecture specific. 249 * However this __weak function provides a default match of physical 250 * id to logical cpu index. phys_id provided here is usually values read 251 * from the device tree which must match the hardware internal registers. 252 * 253 * Returns true if the physical identifier and the logical cpu index 254 * correspond to the same core/thread, false otherwise. 255 */ 256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 257 { 258 return (u32)phys_id == cpu; 259 } 260 261 /** 262 * Checks if the given "prop_name" property holds the physical id of the 263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 264 * NULL, local thread number within the core is returned in it. 265 */ 266 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 267 const char *prop_name, int cpu, unsigned int *thread) 268 { 269 const __be32 *cell; 270 int ac, prop_len, tid; 271 u64 hwid; 272 273 ac = of_n_addr_cells(cpun); 274 cell = of_get_property(cpun, prop_name, &prop_len); 275 if (!cell || !ac) 276 return false; 277 prop_len /= sizeof(*cell) * ac; 278 for (tid = 0; tid < prop_len; tid++) { 279 hwid = of_read_number(cell, ac); 280 if (arch_match_cpu_phys_id(cpu, hwid)) { 281 if (thread) 282 *thread = tid; 283 return true; 284 } 285 cell += ac; 286 } 287 return false; 288 } 289 290 /* 291 * arch_find_n_match_cpu_physical_id - See if the given device node is 292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 293 * else false. If 'thread' is non-NULL, the local thread number within the 294 * core is returned in it. 295 */ 296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 297 int cpu, unsigned int *thread) 298 { 299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 300 * for thread ids on PowerPC. If it doesn't exist fallback to 301 * standard "reg" property. 302 */ 303 if (IS_ENABLED(CONFIG_PPC) && 304 __of_find_n_match_cpu_property(cpun, 305 "ibm,ppc-interrupt-server#s", 306 cpu, thread)) 307 return true; 308 309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 310 return true; 311 312 return false; 313 } 314 315 /** 316 * of_get_cpu_node - Get device node associated with the given logical CPU 317 * 318 * @cpu: CPU number(logical index) for which device node is required 319 * @thread: if not NULL, local thread number within the physical core is 320 * returned 321 * 322 * The main purpose of this function is to retrieve the device node for the 323 * given logical CPU index. It should be used to initialize the of_node in 324 * cpu device. Once of_node in cpu device is populated, all the further 325 * references can use that instead. 326 * 327 * CPU logical to physical index mapping is architecture specific and is built 328 * before booting secondary cores. This function uses arch_match_cpu_phys_id 329 * which can be overridden by architecture specific implementation. 330 * 331 * Returns a node pointer for the logical cpu if found, else NULL. 332 */ 333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 334 { 335 struct device_node *cpun; 336 337 for_each_node_by_type(cpun, "cpu") { 338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 339 return cpun; 340 } 341 return NULL; 342 } 343 EXPORT_SYMBOL(of_get_cpu_node); 344 345 /** Checks if the given "compat" string matches one of the strings in 346 * the device's "compatible" property 347 */ 348 static int __of_device_is_compatible(const struct device_node *device, 349 const char *compat) 350 { 351 const char* cp; 352 int cplen, l; 353 354 cp = __of_get_property(device, "compatible", &cplen); 355 if (cp == NULL) 356 return 0; 357 while (cplen > 0) { 358 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 359 return 1; 360 l = strlen(cp) + 1; 361 cp += l; 362 cplen -= l; 363 } 364 365 return 0; 366 } 367 368 /** Checks if the given "compat" string matches one of the strings in 369 * the device's "compatible" property 370 */ 371 int of_device_is_compatible(const struct device_node *device, 372 const char *compat) 373 { 374 unsigned long flags; 375 int res; 376 377 raw_spin_lock_irqsave(&devtree_lock, flags); 378 res = __of_device_is_compatible(device, compat); 379 raw_spin_unlock_irqrestore(&devtree_lock, flags); 380 return res; 381 } 382 EXPORT_SYMBOL(of_device_is_compatible); 383 384 /** 385 * of_machine_is_compatible - Test root of device tree for a given compatible value 386 * @compat: compatible string to look for in root node's compatible property. 387 * 388 * Returns true if the root node has the given value in its 389 * compatible property. 390 */ 391 int of_machine_is_compatible(const char *compat) 392 { 393 struct device_node *root; 394 int rc = 0; 395 396 root = of_find_node_by_path("/"); 397 if (root) { 398 rc = of_device_is_compatible(root, compat); 399 of_node_put(root); 400 } 401 return rc; 402 } 403 EXPORT_SYMBOL(of_machine_is_compatible); 404 405 /** 406 * __of_device_is_available - check if a device is available for use 407 * 408 * @device: Node to check for availability, with locks already held 409 * 410 * Returns 1 if the status property is absent or set to "okay" or "ok", 411 * 0 otherwise 412 */ 413 static int __of_device_is_available(const struct device_node *device) 414 { 415 const char *status; 416 int statlen; 417 418 status = __of_get_property(device, "status", &statlen); 419 if (status == NULL) 420 return 1; 421 422 if (statlen > 0) { 423 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 424 return 1; 425 } 426 427 return 0; 428 } 429 430 /** 431 * of_device_is_available - check if a device is available for use 432 * 433 * @device: Node to check for availability 434 * 435 * Returns 1 if the status property is absent or set to "okay" or "ok", 436 * 0 otherwise 437 */ 438 int of_device_is_available(const struct device_node *device) 439 { 440 unsigned long flags; 441 int res; 442 443 raw_spin_lock_irqsave(&devtree_lock, flags); 444 res = __of_device_is_available(device); 445 raw_spin_unlock_irqrestore(&devtree_lock, flags); 446 return res; 447 448 } 449 EXPORT_SYMBOL(of_device_is_available); 450 451 /** 452 * of_get_parent - Get a node's parent if any 453 * @node: Node to get parent 454 * 455 * Returns a node pointer with refcount incremented, use 456 * of_node_put() on it when done. 457 */ 458 struct device_node *of_get_parent(const struct device_node *node) 459 { 460 struct device_node *np; 461 unsigned long flags; 462 463 if (!node) 464 return NULL; 465 466 raw_spin_lock_irqsave(&devtree_lock, flags); 467 np = of_node_get(node->parent); 468 raw_spin_unlock_irqrestore(&devtree_lock, flags); 469 return np; 470 } 471 EXPORT_SYMBOL(of_get_parent); 472 473 /** 474 * of_get_next_parent - Iterate to a node's parent 475 * @node: Node to get parent of 476 * 477 * This is like of_get_parent() except that it drops the 478 * refcount on the passed node, making it suitable for iterating 479 * through a node's parents. 480 * 481 * Returns a node pointer with refcount incremented, use 482 * of_node_put() on it when done. 483 */ 484 struct device_node *of_get_next_parent(struct device_node *node) 485 { 486 struct device_node *parent; 487 unsigned long flags; 488 489 if (!node) 490 return NULL; 491 492 raw_spin_lock_irqsave(&devtree_lock, flags); 493 parent = of_node_get(node->parent); 494 of_node_put(node); 495 raw_spin_unlock_irqrestore(&devtree_lock, flags); 496 return parent; 497 } 498 EXPORT_SYMBOL(of_get_next_parent); 499 500 /** 501 * of_get_next_child - Iterate a node childs 502 * @node: parent node 503 * @prev: previous child of the parent node, or NULL to get first 504 * 505 * Returns a node pointer with refcount incremented, use 506 * of_node_put() on it when done. 507 */ 508 struct device_node *of_get_next_child(const struct device_node *node, 509 struct device_node *prev) 510 { 511 struct device_node *next; 512 unsigned long flags; 513 514 raw_spin_lock_irqsave(&devtree_lock, flags); 515 next = prev ? prev->sibling : node->child; 516 for (; next; next = next->sibling) 517 if (of_node_get(next)) 518 break; 519 of_node_put(prev); 520 raw_spin_unlock_irqrestore(&devtree_lock, flags); 521 return next; 522 } 523 EXPORT_SYMBOL(of_get_next_child); 524 525 /** 526 * of_get_next_available_child - Find the next available child node 527 * @node: parent node 528 * @prev: previous child of the parent node, or NULL to get first 529 * 530 * This function is like of_get_next_child(), except that it 531 * automatically skips any disabled nodes (i.e. status = "disabled"). 532 */ 533 struct device_node *of_get_next_available_child(const struct device_node *node, 534 struct device_node *prev) 535 { 536 struct device_node *next; 537 unsigned long flags; 538 539 raw_spin_lock_irqsave(&devtree_lock, flags); 540 next = prev ? prev->sibling : node->child; 541 for (; next; next = next->sibling) { 542 if (!__of_device_is_available(next)) 543 continue; 544 if (of_node_get(next)) 545 break; 546 } 547 of_node_put(prev); 548 raw_spin_unlock_irqrestore(&devtree_lock, flags); 549 return next; 550 } 551 EXPORT_SYMBOL(of_get_next_available_child); 552 553 /** 554 * of_get_child_by_name - Find the child node by name for a given parent 555 * @node: parent node 556 * @name: child name to look for. 557 * 558 * This function looks for child node for given matching name 559 * 560 * Returns a node pointer if found, with refcount incremented, use 561 * of_node_put() on it when done. 562 * Returns NULL if node is not found. 563 */ 564 struct device_node *of_get_child_by_name(const struct device_node *node, 565 const char *name) 566 { 567 struct device_node *child; 568 569 for_each_child_of_node(node, child) 570 if (child->name && (of_node_cmp(child->name, name) == 0)) 571 break; 572 return child; 573 } 574 EXPORT_SYMBOL(of_get_child_by_name); 575 576 /** 577 * of_find_node_by_path - Find a node matching a full OF path 578 * @path: The full path to match 579 * 580 * Returns a node pointer with refcount incremented, use 581 * of_node_put() on it when done. 582 */ 583 struct device_node *of_find_node_by_path(const char *path) 584 { 585 struct device_node *np = of_allnodes; 586 unsigned long flags; 587 588 raw_spin_lock_irqsave(&devtree_lock, flags); 589 for (; np; np = np->allnext) { 590 if (np->full_name && (of_node_cmp(np->full_name, path) == 0) 591 && of_node_get(np)) 592 break; 593 } 594 raw_spin_unlock_irqrestore(&devtree_lock, flags); 595 return np; 596 } 597 EXPORT_SYMBOL(of_find_node_by_path); 598 599 /** 600 * of_find_node_by_name - Find a node by its "name" property 601 * @from: The node to start searching from or NULL, the node 602 * you pass will not be searched, only the next one 603 * will; typically, you pass what the previous call 604 * returned. of_node_put() will be called on it 605 * @name: The name string to match against 606 * 607 * Returns a node pointer with refcount incremented, use 608 * of_node_put() on it when done. 609 */ 610 struct device_node *of_find_node_by_name(struct device_node *from, 611 const char *name) 612 { 613 struct device_node *np; 614 unsigned long flags; 615 616 raw_spin_lock_irqsave(&devtree_lock, flags); 617 np = from ? from->allnext : of_allnodes; 618 for (; np; np = np->allnext) 619 if (np->name && (of_node_cmp(np->name, name) == 0) 620 && of_node_get(np)) 621 break; 622 of_node_put(from); 623 raw_spin_unlock_irqrestore(&devtree_lock, flags); 624 return np; 625 } 626 EXPORT_SYMBOL(of_find_node_by_name); 627 628 /** 629 * of_find_node_by_type - Find a node by its "device_type" property 630 * @from: The node to start searching from, or NULL to start searching 631 * the entire device tree. The node you pass will not be 632 * searched, only the next one will; typically, you pass 633 * what the previous call returned. of_node_put() will be 634 * called on from for you. 635 * @type: The type string to match against 636 * 637 * Returns a node pointer with refcount incremented, use 638 * of_node_put() on it when done. 639 */ 640 struct device_node *of_find_node_by_type(struct device_node *from, 641 const char *type) 642 { 643 struct device_node *np; 644 unsigned long flags; 645 646 raw_spin_lock_irqsave(&devtree_lock, flags); 647 np = from ? from->allnext : of_allnodes; 648 for (; np; np = np->allnext) 649 if (np->type && (of_node_cmp(np->type, type) == 0) 650 && of_node_get(np)) 651 break; 652 of_node_put(from); 653 raw_spin_unlock_irqrestore(&devtree_lock, flags); 654 return np; 655 } 656 EXPORT_SYMBOL(of_find_node_by_type); 657 658 /** 659 * of_find_compatible_node - Find a node based on type and one of the 660 * tokens in its "compatible" property 661 * @from: The node to start searching from or NULL, the node 662 * you pass will not be searched, only the next one 663 * will; typically, you pass what the previous call 664 * returned. of_node_put() will be called on it 665 * @type: The type string to match "device_type" or NULL to ignore 666 * @compatible: The string to match to one of the tokens in the device 667 * "compatible" list. 668 * 669 * Returns a node pointer with refcount incremented, use 670 * of_node_put() on it when done. 671 */ 672 struct device_node *of_find_compatible_node(struct device_node *from, 673 const char *type, const char *compatible) 674 { 675 struct device_node *np; 676 unsigned long flags; 677 678 raw_spin_lock_irqsave(&devtree_lock, flags); 679 np = from ? from->allnext : of_allnodes; 680 for (; np; np = np->allnext) { 681 if (type 682 && !(np->type && (of_node_cmp(np->type, type) == 0))) 683 continue; 684 if (__of_device_is_compatible(np, compatible) && 685 of_node_get(np)) 686 break; 687 } 688 of_node_put(from); 689 raw_spin_unlock_irqrestore(&devtree_lock, flags); 690 return np; 691 } 692 EXPORT_SYMBOL(of_find_compatible_node); 693 694 /** 695 * of_find_node_with_property - Find a node which has a property with 696 * the given name. 697 * @from: The node to start searching from or NULL, the node 698 * you pass will not be searched, only the next one 699 * will; typically, you pass what the previous call 700 * returned. of_node_put() will be called on it 701 * @prop_name: The name of the property to look for. 702 * 703 * Returns a node pointer with refcount incremented, use 704 * of_node_put() on it when done. 705 */ 706 struct device_node *of_find_node_with_property(struct device_node *from, 707 const char *prop_name) 708 { 709 struct device_node *np; 710 struct property *pp; 711 unsigned long flags; 712 713 raw_spin_lock_irqsave(&devtree_lock, flags); 714 np = from ? from->allnext : of_allnodes; 715 for (; np; np = np->allnext) { 716 for (pp = np->properties; pp; pp = pp->next) { 717 if (of_prop_cmp(pp->name, prop_name) == 0) { 718 of_node_get(np); 719 goto out; 720 } 721 } 722 } 723 out: 724 of_node_put(from); 725 raw_spin_unlock_irqrestore(&devtree_lock, flags); 726 return np; 727 } 728 EXPORT_SYMBOL(of_find_node_with_property); 729 730 static 731 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 732 const struct device_node *node) 733 { 734 if (!matches) 735 return NULL; 736 737 while (matches->name[0] || matches->type[0] || matches->compatible[0]) { 738 int match = 1; 739 if (matches->name[0]) 740 match &= node->name 741 && !strcmp(matches->name, node->name); 742 if (matches->type[0]) 743 match &= node->type 744 && !strcmp(matches->type, node->type); 745 if (matches->compatible[0]) 746 match &= __of_device_is_compatible(node, 747 matches->compatible); 748 if (match) 749 return matches; 750 matches++; 751 } 752 return NULL; 753 } 754 755 /** 756 * of_match_node - Tell if an device_node has a matching of_match structure 757 * @matches: array of of device match structures to search in 758 * @node: the of device structure to match against 759 * 760 * Low level utility function used by device matching. 761 */ 762 const struct of_device_id *of_match_node(const struct of_device_id *matches, 763 const struct device_node *node) 764 { 765 const struct of_device_id *match; 766 unsigned long flags; 767 768 raw_spin_lock_irqsave(&devtree_lock, flags); 769 match = __of_match_node(matches, node); 770 raw_spin_unlock_irqrestore(&devtree_lock, flags); 771 return match; 772 } 773 EXPORT_SYMBOL(of_match_node); 774 775 /** 776 * of_find_matching_node_and_match - Find a node based on an of_device_id 777 * match table. 778 * @from: The node to start searching from or NULL, the node 779 * you pass will not be searched, only the next one 780 * will; typically, you pass what the previous call 781 * returned. of_node_put() will be called on it 782 * @matches: array of of device match structures to search in 783 * @match Updated to point at the matches entry which matched 784 * 785 * Returns a node pointer with refcount incremented, use 786 * of_node_put() on it when done. 787 */ 788 struct device_node *of_find_matching_node_and_match(struct device_node *from, 789 const struct of_device_id *matches, 790 const struct of_device_id **match) 791 { 792 struct device_node *np; 793 const struct of_device_id *m; 794 unsigned long flags; 795 796 if (match) 797 *match = NULL; 798 799 raw_spin_lock_irqsave(&devtree_lock, flags); 800 np = from ? from->allnext : of_allnodes; 801 for (; np; np = np->allnext) { 802 m = __of_match_node(matches, np); 803 if (m && of_node_get(np)) { 804 if (match) 805 *match = m; 806 break; 807 } 808 } 809 of_node_put(from); 810 raw_spin_unlock_irqrestore(&devtree_lock, flags); 811 return np; 812 } 813 EXPORT_SYMBOL(of_find_matching_node_and_match); 814 815 /** 816 * of_modalias_node - Lookup appropriate modalias for a device node 817 * @node: pointer to a device tree node 818 * @modalias: Pointer to buffer that modalias value will be copied into 819 * @len: Length of modalias value 820 * 821 * Based on the value of the compatible property, this routine will attempt 822 * to choose an appropriate modalias value for a particular device tree node. 823 * It does this by stripping the manufacturer prefix (as delimited by a ',') 824 * from the first entry in the compatible list property. 825 * 826 * This routine returns 0 on success, <0 on failure. 827 */ 828 int of_modalias_node(struct device_node *node, char *modalias, int len) 829 { 830 const char *compatible, *p; 831 int cplen; 832 833 compatible = of_get_property(node, "compatible", &cplen); 834 if (!compatible || strlen(compatible) > cplen) 835 return -ENODEV; 836 p = strchr(compatible, ','); 837 strlcpy(modalias, p ? p + 1 : compatible, len); 838 return 0; 839 } 840 EXPORT_SYMBOL_GPL(of_modalias_node); 841 842 /** 843 * of_find_node_by_phandle - Find a node given a phandle 844 * @handle: phandle of the node to find 845 * 846 * Returns a node pointer with refcount incremented, use 847 * of_node_put() on it when done. 848 */ 849 struct device_node *of_find_node_by_phandle(phandle handle) 850 { 851 struct device_node *np; 852 unsigned long flags; 853 854 raw_spin_lock_irqsave(&devtree_lock, flags); 855 for (np = of_allnodes; np; np = np->allnext) 856 if (np->phandle == handle) 857 break; 858 of_node_get(np); 859 raw_spin_unlock_irqrestore(&devtree_lock, flags); 860 return np; 861 } 862 EXPORT_SYMBOL(of_find_node_by_phandle); 863 864 /** 865 * of_find_property_value_of_size 866 * 867 * @np: device node from which the property value is to be read. 868 * @propname: name of the property to be searched. 869 * @len: requested length of property value 870 * 871 * Search for a property in a device node and valid the requested size. 872 * Returns the property value on success, -EINVAL if the property does not 873 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 874 * property data isn't large enough. 875 * 876 */ 877 static void *of_find_property_value_of_size(const struct device_node *np, 878 const char *propname, u32 len) 879 { 880 struct property *prop = of_find_property(np, propname, NULL); 881 882 if (!prop) 883 return ERR_PTR(-EINVAL); 884 if (!prop->value) 885 return ERR_PTR(-ENODATA); 886 if (len > prop->length) 887 return ERR_PTR(-EOVERFLOW); 888 889 return prop->value; 890 } 891 892 /** 893 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 894 * 895 * @np: device node from which the property value is to be read. 896 * @propname: name of the property to be searched. 897 * @index: index of the u32 in the list of values 898 * @out_value: pointer to return value, modified only if no error. 899 * 900 * Search for a property in a device node and read nth 32-bit value from 901 * it. Returns 0 on success, -EINVAL if the property does not exist, 902 * -ENODATA if property does not have a value, and -EOVERFLOW if the 903 * property data isn't large enough. 904 * 905 * The out_value is modified only if a valid u32 value can be decoded. 906 */ 907 int of_property_read_u32_index(const struct device_node *np, 908 const char *propname, 909 u32 index, u32 *out_value) 910 { 911 const u32 *val = of_find_property_value_of_size(np, propname, 912 ((index + 1) * sizeof(*out_value))); 913 914 if (IS_ERR(val)) 915 return PTR_ERR(val); 916 917 *out_value = be32_to_cpup(((__be32 *)val) + index); 918 return 0; 919 } 920 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 921 922 /** 923 * of_property_read_u8_array - Find and read an array of u8 from a property. 924 * 925 * @np: device node from which the property value is to be read. 926 * @propname: name of the property to be searched. 927 * @out_values: pointer to return value, modified only if return value is 0. 928 * @sz: number of array elements to read 929 * 930 * Search for a property in a device node and read 8-bit value(s) from 931 * it. Returns 0 on success, -EINVAL if the property does not exist, 932 * -ENODATA if property does not have a value, and -EOVERFLOW if the 933 * property data isn't large enough. 934 * 935 * dts entry of array should be like: 936 * property = /bits/ 8 <0x50 0x60 0x70>; 937 * 938 * The out_values is modified only if a valid u8 value can be decoded. 939 */ 940 int of_property_read_u8_array(const struct device_node *np, 941 const char *propname, u8 *out_values, size_t sz) 942 { 943 const u8 *val = of_find_property_value_of_size(np, propname, 944 (sz * sizeof(*out_values))); 945 946 if (IS_ERR(val)) 947 return PTR_ERR(val); 948 949 while (sz--) 950 *out_values++ = *val++; 951 return 0; 952 } 953 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 954 955 /** 956 * of_property_read_u16_array - Find and read an array of u16 from a property. 957 * 958 * @np: device node from which the property value is to be read. 959 * @propname: name of the property to be searched. 960 * @out_values: pointer to return value, modified only if return value is 0. 961 * @sz: number of array elements to read 962 * 963 * Search for a property in a device node and read 16-bit value(s) from 964 * it. Returns 0 on success, -EINVAL if the property does not exist, 965 * -ENODATA if property does not have a value, and -EOVERFLOW if the 966 * property data isn't large enough. 967 * 968 * dts entry of array should be like: 969 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 970 * 971 * The out_values is modified only if a valid u16 value can be decoded. 972 */ 973 int of_property_read_u16_array(const struct device_node *np, 974 const char *propname, u16 *out_values, size_t sz) 975 { 976 const __be16 *val = of_find_property_value_of_size(np, propname, 977 (sz * sizeof(*out_values))); 978 979 if (IS_ERR(val)) 980 return PTR_ERR(val); 981 982 while (sz--) 983 *out_values++ = be16_to_cpup(val++); 984 return 0; 985 } 986 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 987 988 /** 989 * of_property_read_u32_array - Find and read an array of 32 bit integers 990 * from a property. 991 * 992 * @np: device node from which the property value is to be read. 993 * @propname: name of the property to be searched. 994 * @out_values: pointer to return value, modified only if return value is 0. 995 * @sz: number of array elements to read 996 * 997 * Search for a property in a device node and read 32-bit value(s) from 998 * it. Returns 0 on success, -EINVAL if the property does not exist, 999 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1000 * property data isn't large enough. 1001 * 1002 * The out_values is modified only if a valid u32 value can be decoded. 1003 */ 1004 int of_property_read_u32_array(const struct device_node *np, 1005 const char *propname, u32 *out_values, 1006 size_t sz) 1007 { 1008 const __be32 *val = of_find_property_value_of_size(np, propname, 1009 (sz * sizeof(*out_values))); 1010 1011 if (IS_ERR(val)) 1012 return PTR_ERR(val); 1013 1014 while (sz--) 1015 *out_values++ = be32_to_cpup(val++); 1016 return 0; 1017 } 1018 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1019 1020 /** 1021 * of_property_read_u64 - Find and read a 64 bit integer from a property 1022 * @np: device node from which the property value is to be read. 1023 * @propname: name of the property to be searched. 1024 * @out_value: pointer to return value, modified only if return value is 0. 1025 * 1026 * Search for a property in a device node and read a 64-bit value from 1027 * it. Returns 0 on success, -EINVAL if the property does not exist, 1028 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1029 * property data isn't large enough. 1030 * 1031 * The out_value is modified only if a valid u64 value can be decoded. 1032 */ 1033 int of_property_read_u64(const struct device_node *np, const char *propname, 1034 u64 *out_value) 1035 { 1036 const __be32 *val = of_find_property_value_of_size(np, propname, 1037 sizeof(*out_value)); 1038 1039 if (IS_ERR(val)) 1040 return PTR_ERR(val); 1041 1042 *out_value = of_read_number(val, 2); 1043 return 0; 1044 } 1045 EXPORT_SYMBOL_GPL(of_property_read_u64); 1046 1047 /** 1048 * of_property_read_string - Find and read a string from a property 1049 * @np: device node from which the property value is to be read. 1050 * @propname: name of the property to be searched. 1051 * @out_string: pointer to null terminated return string, modified only if 1052 * return value is 0. 1053 * 1054 * Search for a property in a device tree node and retrieve a null 1055 * terminated string value (pointer to data, not a copy). Returns 0 on 1056 * success, -EINVAL if the property does not exist, -ENODATA if property 1057 * does not have a value, and -EILSEQ if the string is not null-terminated 1058 * within the length of the property data. 1059 * 1060 * The out_string pointer is modified only if a valid string can be decoded. 1061 */ 1062 int of_property_read_string(struct device_node *np, const char *propname, 1063 const char **out_string) 1064 { 1065 struct property *prop = of_find_property(np, propname, NULL); 1066 if (!prop) 1067 return -EINVAL; 1068 if (!prop->value) 1069 return -ENODATA; 1070 if (strnlen(prop->value, prop->length) >= prop->length) 1071 return -EILSEQ; 1072 *out_string = prop->value; 1073 return 0; 1074 } 1075 EXPORT_SYMBOL_GPL(of_property_read_string); 1076 1077 /** 1078 * of_property_read_string_index - Find and read a string from a multiple 1079 * strings property. 1080 * @np: device node from which the property value is to be read. 1081 * @propname: name of the property to be searched. 1082 * @index: index of the string in the list of strings 1083 * @out_string: pointer to null terminated return string, modified only if 1084 * return value is 0. 1085 * 1086 * Search for a property in a device tree node and retrieve a null 1087 * terminated string value (pointer to data, not a copy) in the list of strings 1088 * contained in that property. 1089 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if 1090 * property does not have a value, and -EILSEQ if the string is not 1091 * null-terminated within the length of the property data. 1092 * 1093 * The out_string pointer is modified only if a valid string can be decoded. 1094 */ 1095 int of_property_read_string_index(struct device_node *np, const char *propname, 1096 int index, const char **output) 1097 { 1098 struct property *prop = of_find_property(np, propname, NULL); 1099 int i = 0; 1100 size_t l = 0, total = 0; 1101 const char *p; 1102 1103 if (!prop) 1104 return -EINVAL; 1105 if (!prop->value) 1106 return -ENODATA; 1107 if (strnlen(prop->value, prop->length) >= prop->length) 1108 return -EILSEQ; 1109 1110 p = prop->value; 1111 1112 for (i = 0; total < prop->length; total += l, p += l) { 1113 l = strlen(p) + 1; 1114 if (i++ == index) { 1115 *output = p; 1116 return 0; 1117 } 1118 } 1119 return -ENODATA; 1120 } 1121 EXPORT_SYMBOL_GPL(of_property_read_string_index); 1122 1123 /** 1124 * of_property_match_string() - Find string in a list and return index 1125 * @np: pointer to node containing string list property 1126 * @propname: string list property name 1127 * @string: pointer to string to search for in string list 1128 * 1129 * This function searches a string list property and returns the index 1130 * of a specific string value. 1131 */ 1132 int of_property_match_string(struct device_node *np, const char *propname, 1133 const char *string) 1134 { 1135 struct property *prop = of_find_property(np, propname, NULL); 1136 size_t l; 1137 int i; 1138 const char *p, *end; 1139 1140 if (!prop) 1141 return -EINVAL; 1142 if (!prop->value) 1143 return -ENODATA; 1144 1145 p = prop->value; 1146 end = p + prop->length; 1147 1148 for (i = 0; p < end; i++, p += l) { 1149 l = strlen(p) + 1; 1150 if (p + l > end) 1151 return -EILSEQ; 1152 pr_debug("comparing %s with %s\n", string, p); 1153 if (strcmp(string, p) == 0) 1154 return i; /* Found it; return index */ 1155 } 1156 return -ENODATA; 1157 } 1158 EXPORT_SYMBOL_GPL(of_property_match_string); 1159 1160 /** 1161 * of_property_count_strings - Find and return the number of strings from a 1162 * multiple strings property. 1163 * @np: device node from which the property value is to be read. 1164 * @propname: name of the property to be searched. 1165 * 1166 * Search for a property in a device tree node and retrieve the number of null 1167 * terminated string contain in it. Returns the number of strings on 1168 * success, -EINVAL if the property does not exist, -ENODATA if property 1169 * does not have a value, and -EILSEQ if the string is not null-terminated 1170 * within the length of the property data. 1171 */ 1172 int of_property_count_strings(struct device_node *np, const char *propname) 1173 { 1174 struct property *prop = of_find_property(np, propname, NULL); 1175 int i = 0; 1176 size_t l = 0, total = 0; 1177 const char *p; 1178 1179 if (!prop) 1180 return -EINVAL; 1181 if (!prop->value) 1182 return -ENODATA; 1183 if (strnlen(prop->value, prop->length) >= prop->length) 1184 return -EILSEQ; 1185 1186 p = prop->value; 1187 1188 for (i = 0; total < prop->length; total += l, p += l, i++) 1189 l = strlen(p) + 1; 1190 1191 return i; 1192 } 1193 EXPORT_SYMBOL_GPL(of_property_count_strings); 1194 1195 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1196 { 1197 int i; 1198 printk("%s %s", msg, of_node_full_name(args->np)); 1199 for (i = 0; i < args->args_count; i++) 1200 printk(i ? ",%08x" : ":%08x", args->args[i]); 1201 printk("\n"); 1202 } 1203 1204 static int __of_parse_phandle_with_args(const struct device_node *np, 1205 const char *list_name, 1206 const char *cells_name, 1207 int cell_count, int index, 1208 struct of_phandle_args *out_args) 1209 { 1210 const __be32 *list, *list_end; 1211 int rc = 0, size, cur_index = 0; 1212 uint32_t count = 0; 1213 struct device_node *node = NULL; 1214 phandle phandle; 1215 1216 /* Retrieve the phandle list property */ 1217 list = of_get_property(np, list_name, &size); 1218 if (!list) 1219 return -ENOENT; 1220 list_end = list + size / sizeof(*list); 1221 1222 /* Loop over the phandles until all the requested entry is found */ 1223 while (list < list_end) { 1224 rc = -EINVAL; 1225 count = 0; 1226 1227 /* 1228 * If phandle is 0, then it is an empty entry with no 1229 * arguments. Skip forward to the next entry. 1230 */ 1231 phandle = be32_to_cpup(list++); 1232 if (phandle) { 1233 /* 1234 * Find the provider node and parse the #*-cells 1235 * property to determine the argument length. 1236 * 1237 * This is not needed if the cell count is hard-coded 1238 * (i.e. cells_name not set, but cell_count is set), 1239 * except when we're going to return the found node 1240 * below. 1241 */ 1242 if (cells_name || cur_index == index) { 1243 node = of_find_node_by_phandle(phandle); 1244 if (!node) { 1245 pr_err("%s: could not find phandle\n", 1246 np->full_name); 1247 goto err; 1248 } 1249 } 1250 1251 if (cells_name) { 1252 if (of_property_read_u32(node, cells_name, 1253 &count)) { 1254 pr_err("%s: could not get %s for %s\n", 1255 np->full_name, cells_name, 1256 node->full_name); 1257 goto err; 1258 } 1259 } else { 1260 count = cell_count; 1261 } 1262 1263 /* 1264 * Make sure that the arguments actually fit in the 1265 * remaining property data length 1266 */ 1267 if (list + count > list_end) { 1268 pr_err("%s: arguments longer than property\n", 1269 np->full_name); 1270 goto err; 1271 } 1272 } 1273 1274 /* 1275 * All of the error cases above bail out of the loop, so at 1276 * this point, the parsing is successful. If the requested 1277 * index matches, then fill the out_args structure and return, 1278 * or return -ENOENT for an empty entry. 1279 */ 1280 rc = -ENOENT; 1281 if (cur_index == index) { 1282 if (!phandle) 1283 goto err; 1284 1285 if (out_args) { 1286 int i; 1287 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1288 count = MAX_PHANDLE_ARGS; 1289 out_args->np = node; 1290 out_args->args_count = count; 1291 for (i = 0; i < count; i++) 1292 out_args->args[i] = be32_to_cpup(list++); 1293 } else { 1294 of_node_put(node); 1295 } 1296 1297 /* Found it! return success */ 1298 return 0; 1299 } 1300 1301 of_node_put(node); 1302 node = NULL; 1303 list += count; 1304 cur_index++; 1305 } 1306 1307 /* 1308 * Unlock node before returning result; will be one of: 1309 * -ENOENT : index is for empty phandle 1310 * -EINVAL : parsing error on data 1311 * [1..n] : Number of phandle (count mode; when index = -1) 1312 */ 1313 rc = index < 0 ? cur_index : -ENOENT; 1314 err: 1315 if (node) 1316 of_node_put(node); 1317 return rc; 1318 } 1319 1320 /** 1321 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1322 * @np: Pointer to device node holding phandle property 1323 * @phandle_name: Name of property holding a phandle value 1324 * @index: For properties holding a table of phandles, this is the index into 1325 * the table 1326 * 1327 * Returns the device_node pointer with refcount incremented. Use 1328 * of_node_put() on it when done. 1329 */ 1330 struct device_node *of_parse_phandle(const struct device_node *np, 1331 const char *phandle_name, int index) 1332 { 1333 struct of_phandle_args args; 1334 1335 if (index < 0) 1336 return NULL; 1337 1338 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1339 index, &args)) 1340 return NULL; 1341 1342 return args.np; 1343 } 1344 EXPORT_SYMBOL(of_parse_phandle); 1345 1346 /** 1347 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1348 * @np: pointer to a device tree node containing a list 1349 * @list_name: property name that contains a list 1350 * @cells_name: property name that specifies phandles' arguments count 1351 * @index: index of a phandle to parse out 1352 * @out_args: optional pointer to output arguments structure (will be filled) 1353 * 1354 * This function is useful to parse lists of phandles and their arguments. 1355 * Returns 0 on success and fills out_args, on error returns appropriate 1356 * errno value. 1357 * 1358 * Caller is responsible to call of_node_put() on the returned out_args->node 1359 * pointer. 1360 * 1361 * Example: 1362 * 1363 * phandle1: node1 { 1364 * #list-cells = <2>; 1365 * } 1366 * 1367 * phandle2: node2 { 1368 * #list-cells = <1>; 1369 * } 1370 * 1371 * node3 { 1372 * list = <&phandle1 1 2 &phandle2 3>; 1373 * } 1374 * 1375 * To get a device_node of the `node2' node you may call this: 1376 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1377 */ 1378 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1379 const char *cells_name, int index, 1380 struct of_phandle_args *out_args) 1381 { 1382 if (index < 0) 1383 return -EINVAL; 1384 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1385 index, out_args); 1386 } 1387 EXPORT_SYMBOL(of_parse_phandle_with_args); 1388 1389 /** 1390 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1391 * @np: pointer to a device tree node containing a list 1392 * @list_name: property name that contains a list 1393 * @cell_count: number of argument cells following the phandle 1394 * @index: index of a phandle to parse out 1395 * @out_args: optional pointer to output arguments structure (will be filled) 1396 * 1397 * This function is useful to parse lists of phandles and their arguments. 1398 * Returns 0 on success and fills out_args, on error returns appropriate 1399 * errno value. 1400 * 1401 * Caller is responsible to call of_node_put() on the returned out_args->node 1402 * pointer. 1403 * 1404 * Example: 1405 * 1406 * phandle1: node1 { 1407 * } 1408 * 1409 * phandle2: node2 { 1410 * } 1411 * 1412 * node3 { 1413 * list = <&phandle1 0 2 &phandle2 2 3>; 1414 * } 1415 * 1416 * To get a device_node of the `node2' node you may call this: 1417 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1418 */ 1419 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1420 const char *list_name, int cell_count, 1421 int index, struct of_phandle_args *out_args) 1422 { 1423 if (index < 0) 1424 return -EINVAL; 1425 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1426 index, out_args); 1427 } 1428 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1429 1430 /** 1431 * of_count_phandle_with_args() - Find the number of phandles references in a property 1432 * @np: pointer to a device tree node containing a list 1433 * @list_name: property name that contains a list 1434 * @cells_name: property name that specifies phandles' arguments count 1435 * 1436 * Returns the number of phandle + argument tuples within a property. It 1437 * is a typical pattern to encode a list of phandle and variable 1438 * arguments into a single property. The number of arguments is encoded 1439 * by a property in the phandle-target node. For example, a gpios 1440 * property would contain a list of GPIO specifies consisting of a 1441 * phandle and 1 or more arguments. The number of arguments are 1442 * determined by the #gpio-cells property in the node pointed to by the 1443 * phandle. 1444 */ 1445 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1446 const char *cells_name) 1447 { 1448 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1449 NULL); 1450 } 1451 EXPORT_SYMBOL(of_count_phandle_with_args); 1452 1453 #if defined(CONFIG_OF_DYNAMIC) 1454 static int of_property_notify(int action, struct device_node *np, 1455 struct property *prop) 1456 { 1457 struct of_prop_reconfig pr; 1458 1459 pr.dn = np; 1460 pr.prop = prop; 1461 return of_reconfig_notify(action, &pr); 1462 } 1463 #else 1464 static int of_property_notify(int action, struct device_node *np, 1465 struct property *prop) 1466 { 1467 return 0; 1468 } 1469 #endif 1470 1471 /** 1472 * of_add_property - Add a property to a node 1473 */ 1474 int of_add_property(struct device_node *np, struct property *prop) 1475 { 1476 struct property **next; 1477 unsigned long flags; 1478 int rc; 1479 1480 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); 1481 if (rc) 1482 return rc; 1483 1484 prop->next = NULL; 1485 raw_spin_lock_irqsave(&devtree_lock, flags); 1486 next = &np->properties; 1487 while (*next) { 1488 if (strcmp(prop->name, (*next)->name) == 0) { 1489 /* duplicate ! don't insert it */ 1490 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1491 return -1; 1492 } 1493 next = &(*next)->next; 1494 } 1495 *next = prop; 1496 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1497 1498 #ifdef CONFIG_PROC_DEVICETREE 1499 /* try to add to proc as well if it was initialized */ 1500 if (np->pde) 1501 proc_device_tree_add_prop(np->pde, prop); 1502 #endif /* CONFIG_PROC_DEVICETREE */ 1503 1504 return 0; 1505 } 1506 1507 /** 1508 * of_remove_property - Remove a property from a node. 1509 * 1510 * Note that we don't actually remove it, since we have given out 1511 * who-knows-how-many pointers to the data using get-property. 1512 * Instead we just move the property to the "dead properties" 1513 * list, so it won't be found any more. 1514 */ 1515 int of_remove_property(struct device_node *np, struct property *prop) 1516 { 1517 struct property **next; 1518 unsigned long flags; 1519 int found = 0; 1520 int rc; 1521 1522 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); 1523 if (rc) 1524 return rc; 1525 1526 raw_spin_lock_irqsave(&devtree_lock, flags); 1527 next = &np->properties; 1528 while (*next) { 1529 if (*next == prop) { 1530 /* found the node */ 1531 *next = prop->next; 1532 prop->next = np->deadprops; 1533 np->deadprops = prop; 1534 found = 1; 1535 break; 1536 } 1537 next = &(*next)->next; 1538 } 1539 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1540 1541 if (!found) 1542 return -ENODEV; 1543 1544 #ifdef CONFIG_PROC_DEVICETREE 1545 /* try to remove the proc node as well */ 1546 if (np->pde) 1547 proc_device_tree_remove_prop(np->pde, prop); 1548 #endif /* CONFIG_PROC_DEVICETREE */ 1549 1550 return 0; 1551 } 1552 1553 /* 1554 * of_update_property - Update a property in a node, if the property does 1555 * not exist, add it. 1556 * 1557 * Note that we don't actually remove it, since we have given out 1558 * who-knows-how-many pointers to the data using get-property. 1559 * Instead we just move the property to the "dead properties" list, 1560 * and add the new property to the property list 1561 */ 1562 int of_update_property(struct device_node *np, struct property *newprop) 1563 { 1564 struct property **next, *oldprop; 1565 unsigned long flags; 1566 int rc, found = 0; 1567 1568 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); 1569 if (rc) 1570 return rc; 1571 1572 if (!newprop->name) 1573 return -EINVAL; 1574 1575 oldprop = of_find_property(np, newprop->name, NULL); 1576 if (!oldprop) 1577 return of_add_property(np, newprop); 1578 1579 raw_spin_lock_irqsave(&devtree_lock, flags); 1580 next = &np->properties; 1581 while (*next) { 1582 if (*next == oldprop) { 1583 /* found the node */ 1584 newprop->next = oldprop->next; 1585 *next = newprop; 1586 oldprop->next = np->deadprops; 1587 np->deadprops = oldprop; 1588 found = 1; 1589 break; 1590 } 1591 next = &(*next)->next; 1592 } 1593 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1594 1595 if (!found) 1596 return -ENODEV; 1597 1598 #ifdef CONFIG_PROC_DEVICETREE 1599 /* try to add to proc as well if it was initialized */ 1600 if (np->pde) 1601 proc_device_tree_update_prop(np->pde, newprop, oldprop); 1602 #endif /* CONFIG_PROC_DEVICETREE */ 1603 1604 return 0; 1605 } 1606 1607 #if defined(CONFIG_OF_DYNAMIC) 1608 /* 1609 * Support for dynamic device trees. 1610 * 1611 * On some platforms, the device tree can be manipulated at runtime. 1612 * The routines in this section support adding, removing and changing 1613 * device tree nodes. 1614 */ 1615 1616 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); 1617 1618 int of_reconfig_notifier_register(struct notifier_block *nb) 1619 { 1620 return blocking_notifier_chain_register(&of_reconfig_chain, nb); 1621 } 1622 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); 1623 1624 int of_reconfig_notifier_unregister(struct notifier_block *nb) 1625 { 1626 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); 1627 } 1628 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); 1629 1630 int of_reconfig_notify(unsigned long action, void *p) 1631 { 1632 int rc; 1633 1634 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); 1635 return notifier_to_errno(rc); 1636 } 1637 1638 #ifdef CONFIG_PROC_DEVICETREE 1639 static void of_add_proc_dt_entry(struct device_node *dn) 1640 { 1641 struct proc_dir_entry *ent; 1642 1643 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde); 1644 if (ent) 1645 proc_device_tree_add_node(dn, ent); 1646 } 1647 #else 1648 static void of_add_proc_dt_entry(struct device_node *dn) 1649 { 1650 return; 1651 } 1652 #endif 1653 1654 /** 1655 * of_attach_node - Plug a device node into the tree and global list. 1656 */ 1657 int of_attach_node(struct device_node *np) 1658 { 1659 unsigned long flags; 1660 int rc; 1661 1662 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); 1663 if (rc) 1664 return rc; 1665 1666 raw_spin_lock_irqsave(&devtree_lock, flags); 1667 np->sibling = np->parent->child; 1668 np->allnext = of_allnodes; 1669 np->parent->child = np; 1670 of_allnodes = np; 1671 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1672 1673 of_add_proc_dt_entry(np); 1674 return 0; 1675 } 1676 1677 #ifdef CONFIG_PROC_DEVICETREE 1678 static void of_remove_proc_dt_entry(struct device_node *dn) 1679 { 1680 proc_remove(dn->pde); 1681 } 1682 #else 1683 static void of_remove_proc_dt_entry(struct device_node *dn) 1684 { 1685 return; 1686 } 1687 #endif 1688 1689 /** 1690 * of_detach_node - "Unplug" a node from the device tree. 1691 * 1692 * The caller must hold a reference to the node. The memory associated with 1693 * the node is not freed until its refcount goes to zero. 1694 */ 1695 int of_detach_node(struct device_node *np) 1696 { 1697 struct device_node *parent; 1698 unsigned long flags; 1699 int rc = 0; 1700 1701 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); 1702 if (rc) 1703 return rc; 1704 1705 raw_spin_lock_irqsave(&devtree_lock, flags); 1706 1707 if (of_node_check_flag(np, OF_DETACHED)) { 1708 /* someone already detached it */ 1709 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1710 return rc; 1711 } 1712 1713 parent = np->parent; 1714 if (!parent) { 1715 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1716 return rc; 1717 } 1718 1719 if (of_allnodes == np) 1720 of_allnodes = np->allnext; 1721 else { 1722 struct device_node *prev; 1723 for (prev = of_allnodes; 1724 prev->allnext != np; 1725 prev = prev->allnext) 1726 ; 1727 prev->allnext = np->allnext; 1728 } 1729 1730 if (parent->child == np) 1731 parent->child = np->sibling; 1732 else { 1733 struct device_node *prevsib; 1734 for (prevsib = np->parent->child; 1735 prevsib->sibling != np; 1736 prevsib = prevsib->sibling) 1737 ; 1738 prevsib->sibling = np->sibling; 1739 } 1740 1741 of_node_set_flag(np, OF_DETACHED); 1742 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1743 1744 of_remove_proc_dt_entry(np); 1745 return rc; 1746 } 1747 #endif /* defined(CONFIG_OF_DYNAMIC) */ 1748 1749 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1750 int id, const char *stem, int stem_len) 1751 { 1752 ap->np = np; 1753 ap->id = id; 1754 strncpy(ap->stem, stem, stem_len); 1755 ap->stem[stem_len] = 0; 1756 list_add_tail(&ap->link, &aliases_lookup); 1757 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1758 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1759 } 1760 1761 /** 1762 * of_alias_scan - Scan all properties of 'aliases' node 1763 * 1764 * The function scans all the properties of 'aliases' node and populate 1765 * the the global lookup table with the properties. It returns the 1766 * number of alias_prop found, or error code in error case. 1767 * 1768 * @dt_alloc: An allocator that provides a virtual address to memory 1769 * for the resulting tree 1770 */ 1771 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1772 { 1773 struct property *pp; 1774 1775 of_chosen = of_find_node_by_path("/chosen"); 1776 if (of_chosen == NULL) 1777 of_chosen = of_find_node_by_path("/chosen@0"); 1778 1779 if (of_chosen) { 1780 const char *name; 1781 1782 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1783 if (name) 1784 of_stdout = of_find_node_by_path(name); 1785 } 1786 1787 of_aliases = of_find_node_by_path("/aliases"); 1788 if (!of_aliases) 1789 return; 1790 1791 for_each_property_of_node(of_aliases, pp) { 1792 const char *start = pp->name; 1793 const char *end = start + strlen(start); 1794 struct device_node *np; 1795 struct alias_prop *ap; 1796 int id, len; 1797 1798 /* Skip those we do not want to proceed */ 1799 if (!strcmp(pp->name, "name") || 1800 !strcmp(pp->name, "phandle") || 1801 !strcmp(pp->name, "linux,phandle")) 1802 continue; 1803 1804 np = of_find_node_by_path(pp->value); 1805 if (!np) 1806 continue; 1807 1808 /* walk the alias backwards to extract the id and work out 1809 * the 'stem' string */ 1810 while (isdigit(*(end-1)) && end > start) 1811 end--; 1812 len = end - start; 1813 1814 if (kstrtoint(end, 10, &id) < 0) 1815 continue; 1816 1817 /* Allocate an alias_prop with enough space for the stem */ 1818 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1819 if (!ap) 1820 continue; 1821 memset(ap, 0, sizeof(*ap) + len + 1); 1822 ap->alias = start; 1823 of_alias_add(ap, np, id, start, len); 1824 } 1825 } 1826 1827 /** 1828 * of_alias_get_id - Get alias id for the given device_node 1829 * @np: Pointer to the given device_node 1830 * @stem: Alias stem of the given device_node 1831 * 1832 * The function travels the lookup table to get alias id for the given 1833 * device_node and alias stem. It returns the alias id if find it. 1834 */ 1835 int of_alias_get_id(struct device_node *np, const char *stem) 1836 { 1837 struct alias_prop *app; 1838 int id = -ENODEV; 1839 1840 mutex_lock(&of_aliases_mutex); 1841 list_for_each_entry(app, &aliases_lookup, link) { 1842 if (strcmp(app->stem, stem) != 0) 1843 continue; 1844 1845 if (np == app->np) { 1846 id = app->id; 1847 break; 1848 } 1849 } 1850 mutex_unlock(&of_aliases_mutex); 1851 1852 return id; 1853 } 1854 EXPORT_SYMBOL_GPL(of_alias_get_id); 1855 1856 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1857 u32 *pu) 1858 { 1859 const void *curv = cur; 1860 1861 if (!prop) 1862 return NULL; 1863 1864 if (!cur) { 1865 curv = prop->value; 1866 goto out_val; 1867 } 1868 1869 curv += sizeof(*cur); 1870 if (curv >= prop->value + prop->length) 1871 return NULL; 1872 1873 out_val: 1874 *pu = be32_to_cpup(curv); 1875 return curv; 1876 } 1877 EXPORT_SYMBOL_GPL(of_prop_next_u32); 1878 1879 const char *of_prop_next_string(struct property *prop, const char *cur) 1880 { 1881 const void *curv = cur; 1882 1883 if (!prop) 1884 return NULL; 1885 1886 if (!cur) 1887 return prop->value; 1888 1889 curv += strlen(cur) + 1; 1890 if (curv >= prop->value + prop->length) 1891 return NULL; 1892 1893 return curv; 1894 } 1895 EXPORT_SYMBOL_GPL(of_prop_next_string); 1896 1897 /** 1898 * of_device_is_stdout_path - check if a device node matches the 1899 * linux,stdout-path property 1900 * 1901 * Check if this device node matches the linux,stdout-path property 1902 * in the chosen node. return true if yes, false otherwise. 1903 */ 1904 int of_device_is_stdout_path(struct device_node *dn) 1905 { 1906 if (!of_stdout) 1907 return false; 1908 1909 return of_stdout == dn; 1910 } 1911 EXPORT_SYMBOL_GPL(of_device_is_stdout_path); 1912 1913 /** 1914 * of_find_next_cache_node - Find a node's subsidiary cache 1915 * @np: node of type "cpu" or "cache" 1916 * 1917 * Returns a node pointer with refcount incremented, use 1918 * of_node_put() on it when done. Caller should hold a reference 1919 * to np. 1920 */ 1921 struct device_node *of_find_next_cache_node(const struct device_node *np) 1922 { 1923 struct device_node *child; 1924 const phandle *handle; 1925 1926 handle = of_get_property(np, "l2-cache", NULL); 1927 if (!handle) 1928 handle = of_get_property(np, "next-level-cache", NULL); 1929 1930 if (handle) 1931 return of_find_node_by_phandle(be32_to_cpup(handle)); 1932 1933 /* OF on pmac has nodes instead of properties named "l2-cache" 1934 * beneath CPU nodes. 1935 */ 1936 if (!strcmp(np->type, "cpu")) 1937 for_each_child_of_node(np, child) 1938 if (!strcmp(child->type, "cache")) 1939 return child; 1940 1941 return NULL; 1942 } 1943