xref: /openbmc/linux/drivers/of/base.c (revision b34e08d5)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_graph.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/proc_fs.h>
29 
30 #include "of_private.h"
31 
32 LIST_HEAD(aliases_lookup);
33 
34 struct device_node *of_allnodes;
35 EXPORT_SYMBOL(of_allnodes);
36 struct device_node *of_chosen;
37 struct device_node *of_aliases;
38 static struct device_node *of_stdout;
39 
40 static struct kset *of_kset;
41 
42 /*
43  * Used to protect the of_aliases; but also overloaded to hold off addition of
44  * nodes to sysfs
45  */
46 DEFINE_MUTEX(of_aliases_mutex);
47 
48 /* use when traversing tree through the allnext, child, sibling,
49  * or parent members of struct device_node.
50  */
51 DEFINE_RAW_SPINLOCK(devtree_lock);
52 
53 int of_n_addr_cells(struct device_node *np)
54 {
55 	const __be32 *ip;
56 
57 	do {
58 		if (np->parent)
59 			np = np->parent;
60 		ip = of_get_property(np, "#address-cells", NULL);
61 		if (ip)
62 			return be32_to_cpup(ip);
63 	} while (np->parent);
64 	/* No #address-cells property for the root node */
65 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
66 }
67 EXPORT_SYMBOL(of_n_addr_cells);
68 
69 int of_n_size_cells(struct device_node *np)
70 {
71 	const __be32 *ip;
72 
73 	do {
74 		if (np->parent)
75 			np = np->parent;
76 		ip = of_get_property(np, "#size-cells", NULL);
77 		if (ip)
78 			return be32_to_cpup(ip);
79 	} while (np->parent);
80 	/* No #size-cells property for the root node */
81 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
82 }
83 EXPORT_SYMBOL(of_n_size_cells);
84 
85 #ifdef CONFIG_NUMA
86 int __weak of_node_to_nid(struct device_node *np)
87 {
88 	return numa_node_id();
89 }
90 #endif
91 
92 #if defined(CONFIG_OF_DYNAMIC)
93 /**
94  *	of_node_get - Increment refcount of a node
95  *	@node:	Node to inc refcount, NULL is supported to
96  *		simplify writing of callers
97  *
98  *	Returns node.
99  */
100 struct device_node *of_node_get(struct device_node *node)
101 {
102 	if (node)
103 		kobject_get(&node->kobj);
104 	return node;
105 }
106 EXPORT_SYMBOL(of_node_get);
107 
108 static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
109 {
110 	return container_of(kobj, struct device_node, kobj);
111 }
112 
113 /**
114  *	of_node_release - release a dynamically allocated node
115  *	@kref:  kref element of the node to be released
116  *
117  *	In of_node_put() this function is passed to kref_put()
118  *	as the destructor.
119  */
120 static void of_node_release(struct kobject *kobj)
121 {
122 	struct device_node *node = kobj_to_device_node(kobj);
123 	struct property *prop = node->properties;
124 
125 	/* We should never be releasing nodes that haven't been detached. */
126 	if (!of_node_check_flag(node, OF_DETACHED)) {
127 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
128 		dump_stack();
129 		return;
130 	}
131 
132 	if (!of_node_check_flag(node, OF_DYNAMIC))
133 		return;
134 
135 	while (prop) {
136 		struct property *next = prop->next;
137 		kfree(prop->name);
138 		kfree(prop->value);
139 		kfree(prop);
140 		prop = next;
141 
142 		if (!prop) {
143 			prop = node->deadprops;
144 			node->deadprops = NULL;
145 		}
146 	}
147 	kfree(node->full_name);
148 	kfree(node->data);
149 	kfree(node);
150 }
151 
152 /**
153  *	of_node_put - Decrement refcount of a node
154  *	@node:	Node to dec refcount, NULL is supported to
155  *		simplify writing of callers
156  *
157  */
158 void of_node_put(struct device_node *node)
159 {
160 	if (node)
161 		kobject_put(&node->kobj);
162 }
163 EXPORT_SYMBOL(of_node_put);
164 #else
165 static void of_node_release(struct kobject *kobj)
166 {
167 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
168 }
169 #endif /* CONFIG_OF_DYNAMIC */
170 
171 struct kobj_type of_node_ktype = {
172 	.release = of_node_release,
173 };
174 
175 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
176 				struct bin_attribute *bin_attr, char *buf,
177 				loff_t offset, size_t count)
178 {
179 	struct property *pp = container_of(bin_attr, struct property, attr);
180 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
181 }
182 
183 static const char *safe_name(struct kobject *kobj, const char *orig_name)
184 {
185 	const char *name = orig_name;
186 	struct kernfs_node *kn;
187 	int i = 0;
188 
189 	/* don't be a hero. After 16 tries give up */
190 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
191 		sysfs_put(kn);
192 		if (name != orig_name)
193 			kfree(name);
194 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
195 	}
196 
197 	if (name != orig_name)
198 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
199 			kobject_name(kobj), name);
200 	return name;
201 }
202 
203 static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
204 {
205 	int rc;
206 
207 	/* Important: Don't leak passwords */
208 	bool secure = strncmp(pp->name, "security-", 9) == 0;
209 
210 	sysfs_bin_attr_init(&pp->attr);
211 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
212 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
213 	pp->attr.size = secure ? 0 : pp->length;
214 	pp->attr.read = of_node_property_read;
215 
216 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
217 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
218 	return rc;
219 }
220 
221 static int __of_node_add(struct device_node *np)
222 {
223 	const char *name;
224 	struct property *pp;
225 	int rc;
226 
227 	np->kobj.kset = of_kset;
228 	if (!np->parent) {
229 		/* Nodes without parents are new top level trees */
230 		rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base"));
231 	} else {
232 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
233 		if (!name || !name[0])
234 			return -EINVAL;
235 
236 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
237 	}
238 	if (rc)
239 		return rc;
240 
241 	for_each_property_of_node(np, pp)
242 		__of_add_property_sysfs(np, pp);
243 
244 	return 0;
245 }
246 
247 int of_node_add(struct device_node *np)
248 {
249 	int rc = 0;
250 
251 	BUG_ON(!of_node_is_initialized(np));
252 
253 	/*
254 	 * Grab the mutex here so that in a race condition between of_init() and
255 	 * of_node_add(), node addition will still be consistent.
256 	 */
257 	mutex_lock(&of_aliases_mutex);
258 	if (of_kset)
259 		rc = __of_node_add(np);
260 	else
261 		/* This scenario may be perfectly valid, but report it anyway */
262 		pr_info("of_node_add(%s) before of_init()\n", np->full_name);
263 	mutex_unlock(&of_aliases_mutex);
264 	return rc;
265 }
266 
267 #if defined(CONFIG_OF_DYNAMIC)
268 static void of_node_remove(struct device_node *np)
269 {
270 	struct property *pp;
271 
272 	BUG_ON(!of_node_is_initialized(np));
273 
274 	/* only remove properties if on sysfs */
275 	if (of_node_is_attached(np)) {
276 		for_each_property_of_node(np, pp)
277 			sysfs_remove_bin_file(&np->kobj, &pp->attr);
278 		kobject_del(&np->kobj);
279 	}
280 
281 	/* finally remove the kobj_init ref */
282 	of_node_put(np);
283 }
284 #endif
285 
286 static int __init of_init(void)
287 {
288 	struct device_node *np;
289 
290 	/* Create the kset, and register existing nodes */
291 	mutex_lock(&of_aliases_mutex);
292 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
293 	if (!of_kset) {
294 		mutex_unlock(&of_aliases_mutex);
295 		return -ENOMEM;
296 	}
297 	for_each_of_allnodes(np)
298 		__of_node_add(np);
299 	mutex_unlock(&of_aliases_mutex);
300 
301 	/* Symlink in /proc as required by userspace ABI */
302 	if (of_allnodes)
303 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
304 
305 	return 0;
306 }
307 core_initcall(of_init);
308 
309 static struct property *__of_find_property(const struct device_node *np,
310 					   const char *name, int *lenp)
311 {
312 	struct property *pp;
313 
314 	if (!np)
315 		return NULL;
316 
317 	for (pp = np->properties; pp; pp = pp->next) {
318 		if (of_prop_cmp(pp->name, name) == 0) {
319 			if (lenp)
320 				*lenp = pp->length;
321 			break;
322 		}
323 	}
324 
325 	return pp;
326 }
327 
328 struct property *of_find_property(const struct device_node *np,
329 				  const char *name,
330 				  int *lenp)
331 {
332 	struct property *pp;
333 	unsigned long flags;
334 
335 	raw_spin_lock_irqsave(&devtree_lock, flags);
336 	pp = __of_find_property(np, name, lenp);
337 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
338 
339 	return pp;
340 }
341 EXPORT_SYMBOL(of_find_property);
342 
343 /**
344  * of_find_all_nodes - Get next node in global list
345  * @prev:	Previous node or NULL to start iteration
346  *		of_node_put() will be called on it
347  *
348  * Returns a node pointer with refcount incremented, use
349  * of_node_put() on it when done.
350  */
351 struct device_node *of_find_all_nodes(struct device_node *prev)
352 {
353 	struct device_node *np;
354 	unsigned long flags;
355 
356 	raw_spin_lock_irqsave(&devtree_lock, flags);
357 	np = prev ? prev->allnext : of_allnodes;
358 	for (; np != NULL; np = np->allnext)
359 		if (of_node_get(np))
360 			break;
361 	of_node_put(prev);
362 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
363 	return np;
364 }
365 EXPORT_SYMBOL(of_find_all_nodes);
366 
367 /*
368  * Find a property with a given name for a given node
369  * and return the value.
370  */
371 static const void *__of_get_property(const struct device_node *np,
372 				     const char *name, int *lenp)
373 {
374 	struct property *pp = __of_find_property(np, name, lenp);
375 
376 	return pp ? pp->value : NULL;
377 }
378 
379 /*
380  * Find a property with a given name for a given node
381  * and return the value.
382  */
383 const void *of_get_property(const struct device_node *np, const char *name,
384 			    int *lenp)
385 {
386 	struct property *pp = of_find_property(np, name, lenp);
387 
388 	return pp ? pp->value : NULL;
389 }
390 EXPORT_SYMBOL(of_get_property);
391 
392 /*
393  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
394  *
395  * @cpu: logical cpu index of a core/thread
396  * @phys_id: physical identifier of a core/thread
397  *
398  * CPU logical to physical index mapping is architecture specific.
399  * However this __weak function provides a default match of physical
400  * id to logical cpu index. phys_id provided here is usually values read
401  * from the device tree which must match the hardware internal registers.
402  *
403  * Returns true if the physical identifier and the logical cpu index
404  * correspond to the same core/thread, false otherwise.
405  */
406 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
407 {
408 	return (u32)phys_id == cpu;
409 }
410 
411 /**
412  * Checks if the given "prop_name" property holds the physical id of the
413  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
414  * NULL, local thread number within the core is returned in it.
415  */
416 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
417 			const char *prop_name, int cpu, unsigned int *thread)
418 {
419 	const __be32 *cell;
420 	int ac, prop_len, tid;
421 	u64 hwid;
422 
423 	ac = of_n_addr_cells(cpun);
424 	cell = of_get_property(cpun, prop_name, &prop_len);
425 	if (!cell || !ac)
426 		return false;
427 	prop_len /= sizeof(*cell) * ac;
428 	for (tid = 0; tid < prop_len; tid++) {
429 		hwid = of_read_number(cell, ac);
430 		if (arch_match_cpu_phys_id(cpu, hwid)) {
431 			if (thread)
432 				*thread = tid;
433 			return true;
434 		}
435 		cell += ac;
436 	}
437 	return false;
438 }
439 
440 /*
441  * arch_find_n_match_cpu_physical_id - See if the given device node is
442  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
443  * else false.  If 'thread' is non-NULL, the local thread number within the
444  * core is returned in it.
445  */
446 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
447 					      int cpu, unsigned int *thread)
448 {
449 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
450 	 * for thread ids on PowerPC. If it doesn't exist fallback to
451 	 * standard "reg" property.
452 	 */
453 	if (IS_ENABLED(CONFIG_PPC) &&
454 	    __of_find_n_match_cpu_property(cpun,
455 					   "ibm,ppc-interrupt-server#s",
456 					   cpu, thread))
457 		return true;
458 
459 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
460 		return true;
461 
462 	return false;
463 }
464 
465 /**
466  * of_get_cpu_node - Get device node associated with the given logical CPU
467  *
468  * @cpu: CPU number(logical index) for which device node is required
469  * @thread: if not NULL, local thread number within the physical core is
470  *          returned
471  *
472  * The main purpose of this function is to retrieve the device node for the
473  * given logical CPU index. It should be used to initialize the of_node in
474  * cpu device. Once of_node in cpu device is populated, all the further
475  * references can use that instead.
476  *
477  * CPU logical to physical index mapping is architecture specific and is built
478  * before booting secondary cores. This function uses arch_match_cpu_phys_id
479  * which can be overridden by architecture specific implementation.
480  *
481  * Returns a node pointer for the logical cpu if found, else NULL.
482  */
483 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
484 {
485 	struct device_node *cpun;
486 
487 	for_each_node_by_type(cpun, "cpu") {
488 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
489 			return cpun;
490 	}
491 	return NULL;
492 }
493 EXPORT_SYMBOL(of_get_cpu_node);
494 
495 /**
496  * __of_device_is_compatible() - Check if the node matches given constraints
497  * @device: pointer to node
498  * @compat: required compatible string, NULL or "" for any match
499  * @type: required device_type value, NULL or "" for any match
500  * @name: required node name, NULL or "" for any match
501  *
502  * Checks if the given @compat, @type and @name strings match the
503  * properties of the given @device. A constraints can be skipped by
504  * passing NULL or an empty string as the constraint.
505  *
506  * Returns 0 for no match, and a positive integer on match. The return
507  * value is a relative score with larger values indicating better
508  * matches. The score is weighted for the most specific compatible value
509  * to get the highest score. Matching type is next, followed by matching
510  * name. Practically speaking, this results in the following priority
511  * order for matches:
512  *
513  * 1. specific compatible && type && name
514  * 2. specific compatible && type
515  * 3. specific compatible && name
516  * 4. specific compatible
517  * 5. general compatible && type && name
518  * 6. general compatible && type
519  * 7. general compatible && name
520  * 8. general compatible
521  * 9. type && name
522  * 10. type
523  * 11. name
524  */
525 static int __of_device_is_compatible(const struct device_node *device,
526 				     const char *compat, const char *type, const char *name)
527 {
528 	struct property *prop;
529 	const char *cp;
530 	int index = 0, score = 0;
531 
532 	/* Compatible match has highest priority */
533 	if (compat && compat[0]) {
534 		prop = __of_find_property(device, "compatible", NULL);
535 		for (cp = of_prop_next_string(prop, NULL); cp;
536 		     cp = of_prop_next_string(prop, cp), index++) {
537 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
538 				score = INT_MAX/2 - (index << 2);
539 				break;
540 			}
541 		}
542 		if (!score)
543 			return 0;
544 	}
545 
546 	/* Matching type is better than matching name */
547 	if (type && type[0]) {
548 		if (!device->type || of_node_cmp(type, device->type))
549 			return 0;
550 		score += 2;
551 	}
552 
553 	/* Matching name is a bit better than not */
554 	if (name && name[0]) {
555 		if (!device->name || of_node_cmp(name, device->name))
556 			return 0;
557 		score++;
558 	}
559 
560 	return score;
561 }
562 
563 /** Checks if the given "compat" string matches one of the strings in
564  * the device's "compatible" property
565  */
566 int of_device_is_compatible(const struct device_node *device,
567 		const char *compat)
568 {
569 	unsigned long flags;
570 	int res;
571 
572 	raw_spin_lock_irqsave(&devtree_lock, flags);
573 	res = __of_device_is_compatible(device, compat, NULL, NULL);
574 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
575 	return res;
576 }
577 EXPORT_SYMBOL(of_device_is_compatible);
578 
579 /**
580  * of_machine_is_compatible - Test root of device tree for a given compatible value
581  * @compat: compatible string to look for in root node's compatible property.
582  *
583  * Returns true if the root node has the given value in its
584  * compatible property.
585  */
586 int of_machine_is_compatible(const char *compat)
587 {
588 	struct device_node *root;
589 	int rc = 0;
590 
591 	root = of_find_node_by_path("/");
592 	if (root) {
593 		rc = of_device_is_compatible(root, compat);
594 		of_node_put(root);
595 	}
596 	return rc;
597 }
598 EXPORT_SYMBOL(of_machine_is_compatible);
599 
600 /**
601  *  __of_device_is_available - check if a device is available for use
602  *
603  *  @device: Node to check for availability, with locks already held
604  *
605  *  Returns 1 if the status property is absent or set to "okay" or "ok",
606  *  0 otherwise
607  */
608 static int __of_device_is_available(const struct device_node *device)
609 {
610 	const char *status;
611 	int statlen;
612 
613 	if (!device)
614 		return 0;
615 
616 	status = __of_get_property(device, "status", &statlen);
617 	if (status == NULL)
618 		return 1;
619 
620 	if (statlen > 0) {
621 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
622 			return 1;
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  *  of_device_is_available - check if a device is available for use
630  *
631  *  @device: Node to check for availability
632  *
633  *  Returns 1 if the status property is absent or set to "okay" or "ok",
634  *  0 otherwise
635  */
636 int of_device_is_available(const struct device_node *device)
637 {
638 	unsigned long flags;
639 	int res;
640 
641 	raw_spin_lock_irqsave(&devtree_lock, flags);
642 	res = __of_device_is_available(device);
643 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 	return res;
645 
646 }
647 EXPORT_SYMBOL(of_device_is_available);
648 
649 /**
650  *	of_get_parent - Get a node's parent if any
651  *	@node:	Node to get parent
652  *
653  *	Returns a node pointer with refcount incremented, use
654  *	of_node_put() on it when done.
655  */
656 struct device_node *of_get_parent(const struct device_node *node)
657 {
658 	struct device_node *np;
659 	unsigned long flags;
660 
661 	if (!node)
662 		return NULL;
663 
664 	raw_spin_lock_irqsave(&devtree_lock, flags);
665 	np = of_node_get(node->parent);
666 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
667 	return np;
668 }
669 EXPORT_SYMBOL(of_get_parent);
670 
671 /**
672  *	of_get_next_parent - Iterate to a node's parent
673  *	@node:	Node to get parent of
674  *
675  * 	This is like of_get_parent() except that it drops the
676  * 	refcount on the passed node, making it suitable for iterating
677  * 	through a node's parents.
678  *
679  *	Returns a node pointer with refcount incremented, use
680  *	of_node_put() on it when done.
681  */
682 struct device_node *of_get_next_parent(struct device_node *node)
683 {
684 	struct device_node *parent;
685 	unsigned long flags;
686 
687 	if (!node)
688 		return NULL;
689 
690 	raw_spin_lock_irqsave(&devtree_lock, flags);
691 	parent = of_node_get(node->parent);
692 	of_node_put(node);
693 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 	return parent;
695 }
696 EXPORT_SYMBOL(of_get_next_parent);
697 
698 /**
699  *	of_get_next_child - Iterate a node childs
700  *	@node:	parent node
701  *	@prev:	previous child of the parent node, or NULL to get first
702  *
703  *	Returns a node pointer with refcount incremented, use
704  *	of_node_put() on it when done.
705  */
706 struct device_node *of_get_next_child(const struct device_node *node,
707 	struct device_node *prev)
708 {
709 	struct device_node *next;
710 	unsigned long flags;
711 
712 	raw_spin_lock_irqsave(&devtree_lock, flags);
713 	next = prev ? prev->sibling : node->child;
714 	for (; next; next = next->sibling)
715 		if (of_node_get(next))
716 			break;
717 	of_node_put(prev);
718 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
719 	return next;
720 }
721 EXPORT_SYMBOL(of_get_next_child);
722 
723 /**
724  *	of_get_next_available_child - Find the next available child node
725  *	@node:	parent node
726  *	@prev:	previous child of the parent node, or NULL to get first
727  *
728  *      This function is like of_get_next_child(), except that it
729  *      automatically skips any disabled nodes (i.e. status = "disabled").
730  */
731 struct device_node *of_get_next_available_child(const struct device_node *node,
732 	struct device_node *prev)
733 {
734 	struct device_node *next;
735 	unsigned long flags;
736 
737 	raw_spin_lock_irqsave(&devtree_lock, flags);
738 	next = prev ? prev->sibling : node->child;
739 	for (; next; next = next->sibling) {
740 		if (!__of_device_is_available(next))
741 			continue;
742 		if (of_node_get(next))
743 			break;
744 	}
745 	of_node_put(prev);
746 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
747 	return next;
748 }
749 EXPORT_SYMBOL(of_get_next_available_child);
750 
751 /**
752  *	of_get_child_by_name - Find the child node by name for a given parent
753  *	@node:	parent node
754  *	@name:	child name to look for.
755  *
756  *      This function looks for child node for given matching name
757  *
758  *	Returns a node pointer if found, with refcount incremented, use
759  *	of_node_put() on it when done.
760  *	Returns NULL if node is not found.
761  */
762 struct device_node *of_get_child_by_name(const struct device_node *node,
763 				const char *name)
764 {
765 	struct device_node *child;
766 
767 	for_each_child_of_node(node, child)
768 		if (child->name && (of_node_cmp(child->name, name) == 0))
769 			break;
770 	return child;
771 }
772 EXPORT_SYMBOL(of_get_child_by_name);
773 
774 /**
775  *	of_find_node_by_path - Find a node matching a full OF path
776  *	@path:	The full path to match
777  *
778  *	Returns a node pointer with refcount incremented, use
779  *	of_node_put() on it when done.
780  */
781 struct device_node *of_find_node_by_path(const char *path)
782 {
783 	struct device_node *np = of_allnodes;
784 	unsigned long flags;
785 
786 	raw_spin_lock_irqsave(&devtree_lock, flags);
787 	for (; np; np = np->allnext) {
788 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
789 		    && of_node_get(np))
790 			break;
791 	}
792 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
793 	return np;
794 }
795 EXPORT_SYMBOL(of_find_node_by_path);
796 
797 /**
798  *	of_find_node_by_name - Find a node by its "name" property
799  *	@from:	The node to start searching from or NULL, the node
800  *		you pass will not be searched, only the next one
801  *		will; typically, you pass what the previous call
802  *		returned. of_node_put() will be called on it
803  *	@name:	The name string to match against
804  *
805  *	Returns a node pointer with refcount incremented, use
806  *	of_node_put() on it when done.
807  */
808 struct device_node *of_find_node_by_name(struct device_node *from,
809 	const char *name)
810 {
811 	struct device_node *np;
812 	unsigned long flags;
813 
814 	raw_spin_lock_irqsave(&devtree_lock, flags);
815 	np = from ? from->allnext : of_allnodes;
816 	for (; np; np = np->allnext)
817 		if (np->name && (of_node_cmp(np->name, name) == 0)
818 		    && of_node_get(np))
819 			break;
820 	of_node_put(from);
821 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
822 	return np;
823 }
824 EXPORT_SYMBOL(of_find_node_by_name);
825 
826 /**
827  *	of_find_node_by_type - Find a node by its "device_type" property
828  *	@from:	The node to start searching from, or NULL to start searching
829  *		the entire device tree. The node you pass will not be
830  *		searched, only the next one will; typically, you pass
831  *		what the previous call returned. of_node_put() will be
832  *		called on from for you.
833  *	@type:	The type string to match against
834  *
835  *	Returns a node pointer with refcount incremented, use
836  *	of_node_put() on it when done.
837  */
838 struct device_node *of_find_node_by_type(struct device_node *from,
839 	const char *type)
840 {
841 	struct device_node *np;
842 	unsigned long flags;
843 
844 	raw_spin_lock_irqsave(&devtree_lock, flags);
845 	np = from ? from->allnext : of_allnodes;
846 	for (; np; np = np->allnext)
847 		if (np->type && (of_node_cmp(np->type, type) == 0)
848 		    && of_node_get(np))
849 			break;
850 	of_node_put(from);
851 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
852 	return np;
853 }
854 EXPORT_SYMBOL(of_find_node_by_type);
855 
856 /**
857  *	of_find_compatible_node - Find a node based on type and one of the
858  *                                tokens in its "compatible" property
859  *	@from:		The node to start searching from or NULL, the node
860  *			you pass will not be searched, only the next one
861  *			will; typically, you pass what the previous call
862  *			returned. of_node_put() will be called on it
863  *	@type:		The type string to match "device_type" or NULL to ignore
864  *	@compatible:	The string to match to one of the tokens in the device
865  *			"compatible" list.
866  *
867  *	Returns a node pointer with refcount incremented, use
868  *	of_node_put() on it when done.
869  */
870 struct device_node *of_find_compatible_node(struct device_node *from,
871 	const char *type, const char *compatible)
872 {
873 	struct device_node *np;
874 	unsigned long flags;
875 
876 	raw_spin_lock_irqsave(&devtree_lock, flags);
877 	np = from ? from->allnext : of_allnodes;
878 	for (; np; np = np->allnext) {
879 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
880 		    of_node_get(np))
881 			break;
882 	}
883 	of_node_put(from);
884 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
885 	return np;
886 }
887 EXPORT_SYMBOL(of_find_compatible_node);
888 
889 /**
890  *	of_find_node_with_property - Find a node which has a property with
891  *                                   the given name.
892  *	@from:		The node to start searching from or NULL, the node
893  *			you pass will not be searched, only the next one
894  *			will; typically, you pass what the previous call
895  *			returned. of_node_put() will be called on it
896  *	@prop_name:	The name of the property to look for.
897  *
898  *	Returns a node pointer with refcount incremented, use
899  *	of_node_put() on it when done.
900  */
901 struct device_node *of_find_node_with_property(struct device_node *from,
902 	const char *prop_name)
903 {
904 	struct device_node *np;
905 	struct property *pp;
906 	unsigned long flags;
907 
908 	raw_spin_lock_irqsave(&devtree_lock, flags);
909 	np = from ? from->allnext : of_allnodes;
910 	for (; np; np = np->allnext) {
911 		for (pp = np->properties; pp; pp = pp->next) {
912 			if (of_prop_cmp(pp->name, prop_name) == 0) {
913 				of_node_get(np);
914 				goto out;
915 			}
916 		}
917 	}
918 out:
919 	of_node_put(from);
920 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
921 	return np;
922 }
923 EXPORT_SYMBOL(of_find_node_with_property);
924 
925 static
926 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
927 					   const struct device_node *node)
928 {
929 	const struct of_device_id *best_match = NULL;
930 	int score, best_score = 0;
931 
932 	if (!matches)
933 		return NULL;
934 
935 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
936 		score = __of_device_is_compatible(node, matches->compatible,
937 						  matches->type, matches->name);
938 		if (score > best_score) {
939 			best_match = matches;
940 			best_score = score;
941 		}
942 	}
943 
944 	return best_match;
945 }
946 
947 /**
948  * of_match_node - Tell if an device_node has a matching of_match structure
949  *	@matches:	array of of device match structures to search in
950  *	@node:		the of device structure to match against
951  *
952  *	Low level utility function used by device matching.
953  */
954 const struct of_device_id *of_match_node(const struct of_device_id *matches,
955 					 const struct device_node *node)
956 {
957 	const struct of_device_id *match;
958 	unsigned long flags;
959 
960 	raw_spin_lock_irqsave(&devtree_lock, flags);
961 	match = __of_match_node(matches, node);
962 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
963 	return match;
964 }
965 EXPORT_SYMBOL(of_match_node);
966 
967 /**
968  *	of_find_matching_node_and_match - Find a node based on an of_device_id
969  *					  match table.
970  *	@from:		The node to start searching from or NULL, the node
971  *			you pass will not be searched, only the next one
972  *			will; typically, you pass what the previous call
973  *			returned. of_node_put() will be called on it
974  *	@matches:	array of of device match structures to search in
975  *	@match		Updated to point at the matches entry which matched
976  *
977  *	Returns a node pointer with refcount incremented, use
978  *	of_node_put() on it when done.
979  */
980 struct device_node *of_find_matching_node_and_match(struct device_node *from,
981 					const struct of_device_id *matches,
982 					const struct of_device_id **match)
983 {
984 	struct device_node *np;
985 	const struct of_device_id *m;
986 	unsigned long flags;
987 
988 	if (match)
989 		*match = NULL;
990 
991 	raw_spin_lock_irqsave(&devtree_lock, flags);
992 	np = from ? from->allnext : of_allnodes;
993 	for (; np; np = np->allnext) {
994 		m = __of_match_node(matches, np);
995 		if (m && of_node_get(np)) {
996 			if (match)
997 				*match = m;
998 			break;
999 		}
1000 	}
1001 	of_node_put(from);
1002 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1003 	return np;
1004 }
1005 EXPORT_SYMBOL(of_find_matching_node_and_match);
1006 
1007 /**
1008  * of_modalias_node - Lookup appropriate modalias for a device node
1009  * @node:	pointer to a device tree node
1010  * @modalias:	Pointer to buffer that modalias value will be copied into
1011  * @len:	Length of modalias value
1012  *
1013  * Based on the value of the compatible property, this routine will attempt
1014  * to choose an appropriate modalias value for a particular device tree node.
1015  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1016  * from the first entry in the compatible list property.
1017  *
1018  * This routine returns 0 on success, <0 on failure.
1019  */
1020 int of_modalias_node(struct device_node *node, char *modalias, int len)
1021 {
1022 	const char *compatible, *p;
1023 	int cplen;
1024 
1025 	compatible = of_get_property(node, "compatible", &cplen);
1026 	if (!compatible || strlen(compatible) > cplen)
1027 		return -ENODEV;
1028 	p = strchr(compatible, ',');
1029 	strlcpy(modalias, p ? p + 1 : compatible, len);
1030 	return 0;
1031 }
1032 EXPORT_SYMBOL_GPL(of_modalias_node);
1033 
1034 /**
1035  * of_find_node_by_phandle - Find a node given a phandle
1036  * @handle:	phandle of the node to find
1037  *
1038  * Returns a node pointer with refcount incremented, use
1039  * of_node_put() on it when done.
1040  */
1041 struct device_node *of_find_node_by_phandle(phandle handle)
1042 {
1043 	struct device_node *np;
1044 	unsigned long flags;
1045 
1046 	raw_spin_lock_irqsave(&devtree_lock, flags);
1047 	for (np = of_allnodes; np; np = np->allnext)
1048 		if (np->phandle == handle)
1049 			break;
1050 	of_node_get(np);
1051 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1052 	return np;
1053 }
1054 EXPORT_SYMBOL(of_find_node_by_phandle);
1055 
1056 /**
1057  * of_property_count_elems_of_size - Count the number of elements in a property
1058  *
1059  * @np:		device node from which the property value is to be read.
1060  * @propname:	name of the property to be searched.
1061  * @elem_size:	size of the individual element
1062  *
1063  * Search for a property in a device node and count the number of elements of
1064  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1065  * property does not exist or its length does not match a multiple of elem_size
1066  * and -ENODATA if the property does not have a value.
1067  */
1068 int of_property_count_elems_of_size(const struct device_node *np,
1069 				const char *propname, int elem_size)
1070 {
1071 	struct property *prop = of_find_property(np, propname, NULL);
1072 
1073 	if (!prop)
1074 		return -EINVAL;
1075 	if (!prop->value)
1076 		return -ENODATA;
1077 
1078 	if (prop->length % elem_size != 0) {
1079 		pr_err("size of %s in node %s is not a multiple of %d\n",
1080 		       propname, np->full_name, elem_size);
1081 		return -EINVAL;
1082 	}
1083 
1084 	return prop->length / elem_size;
1085 }
1086 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1087 
1088 /**
1089  * of_find_property_value_of_size
1090  *
1091  * @np:		device node from which the property value is to be read.
1092  * @propname:	name of the property to be searched.
1093  * @len:	requested length of property value
1094  *
1095  * Search for a property in a device node and valid the requested size.
1096  * Returns the property value on success, -EINVAL if the property does not
1097  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1098  * property data isn't large enough.
1099  *
1100  */
1101 static void *of_find_property_value_of_size(const struct device_node *np,
1102 			const char *propname, u32 len)
1103 {
1104 	struct property *prop = of_find_property(np, propname, NULL);
1105 
1106 	if (!prop)
1107 		return ERR_PTR(-EINVAL);
1108 	if (!prop->value)
1109 		return ERR_PTR(-ENODATA);
1110 	if (len > prop->length)
1111 		return ERR_PTR(-EOVERFLOW);
1112 
1113 	return prop->value;
1114 }
1115 
1116 /**
1117  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1118  *
1119  * @np:		device node from which the property value is to be read.
1120  * @propname:	name of the property to be searched.
1121  * @index:	index of the u32 in the list of values
1122  * @out_value:	pointer to return value, modified only if no error.
1123  *
1124  * Search for a property in a device node and read nth 32-bit value from
1125  * it. Returns 0 on success, -EINVAL if the property does not exist,
1126  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1127  * property data isn't large enough.
1128  *
1129  * The out_value is modified only if a valid u32 value can be decoded.
1130  */
1131 int of_property_read_u32_index(const struct device_node *np,
1132 				       const char *propname,
1133 				       u32 index, u32 *out_value)
1134 {
1135 	const u32 *val = of_find_property_value_of_size(np, propname,
1136 					((index + 1) * sizeof(*out_value)));
1137 
1138 	if (IS_ERR(val))
1139 		return PTR_ERR(val);
1140 
1141 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1145 
1146 /**
1147  * of_property_read_u8_array - Find and read an array of u8 from a property.
1148  *
1149  * @np:		device node from which the property value is to be read.
1150  * @propname:	name of the property to be searched.
1151  * @out_values:	pointer to return value, modified only if return value is 0.
1152  * @sz:		number of array elements to read
1153  *
1154  * Search for a property in a device node and read 8-bit value(s) from
1155  * it. Returns 0 on success, -EINVAL if the property does not exist,
1156  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1157  * property data isn't large enough.
1158  *
1159  * dts entry of array should be like:
1160  *	property = /bits/ 8 <0x50 0x60 0x70>;
1161  *
1162  * The out_values is modified only if a valid u8 value can be decoded.
1163  */
1164 int of_property_read_u8_array(const struct device_node *np,
1165 			const char *propname, u8 *out_values, size_t sz)
1166 {
1167 	const u8 *val = of_find_property_value_of_size(np, propname,
1168 						(sz * sizeof(*out_values)));
1169 
1170 	if (IS_ERR(val))
1171 		return PTR_ERR(val);
1172 
1173 	while (sz--)
1174 		*out_values++ = *val++;
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1178 
1179 /**
1180  * of_property_read_u16_array - Find and read an array of u16 from a property.
1181  *
1182  * @np:		device node from which the property value is to be read.
1183  * @propname:	name of the property to be searched.
1184  * @out_values:	pointer to return value, modified only if return value is 0.
1185  * @sz:		number of array elements to read
1186  *
1187  * Search for a property in a device node and read 16-bit value(s) from
1188  * it. Returns 0 on success, -EINVAL if the property does not exist,
1189  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1190  * property data isn't large enough.
1191  *
1192  * dts entry of array should be like:
1193  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1194  *
1195  * The out_values is modified only if a valid u16 value can be decoded.
1196  */
1197 int of_property_read_u16_array(const struct device_node *np,
1198 			const char *propname, u16 *out_values, size_t sz)
1199 {
1200 	const __be16 *val = of_find_property_value_of_size(np, propname,
1201 						(sz * sizeof(*out_values)));
1202 
1203 	if (IS_ERR(val))
1204 		return PTR_ERR(val);
1205 
1206 	while (sz--)
1207 		*out_values++ = be16_to_cpup(val++);
1208 	return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1211 
1212 /**
1213  * of_property_read_u32_array - Find and read an array of 32 bit integers
1214  * from a property.
1215  *
1216  * @np:		device node from which the property value is to be read.
1217  * @propname:	name of the property to be searched.
1218  * @out_values:	pointer to return value, modified only if return value is 0.
1219  * @sz:		number of array elements to read
1220  *
1221  * Search for a property in a device node and read 32-bit value(s) from
1222  * it. Returns 0 on success, -EINVAL if the property does not exist,
1223  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1224  * property data isn't large enough.
1225  *
1226  * The out_values is modified only if a valid u32 value can be decoded.
1227  */
1228 int of_property_read_u32_array(const struct device_node *np,
1229 			       const char *propname, u32 *out_values,
1230 			       size_t sz)
1231 {
1232 	const __be32 *val = of_find_property_value_of_size(np, propname,
1233 						(sz * sizeof(*out_values)));
1234 
1235 	if (IS_ERR(val))
1236 		return PTR_ERR(val);
1237 
1238 	while (sz--)
1239 		*out_values++ = be32_to_cpup(val++);
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1243 
1244 /**
1245  * of_property_read_u64 - Find and read a 64 bit integer from a property
1246  * @np:		device node from which the property value is to be read.
1247  * @propname:	name of the property to be searched.
1248  * @out_value:	pointer to return value, modified only if return value is 0.
1249  *
1250  * Search for a property in a device node and read a 64-bit value from
1251  * it. Returns 0 on success, -EINVAL if the property does not exist,
1252  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1253  * property data isn't large enough.
1254  *
1255  * The out_value is modified only if a valid u64 value can be decoded.
1256  */
1257 int of_property_read_u64(const struct device_node *np, const char *propname,
1258 			 u64 *out_value)
1259 {
1260 	const __be32 *val = of_find_property_value_of_size(np, propname,
1261 						sizeof(*out_value));
1262 
1263 	if (IS_ERR(val))
1264 		return PTR_ERR(val);
1265 
1266 	*out_value = of_read_number(val, 2);
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(of_property_read_u64);
1270 
1271 /**
1272  * of_property_read_string - Find and read a string from a property
1273  * @np:		device node from which the property value is to be read.
1274  * @propname:	name of the property to be searched.
1275  * @out_string:	pointer to null terminated return string, modified only if
1276  *		return value is 0.
1277  *
1278  * Search for a property in a device tree node and retrieve a null
1279  * terminated string value (pointer to data, not a copy). Returns 0 on
1280  * success, -EINVAL if the property does not exist, -ENODATA if property
1281  * does not have a value, and -EILSEQ if the string is not null-terminated
1282  * within the length of the property data.
1283  *
1284  * The out_string pointer is modified only if a valid string can be decoded.
1285  */
1286 int of_property_read_string(struct device_node *np, const char *propname,
1287 				const char **out_string)
1288 {
1289 	struct property *prop = of_find_property(np, propname, NULL);
1290 	if (!prop)
1291 		return -EINVAL;
1292 	if (!prop->value)
1293 		return -ENODATA;
1294 	if (strnlen(prop->value, prop->length) >= prop->length)
1295 		return -EILSEQ;
1296 	*out_string = prop->value;
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL_GPL(of_property_read_string);
1300 
1301 /**
1302  * of_property_read_string_index - Find and read a string from a multiple
1303  * strings property.
1304  * @np:		device node from which the property value is to be read.
1305  * @propname:	name of the property to be searched.
1306  * @index:	index of the string in the list of strings
1307  * @out_string:	pointer to null terminated return string, modified only if
1308  *		return value is 0.
1309  *
1310  * Search for a property in a device tree node and retrieve a null
1311  * terminated string value (pointer to data, not a copy) in the list of strings
1312  * contained in that property.
1313  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1314  * property does not have a value, and -EILSEQ if the string is not
1315  * null-terminated within the length of the property data.
1316  *
1317  * The out_string pointer is modified only if a valid string can be decoded.
1318  */
1319 int of_property_read_string_index(struct device_node *np, const char *propname,
1320 				  int index, const char **output)
1321 {
1322 	struct property *prop = of_find_property(np, propname, NULL);
1323 	int i = 0;
1324 	size_t l = 0, total = 0;
1325 	const char *p;
1326 
1327 	if (!prop)
1328 		return -EINVAL;
1329 	if (!prop->value)
1330 		return -ENODATA;
1331 	if (strnlen(prop->value, prop->length) >= prop->length)
1332 		return -EILSEQ;
1333 
1334 	p = prop->value;
1335 
1336 	for (i = 0; total < prop->length; total += l, p += l) {
1337 		l = strlen(p) + 1;
1338 		if (i++ == index) {
1339 			*output = p;
1340 			return 0;
1341 		}
1342 	}
1343 	return -ENODATA;
1344 }
1345 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1346 
1347 /**
1348  * of_property_match_string() - Find string in a list and return index
1349  * @np: pointer to node containing string list property
1350  * @propname: string list property name
1351  * @string: pointer to string to search for in string list
1352  *
1353  * This function searches a string list property and returns the index
1354  * of a specific string value.
1355  */
1356 int of_property_match_string(struct device_node *np, const char *propname,
1357 			     const char *string)
1358 {
1359 	struct property *prop = of_find_property(np, propname, NULL);
1360 	size_t l;
1361 	int i;
1362 	const char *p, *end;
1363 
1364 	if (!prop)
1365 		return -EINVAL;
1366 	if (!prop->value)
1367 		return -ENODATA;
1368 
1369 	p = prop->value;
1370 	end = p + prop->length;
1371 
1372 	for (i = 0; p < end; i++, p += l) {
1373 		l = strlen(p) + 1;
1374 		if (p + l > end)
1375 			return -EILSEQ;
1376 		pr_debug("comparing %s with %s\n", string, p);
1377 		if (strcmp(string, p) == 0)
1378 			return i; /* Found it; return index */
1379 	}
1380 	return -ENODATA;
1381 }
1382 EXPORT_SYMBOL_GPL(of_property_match_string);
1383 
1384 /**
1385  * of_property_count_strings - Find and return the number of strings from a
1386  * multiple strings property.
1387  * @np:		device node from which the property value is to be read.
1388  * @propname:	name of the property to be searched.
1389  *
1390  * Search for a property in a device tree node and retrieve the number of null
1391  * terminated string contain in it. Returns the number of strings on
1392  * success, -EINVAL if the property does not exist, -ENODATA if property
1393  * does not have a value, and -EILSEQ if the string is not null-terminated
1394  * within the length of the property data.
1395  */
1396 int of_property_count_strings(struct device_node *np, const char *propname)
1397 {
1398 	struct property *prop = of_find_property(np, propname, NULL);
1399 	int i = 0;
1400 	size_t l = 0, total = 0;
1401 	const char *p;
1402 
1403 	if (!prop)
1404 		return -EINVAL;
1405 	if (!prop->value)
1406 		return -ENODATA;
1407 	if (strnlen(prop->value, prop->length) >= prop->length)
1408 		return -EILSEQ;
1409 
1410 	p = prop->value;
1411 
1412 	for (i = 0; total < prop->length; total += l, p += l, i++)
1413 		l = strlen(p) + 1;
1414 
1415 	return i;
1416 }
1417 EXPORT_SYMBOL_GPL(of_property_count_strings);
1418 
1419 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1420 {
1421 	int i;
1422 	printk("%s %s", msg, of_node_full_name(args->np));
1423 	for (i = 0; i < args->args_count; i++)
1424 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1425 	printk("\n");
1426 }
1427 
1428 static int __of_parse_phandle_with_args(const struct device_node *np,
1429 					const char *list_name,
1430 					const char *cells_name,
1431 					int cell_count, int index,
1432 					struct of_phandle_args *out_args)
1433 {
1434 	const __be32 *list, *list_end;
1435 	int rc = 0, size, cur_index = 0;
1436 	uint32_t count = 0;
1437 	struct device_node *node = NULL;
1438 	phandle phandle;
1439 
1440 	/* Retrieve the phandle list property */
1441 	list = of_get_property(np, list_name, &size);
1442 	if (!list)
1443 		return -ENOENT;
1444 	list_end = list + size / sizeof(*list);
1445 
1446 	/* Loop over the phandles until all the requested entry is found */
1447 	while (list < list_end) {
1448 		rc = -EINVAL;
1449 		count = 0;
1450 
1451 		/*
1452 		 * If phandle is 0, then it is an empty entry with no
1453 		 * arguments.  Skip forward to the next entry.
1454 		 */
1455 		phandle = be32_to_cpup(list++);
1456 		if (phandle) {
1457 			/*
1458 			 * Find the provider node and parse the #*-cells
1459 			 * property to determine the argument length.
1460 			 *
1461 			 * This is not needed if the cell count is hard-coded
1462 			 * (i.e. cells_name not set, but cell_count is set),
1463 			 * except when we're going to return the found node
1464 			 * below.
1465 			 */
1466 			if (cells_name || cur_index == index) {
1467 				node = of_find_node_by_phandle(phandle);
1468 				if (!node) {
1469 					pr_err("%s: could not find phandle\n",
1470 						np->full_name);
1471 					goto err;
1472 				}
1473 			}
1474 
1475 			if (cells_name) {
1476 				if (of_property_read_u32(node, cells_name,
1477 							 &count)) {
1478 					pr_err("%s: could not get %s for %s\n",
1479 						np->full_name, cells_name,
1480 						node->full_name);
1481 					goto err;
1482 				}
1483 			} else {
1484 				count = cell_count;
1485 			}
1486 
1487 			/*
1488 			 * Make sure that the arguments actually fit in the
1489 			 * remaining property data length
1490 			 */
1491 			if (list + count > list_end) {
1492 				pr_err("%s: arguments longer than property\n",
1493 					 np->full_name);
1494 				goto err;
1495 			}
1496 		}
1497 
1498 		/*
1499 		 * All of the error cases above bail out of the loop, so at
1500 		 * this point, the parsing is successful. If the requested
1501 		 * index matches, then fill the out_args structure and return,
1502 		 * or return -ENOENT for an empty entry.
1503 		 */
1504 		rc = -ENOENT;
1505 		if (cur_index == index) {
1506 			if (!phandle)
1507 				goto err;
1508 
1509 			if (out_args) {
1510 				int i;
1511 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1512 					count = MAX_PHANDLE_ARGS;
1513 				out_args->np = node;
1514 				out_args->args_count = count;
1515 				for (i = 0; i < count; i++)
1516 					out_args->args[i] = be32_to_cpup(list++);
1517 			} else {
1518 				of_node_put(node);
1519 			}
1520 
1521 			/* Found it! return success */
1522 			return 0;
1523 		}
1524 
1525 		of_node_put(node);
1526 		node = NULL;
1527 		list += count;
1528 		cur_index++;
1529 	}
1530 
1531 	/*
1532 	 * Unlock node before returning result; will be one of:
1533 	 * -ENOENT : index is for empty phandle
1534 	 * -EINVAL : parsing error on data
1535 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1536 	 */
1537 	rc = index < 0 ? cur_index : -ENOENT;
1538  err:
1539 	if (node)
1540 		of_node_put(node);
1541 	return rc;
1542 }
1543 
1544 /**
1545  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1546  * @np: Pointer to device node holding phandle property
1547  * @phandle_name: Name of property holding a phandle value
1548  * @index: For properties holding a table of phandles, this is the index into
1549  *         the table
1550  *
1551  * Returns the device_node pointer with refcount incremented.  Use
1552  * of_node_put() on it when done.
1553  */
1554 struct device_node *of_parse_phandle(const struct device_node *np,
1555 				     const char *phandle_name, int index)
1556 {
1557 	struct of_phandle_args args;
1558 
1559 	if (index < 0)
1560 		return NULL;
1561 
1562 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1563 					 index, &args))
1564 		return NULL;
1565 
1566 	return args.np;
1567 }
1568 EXPORT_SYMBOL(of_parse_phandle);
1569 
1570 /**
1571  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1572  * @np:		pointer to a device tree node containing a list
1573  * @list_name:	property name that contains a list
1574  * @cells_name:	property name that specifies phandles' arguments count
1575  * @index:	index of a phandle to parse out
1576  * @out_args:	optional pointer to output arguments structure (will be filled)
1577  *
1578  * This function is useful to parse lists of phandles and their arguments.
1579  * Returns 0 on success and fills out_args, on error returns appropriate
1580  * errno value.
1581  *
1582  * Caller is responsible to call of_node_put() on the returned out_args->node
1583  * pointer.
1584  *
1585  * Example:
1586  *
1587  * phandle1: node1 {
1588  * 	#list-cells = <2>;
1589  * }
1590  *
1591  * phandle2: node2 {
1592  * 	#list-cells = <1>;
1593  * }
1594  *
1595  * node3 {
1596  * 	list = <&phandle1 1 2 &phandle2 3>;
1597  * }
1598  *
1599  * To get a device_node of the `node2' node you may call this:
1600  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1601  */
1602 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1603 				const char *cells_name, int index,
1604 				struct of_phandle_args *out_args)
1605 {
1606 	if (index < 0)
1607 		return -EINVAL;
1608 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1609 					    index, out_args);
1610 }
1611 EXPORT_SYMBOL(of_parse_phandle_with_args);
1612 
1613 /**
1614  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1615  * @np:		pointer to a device tree node containing a list
1616  * @list_name:	property name that contains a list
1617  * @cell_count: number of argument cells following the phandle
1618  * @index:	index of a phandle to parse out
1619  * @out_args:	optional pointer to output arguments structure (will be filled)
1620  *
1621  * This function is useful to parse lists of phandles and their arguments.
1622  * Returns 0 on success and fills out_args, on error returns appropriate
1623  * errno value.
1624  *
1625  * Caller is responsible to call of_node_put() on the returned out_args->node
1626  * pointer.
1627  *
1628  * Example:
1629  *
1630  * phandle1: node1 {
1631  * }
1632  *
1633  * phandle2: node2 {
1634  * }
1635  *
1636  * node3 {
1637  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1638  * }
1639  *
1640  * To get a device_node of the `node2' node you may call this:
1641  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1642  */
1643 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1644 				const char *list_name, int cell_count,
1645 				int index, struct of_phandle_args *out_args)
1646 {
1647 	if (index < 0)
1648 		return -EINVAL;
1649 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1650 					   index, out_args);
1651 }
1652 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1653 
1654 /**
1655  * of_count_phandle_with_args() - Find the number of phandles references in a property
1656  * @np:		pointer to a device tree node containing a list
1657  * @list_name:	property name that contains a list
1658  * @cells_name:	property name that specifies phandles' arguments count
1659  *
1660  * Returns the number of phandle + argument tuples within a property. It
1661  * is a typical pattern to encode a list of phandle and variable
1662  * arguments into a single property. The number of arguments is encoded
1663  * by a property in the phandle-target node. For example, a gpios
1664  * property would contain a list of GPIO specifies consisting of a
1665  * phandle and 1 or more arguments. The number of arguments are
1666  * determined by the #gpio-cells property in the node pointed to by the
1667  * phandle.
1668  */
1669 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1670 				const char *cells_name)
1671 {
1672 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1673 					    NULL);
1674 }
1675 EXPORT_SYMBOL(of_count_phandle_with_args);
1676 
1677 #if defined(CONFIG_OF_DYNAMIC)
1678 static int of_property_notify(int action, struct device_node *np,
1679 			      struct property *prop)
1680 {
1681 	struct of_prop_reconfig pr;
1682 
1683 	/* only call notifiers if the node is attached */
1684 	if (!of_node_is_attached(np))
1685 		return 0;
1686 
1687 	pr.dn = np;
1688 	pr.prop = prop;
1689 	return of_reconfig_notify(action, &pr);
1690 }
1691 #else
1692 static int of_property_notify(int action, struct device_node *np,
1693 			      struct property *prop)
1694 {
1695 	return 0;
1696 }
1697 #endif
1698 
1699 /**
1700  * __of_add_property - Add a property to a node without lock operations
1701  */
1702 static int __of_add_property(struct device_node *np, struct property *prop)
1703 {
1704 	struct property **next;
1705 
1706 	prop->next = NULL;
1707 	next = &np->properties;
1708 	while (*next) {
1709 		if (strcmp(prop->name, (*next)->name) == 0)
1710 			/* duplicate ! don't insert it */
1711 			return -EEXIST;
1712 
1713 		next = &(*next)->next;
1714 	}
1715 	*next = prop;
1716 
1717 	return 0;
1718 }
1719 
1720 /**
1721  * of_add_property - Add a property to a node
1722  */
1723 int of_add_property(struct device_node *np, struct property *prop)
1724 {
1725 	unsigned long flags;
1726 	int rc;
1727 
1728 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1729 	if (rc)
1730 		return rc;
1731 
1732 	raw_spin_lock_irqsave(&devtree_lock, flags);
1733 	rc = __of_add_property(np, prop);
1734 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1735 	if (rc)
1736 		return rc;
1737 
1738 	if (of_node_is_attached(np))
1739 		__of_add_property_sysfs(np, prop);
1740 
1741 	return rc;
1742 }
1743 
1744 /**
1745  * of_remove_property - Remove a property from a node.
1746  *
1747  * Note that we don't actually remove it, since we have given out
1748  * who-knows-how-many pointers to the data using get-property.
1749  * Instead we just move the property to the "dead properties"
1750  * list, so it won't be found any more.
1751  */
1752 int of_remove_property(struct device_node *np, struct property *prop)
1753 {
1754 	struct property **next;
1755 	unsigned long flags;
1756 	int found = 0;
1757 	int rc;
1758 
1759 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1760 	if (rc)
1761 		return rc;
1762 
1763 	raw_spin_lock_irqsave(&devtree_lock, flags);
1764 	next = &np->properties;
1765 	while (*next) {
1766 		if (*next == prop) {
1767 			/* found the node */
1768 			*next = prop->next;
1769 			prop->next = np->deadprops;
1770 			np->deadprops = prop;
1771 			found = 1;
1772 			break;
1773 		}
1774 		next = &(*next)->next;
1775 	}
1776 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1777 
1778 	if (!found)
1779 		return -ENODEV;
1780 
1781 	/* at early boot, bail hear and defer setup to of_init() */
1782 	if (!of_kset)
1783 		return 0;
1784 
1785 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1786 
1787 	return 0;
1788 }
1789 
1790 /*
1791  * of_update_property - Update a property in a node, if the property does
1792  * not exist, add it.
1793  *
1794  * Note that we don't actually remove it, since we have given out
1795  * who-knows-how-many pointers to the data using get-property.
1796  * Instead we just move the property to the "dead properties" list,
1797  * and add the new property to the property list
1798  */
1799 int of_update_property(struct device_node *np, struct property *newprop)
1800 {
1801 	struct property **next, *oldprop;
1802 	unsigned long flags;
1803 	int rc, found = 0;
1804 
1805 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1806 	if (rc)
1807 		return rc;
1808 
1809 	if (!newprop->name)
1810 		return -EINVAL;
1811 
1812 	oldprop = of_find_property(np, newprop->name, NULL);
1813 	if (!oldprop)
1814 		return of_add_property(np, newprop);
1815 
1816 	raw_spin_lock_irqsave(&devtree_lock, flags);
1817 	next = &np->properties;
1818 	while (*next) {
1819 		if (*next == oldprop) {
1820 			/* found the node */
1821 			newprop->next = oldprop->next;
1822 			*next = newprop;
1823 			oldprop->next = np->deadprops;
1824 			np->deadprops = oldprop;
1825 			found = 1;
1826 			break;
1827 		}
1828 		next = &(*next)->next;
1829 	}
1830 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1831 	if (rc)
1832 		return rc;
1833 
1834 	/* Update the sysfs attribute */
1835 	if (oldprop)
1836 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1837 	__of_add_property_sysfs(np, newprop);
1838 
1839 	if (!found)
1840 		return -ENODEV;
1841 
1842 	return 0;
1843 }
1844 
1845 #if defined(CONFIG_OF_DYNAMIC)
1846 /*
1847  * Support for dynamic device trees.
1848  *
1849  * On some platforms, the device tree can be manipulated at runtime.
1850  * The routines in this section support adding, removing and changing
1851  * device tree nodes.
1852  */
1853 
1854 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1855 
1856 int of_reconfig_notifier_register(struct notifier_block *nb)
1857 {
1858 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1859 }
1860 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1861 
1862 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1863 {
1864 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1865 }
1866 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1867 
1868 int of_reconfig_notify(unsigned long action, void *p)
1869 {
1870 	int rc;
1871 
1872 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1873 	return notifier_to_errno(rc);
1874 }
1875 
1876 /**
1877  * of_attach_node - Plug a device node into the tree and global list.
1878  */
1879 int of_attach_node(struct device_node *np)
1880 {
1881 	unsigned long flags;
1882 	int rc;
1883 
1884 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1885 	if (rc)
1886 		return rc;
1887 
1888 	raw_spin_lock_irqsave(&devtree_lock, flags);
1889 	np->sibling = np->parent->child;
1890 	np->allnext = of_allnodes;
1891 	np->parent->child = np;
1892 	of_allnodes = np;
1893 	of_node_clear_flag(np, OF_DETACHED);
1894 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1895 
1896 	of_node_add(np);
1897 	return 0;
1898 }
1899 
1900 /**
1901  * of_detach_node - "Unplug" a node from the device tree.
1902  *
1903  * The caller must hold a reference to the node.  The memory associated with
1904  * the node is not freed until its refcount goes to zero.
1905  */
1906 int of_detach_node(struct device_node *np)
1907 {
1908 	struct device_node *parent;
1909 	unsigned long flags;
1910 	int rc = 0;
1911 
1912 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1913 	if (rc)
1914 		return rc;
1915 
1916 	raw_spin_lock_irqsave(&devtree_lock, flags);
1917 
1918 	if (of_node_check_flag(np, OF_DETACHED)) {
1919 		/* someone already detached it */
1920 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1921 		return rc;
1922 	}
1923 
1924 	parent = np->parent;
1925 	if (!parent) {
1926 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1927 		return rc;
1928 	}
1929 
1930 	if (of_allnodes == np)
1931 		of_allnodes = np->allnext;
1932 	else {
1933 		struct device_node *prev;
1934 		for (prev = of_allnodes;
1935 		     prev->allnext != np;
1936 		     prev = prev->allnext)
1937 			;
1938 		prev->allnext = np->allnext;
1939 	}
1940 
1941 	if (parent->child == np)
1942 		parent->child = np->sibling;
1943 	else {
1944 		struct device_node *prevsib;
1945 		for (prevsib = np->parent->child;
1946 		     prevsib->sibling != np;
1947 		     prevsib = prevsib->sibling)
1948 			;
1949 		prevsib->sibling = np->sibling;
1950 	}
1951 
1952 	of_node_set_flag(np, OF_DETACHED);
1953 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1954 
1955 	of_node_remove(np);
1956 	return rc;
1957 }
1958 #endif /* defined(CONFIG_OF_DYNAMIC) */
1959 
1960 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1961 			 int id, const char *stem, int stem_len)
1962 {
1963 	ap->np = np;
1964 	ap->id = id;
1965 	strncpy(ap->stem, stem, stem_len);
1966 	ap->stem[stem_len] = 0;
1967 	list_add_tail(&ap->link, &aliases_lookup);
1968 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1969 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1970 }
1971 
1972 /**
1973  * of_alias_scan - Scan all properties of 'aliases' node
1974  *
1975  * The function scans all the properties of 'aliases' node and populate
1976  * the the global lookup table with the properties.  It returns the
1977  * number of alias_prop found, or error code in error case.
1978  *
1979  * @dt_alloc:	An allocator that provides a virtual address to memory
1980  *		for the resulting tree
1981  */
1982 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1983 {
1984 	struct property *pp;
1985 
1986 	of_chosen = of_find_node_by_path("/chosen");
1987 	if (of_chosen == NULL)
1988 		of_chosen = of_find_node_by_path("/chosen@0");
1989 
1990 	if (of_chosen) {
1991 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1992 		if (!name)
1993 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1994 		if (name)
1995 			of_stdout = of_find_node_by_path(name);
1996 	}
1997 
1998 	of_aliases = of_find_node_by_path("/aliases");
1999 	if (!of_aliases)
2000 		return;
2001 
2002 	for_each_property_of_node(of_aliases, pp) {
2003 		const char *start = pp->name;
2004 		const char *end = start + strlen(start);
2005 		struct device_node *np;
2006 		struct alias_prop *ap;
2007 		int id, len;
2008 
2009 		/* Skip those we do not want to proceed */
2010 		if (!strcmp(pp->name, "name") ||
2011 		    !strcmp(pp->name, "phandle") ||
2012 		    !strcmp(pp->name, "linux,phandle"))
2013 			continue;
2014 
2015 		np = of_find_node_by_path(pp->value);
2016 		if (!np)
2017 			continue;
2018 
2019 		/* walk the alias backwards to extract the id and work out
2020 		 * the 'stem' string */
2021 		while (isdigit(*(end-1)) && end > start)
2022 			end--;
2023 		len = end - start;
2024 
2025 		if (kstrtoint(end, 10, &id) < 0)
2026 			continue;
2027 
2028 		/* Allocate an alias_prop with enough space for the stem */
2029 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2030 		if (!ap)
2031 			continue;
2032 		memset(ap, 0, sizeof(*ap) + len + 1);
2033 		ap->alias = start;
2034 		of_alias_add(ap, np, id, start, len);
2035 	}
2036 }
2037 
2038 /**
2039  * of_alias_get_id - Get alias id for the given device_node
2040  * @np:		Pointer to the given device_node
2041  * @stem:	Alias stem of the given device_node
2042  *
2043  * The function travels the lookup table to get alias id for the given
2044  * device_node and alias stem.  It returns the alias id if find it.
2045  */
2046 int of_alias_get_id(struct device_node *np, const char *stem)
2047 {
2048 	struct alias_prop *app;
2049 	int id = -ENODEV;
2050 
2051 	mutex_lock(&of_aliases_mutex);
2052 	list_for_each_entry(app, &aliases_lookup, link) {
2053 		if (strcmp(app->stem, stem) != 0)
2054 			continue;
2055 
2056 		if (np == app->np) {
2057 			id = app->id;
2058 			break;
2059 		}
2060 	}
2061 	mutex_unlock(&of_aliases_mutex);
2062 
2063 	return id;
2064 }
2065 EXPORT_SYMBOL_GPL(of_alias_get_id);
2066 
2067 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2068 			       u32 *pu)
2069 {
2070 	const void *curv = cur;
2071 
2072 	if (!prop)
2073 		return NULL;
2074 
2075 	if (!cur) {
2076 		curv = prop->value;
2077 		goto out_val;
2078 	}
2079 
2080 	curv += sizeof(*cur);
2081 	if (curv >= prop->value + prop->length)
2082 		return NULL;
2083 
2084 out_val:
2085 	*pu = be32_to_cpup(curv);
2086 	return curv;
2087 }
2088 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2089 
2090 const char *of_prop_next_string(struct property *prop, const char *cur)
2091 {
2092 	const void *curv = cur;
2093 
2094 	if (!prop)
2095 		return NULL;
2096 
2097 	if (!cur)
2098 		return prop->value;
2099 
2100 	curv += strlen(cur) + 1;
2101 	if (curv >= prop->value + prop->length)
2102 		return NULL;
2103 
2104 	return curv;
2105 }
2106 EXPORT_SYMBOL_GPL(of_prop_next_string);
2107 
2108 /**
2109  * of_device_is_stdout_path - check if a device node matches the
2110  *                            linux,stdout-path property
2111  *
2112  * Check if this device node matches the linux,stdout-path property
2113  * in the chosen node. return true if yes, false otherwise.
2114  */
2115 int of_device_is_stdout_path(struct device_node *dn)
2116 {
2117 	if (!of_stdout)
2118 		return false;
2119 
2120 	return of_stdout == dn;
2121 }
2122 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
2123 
2124 /**
2125  *	of_find_next_cache_node - Find a node's subsidiary cache
2126  *	@np:	node of type "cpu" or "cache"
2127  *
2128  *	Returns a node pointer with refcount incremented, use
2129  *	of_node_put() on it when done.  Caller should hold a reference
2130  *	to np.
2131  */
2132 struct device_node *of_find_next_cache_node(const struct device_node *np)
2133 {
2134 	struct device_node *child;
2135 	const phandle *handle;
2136 
2137 	handle = of_get_property(np, "l2-cache", NULL);
2138 	if (!handle)
2139 		handle = of_get_property(np, "next-level-cache", NULL);
2140 
2141 	if (handle)
2142 		return of_find_node_by_phandle(be32_to_cpup(handle));
2143 
2144 	/* OF on pmac has nodes instead of properties named "l2-cache"
2145 	 * beneath CPU nodes.
2146 	 */
2147 	if (!strcmp(np->type, "cpu"))
2148 		for_each_child_of_node(np, child)
2149 			if (!strcmp(child->type, "cache"))
2150 				return child;
2151 
2152 	return NULL;
2153 }
2154 
2155 /**
2156  * of_graph_parse_endpoint() - parse common endpoint node properties
2157  * @node: pointer to endpoint device_node
2158  * @endpoint: pointer to the OF endpoint data structure
2159  *
2160  * The caller should hold a reference to @node.
2161  */
2162 int of_graph_parse_endpoint(const struct device_node *node,
2163 			    struct of_endpoint *endpoint)
2164 {
2165 	struct device_node *port_node = of_get_parent(node);
2166 
2167 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2168 		  __func__, node->full_name);
2169 
2170 	memset(endpoint, 0, sizeof(*endpoint));
2171 
2172 	endpoint->local_node = node;
2173 	/*
2174 	 * It doesn't matter whether the two calls below succeed.
2175 	 * If they don't then the default value 0 is used.
2176 	 */
2177 	of_property_read_u32(port_node, "reg", &endpoint->port);
2178 	of_property_read_u32(node, "reg", &endpoint->id);
2179 
2180 	of_node_put(port_node);
2181 
2182 	return 0;
2183 }
2184 EXPORT_SYMBOL(of_graph_parse_endpoint);
2185 
2186 /**
2187  * of_graph_get_next_endpoint() - get next endpoint node
2188  * @parent: pointer to the parent device node
2189  * @prev: previous endpoint node, or NULL to get first
2190  *
2191  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2192  * of the passed @prev node is not decremented, the caller have to use
2193  * of_node_put() on it when done.
2194  */
2195 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2196 					struct device_node *prev)
2197 {
2198 	struct device_node *endpoint;
2199 	struct device_node *port;
2200 
2201 	if (!parent)
2202 		return NULL;
2203 
2204 	/*
2205 	 * Start by locating the port node. If no previous endpoint is specified
2206 	 * search for the first port node, otherwise get the previous endpoint
2207 	 * parent port node.
2208 	 */
2209 	if (!prev) {
2210 		struct device_node *node;
2211 
2212 		node = of_get_child_by_name(parent, "ports");
2213 		if (node)
2214 			parent = node;
2215 
2216 		port = of_get_child_by_name(parent, "port");
2217 		of_node_put(node);
2218 
2219 		if (!port) {
2220 			pr_err("%s(): no port node found in %s\n",
2221 			       __func__, parent->full_name);
2222 			return NULL;
2223 		}
2224 	} else {
2225 		port = of_get_parent(prev);
2226 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2227 			      __func__, prev->full_name))
2228 			return NULL;
2229 
2230 		/*
2231 		 * Avoid dropping prev node refcount to 0 when getting the next
2232 		 * child below.
2233 		 */
2234 		of_node_get(prev);
2235 	}
2236 
2237 	while (1) {
2238 		/*
2239 		 * Now that we have a port node, get the next endpoint by
2240 		 * getting the next child. If the previous endpoint is NULL this
2241 		 * will return the first child.
2242 		 */
2243 		endpoint = of_get_next_child(port, prev);
2244 		if (endpoint) {
2245 			of_node_put(port);
2246 			return endpoint;
2247 		}
2248 
2249 		/* No more endpoints under this port, try the next one. */
2250 		prev = NULL;
2251 
2252 		do {
2253 			port = of_get_next_child(parent, port);
2254 			if (!port)
2255 				return NULL;
2256 		} while (of_node_cmp(port->name, "port"));
2257 	}
2258 }
2259 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2260 
2261 /**
2262  * of_graph_get_remote_port_parent() - get remote port's parent node
2263  * @node: pointer to a local endpoint device_node
2264  *
2265  * Return: Remote device node associated with remote endpoint node linked
2266  *	   to @node. Use of_node_put() on it when done.
2267  */
2268 struct device_node *of_graph_get_remote_port_parent(
2269 			       const struct device_node *node)
2270 {
2271 	struct device_node *np;
2272 	unsigned int depth;
2273 
2274 	/* Get remote endpoint node. */
2275 	np = of_parse_phandle(node, "remote-endpoint", 0);
2276 
2277 	/* Walk 3 levels up only if there is 'ports' node. */
2278 	for (depth = 3; depth && np; depth--) {
2279 		np = of_get_next_parent(np);
2280 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2281 			break;
2282 	}
2283 	return np;
2284 }
2285 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2286 
2287 /**
2288  * of_graph_get_remote_port() - get remote port node
2289  * @node: pointer to a local endpoint device_node
2290  *
2291  * Return: Remote port node associated with remote endpoint node linked
2292  *	   to @node. Use of_node_put() on it when done.
2293  */
2294 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2295 {
2296 	struct device_node *np;
2297 
2298 	/* Get remote endpoint node. */
2299 	np = of_parse_phandle(node, "remote-endpoint", 0);
2300 	if (!np)
2301 		return NULL;
2302 	return of_get_next_parent(np);
2303 }
2304 EXPORT_SYMBOL(of_graph_get_remote_port);
2305