1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_graph.h> 25 #include <linux/spinlock.h> 26 #include <linux/slab.h> 27 #include <linux/string.h> 28 #include <linux/proc_fs.h> 29 30 #include "of_private.h" 31 32 LIST_HEAD(aliases_lookup); 33 34 struct device_node *of_allnodes; 35 EXPORT_SYMBOL(of_allnodes); 36 struct device_node *of_chosen; 37 struct device_node *of_aliases; 38 static struct device_node *of_stdout; 39 40 static struct kset *of_kset; 41 42 /* 43 * Used to protect the of_aliases; but also overloaded to hold off addition of 44 * nodes to sysfs 45 */ 46 DEFINE_MUTEX(of_aliases_mutex); 47 48 /* use when traversing tree through the allnext, child, sibling, 49 * or parent members of struct device_node. 50 */ 51 DEFINE_RAW_SPINLOCK(devtree_lock); 52 53 int of_n_addr_cells(struct device_node *np) 54 { 55 const __be32 *ip; 56 57 do { 58 if (np->parent) 59 np = np->parent; 60 ip = of_get_property(np, "#address-cells", NULL); 61 if (ip) 62 return be32_to_cpup(ip); 63 } while (np->parent); 64 /* No #address-cells property for the root node */ 65 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 66 } 67 EXPORT_SYMBOL(of_n_addr_cells); 68 69 int of_n_size_cells(struct device_node *np) 70 { 71 const __be32 *ip; 72 73 do { 74 if (np->parent) 75 np = np->parent; 76 ip = of_get_property(np, "#size-cells", NULL); 77 if (ip) 78 return be32_to_cpup(ip); 79 } while (np->parent); 80 /* No #size-cells property for the root node */ 81 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 82 } 83 EXPORT_SYMBOL(of_n_size_cells); 84 85 #ifdef CONFIG_NUMA 86 int __weak of_node_to_nid(struct device_node *np) 87 { 88 return numa_node_id(); 89 } 90 #endif 91 92 #if defined(CONFIG_OF_DYNAMIC) 93 /** 94 * of_node_get - Increment refcount of a node 95 * @node: Node to inc refcount, NULL is supported to 96 * simplify writing of callers 97 * 98 * Returns node. 99 */ 100 struct device_node *of_node_get(struct device_node *node) 101 { 102 if (node) 103 kobject_get(&node->kobj); 104 return node; 105 } 106 EXPORT_SYMBOL(of_node_get); 107 108 static inline struct device_node *kobj_to_device_node(struct kobject *kobj) 109 { 110 return container_of(kobj, struct device_node, kobj); 111 } 112 113 /** 114 * of_node_release - release a dynamically allocated node 115 * @kref: kref element of the node to be released 116 * 117 * In of_node_put() this function is passed to kref_put() 118 * as the destructor. 119 */ 120 static void of_node_release(struct kobject *kobj) 121 { 122 struct device_node *node = kobj_to_device_node(kobj); 123 struct property *prop = node->properties; 124 125 /* We should never be releasing nodes that haven't been detached. */ 126 if (!of_node_check_flag(node, OF_DETACHED)) { 127 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); 128 dump_stack(); 129 return; 130 } 131 132 if (!of_node_check_flag(node, OF_DYNAMIC)) 133 return; 134 135 while (prop) { 136 struct property *next = prop->next; 137 kfree(prop->name); 138 kfree(prop->value); 139 kfree(prop); 140 prop = next; 141 142 if (!prop) { 143 prop = node->deadprops; 144 node->deadprops = NULL; 145 } 146 } 147 kfree(node->full_name); 148 kfree(node->data); 149 kfree(node); 150 } 151 152 /** 153 * of_node_put - Decrement refcount of a node 154 * @node: Node to dec refcount, NULL is supported to 155 * simplify writing of callers 156 * 157 */ 158 void of_node_put(struct device_node *node) 159 { 160 if (node) 161 kobject_put(&node->kobj); 162 } 163 EXPORT_SYMBOL(of_node_put); 164 #else 165 static void of_node_release(struct kobject *kobj) 166 { 167 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 168 } 169 #endif /* CONFIG_OF_DYNAMIC */ 170 171 struct kobj_type of_node_ktype = { 172 .release = of_node_release, 173 }; 174 175 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 176 struct bin_attribute *bin_attr, char *buf, 177 loff_t offset, size_t count) 178 { 179 struct property *pp = container_of(bin_attr, struct property, attr); 180 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 181 } 182 183 static const char *safe_name(struct kobject *kobj, const char *orig_name) 184 { 185 const char *name = orig_name; 186 struct kernfs_node *kn; 187 int i = 0; 188 189 /* don't be a hero. After 16 tries give up */ 190 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 191 sysfs_put(kn); 192 if (name != orig_name) 193 kfree(name); 194 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 195 } 196 197 if (name != orig_name) 198 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 199 kobject_name(kobj), name); 200 return name; 201 } 202 203 static int __of_add_property_sysfs(struct device_node *np, struct property *pp) 204 { 205 int rc; 206 207 /* Important: Don't leak passwords */ 208 bool secure = strncmp(pp->name, "security-", 9) == 0; 209 210 sysfs_bin_attr_init(&pp->attr); 211 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 212 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 213 pp->attr.size = secure ? 0 : pp->length; 214 pp->attr.read = of_node_property_read; 215 216 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 217 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 218 return rc; 219 } 220 221 static int __of_node_add(struct device_node *np) 222 { 223 const char *name; 224 struct property *pp; 225 int rc; 226 227 np->kobj.kset = of_kset; 228 if (!np->parent) { 229 /* Nodes without parents are new top level trees */ 230 rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base")); 231 } else { 232 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 233 if (!name || !name[0]) 234 return -EINVAL; 235 236 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 237 } 238 if (rc) 239 return rc; 240 241 for_each_property_of_node(np, pp) 242 __of_add_property_sysfs(np, pp); 243 244 return 0; 245 } 246 247 int of_node_add(struct device_node *np) 248 { 249 int rc = 0; 250 251 BUG_ON(!of_node_is_initialized(np)); 252 253 /* 254 * Grab the mutex here so that in a race condition between of_init() and 255 * of_node_add(), node addition will still be consistent. 256 */ 257 mutex_lock(&of_aliases_mutex); 258 if (of_kset) 259 rc = __of_node_add(np); 260 else 261 /* This scenario may be perfectly valid, but report it anyway */ 262 pr_info("of_node_add(%s) before of_init()\n", np->full_name); 263 mutex_unlock(&of_aliases_mutex); 264 return rc; 265 } 266 267 #if defined(CONFIG_OF_DYNAMIC) 268 static void of_node_remove(struct device_node *np) 269 { 270 struct property *pp; 271 272 BUG_ON(!of_node_is_initialized(np)); 273 274 /* only remove properties if on sysfs */ 275 if (of_node_is_attached(np)) { 276 for_each_property_of_node(np, pp) 277 sysfs_remove_bin_file(&np->kobj, &pp->attr); 278 kobject_del(&np->kobj); 279 } 280 281 /* finally remove the kobj_init ref */ 282 of_node_put(np); 283 } 284 #endif 285 286 static int __init of_init(void) 287 { 288 struct device_node *np; 289 290 /* Create the kset, and register existing nodes */ 291 mutex_lock(&of_aliases_mutex); 292 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 293 if (!of_kset) { 294 mutex_unlock(&of_aliases_mutex); 295 return -ENOMEM; 296 } 297 for_each_of_allnodes(np) 298 __of_node_add(np); 299 mutex_unlock(&of_aliases_mutex); 300 301 /* Symlink in /proc as required by userspace ABI */ 302 if (of_allnodes) 303 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 304 305 return 0; 306 } 307 core_initcall(of_init); 308 309 static struct property *__of_find_property(const struct device_node *np, 310 const char *name, int *lenp) 311 { 312 struct property *pp; 313 314 if (!np) 315 return NULL; 316 317 for (pp = np->properties; pp; pp = pp->next) { 318 if (of_prop_cmp(pp->name, name) == 0) { 319 if (lenp) 320 *lenp = pp->length; 321 break; 322 } 323 } 324 325 return pp; 326 } 327 328 struct property *of_find_property(const struct device_node *np, 329 const char *name, 330 int *lenp) 331 { 332 struct property *pp; 333 unsigned long flags; 334 335 raw_spin_lock_irqsave(&devtree_lock, flags); 336 pp = __of_find_property(np, name, lenp); 337 raw_spin_unlock_irqrestore(&devtree_lock, flags); 338 339 return pp; 340 } 341 EXPORT_SYMBOL(of_find_property); 342 343 /** 344 * of_find_all_nodes - Get next node in global list 345 * @prev: Previous node or NULL to start iteration 346 * of_node_put() will be called on it 347 * 348 * Returns a node pointer with refcount incremented, use 349 * of_node_put() on it when done. 350 */ 351 struct device_node *of_find_all_nodes(struct device_node *prev) 352 { 353 struct device_node *np; 354 unsigned long flags; 355 356 raw_spin_lock_irqsave(&devtree_lock, flags); 357 np = prev ? prev->allnext : of_allnodes; 358 for (; np != NULL; np = np->allnext) 359 if (of_node_get(np)) 360 break; 361 of_node_put(prev); 362 raw_spin_unlock_irqrestore(&devtree_lock, flags); 363 return np; 364 } 365 EXPORT_SYMBOL(of_find_all_nodes); 366 367 /* 368 * Find a property with a given name for a given node 369 * and return the value. 370 */ 371 static const void *__of_get_property(const struct device_node *np, 372 const char *name, int *lenp) 373 { 374 struct property *pp = __of_find_property(np, name, lenp); 375 376 return pp ? pp->value : NULL; 377 } 378 379 /* 380 * Find a property with a given name for a given node 381 * and return the value. 382 */ 383 const void *of_get_property(const struct device_node *np, const char *name, 384 int *lenp) 385 { 386 struct property *pp = of_find_property(np, name, lenp); 387 388 return pp ? pp->value : NULL; 389 } 390 EXPORT_SYMBOL(of_get_property); 391 392 /* 393 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 394 * 395 * @cpu: logical cpu index of a core/thread 396 * @phys_id: physical identifier of a core/thread 397 * 398 * CPU logical to physical index mapping is architecture specific. 399 * However this __weak function provides a default match of physical 400 * id to logical cpu index. phys_id provided here is usually values read 401 * from the device tree which must match the hardware internal registers. 402 * 403 * Returns true if the physical identifier and the logical cpu index 404 * correspond to the same core/thread, false otherwise. 405 */ 406 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 407 { 408 return (u32)phys_id == cpu; 409 } 410 411 /** 412 * Checks if the given "prop_name" property holds the physical id of the 413 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 414 * NULL, local thread number within the core is returned in it. 415 */ 416 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 417 const char *prop_name, int cpu, unsigned int *thread) 418 { 419 const __be32 *cell; 420 int ac, prop_len, tid; 421 u64 hwid; 422 423 ac = of_n_addr_cells(cpun); 424 cell = of_get_property(cpun, prop_name, &prop_len); 425 if (!cell || !ac) 426 return false; 427 prop_len /= sizeof(*cell) * ac; 428 for (tid = 0; tid < prop_len; tid++) { 429 hwid = of_read_number(cell, ac); 430 if (arch_match_cpu_phys_id(cpu, hwid)) { 431 if (thread) 432 *thread = tid; 433 return true; 434 } 435 cell += ac; 436 } 437 return false; 438 } 439 440 /* 441 * arch_find_n_match_cpu_physical_id - See if the given device node is 442 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 443 * else false. If 'thread' is non-NULL, the local thread number within the 444 * core is returned in it. 445 */ 446 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 447 int cpu, unsigned int *thread) 448 { 449 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 450 * for thread ids on PowerPC. If it doesn't exist fallback to 451 * standard "reg" property. 452 */ 453 if (IS_ENABLED(CONFIG_PPC) && 454 __of_find_n_match_cpu_property(cpun, 455 "ibm,ppc-interrupt-server#s", 456 cpu, thread)) 457 return true; 458 459 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 460 return true; 461 462 return false; 463 } 464 465 /** 466 * of_get_cpu_node - Get device node associated with the given logical CPU 467 * 468 * @cpu: CPU number(logical index) for which device node is required 469 * @thread: if not NULL, local thread number within the physical core is 470 * returned 471 * 472 * The main purpose of this function is to retrieve the device node for the 473 * given logical CPU index. It should be used to initialize the of_node in 474 * cpu device. Once of_node in cpu device is populated, all the further 475 * references can use that instead. 476 * 477 * CPU logical to physical index mapping is architecture specific and is built 478 * before booting secondary cores. This function uses arch_match_cpu_phys_id 479 * which can be overridden by architecture specific implementation. 480 * 481 * Returns a node pointer for the logical cpu if found, else NULL. 482 */ 483 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 484 { 485 struct device_node *cpun; 486 487 for_each_node_by_type(cpun, "cpu") { 488 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 489 return cpun; 490 } 491 return NULL; 492 } 493 EXPORT_SYMBOL(of_get_cpu_node); 494 495 /** 496 * __of_device_is_compatible() - Check if the node matches given constraints 497 * @device: pointer to node 498 * @compat: required compatible string, NULL or "" for any match 499 * @type: required device_type value, NULL or "" for any match 500 * @name: required node name, NULL or "" for any match 501 * 502 * Checks if the given @compat, @type and @name strings match the 503 * properties of the given @device. A constraints can be skipped by 504 * passing NULL or an empty string as the constraint. 505 * 506 * Returns 0 for no match, and a positive integer on match. The return 507 * value is a relative score with larger values indicating better 508 * matches. The score is weighted for the most specific compatible value 509 * to get the highest score. Matching type is next, followed by matching 510 * name. Practically speaking, this results in the following priority 511 * order for matches: 512 * 513 * 1. specific compatible && type && name 514 * 2. specific compatible && type 515 * 3. specific compatible && name 516 * 4. specific compatible 517 * 5. general compatible && type && name 518 * 6. general compatible && type 519 * 7. general compatible && name 520 * 8. general compatible 521 * 9. type && name 522 * 10. type 523 * 11. name 524 */ 525 static int __of_device_is_compatible(const struct device_node *device, 526 const char *compat, const char *type, const char *name) 527 { 528 struct property *prop; 529 const char *cp; 530 int index = 0, score = 0; 531 532 /* Compatible match has highest priority */ 533 if (compat && compat[0]) { 534 prop = __of_find_property(device, "compatible", NULL); 535 for (cp = of_prop_next_string(prop, NULL); cp; 536 cp = of_prop_next_string(prop, cp), index++) { 537 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 538 score = INT_MAX/2 - (index << 2); 539 break; 540 } 541 } 542 if (!score) 543 return 0; 544 } 545 546 /* Matching type is better than matching name */ 547 if (type && type[0]) { 548 if (!device->type || of_node_cmp(type, device->type)) 549 return 0; 550 score += 2; 551 } 552 553 /* Matching name is a bit better than not */ 554 if (name && name[0]) { 555 if (!device->name || of_node_cmp(name, device->name)) 556 return 0; 557 score++; 558 } 559 560 return score; 561 } 562 563 /** Checks if the given "compat" string matches one of the strings in 564 * the device's "compatible" property 565 */ 566 int of_device_is_compatible(const struct device_node *device, 567 const char *compat) 568 { 569 unsigned long flags; 570 int res; 571 572 raw_spin_lock_irqsave(&devtree_lock, flags); 573 res = __of_device_is_compatible(device, compat, NULL, NULL); 574 raw_spin_unlock_irqrestore(&devtree_lock, flags); 575 return res; 576 } 577 EXPORT_SYMBOL(of_device_is_compatible); 578 579 /** 580 * of_machine_is_compatible - Test root of device tree for a given compatible value 581 * @compat: compatible string to look for in root node's compatible property. 582 * 583 * Returns true if the root node has the given value in its 584 * compatible property. 585 */ 586 int of_machine_is_compatible(const char *compat) 587 { 588 struct device_node *root; 589 int rc = 0; 590 591 root = of_find_node_by_path("/"); 592 if (root) { 593 rc = of_device_is_compatible(root, compat); 594 of_node_put(root); 595 } 596 return rc; 597 } 598 EXPORT_SYMBOL(of_machine_is_compatible); 599 600 /** 601 * __of_device_is_available - check if a device is available for use 602 * 603 * @device: Node to check for availability, with locks already held 604 * 605 * Returns 1 if the status property is absent or set to "okay" or "ok", 606 * 0 otherwise 607 */ 608 static int __of_device_is_available(const struct device_node *device) 609 { 610 const char *status; 611 int statlen; 612 613 if (!device) 614 return 0; 615 616 status = __of_get_property(device, "status", &statlen); 617 if (status == NULL) 618 return 1; 619 620 if (statlen > 0) { 621 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 622 return 1; 623 } 624 625 return 0; 626 } 627 628 /** 629 * of_device_is_available - check if a device is available for use 630 * 631 * @device: Node to check for availability 632 * 633 * Returns 1 if the status property is absent or set to "okay" or "ok", 634 * 0 otherwise 635 */ 636 int of_device_is_available(const struct device_node *device) 637 { 638 unsigned long flags; 639 int res; 640 641 raw_spin_lock_irqsave(&devtree_lock, flags); 642 res = __of_device_is_available(device); 643 raw_spin_unlock_irqrestore(&devtree_lock, flags); 644 return res; 645 646 } 647 EXPORT_SYMBOL(of_device_is_available); 648 649 /** 650 * of_get_parent - Get a node's parent if any 651 * @node: Node to get parent 652 * 653 * Returns a node pointer with refcount incremented, use 654 * of_node_put() on it when done. 655 */ 656 struct device_node *of_get_parent(const struct device_node *node) 657 { 658 struct device_node *np; 659 unsigned long flags; 660 661 if (!node) 662 return NULL; 663 664 raw_spin_lock_irqsave(&devtree_lock, flags); 665 np = of_node_get(node->parent); 666 raw_spin_unlock_irqrestore(&devtree_lock, flags); 667 return np; 668 } 669 EXPORT_SYMBOL(of_get_parent); 670 671 /** 672 * of_get_next_parent - Iterate to a node's parent 673 * @node: Node to get parent of 674 * 675 * This is like of_get_parent() except that it drops the 676 * refcount on the passed node, making it suitable for iterating 677 * through a node's parents. 678 * 679 * Returns a node pointer with refcount incremented, use 680 * of_node_put() on it when done. 681 */ 682 struct device_node *of_get_next_parent(struct device_node *node) 683 { 684 struct device_node *parent; 685 unsigned long flags; 686 687 if (!node) 688 return NULL; 689 690 raw_spin_lock_irqsave(&devtree_lock, flags); 691 parent = of_node_get(node->parent); 692 of_node_put(node); 693 raw_spin_unlock_irqrestore(&devtree_lock, flags); 694 return parent; 695 } 696 EXPORT_SYMBOL(of_get_next_parent); 697 698 /** 699 * of_get_next_child - Iterate a node childs 700 * @node: parent node 701 * @prev: previous child of the parent node, or NULL to get first 702 * 703 * Returns a node pointer with refcount incremented, use 704 * of_node_put() on it when done. 705 */ 706 struct device_node *of_get_next_child(const struct device_node *node, 707 struct device_node *prev) 708 { 709 struct device_node *next; 710 unsigned long flags; 711 712 raw_spin_lock_irqsave(&devtree_lock, flags); 713 next = prev ? prev->sibling : node->child; 714 for (; next; next = next->sibling) 715 if (of_node_get(next)) 716 break; 717 of_node_put(prev); 718 raw_spin_unlock_irqrestore(&devtree_lock, flags); 719 return next; 720 } 721 EXPORT_SYMBOL(of_get_next_child); 722 723 /** 724 * of_get_next_available_child - Find the next available child node 725 * @node: parent node 726 * @prev: previous child of the parent node, or NULL to get first 727 * 728 * This function is like of_get_next_child(), except that it 729 * automatically skips any disabled nodes (i.e. status = "disabled"). 730 */ 731 struct device_node *of_get_next_available_child(const struct device_node *node, 732 struct device_node *prev) 733 { 734 struct device_node *next; 735 unsigned long flags; 736 737 raw_spin_lock_irqsave(&devtree_lock, flags); 738 next = prev ? prev->sibling : node->child; 739 for (; next; next = next->sibling) { 740 if (!__of_device_is_available(next)) 741 continue; 742 if (of_node_get(next)) 743 break; 744 } 745 of_node_put(prev); 746 raw_spin_unlock_irqrestore(&devtree_lock, flags); 747 return next; 748 } 749 EXPORT_SYMBOL(of_get_next_available_child); 750 751 /** 752 * of_get_child_by_name - Find the child node by name for a given parent 753 * @node: parent node 754 * @name: child name to look for. 755 * 756 * This function looks for child node for given matching name 757 * 758 * Returns a node pointer if found, with refcount incremented, use 759 * of_node_put() on it when done. 760 * Returns NULL if node is not found. 761 */ 762 struct device_node *of_get_child_by_name(const struct device_node *node, 763 const char *name) 764 { 765 struct device_node *child; 766 767 for_each_child_of_node(node, child) 768 if (child->name && (of_node_cmp(child->name, name) == 0)) 769 break; 770 return child; 771 } 772 EXPORT_SYMBOL(of_get_child_by_name); 773 774 /** 775 * of_find_node_by_path - Find a node matching a full OF path 776 * @path: The full path to match 777 * 778 * Returns a node pointer with refcount incremented, use 779 * of_node_put() on it when done. 780 */ 781 struct device_node *of_find_node_by_path(const char *path) 782 { 783 struct device_node *np = of_allnodes; 784 unsigned long flags; 785 786 raw_spin_lock_irqsave(&devtree_lock, flags); 787 for (; np; np = np->allnext) { 788 if (np->full_name && (of_node_cmp(np->full_name, path) == 0) 789 && of_node_get(np)) 790 break; 791 } 792 raw_spin_unlock_irqrestore(&devtree_lock, flags); 793 return np; 794 } 795 EXPORT_SYMBOL(of_find_node_by_path); 796 797 /** 798 * of_find_node_by_name - Find a node by its "name" property 799 * @from: The node to start searching from or NULL, the node 800 * you pass will not be searched, only the next one 801 * will; typically, you pass what the previous call 802 * returned. of_node_put() will be called on it 803 * @name: The name string to match against 804 * 805 * Returns a node pointer with refcount incremented, use 806 * of_node_put() on it when done. 807 */ 808 struct device_node *of_find_node_by_name(struct device_node *from, 809 const char *name) 810 { 811 struct device_node *np; 812 unsigned long flags; 813 814 raw_spin_lock_irqsave(&devtree_lock, flags); 815 np = from ? from->allnext : of_allnodes; 816 for (; np; np = np->allnext) 817 if (np->name && (of_node_cmp(np->name, name) == 0) 818 && of_node_get(np)) 819 break; 820 of_node_put(from); 821 raw_spin_unlock_irqrestore(&devtree_lock, flags); 822 return np; 823 } 824 EXPORT_SYMBOL(of_find_node_by_name); 825 826 /** 827 * of_find_node_by_type - Find a node by its "device_type" property 828 * @from: The node to start searching from, or NULL to start searching 829 * the entire device tree. The node you pass will not be 830 * searched, only the next one will; typically, you pass 831 * what the previous call returned. of_node_put() will be 832 * called on from for you. 833 * @type: The type string to match against 834 * 835 * Returns a node pointer with refcount incremented, use 836 * of_node_put() on it when done. 837 */ 838 struct device_node *of_find_node_by_type(struct device_node *from, 839 const char *type) 840 { 841 struct device_node *np; 842 unsigned long flags; 843 844 raw_spin_lock_irqsave(&devtree_lock, flags); 845 np = from ? from->allnext : of_allnodes; 846 for (; np; np = np->allnext) 847 if (np->type && (of_node_cmp(np->type, type) == 0) 848 && of_node_get(np)) 849 break; 850 of_node_put(from); 851 raw_spin_unlock_irqrestore(&devtree_lock, flags); 852 return np; 853 } 854 EXPORT_SYMBOL(of_find_node_by_type); 855 856 /** 857 * of_find_compatible_node - Find a node based on type and one of the 858 * tokens in its "compatible" property 859 * @from: The node to start searching from or NULL, the node 860 * you pass will not be searched, only the next one 861 * will; typically, you pass what the previous call 862 * returned. of_node_put() will be called on it 863 * @type: The type string to match "device_type" or NULL to ignore 864 * @compatible: The string to match to one of the tokens in the device 865 * "compatible" list. 866 * 867 * Returns a node pointer with refcount incremented, use 868 * of_node_put() on it when done. 869 */ 870 struct device_node *of_find_compatible_node(struct device_node *from, 871 const char *type, const char *compatible) 872 { 873 struct device_node *np; 874 unsigned long flags; 875 876 raw_spin_lock_irqsave(&devtree_lock, flags); 877 np = from ? from->allnext : of_allnodes; 878 for (; np; np = np->allnext) { 879 if (__of_device_is_compatible(np, compatible, type, NULL) && 880 of_node_get(np)) 881 break; 882 } 883 of_node_put(from); 884 raw_spin_unlock_irqrestore(&devtree_lock, flags); 885 return np; 886 } 887 EXPORT_SYMBOL(of_find_compatible_node); 888 889 /** 890 * of_find_node_with_property - Find a node which has a property with 891 * the given name. 892 * @from: The node to start searching from or NULL, the node 893 * you pass will not be searched, only the next one 894 * will; typically, you pass what the previous call 895 * returned. of_node_put() will be called on it 896 * @prop_name: The name of the property to look for. 897 * 898 * Returns a node pointer with refcount incremented, use 899 * of_node_put() on it when done. 900 */ 901 struct device_node *of_find_node_with_property(struct device_node *from, 902 const char *prop_name) 903 { 904 struct device_node *np; 905 struct property *pp; 906 unsigned long flags; 907 908 raw_spin_lock_irqsave(&devtree_lock, flags); 909 np = from ? from->allnext : of_allnodes; 910 for (; np; np = np->allnext) { 911 for (pp = np->properties; pp; pp = pp->next) { 912 if (of_prop_cmp(pp->name, prop_name) == 0) { 913 of_node_get(np); 914 goto out; 915 } 916 } 917 } 918 out: 919 of_node_put(from); 920 raw_spin_unlock_irqrestore(&devtree_lock, flags); 921 return np; 922 } 923 EXPORT_SYMBOL(of_find_node_with_property); 924 925 static 926 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 927 const struct device_node *node) 928 { 929 const struct of_device_id *best_match = NULL; 930 int score, best_score = 0; 931 932 if (!matches) 933 return NULL; 934 935 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 936 score = __of_device_is_compatible(node, matches->compatible, 937 matches->type, matches->name); 938 if (score > best_score) { 939 best_match = matches; 940 best_score = score; 941 } 942 } 943 944 return best_match; 945 } 946 947 /** 948 * of_match_node - Tell if an device_node has a matching of_match structure 949 * @matches: array of of device match structures to search in 950 * @node: the of device structure to match against 951 * 952 * Low level utility function used by device matching. 953 */ 954 const struct of_device_id *of_match_node(const struct of_device_id *matches, 955 const struct device_node *node) 956 { 957 const struct of_device_id *match; 958 unsigned long flags; 959 960 raw_spin_lock_irqsave(&devtree_lock, flags); 961 match = __of_match_node(matches, node); 962 raw_spin_unlock_irqrestore(&devtree_lock, flags); 963 return match; 964 } 965 EXPORT_SYMBOL(of_match_node); 966 967 /** 968 * of_find_matching_node_and_match - Find a node based on an of_device_id 969 * match table. 970 * @from: The node to start searching from or NULL, the node 971 * you pass will not be searched, only the next one 972 * will; typically, you pass what the previous call 973 * returned. of_node_put() will be called on it 974 * @matches: array of of device match structures to search in 975 * @match Updated to point at the matches entry which matched 976 * 977 * Returns a node pointer with refcount incremented, use 978 * of_node_put() on it when done. 979 */ 980 struct device_node *of_find_matching_node_and_match(struct device_node *from, 981 const struct of_device_id *matches, 982 const struct of_device_id **match) 983 { 984 struct device_node *np; 985 const struct of_device_id *m; 986 unsigned long flags; 987 988 if (match) 989 *match = NULL; 990 991 raw_spin_lock_irqsave(&devtree_lock, flags); 992 np = from ? from->allnext : of_allnodes; 993 for (; np; np = np->allnext) { 994 m = __of_match_node(matches, np); 995 if (m && of_node_get(np)) { 996 if (match) 997 *match = m; 998 break; 999 } 1000 } 1001 of_node_put(from); 1002 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1003 return np; 1004 } 1005 EXPORT_SYMBOL(of_find_matching_node_and_match); 1006 1007 /** 1008 * of_modalias_node - Lookup appropriate modalias for a device node 1009 * @node: pointer to a device tree node 1010 * @modalias: Pointer to buffer that modalias value will be copied into 1011 * @len: Length of modalias value 1012 * 1013 * Based on the value of the compatible property, this routine will attempt 1014 * to choose an appropriate modalias value for a particular device tree node. 1015 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1016 * from the first entry in the compatible list property. 1017 * 1018 * This routine returns 0 on success, <0 on failure. 1019 */ 1020 int of_modalias_node(struct device_node *node, char *modalias, int len) 1021 { 1022 const char *compatible, *p; 1023 int cplen; 1024 1025 compatible = of_get_property(node, "compatible", &cplen); 1026 if (!compatible || strlen(compatible) > cplen) 1027 return -ENODEV; 1028 p = strchr(compatible, ','); 1029 strlcpy(modalias, p ? p + 1 : compatible, len); 1030 return 0; 1031 } 1032 EXPORT_SYMBOL_GPL(of_modalias_node); 1033 1034 /** 1035 * of_find_node_by_phandle - Find a node given a phandle 1036 * @handle: phandle of the node to find 1037 * 1038 * Returns a node pointer with refcount incremented, use 1039 * of_node_put() on it when done. 1040 */ 1041 struct device_node *of_find_node_by_phandle(phandle handle) 1042 { 1043 struct device_node *np; 1044 unsigned long flags; 1045 1046 raw_spin_lock_irqsave(&devtree_lock, flags); 1047 for (np = of_allnodes; np; np = np->allnext) 1048 if (np->phandle == handle) 1049 break; 1050 of_node_get(np); 1051 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1052 return np; 1053 } 1054 EXPORT_SYMBOL(of_find_node_by_phandle); 1055 1056 /** 1057 * of_property_count_elems_of_size - Count the number of elements in a property 1058 * 1059 * @np: device node from which the property value is to be read. 1060 * @propname: name of the property to be searched. 1061 * @elem_size: size of the individual element 1062 * 1063 * Search for a property in a device node and count the number of elements of 1064 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1065 * property does not exist or its length does not match a multiple of elem_size 1066 * and -ENODATA if the property does not have a value. 1067 */ 1068 int of_property_count_elems_of_size(const struct device_node *np, 1069 const char *propname, int elem_size) 1070 { 1071 struct property *prop = of_find_property(np, propname, NULL); 1072 1073 if (!prop) 1074 return -EINVAL; 1075 if (!prop->value) 1076 return -ENODATA; 1077 1078 if (prop->length % elem_size != 0) { 1079 pr_err("size of %s in node %s is not a multiple of %d\n", 1080 propname, np->full_name, elem_size); 1081 return -EINVAL; 1082 } 1083 1084 return prop->length / elem_size; 1085 } 1086 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1087 1088 /** 1089 * of_find_property_value_of_size 1090 * 1091 * @np: device node from which the property value is to be read. 1092 * @propname: name of the property to be searched. 1093 * @len: requested length of property value 1094 * 1095 * Search for a property in a device node and valid the requested size. 1096 * Returns the property value on success, -EINVAL if the property does not 1097 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1098 * property data isn't large enough. 1099 * 1100 */ 1101 static void *of_find_property_value_of_size(const struct device_node *np, 1102 const char *propname, u32 len) 1103 { 1104 struct property *prop = of_find_property(np, propname, NULL); 1105 1106 if (!prop) 1107 return ERR_PTR(-EINVAL); 1108 if (!prop->value) 1109 return ERR_PTR(-ENODATA); 1110 if (len > prop->length) 1111 return ERR_PTR(-EOVERFLOW); 1112 1113 return prop->value; 1114 } 1115 1116 /** 1117 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1118 * 1119 * @np: device node from which the property value is to be read. 1120 * @propname: name of the property to be searched. 1121 * @index: index of the u32 in the list of values 1122 * @out_value: pointer to return value, modified only if no error. 1123 * 1124 * Search for a property in a device node and read nth 32-bit value from 1125 * it. Returns 0 on success, -EINVAL if the property does not exist, 1126 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1127 * property data isn't large enough. 1128 * 1129 * The out_value is modified only if a valid u32 value can be decoded. 1130 */ 1131 int of_property_read_u32_index(const struct device_node *np, 1132 const char *propname, 1133 u32 index, u32 *out_value) 1134 { 1135 const u32 *val = of_find_property_value_of_size(np, propname, 1136 ((index + 1) * sizeof(*out_value))); 1137 1138 if (IS_ERR(val)) 1139 return PTR_ERR(val); 1140 1141 *out_value = be32_to_cpup(((__be32 *)val) + index); 1142 return 0; 1143 } 1144 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1145 1146 /** 1147 * of_property_read_u8_array - Find and read an array of u8 from a property. 1148 * 1149 * @np: device node from which the property value is to be read. 1150 * @propname: name of the property to be searched. 1151 * @out_values: pointer to return value, modified only if return value is 0. 1152 * @sz: number of array elements to read 1153 * 1154 * Search for a property in a device node and read 8-bit value(s) from 1155 * it. Returns 0 on success, -EINVAL if the property does not exist, 1156 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1157 * property data isn't large enough. 1158 * 1159 * dts entry of array should be like: 1160 * property = /bits/ 8 <0x50 0x60 0x70>; 1161 * 1162 * The out_values is modified only if a valid u8 value can be decoded. 1163 */ 1164 int of_property_read_u8_array(const struct device_node *np, 1165 const char *propname, u8 *out_values, size_t sz) 1166 { 1167 const u8 *val = of_find_property_value_of_size(np, propname, 1168 (sz * sizeof(*out_values))); 1169 1170 if (IS_ERR(val)) 1171 return PTR_ERR(val); 1172 1173 while (sz--) 1174 *out_values++ = *val++; 1175 return 0; 1176 } 1177 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1178 1179 /** 1180 * of_property_read_u16_array - Find and read an array of u16 from a property. 1181 * 1182 * @np: device node from which the property value is to be read. 1183 * @propname: name of the property to be searched. 1184 * @out_values: pointer to return value, modified only if return value is 0. 1185 * @sz: number of array elements to read 1186 * 1187 * Search for a property in a device node and read 16-bit value(s) from 1188 * it. Returns 0 on success, -EINVAL if the property does not exist, 1189 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1190 * property data isn't large enough. 1191 * 1192 * dts entry of array should be like: 1193 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1194 * 1195 * The out_values is modified only if a valid u16 value can be decoded. 1196 */ 1197 int of_property_read_u16_array(const struct device_node *np, 1198 const char *propname, u16 *out_values, size_t sz) 1199 { 1200 const __be16 *val = of_find_property_value_of_size(np, propname, 1201 (sz * sizeof(*out_values))); 1202 1203 if (IS_ERR(val)) 1204 return PTR_ERR(val); 1205 1206 while (sz--) 1207 *out_values++ = be16_to_cpup(val++); 1208 return 0; 1209 } 1210 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1211 1212 /** 1213 * of_property_read_u32_array - Find and read an array of 32 bit integers 1214 * from a property. 1215 * 1216 * @np: device node from which the property value is to be read. 1217 * @propname: name of the property to be searched. 1218 * @out_values: pointer to return value, modified only if return value is 0. 1219 * @sz: number of array elements to read 1220 * 1221 * Search for a property in a device node and read 32-bit value(s) from 1222 * it. Returns 0 on success, -EINVAL if the property does not exist, 1223 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1224 * property data isn't large enough. 1225 * 1226 * The out_values is modified only if a valid u32 value can be decoded. 1227 */ 1228 int of_property_read_u32_array(const struct device_node *np, 1229 const char *propname, u32 *out_values, 1230 size_t sz) 1231 { 1232 const __be32 *val = of_find_property_value_of_size(np, propname, 1233 (sz * sizeof(*out_values))); 1234 1235 if (IS_ERR(val)) 1236 return PTR_ERR(val); 1237 1238 while (sz--) 1239 *out_values++ = be32_to_cpup(val++); 1240 return 0; 1241 } 1242 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1243 1244 /** 1245 * of_property_read_u64 - Find and read a 64 bit integer from a property 1246 * @np: device node from which the property value is to be read. 1247 * @propname: name of the property to be searched. 1248 * @out_value: pointer to return value, modified only if return value is 0. 1249 * 1250 * Search for a property in a device node and read a 64-bit value from 1251 * it. Returns 0 on success, -EINVAL if the property does not exist, 1252 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1253 * property data isn't large enough. 1254 * 1255 * The out_value is modified only if a valid u64 value can be decoded. 1256 */ 1257 int of_property_read_u64(const struct device_node *np, const char *propname, 1258 u64 *out_value) 1259 { 1260 const __be32 *val = of_find_property_value_of_size(np, propname, 1261 sizeof(*out_value)); 1262 1263 if (IS_ERR(val)) 1264 return PTR_ERR(val); 1265 1266 *out_value = of_read_number(val, 2); 1267 return 0; 1268 } 1269 EXPORT_SYMBOL_GPL(of_property_read_u64); 1270 1271 /** 1272 * of_property_read_string - Find and read a string from a property 1273 * @np: device node from which the property value is to be read. 1274 * @propname: name of the property to be searched. 1275 * @out_string: pointer to null terminated return string, modified only if 1276 * return value is 0. 1277 * 1278 * Search for a property in a device tree node and retrieve a null 1279 * terminated string value (pointer to data, not a copy). Returns 0 on 1280 * success, -EINVAL if the property does not exist, -ENODATA if property 1281 * does not have a value, and -EILSEQ if the string is not null-terminated 1282 * within the length of the property data. 1283 * 1284 * The out_string pointer is modified only if a valid string can be decoded. 1285 */ 1286 int of_property_read_string(struct device_node *np, const char *propname, 1287 const char **out_string) 1288 { 1289 struct property *prop = of_find_property(np, propname, NULL); 1290 if (!prop) 1291 return -EINVAL; 1292 if (!prop->value) 1293 return -ENODATA; 1294 if (strnlen(prop->value, prop->length) >= prop->length) 1295 return -EILSEQ; 1296 *out_string = prop->value; 1297 return 0; 1298 } 1299 EXPORT_SYMBOL_GPL(of_property_read_string); 1300 1301 /** 1302 * of_property_read_string_index - Find and read a string from a multiple 1303 * strings property. 1304 * @np: device node from which the property value is to be read. 1305 * @propname: name of the property to be searched. 1306 * @index: index of the string in the list of strings 1307 * @out_string: pointer to null terminated return string, modified only if 1308 * return value is 0. 1309 * 1310 * Search for a property in a device tree node and retrieve a null 1311 * terminated string value (pointer to data, not a copy) in the list of strings 1312 * contained in that property. 1313 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if 1314 * property does not have a value, and -EILSEQ if the string is not 1315 * null-terminated within the length of the property data. 1316 * 1317 * The out_string pointer is modified only if a valid string can be decoded. 1318 */ 1319 int of_property_read_string_index(struct device_node *np, const char *propname, 1320 int index, const char **output) 1321 { 1322 struct property *prop = of_find_property(np, propname, NULL); 1323 int i = 0; 1324 size_t l = 0, total = 0; 1325 const char *p; 1326 1327 if (!prop) 1328 return -EINVAL; 1329 if (!prop->value) 1330 return -ENODATA; 1331 if (strnlen(prop->value, prop->length) >= prop->length) 1332 return -EILSEQ; 1333 1334 p = prop->value; 1335 1336 for (i = 0; total < prop->length; total += l, p += l) { 1337 l = strlen(p) + 1; 1338 if (i++ == index) { 1339 *output = p; 1340 return 0; 1341 } 1342 } 1343 return -ENODATA; 1344 } 1345 EXPORT_SYMBOL_GPL(of_property_read_string_index); 1346 1347 /** 1348 * of_property_match_string() - Find string in a list and return index 1349 * @np: pointer to node containing string list property 1350 * @propname: string list property name 1351 * @string: pointer to string to search for in string list 1352 * 1353 * This function searches a string list property and returns the index 1354 * of a specific string value. 1355 */ 1356 int of_property_match_string(struct device_node *np, const char *propname, 1357 const char *string) 1358 { 1359 struct property *prop = of_find_property(np, propname, NULL); 1360 size_t l; 1361 int i; 1362 const char *p, *end; 1363 1364 if (!prop) 1365 return -EINVAL; 1366 if (!prop->value) 1367 return -ENODATA; 1368 1369 p = prop->value; 1370 end = p + prop->length; 1371 1372 for (i = 0; p < end; i++, p += l) { 1373 l = strlen(p) + 1; 1374 if (p + l > end) 1375 return -EILSEQ; 1376 pr_debug("comparing %s with %s\n", string, p); 1377 if (strcmp(string, p) == 0) 1378 return i; /* Found it; return index */ 1379 } 1380 return -ENODATA; 1381 } 1382 EXPORT_SYMBOL_GPL(of_property_match_string); 1383 1384 /** 1385 * of_property_count_strings - Find and return the number of strings from a 1386 * multiple strings property. 1387 * @np: device node from which the property value is to be read. 1388 * @propname: name of the property to be searched. 1389 * 1390 * Search for a property in a device tree node and retrieve the number of null 1391 * terminated string contain in it. Returns the number of strings on 1392 * success, -EINVAL if the property does not exist, -ENODATA if property 1393 * does not have a value, and -EILSEQ if the string is not null-terminated 1394 * within the length of the property data. 1395 */ 1396 int of_property_count_strings(struct device_node *np, const char *propname) 1397 { 1398 struct property *prop = of_find_property(np, propname, NULL); 1399 int i = 0; 1400 size_t l = 0, total = 0; 1401 const char *p; 1402 1403 if (!prop) 1404 return -EINVAL; 1405 if (!prop->value) 1406 return -ENODATA; 1407 if (strnlen(prop->value, prop->length) >= prop->length) 1408 return -EILSEQ; 1409 1410 p = prop->value; 1411 1412 for (i = 0; total < prop->length; total += l, p += l, i++) 1413 l = strlen(p) + 1; 1414 1415 return i; 1416 } 1417 EXPORT_SYMBOL_GPL(of_property_count_strings); 1418 1419 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1420 { 1421 int i; 1422 printk("%s %s", msg, of_node_full_name(args->np)); 1423 for (i = 0; i < args->args_count; i++) 1424 printk(i ? ",%08x" : ":%08x", args->args[i]); 1425 printk("\n"); 1426 } 1427 1428 static int __of_parse_phandle_with_args(const struct device_node *np, 1429 const char *list_name, 1430 const char *cells_name, 1431 int cell_count, int index, 1432 struct of_phandle_args *out_args) 1433 { 1434 const __be32 *list, *list_end; 1435 int rc = 0, size, cur_index = 0; 1436 uint32_t count = 0; 1437 struct device_node *node = NULL; 1438 phandle phandle; 1439 1440 /* Retrieve the phandle list property */ 1441 list = of_get_property(np, list_name, &size); 1442 if (!list) 1443 return -ENOENT; 1444 list_end = list + size / sizeof(*list); 1445 1446 /* Loop over the phandles until all the requested entry is found */ 1447 while (list < list_end) { 1448 rc = -EINVAL; 1449 count = 0; 1450 1451 /* 1452 * If phandle is 0, then it is an empty entry with no 1453 * arguments. Skip forward to the next entry. 1454 */ 1455 phandle = be32_to_cpup(list++); 1456 if (phandle) { 1457 /* 1458 * Find the provider node and parse the #*-cells 1459 * property to determine the argument length. 1460 * 1461 * This is not needed if the cell count is hard-coded 1462 * (i.e. cells_name not set, but cell_count is set), 1463 * except when we're going to return the found node 1464 * below. 1465 */ 1466 if (cells_name || cur_index == index) { 1467 node = of_find_node_by_phandle(phandle); 1468 if (!node) { 1469 pr_err("%s: could not find phandle\n", 1470 np->full_name); 1471 goto err; 1472 } 1473 } 1474 1475 if (cells_name) { 1476 if (of_property_read_u32(node, cells_name, 1477 &count)) { 1478 pr_err("%s: could not get %s for %s\n", 1479 np->full_name, cells_name, 1480 node->full_name); 1481 goto err; 1482 } 1483 } else { 1484 count = cell_count; 1485 } 1486 1487 /* 1488 * Make sure that the arguments actually fit in the 1489 * remaining property data length 1490 */ 1491 if (list + count > list_end) { 1492 pr_err("%s: arguments longer than property\n", 1493 np->full_name); 1494 goto err; 1495 } 1496 } 1497 1498 /* 1499 * All of the error cases above bail out of the loop, so at 1500 * this point, the parsing is successful. If the requested 1501 * index matches, then fill the out_args structure and return, 1502 * or return -ENOENT for an empty entry. 1503 */ 1504 rc = -ENOENT; 1505 if (cur_index == index) { 1506 if (!phandle) 1507 goto err; 1508 1509 if (out_args) { 1510 int i; 1511 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1512 count = MAX_PHANDLE_ARGS; 1513 out_args->np = node; 1514 out_args->args_count = count; 1515 for (i = 0; i < count; i++) 1516 out_args->args[i] = be32_to_cpup(list++); 1517 } else { 1518 of_node_put(node); 1519 } 1520 1521 /* Found it! return success */ 1522 return 0; 1523 } 1524 1525 of_node_put(node); 1526 node = NULL; 1527 list += count; 1528 cur_index++; 1529 } 1530 1531 /* 1532 * Unlock node before returning result; will be one of: 1533 * -ENOENT : index is for empty phandle 1534 * -EINVAL : parsing error on data 1535 * [1..n] : Number of phandle (count mode; when index = -1) 1536 */ 1537 rc = index < 0 ? cur_index : -ENOENT; 1538 err: 1539 if (node) 1540 of_node_put(node); 1541 return rc; 1542 } 1543 1544 /** 1545 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1546 * @np: Pointer to device node holding phandle property 1547 * @phandle_name: Name of property holding a phandle value 1548 * @index: For properties holding a table of phandles, this is the index into 1549 * the table 1550 * 1551 * Returns the device_node pointer with refcount incremented. Use 1552 * of_node_put() on it when done. 1553 */ 1554 struct device_node *of_parse_phandle(const struct device_node *np, 1555 const char *phandle_name, int index) 1556 { 1557 struct of_phandle_args args; 1558 1559 if (index < 0) 1560 return NULL; 1561 1562 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1563 index, &args)) 1564 return NULL; 1565 1566 return args.np; 1567 } 1568 EXPORT_SYMBOL(of_parse_phandle); 1569 1570 /** 1571 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1572 * @np: pointer to a device tree node containing a list 1573 * @list_name: property name that contains a list 1574 * @cells_name: property name that specifies phandles' arguments count 1575 * @index: index of a phandle to parse out 1576 * @out_args: optional pointer to output arguments structure (will be filled) 1577 * 1578 * This function is useful to parse lists of phandles and their arguments. 1579 * Returns 0 on success and fills out_args, on error returns appropriate 1580 * errno value. 1581 * 1582 * Caller is responsible to call of_node_put() on the returned out_args->node 1583 * pointer. 1584 * 1585 * Example: 1586 * 1587 * phandle1: node1 { 1588 * #list-cells = <2>; 1589 * } 1590 * 1591 * phandle2: node2 { 1592 * #list-cells = <1>; 1593 * } 1594 * 1595 * node3 { 1596 * list = <&phandle1 1 2 &phandle2 3>; 1597 * } 1598 * 1599 * To get a device_node of the `node2' node you may call this: 1600 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1601 */ 1602 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1603 const char *cells_name, int index, 1604 struct of_phandle_args *out_args) 1605 { 1606 if (index < 0) 1607 return -EINVAL; 1608 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1609 index, out_args); 1610 } 1611 EXPORT_SYMBOL(of_parse_phandle_with_args); 1612 1613 /** 1614 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1615 * @np: pointer to a device tree node containing a list 1616 * @list_name: property name that contains a list 1617 * @cell_count: number of argument cells following the phandle 1618 * @index: index of a phandle to parse out 1619 * @out_args: optional pointer to output arguments structure (will be filled) 1620 * 1621 * This function is useful to parse lists of phandles and their arguments. 1622 * Returns 0 on success and fills out_args, on error returns appropriate 1623 * errno value. 1624 * 1625 * Caller is responsible to call of_node_put() on the returned out_args->node 1626 * pointer. 1627 * 1628 * Example: 1629 * 1630 * phandle1: node1 { 1631 * } 1632 * 1633 * phandle2: node2 { 1634 * } 1635 * 1636 * node3 { 1637 * list = <&phandle1 0 2 &phandle2 2 3>; 1638 * } 1639 * 1640 * To get a device_node of the `node2' node you may call this: 1641 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1642 */ 1643 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1644 const char *list_name, int cell_count, 1645 int index, struct of_phandle_args *out_args) 1646 { 1647 if (index < 0) 1648 return -EINVAL; 1649 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1650 index, out_args); 1651 } 1652 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1653 1654 /** 1655 * of_count_phandle_with_args() - Find the number of phandles references in a property 1656 * @np: pointer to a device tree node containing a list 1657 * @list_name: property name that contains a list 1658 * @cells_name: property name that specifies phandles' arguments count 1659 * 1660 * Returns the number of phandle + argument tuples within a property. It 1661 * is a typical pattern to encode a list of phandle and variable 1662 * arguments into a single property. The number of arguments is encoded 1663 * by a property in the phandle-target node. For example, a gpios 1664 * property would contain a list of GPIO specifies consisting of a 1665 * phandle and 1 or more arguments. The number of arguments are 1666 * determined by the #gpio-cells property in the node pointed to by the 1667 * phandle. 1668 */ 1669 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1670 const char *cells_name) 1671 { 1672 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1673 NULL); 1674 } 1675 EXPORT_SYMBOL(of_count_phandle_with_args); 1676 1677 #if defined(CONFIG_OF_DYNAMIC) 1678 static int of_property_notify(int action, struct device_node *np, 1679 struct property *prop) 1680 { 1681 struct of_prop_reconfig pr; 1682 1683 /* only call notifiers if the node is attached */ 1684 if (!of_node_is_attached(np)) 1685 return 0; 1686 1687 pr.dn = np; 1688 pr.prop = prop; 1689 return of_reconfig_notify(action, &pr); 1690 } 1691 #else 1692 static int of_property_notify(int action, struct device_node *np, 1693 struct property *prop) 1694 { 1695 return 0; 1696 } 1697 #endif 1698 1699 /** 1700 * __of_add_property - Add a property to a node without lock operations 1701 */ 1702 static int __of_add_property(struct device_node *np, struct property *prop) 1703 { 1704 struct property **next; 1705 1706 prop->next = NULL; 1707 next = &np->properties; 1708 while (*next) { 1709 if (strcmp(prop->name, (*next)->name) == 0) 1710 /* duplicate ! don't insert it */ 1711 return -EEXIST; 1712 1713 next = &(*next)->next; 1714 } 1715 *next = prop; 1716 1717 return 0; 1718 } 1719 1720 /** 1721 * of_add_property - Add a property to a node 1722 */ 1723 int of_add_property(struct device_node *np, struct property *prop) 1724 { 1725 unsigned long flags; 1726 int rc; 1727 1728 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); 1729 if (rc) 1730 return rc; 1731 1732 raw_spin_lock_irqsave(&devtree_lock, flags); 1733 rc = __of_add_property(np, prop); 1734 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1735 if (rc) 1736 return rc; 1737 1738 if (of_node_is_attached(np)) 1739 __of_add_property_sysfs(np, prop); 1740 1741 return rc; 1742 } 1743 1744 /** 1745 * of_remove_property - Remove a property from a node. 1746 * 1747 * Note that we don't actually remove it, since we have given out 1748 * who-knows-how-many pointers to the data using get-property. 1749 * Instead we just move the property to the "dead properties" 1750 * list, so it won't be found any more. 1751 */ 1752 int of_remove_property(struct device_node *np, struct property *prop) 1753 { 1754 struct property **next; 1755 unsigned long flags; 1756 int found = 0; 1757 int rc; 1758 1759 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); 1760 if (rc) 1761 return rc; 1762 1763 raw_spin_lock_irqsave(&devtree_lock, flags); 1764 next = &np->properties; 1765 while (*next) { 1766 if (*next == prop) { 1767 /* found the node */ 1768 *next = prop->next; 1769 prop->next = np->deadprops; 1770 np->deadprops = prop; 1771 found = 1; 1772 break; 1773 } 1774 next = &(*next)->next; 1775 } 1776 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1777 1778 if (!found) 1779 return -ENODEV; 1780 1781 /* at early boot, bail hear and defer setup to of_init() */ 1782 if (!of_kset) 1783 return 0; 1784 1785 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1786 1787 return 0; 1788 } 1789 1790 /* 1791 * of_update_property - Update a property in a node, if the property does 1792 * not exist, add it. 1793 * 1794 * Note that we don't actually remove it, since we have given out 1795 * who-knows-how-many pointers to the data using get-property. 1796 * Instead we just move the property to the "dead properties" list, 1797 * and add the new property to the property list 1798 */ 1799 int of_update_property(struct device_node *np, struct property *newprop) 1800 { 1801 struct property **next, *oldprop; 1802 unsigned long flags; 1803 int rc, found = 0; 1804 1805 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); 1806 if (rc) 1807 return rc; 1808 1809 if (!newprop->name) 1810 return -EINVAL; 1811 1812 oldprop = of_find_property(np, newprop->name, NULL); 1813 if (!oldprop) 1814 return of_add_property(np, newprop); 1815 1816 raw_spin_lock_irqsave(&devtree_lock, flags); 1817 next = &np->properties; 1818 while (*next) { 1819 if (*next == oldprop) { 1820 /* found the node */ 1821 newprop->next = oldprop->next; 1822 *next = newprop; 1823 oldprop->next = np->deadprops; 1824 np->deadprops = oldprop; 1825 found = 1; 1826 break; 1827 } 1828 next = &(*next)->next; 1829 } 1830 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1831 if (rc) 1832 return rc; 1833 1834 /* Update the sysfs attribute */ 1835 if (oldprop) 1836 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1837 __of_add_property_sysfs(np, newprop); 1838 1839 if (!found) 1840 return -ENODEV; 1841 1842 return 0; 1843 } 1844 1845 #if defined(CONFIG_OF_DYNAMIC) 1846 /* 1847 * Support for dynamic device trees. 1848 * 1849 * On some platforms, the device tree can be manipulated at runtime. 1850 * The routines in this section support adding, removing and changing 1851 * device tree nodes. 1852 */ 1853 1854 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); 1855 1856 int of_reconfig_notifier_register(struct notifier_block *nb) 1857 { 1858 return blocking_notifier_chain_register(&of_reconfig_chain, nb); 1859 } 1860 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); 1861 1862 int of_reconfig_notifier_unregister(struct notifier_block *nb) 1863 { 1864 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); 1865 } 1866 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); 1867 1868 int of_reconfig_notify(unsigned long action, void *p) 1869 { 1870 int rc; 1871 1872 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); 1873 return notifier_to_errno(rc); 1874 } 1875 1876 /** 1877 * of_attach_node - Plug a device node into the tree and global list. 1878 */ 1879 int of_attach_node(struct device_node *np) 1880 { 1881 unsigned long flags; 1882 int rc; 1883 1884 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); 1885 if (rc) 1886 return rc; 1887 1888 raw_spin_lock_irqsave(&devtree_lock, flags); 1889 np->sibling = np->parent->child; 1890 np->allnext = of_allnodes; 1891 np->parent->child = np; 1892 of_allnodes = np; 1893 of_node_clear_flag(np, OF_DETACHED); 1894 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1895 1896 of_node_add(np); 1897 return 0; 1898 } 1899 1900 /** 1901 * of_detach_node - "Unplug" a node from the device tree. 1902 * 1903 * The caller must hold a reference to the node. The memory associated with 1904 * the node is not freed until its refcount goes to zero. 1905 */ 1906 int of_detach_node(struct device_node *np) 1907 { 1908 struct device_node *parent; 1909 unsigned long flags; 1910 int rc = 0; 1911 1912 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); 1913 if (rc) 1914 return rc; 1915 1916 raw_spin_lock_irqsave(&devtree_lock, flags); 1917 1918 if (of_node_check_flag(np, OF_DETACHED)) { 1919 /* someone already detached it */ 1920 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1921 return rc; 1922 } 1923 1924 parent = np->parent; 1925 if (!parent) { 1926 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1927 return rc; 1928 } 1929 1930 if (of_allnodes == np) 1931 of_allnodes = np->allnext; 1932 else { 1933 struct device_node *prev; 1934 for (prev = of_allnodes; 1935 prev->allnext != np; 1936 prev = prev->allnext) 1937 ; 1938 prev->allnext = np->allnext; 1939 } 1940 1941 if (parent->child == np) 1942 parent->child = np->sibling; 1943 else { 1944 struct device_node *prevsib; 1945 for (prevsib = np->parent->child; 1946 prevsib->sibling != np; 1947 prevsib = prevsib->sibling) 1948 ; 1949 prevsib->sibling = np->sibling; 1950 } 1951 1952 of_node_set_flag(np, OF_DETACHED); 1953 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1954 1955 of_node_remove(np); 1956 return rc; 1957 } 1958 #endif /* defined(CONFIG_OF_DYNAMIC) */ 1959 1960 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1961 int id, const char *stem, int stem_len) 1962 { 1963 ap->np = np; 1964 ap->id = id; 1965 strncpy(ap->stem, stem, stem_len); 1966 ap->stem[stem_len] = 0; 1967 list_add_tail(&ap->link, &aliases_lookup); 1968 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1969 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1970 } 1971 1972 /** 1973 * of_alias_scan - Scan all properties of 'aliases' node 1974 * 1975 * The function scans all the properties of 'aliases' node and populate 1976 * the the global lookup table with the properties. It returns the 1977 * number of alias_prop found, or error code in error case. 1978 * 1979 * @dt_alloc: An allocator that provides a virtual address to memory 1980 * for the resulting tree 1981 */ 1982 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1983 { 1984 struct property *pp; 1985 1986 of_chosen = of_find_node_by_path("/chosen"); 1987 if (of_chosen == NULL) 1988 of_chosen = of_find_node_by_path("/chosen@0"); 1989 1990 if (of_chosen) { 1991 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1992 if (!name) 1993 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1994 if (name) 1995 of_stdout = of_find_node_by_path(name); 1996 } 1997 1998 of_aliases = of_find_node_by_path("/aliases"); 1999 if (!of_aliases) 2000 return; 2001 2002 for_each_property_of_node(of_aliases, pp) { 2003 const char *start = pp->name; 2004 const char *end = start + strlen(start); 2005 struct device_node *np; 2006 struct alias_prop *ap; 2007 int id, len; 2008 2009 /* Skip those we do not want to proceed */ 2010 if (!strcmp(pp->name, "name") || 2011 !strcmp(pp->name, "phandle") || 2012 !strcmp(pp->name, "linux,phandle")) 2013 continue; 2014 2015 np = of_find_node_by_path(pp->value); 2016 if (!np) 2017 continue; 2018 2019 /* walk the alias backwards to extract the id and work out 2020 * the 'stem' string */ 2021 while (isdigit(*(end-1)) && end > start) 2022 end--; 2023 len = end - start; 2024 2025 if (kstrtoint(end, 10, &id) < 0) 2026 continue; 2027 2028 /* Allocate an alias_prop with enough space for the stem */ 2029 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 2030 if (!ap) 2031 continue; 2032 memset(ap, 0, sizeof(*ap) + len + 1); 2033 ap->alias = start; 2034 of_alias_add(ap, np, id, start, len); 2035 } 2036 } 2037 2038 /** 2039 * of_alias_get_id - Get alias id for the given device_node 2040 * @np: Pointer to the given device_node 2041 * @stem: Alias stem of the given device_node 2042 * 2043 * The function travels the lookup table to get alias id for the given 2044 * device_node and alias stem. It returns the alias id if find it. 2045 */ 2046 int of_alias_get_id(struct device_node *np, const char *stem) 2047 { 2048 struct alias_prop *app; 2049 int id = -ENODEV; 2050 2051 mutex_lock(&of_aliases_mutex); 2052 list_for_each_entry(app, &aliases_lookup, link) { 2053 if (strcmp(app->stem, stem) != 0) 2054 continue; 2055 2056 if (np == app->np) { 2057 id = app->id; 2058 break; 2059 } 2060 } 2061 mutex_unlock(&of_aliases_mutex); 2062 2063 return id; 2064 } 2065 EXPORT_SYMBOL_GPL(of_alias_get_id); 2066 2067 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2068 u32 *pu) 2069 { 2070 const void *curv = cur; 2071 2072 if (!prop) 2073 return NULL; 2074 2075 if (!cur) { 2076 curv = prop->value; 2077 goto out_val; 2078 } 2079 2080 curv += sizeof(*cur); 2081 if (curv >= prop->value + prop->length) 2082 return NULL; 2083 2084 out_val: 2085 *pu = be32_to_cpup(curv); 2086 return curv; 2087 } 2088 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2089 2090 const char *of_prop_next_string(struct property *prop, const char *cur) 2091 { 2092 const void *curv = cur; 2093 2094 if (!prop) 2095 return NULL; 2096 2097 if (!cur) 2098 return prop->value; 2099 2100 curv += strlen(cur) + 1; 2101 if (curv >= prop->value + prop->length) 2102 return NULL; 2103 2104 return curv; 2105 } 2106 EXPORT_SYMBOL_GPL(of_prop_next_string); 2107 2108 /** 2109 * of_device_is_stdout_path - check if a device node matches the 2110 * linux,stdout-path property 2111 * 2112 * Check if this device node matches the linux,stdout-path property 2113 * in the chosen node. return true if yes, false otherwise. 2114 */ 2115 int of_device_is_stdout_path(struct device_node *dn) 2116 { 2117 if (!of_stdout) 2118 return false; 2119 2120 return of_stdout == dn; 2121 } 2122 EXPORT_SYMBOL_GPL(of_device_is_stdout_path); 2123 2124 /** 2125 * of_find_next_cache_node - Find a node's subsidiary cache 2126 * @np: node of type "cpu" or "cache" 2127 * 2128 * Returns a node pointer with refcount incremented, use 2129 * of_node_put() on it when done. Caller should hold a reference 2130 * to np. 2131 */ 2132 struct device_node *of_find_next_cache_node(const struct device_node *np) 2133 { 2134 struct device_node *child; 2135 const phandle *handle; 2136 2137 handle = of_get_property(np, "l2-cache", NULL); 2138 if (!handle) 2139 handle = of_get_property(np, "next-level-cache", NULL); 2140 2141 if (handle) 2142 return of_find_node_by_phandle(be32_to_cpup(handle)); 2143 2144 /* OF on pmac has nodes instead of properties named "l2-cache" 2145 * beneath CPU nodes. 2146 */ 2147 if (!strcmp(np->type, "cpu")) 2148 for_each_child_of_node(np, child) 2149 if (!strcmp(child->type, "cache")) 2150 return child; 2151 2152 return NULL; 2153 } 2154 2155 /** 2156 * of_graph_parse_endpoint() - parse common endpoint node properties 2157 * @node: pointer to endpoint device_node 2158 * @endpoint: pointer to the OF endpoint data structure 2159 * 2160 * The caller should hold a reference to @node. 2161 */ 2162 int of_graph_parse_endpoint(const struct device_node *node, 2163 struct of_endpoint *endpoint) 2164 { 2165 struct device_node *port_node = of_get_parent(node); 2166 2167 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2168 __func__, node->full_name); 2169 2170 memset(endpoint, 0, sizeof(*endpoint)); 2171 2172 endpoint->local_node = node; 2173 /* 2174 * It doesn't matter whether the two calls below succeed. 2175 * If they don't then the default value 0 is used. 2176 */ 2177 of_property_read_u32(port_node, "reg", &endpoint->port); 2178 of_property_read_u32(node, "reg", &endpoint->id); 2179 2180 of_node_put(port_node); 2181 2182 return 0; 2183 } 2184 EXPORT_SYMBOL(of_graph_parse_endpoint); 2185 2186 /** 2187 * of_graph_get_next_endpoint() - get next endpoint node 2188 * @parent: pointer to the parent device node 2189 * @prev: previous endpoint node, or NULL to get first 2190 * 2191 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2192 * of the passed @prev node is not decremented, the caller have to use 2193 * of_node_put() on it when done. 2194 */ 2195 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2196 struct device_node *prev) 2197 { 2198 struct device_node *endpoint; 2199 struct device_node *port; 2200 2201 if (!parent) 2202 return NULL; 2203 2204 /* 2205 * Start by locating the port node. If no previous endpoint is specified 2206 * search for the first port node, otherwise get the previous endpoint 2207 * parent port node. 2208 */ 2209 if (!prev) { 2210 struct device_node *node; 2211 2212 node = of_get_child_by_name(parent, "ports"); 2213 if (node) 2214 parent = node; 2215 2216 port = of_get_child_by_name(parent, "port"); 2217 of_node_put(node); 2218 2219 if (!port) { 2220 pr_err("%s(): no port node found in %s\n", 2221 __func__, parent->full_name); 2222 return NULL; 2223 } 2224 } else { 2225 port = of_get_parent(prev); 2226 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2227 __func__, prev->full_name)) 2228 return NULL; 2229 2230 /* 2231 * Avoid dropping prev node refcount to 0 when getting the next 2232 * child below. 2233 */ 2234 of_node_get(prev); 2235 } 2236 2237 while (1) { 2238 /* 2239 * Now that we have a port node, get the next endpoint by 2240 * getting the next child. If the previous endpoint is NULL this 2241 * will return the first child. 2242 */ 2243 endpoint = of_get_next_child(port, prev); 2244 if (endpoint) { 2245 of_node_put(port); 2246 return endpoint; 2247 } 2248 2249 /* No more endpoints under this port, try the next one. */ 2250 prev = NULL; 2251 2252 do { 2253 port = of_get_next_child(parent, port); 2254 if (!port) 2255 return NULL; 2256 } while (of_node_cmp(port->name, "port")); 2257 } 2258 } 2259 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2260 2261 /** 2262 * of_graph_get_remote_port_parent() - get remote port's parent node 2263 * @node: pointer to a local endpoint device_node 2264 * 2265 * Return: Remote device node associated with remote endpoint node linked 2266 * to @node. Use of_node_put() on it when done. 2267 */ 2268 struct device_node *of_graph_get_remote_port_parent( 2269 const struct device_node *node) 2270 { 2271 struct device_node *np; 2272 unsigned int depth; 2273 2274 /* Get remote endpoint node. */ 2275 np = of_parse_phandle(node, "remote-endpoint", 0); 2276 2277 /* Walk 3 levels up only if there is 'ports' node. */ 2278 for (depth = 3; depth && np; depth--) { 2279 np = of_get_next_parent(np); 2280 if (depth == 2 && of_node_cmp(np->name, "ports")) 2281 break; 2282 } 2283 return np; 2284 } 2285 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2286 2287 /** 2288 * of_graph_get_remote_port() - get remote port node 2289 * @node: pointer to a local endpoint device_node 2290 * 2291 * Return: Remote port node associated with remote endpoint node linked 2292 * to @node. Use of_node_put() on it when done. 2293 */ 2294 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2295 { 2296 struct device_node *np; 2297 2298 /* Get remote endpoint node. */ 2299 np = of_parse_phandle(node, "remote-endpoint", 0); 2300 if (!np) 2301 return NULL; 2302 return of_get_next_parent(np); 2303 } 2304 EXPORT_SYMBOL(of_graph_get_remote_port); 2305