1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 21 #define pr_fmt(fmt) "OF: " fmt 22 23 #include <linux/console.h> 24 #include <linux/ctype.h> 25 #include <linux/cpu.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/of_graph.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/proc_fs.h> 34 35 #include "of_private.h" 36 37 LIST_HEAD(aliases_lookup); 38 39 struct device_node *of_root; 40 EXPORT_SYMBOL(of_root); 41 struct device_node *of_chosen; 42 struct device_node *of_aliases; 43 struct device_node *of_stdout; 44 static const char *of_stdout_options; 45 46 struct kset *of_kset; 47 48 /* 49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 50 * This mutex must be held whenever modifications are being made to the 51 * device tree. The of_{attach,detach}_node() and 52 * of_{add,remove,update}_property() helpers make sure this happens. 53 */ 54 DEFINE_MUTEX(of_mutex); 55 56 /* use when traversing tree through the child, sibling, 57 * or parent members of struct device_node. 58 */ 59 DEFINE_RAW_SPINLOCK(devtree_lock); 60 61 int of_n_addr_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#address-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #address-cells property for the root node */ 73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_addr_cells); 76 77 int of_n_size_cells(struct device_node *np) 78 { 79 const __be32 *ip; 80 81 do { 82 if (np->parent) 83 np = np->parent; 84 ip = of_get_property(np, "#size-cells", NULL); 85 if (ip) 86 return be32_to_cpup(ip); 87 } while (np->parent); 88 /* No #size-cells property for the root node */ 89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 90 } 91 EXPORT_SYMBOL(of_n_size_cells); 92 93 #ifdef CONFIG_NUMA 94 int __weak of_node_to_nid(struct device_node *np) 95 { 96 return NUMA_NO_NODE; 97 } 98 #endif 99 100 #ifndef CONFIG_OF_DYNAMIC 101 static void of_node_release(struct kobject *kobj) 102 { 103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 104 } 105 #endif /* CONFIG_OF_DYNAMIC */ 106 107 struct kobj_type of_node_ktype = { 108 .release = of_node_release, 109 }; 110 111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 112 struct bin_attribute *bin_attr, char *buf, 113 loff_t offset, size_t count) 114 { 115 struct property *pp = container_of(bin_attr, struct property, attr); 116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 117 } 118 119 /* always return newly allocated name, caller must free after use */ 120 static const char *safe_name(struct kobject *kobj, const char *orig_name) 121 { 122 const char *name = orig_name; 123 struct kernfs_node *kn; 124 int i = 0; 125 126 /* don't be a hero. After 16 tries give up */ 127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 128 sysfs_put(kn); 129 if (name != orig_name) 130 kfree(name); 131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 132 } 133 134 if (name == orig_name) { 135 name = kstrdup(orig_name, GFP_KERNEL); 136 } else { 137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n", 138 kobject_name(kobj), name); 139 } 140 return name; 141 } 142 143 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 144 { 145 int rc; 146 147 /* Important: Don't leak passwords */ 148 bool secure = strncmp(pp->name, "security-", 9) == 0; 149 150 if (!IS_ENABLED(CONFIG_SYSFS)) 151 return 0; 152 153 if (!of_kset || !of_node_is_attached(np)) 154 return 0; 155 156 sysfs_bin_attr_init(&pp->attr); 157 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 158 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 159 pp->attr.size = secure ? 0 : pp->length; 160 pp->attr.read = of_node_property_read; 161 162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 164 return rc; 165 } 166 167 int __of_attach_node_sysfs(struct device_node *np) 168 { 169 const char *name; 170 struct kobject *parent; 171 struct property *pp; 172 int rc; 173 174 if (!IS_ENABLED(CONFIG_SYSFS)) 175 return 0; 176 177 if (!of_kset) 178 return 0; 179 180 np->kobj.kset = of_kset; 181 if (!np->parent) { 182 /* Nodes without parents are new top level trees */ 183 name = safe_name(&of_kset->kobj, "base"); 184 parent = NULL; 185 } else { 186 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 187 parent = &np->parent->kobj; 188 } 189 if (!name) 190 return -ENOMEM; 191 rc = kobject_add(&np->kobj, parent, "%s", name); 192 kfree(name); 193 if (rc) 194 return rc; 195 196 for_each_property_of_node(np, pp) 197 __of_add_property_sysfs(np, pp); 198 199 return 0; 200 } 201 202 void __init of_core_init(void) 203 { 204 struct device_node *np; 205 206 /* Create the kset, and register existing nodes */ 207 mutex_lock(&of_mutex); 208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 209 if (!of_kset) { 210 mutex_unlock(&of_mutex); 211 pr_err("failed to register existing nodes\n"); 212 return; 213 } 214 for_each_of_allnodes(np) 215 __of_attach_node_sysfs(np); 216 mutex_unlock(&of_mutex); 217 218 /* Symlink in /proc as required by userspace ABI */ 219 if (of_root) 220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 221 } 222 223 static struct property *__of_find_property(const struct device_node *np, 224 const char *name, int *lenp) 225 { 226 struct property *pp; 227 228 if (!np) 229 return NULL; 230 231 for (pp = np->properties; pp; pp = pp->next) { 232 if (of_prop_cmp(pp->name, name) == 0) { 233 if (lenp) 234 *lenp = pp->length; 235 break; 236 } 237 } 238 239 return pp; 240 } 241 242 struct property *of_find_property(const struct device_node *np, 243 const char *name, 244 int *lenp) 245 { 246 struct property *pp; 247 unsigned long flags; 248 249 raw_spin_lock_irqsave(&devtree_lock, flags); 250 pp = __of_find_property(np, name, lenp); 251 raw_spin_unlock_irqrestore(&devtree_lock, flags); 252 253 return pp; 254 } 255 EXPORT_SYMBOL(of_find_property); 256 257 struct device_node *__of_find_all_nodes(struct device_node *prev) 258 { 259 struct device_node *np; 260 if (!prev) { 261 np = of_root; 262 } else if (prev->child) { 263 np = prev->child; 264 } else { 265 /* Walk back up looking for a sibling, or the end of the structure */ 266 np = prev; 267 while (np->parent && !np->sibling) 268 np = np->parent; 269 np = np->sibling; /* Might be null at the end of the tree */ 270 } 271 return np; 272 } 273 274 /** 275 * of_find_all_nodes - Get next node in global list 276 * @prev: Previous node or NULL to start iteration 277 * of_node_put() will be called on it 278 * 279 * Returns a node pointer with refcount incremented, use 280 * of_node_put() on it when done. 281 */ 282 struct device_node *of_find_all_nodes(struct device_node *prev) 283 { 284 struct device_node *np; 285 unsigned long flags; 286 287 raw_spin_lock_irqsave(&devtree_lock, flags); 288 np = __of_find_all_nodes(prev); 289 of_node_get(np); 290 of_node_put(prev); 291 raw_spin_unlock_irqrestore(&devtree_lock, flags); 292 return np; 293 } 294 EXPORT_SYMBOL(of_find_all_nodes); 295 296 /* 297 * Find a property with a given name for a given node 298 * and return the value. 299 */ 300 const void *__of_get_property(const struct device_node *np, 301 const char *name, int *lenp) 302 { 303 struct property *pp = __of_find_property(np, name, lenp); 304 305 return pp ? pp->value : NULL; 306 } 307 308 /* 309 * Find a property with a given name for a given node 310 * and return the value. 311 */ 312 const void *of_get_property(const struct device_node *np, const char *name, 313 int *lenp) 314 { 315 struct property *pp = of_find_property(np, name, lenp); 316 317 return pp ? pp->value : NULL; 318 } 319 EXPORT_SYMBOL(of_get_property); 320 321 /* 322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 323 * 324 * @cpu: logical cpu index of a core/thread 325 * @phys_id: physical identifier of a core/thread 326 * 327 * CPU logical to physical index mapping is architecture specific. 328 * However this __weak function provides a default match of physical 329 * id to logical cpu index. phys_id provided here is usually values read 330 * from the device tree which must match the hardware internal registers. 331 * 332 * Returns true if the physical identifier and the logical cpu index 333 * correspond to the same core/thread, false otherwise. 334 */ 335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 336 { 337 return (u32)phys_id == cpu; 338 } 339 340 /** 341 * Checks if the given "prop_name" property holds the physical id of the 342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 343 * NULL, local thread number within the core is returned in it. 344 */ 345 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 346 const char *prop_name, int cpu, unsigned int *thread) 347 { 348 const __be32 *cell; 349 int ac, prop_len, tid; 350 u64 hwid; 351 352 ac = of_n_addr_cells(cpun); 353 cell = of_get_property(cpun, prop_name, &prop_len); 354 if (!cell || !ac) 355 return false; 356 prop_len /= sizeof(*cell) * ac; 357 for (tid = 0; tid < prop_len; tid++) { 358 hwid = of_read_number(cell, ac); 359 if (arch_match_cpu_phys_id(cpu, hwid)) { 360 if (thread) 361 *thread = tid; 362 return true; 363 } 364 cell += ac; 365 } 366 return false; 367 } 368 369 /* 370 * arch_find_n_match_cpu_physical_id - See if the given device node is 371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 372 * else false. If 'thread' is non-NULL, the local thread number within the 373 * core is returned in it. 374 */ 375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 376 int cpu, unsigned int *thread) 377 { 378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 379 * for thread ids on PowerPC. If it doesn't exist fallback to 380 * standard "reg" property. 381 */ 382 if (IS_ENABLED(CONFIG_PPC) && 383 __of_find_n_match_cpu_property(cpun, 384 "ibm,ppc-interrupt-server#s", 385 cpu, thread)) 386 return true; 387 388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 389 } 390 391 /** 392 * of_get_cpu_node - Get device node associated with the given logical CPU 393 * 394 * @cpu: CPU number(logical index) for which device node is required 395 * @thread: if not NULL, local thread number within the physical core is 396 * returned 397 * 398 * The main purpose of this function is to retrieve the device node for the 399 * given logical CPU index. It should be used to initialize the of_node in 400 * cpu device. Once of_node in cpu device is populated, all the further 401 * references can use that instead. 402 * 403 * CPU logical to physical index mapping is architecture specific and is built 404 * before booting secondary cores. This function uses arch_match_cpu_phys_id 405 * which can be overridden by architecture specific implementation. 406 * 407 * Returns a node pointer for the logical cpu with refcount incremented, use 408 * of_node_put() on it when done. Returns NULL if not found. 409 */ 410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 411 { 412 struct device_node *cpun; 413 414 for_each_node_by_type(cpun, "cpu") { 415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 416 return cpun; 417 } 418 return NULL; 419 } 420 EXPORT_SYMBOL(of_get_cpu_node); 421 422 /** 423 * __of_device_is_compatible() - Check if the node matches given constraints 424 * @device: pointer to node 425 * @compat: required compatible string, NULL or "" for any match 426 * @type: required device_type value, NULL or "" for any match 427 * @name: required node name, NULL or "" for any match 428 * 429 * Checks if the given @compat, @type and @name strings match the 430 * properties of the given @device. A constraints can be skipped by 431 * passing NULL or an empty string as the constraint. 432 * 433 * Returns 0 for no match, and a positive integer on match. The return 434 * value is a relative score with larger values indicating better 435 * matches. The score is weighted for the most specific compatible value 436 * to get the highest score. Matching type is next, followed by matching 437 * name. Practically speaking, this results in the following priority 438 * order for matches: 439 * 440 * 1. specific compatible && type && name 441 * 2. specific compatible && type 442 * 3. specific compatible && name 443 * 4. specific compatible 444 * 5. general compatible && type && name 445 * 6. general compatible && type 446 * 7. general compatible && name 447 * 8. general compatible 448 * 9. type && name 449 * 10. type 450 * 11. name 451 */ 452 static int __of_device_is_compatible(const struct device_node *device, 453 const char *compat, const char *type, const char *name) 454 { 455 struct property *prop; 456 const char *cp; 457 int index = 0, score = 0; 458 459 /* Compatible match has highest priority */ 460 if (compat && compat[0]) { 461 prop = __of_find_property(device, "compatible", NULL); 462 for (cp = of_prop_next_string(prop, NULL); cp; 463 cp = of_prop_next_string(prop, cp), index++) { 464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 465 score = INT_MAX/2 - (index << 2); 466 break; 467 } 468 } 469 if (!score) 470 return 0; 471 } 472 473 /* Matching type is better than matching name */ 474 if (type && type[0]) { 475 if (!device->type || of_node_cmp(type, device->type)) 476 return 0; 477 score += 2; 478 } 479 480 /* Matching name is a bit better than not */ 481 if (name && name[0]) { 482 if (!device->name || of_node_cmp(name, device->name)) 483 return 0; 484 score++; 485 } 486 487 return score; 488 } 489 490 /** Checks if the given "compat" string matches one of the strings in 491 * the device's "compatible" property 492 */ 493 int of_device_is_compatible(const struct device_node *device, 494 const char *compat) 495 { 496 unsigned long flags; 497 int res; 498 499 raw_spin_lock_irqsave(&devtree_lock, flags); 500 res = __of_device_is_compatible(device, compat, NULL, NULL); 501 raw_spin_unlock_irqrestore(&devtree_lock, flags); 502 return res; 503 } 504 EXPORT_SYMBOL(of_device_is_compatible); 505 506 /** Checks if the device is compatible with any of the entries in 507 * a NULL terminated array of strings. Returns the best match 508 * score or 0. 509 */ 510 int of_device_compatible_match(struct device_node *device, 511 const char *const *compat) 512 { 513 unsigned int tmp, score = 0; 514 515 if (!compat) 516 return 0; 517 518 while (*compat) { 519 tmp = of_device_is_compatible(device, *compat); 520 if (tmp > score) 521 score = tmp; 522 compat++; 523 } 524 525 return score; 526 } 527 528 /** 529 * of_machine_is_compatible - Test root of device tree for a given compatible value 530 * @compat: compatible string to look for in root node's compatible property. 531 * 532 * Returns a positive integer if the root node has the given value in its 533 * compatible property. 534 */ 535 int of_machine_is_compatible(const char *compat) 536 { 537 struct device_node *root; 538 int rc = 0; 539 540 root = of_find_node_by_path("/"); 541 if (root) { 542 rc = of_device_is_compatible(root, compat); 543 of_node_put(root); 544 } 545 return rc; 546 } 547 EXPORT_SYMBOL(of_machine_is_compatible); 548 549 /** 550 * __of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability, with locks already held 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 static bool __of_device_is_available(const struct device_node *device) 558 { 559 const char *status; 560 int statlen; 561 562 if (!device) 563 return false; 564 565 status = __of_get_property(device, "status", &statlen); 566 if (status == NULL) 567 return true; 568 569 if (statlen > 0) { 570 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 571 return true; 572 } 573 574 return false; 575 } 576 577 /** 578 * of_device_is_available - check if a device is available for use 579 * 580 * @device: Node to check for availability 581 * 582 * Returns true if the status property is absent or set to "okay" or "ok", 583 * false otherwise 584 */ 585 bool of_device_is_available(const struct device_node *device) 586 { 587 unsigned long flags; 588 bool res; 589 590 raw_spin_lock_irqsave(&devtree_lock, flags); 591 res = __of_device_is_available(device); 592 raw_spin_unlock_irqrestore(&devtree_lock, flags); 593 return res; 594 595 } 596 EXPORT_SYMBOL(of_device_is_available); 597 598 /** 599 * of_device_is_big_endian - check if a device has BE registers 600 * 601 * @device: Node to check for endianness 602 * 603 * Returns true if the device has a "big-endian" property, or if the kernel 604 * was compiled for BE *and* the device has a "native-endian" property. 605 * Returns false otherwise. 606 * 607 * Callers would nominally use ioread32be/iowrite32be if 608 * of_device_is_big_endian() == true, or readl/writel otherwise. 609 */ 610 bool of_device_is_big_endian(const struct device_node *device) 611 { 612 if (of_property_read_bool(device, "big-endian")) 613 return true; 614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 615 of_property_read_bool(device, "native-endian")) 616 return true; 617 return false; 618 } 619 EXPORT_SYMBOL(of_device_is_big_endian); 620 621 /** 622 * of_get_parent - Get a node's parent if any 623 * @node: Node to get parent 624 * 625 * Returns a node pointer with refcount incremented, use 626 * of_node_put() on it when done. 627 */ 628 struct device_node *of_get_parent(const struct device_node *node) 629 { 630 struct device_node *np; 631 unsigned long flags; 632 633 if (!node) 634 return NULL; 635 636 raw_spin_lock_irqsave(&devtree_lock, flags); 637 np = of_node_get(node->parent); 638 raw_spin_unlock_irqrestore(&devtree_lock, flags); 639 return np; 640 } 641 EXPORT_SYMBOL(of_get_parent); 642 643 /** 644 * of_get_next_parent - Iterate to a node's parent 645 * @node: Node to get parent of 646 * 647 * This is like of_get_parent() except that it drops the 648 * refcount on the passed node, making it suitable for iterating 649 * through a node's parents. 650 * 651 * Returns a node pointer with refcount incremented, use 652 * of_node_put() on it when done. 653 */ 654 struct device_node *of_get_next_parent(struct device_node *node) 655 { 656 struct device_node *parent; 657 unsigned long flags; 658 659 if (!node) 660 return NULL; 661 662 raw_spin_lock_irqsave(&devtree_lock, flags); 663 parent = of_node_get(node->parent); 664 of_node_put(node); 665 raw_spin_unlock_irqrestore(&devtree_lock, flags); 666 return parent; 667 } 668 EXPORT_SYMBOL(of_get_next_parent); 669 670 static struct device_node *__of_get_next_child(const struct device_node *node, 671 struct device_node *prev) 672 { 673 struct device_node *next; 674 675 if (!node) 676 return NULL; 677 678 next = prev ? prev->sibling : node->child; 679 for (; next; next = next->sibling) 680 if (of_node_get(next)) 681 break; 682 of_node_put(prev); 683 return next; 684 } 685 #define __for_each_child_of_node(parent, child) \ 686 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 687 child = __of_get_next_child(parent, child)) 688 689 /** 690 * of_get_next_child - Iterate a node childs 691 * @node: parent node 692 * @prev: previous child of the parent node, or NULL to get first 693 * 694 * Returns a node pointer with refcount incremented, use of_node_put() on 695 * it when done. Returns NULL when prev is the last child. Decrements the 696 * refcount of prev. 697 */ 698 struct device_node *of_get_next_child(const struct device_node *node, 699 struct device_node *prev) 700 { 701 struct device_node *next; 702 unsigned long flags; 703 704 raw_spin_lock_irqsave(&devtree_lock, flags); 705 next = __of_get_next_child(node, prev); 706 raw_spin_unlock_irqrestore(&devtree_lock, flags); 707 return next; 708 } 709 EXPORT_SYMBOL(of_get_next_child); 710 711 /** 712 * of_get_next_available_child - Find the next available child node 713 * @node: parent node 714 * @prev: previous child of the parent node, or NULL to get first 715 * 716 * This function is like of_get_next_child(), except that it 717 * automatically skips any disabled nodes (i.e. status = "disabled"). 718 */ 719 struct device_node *of_get_next_available_child(const struct device_node *node, 720 struct device_node *prev) 721 { 722 struct device_node *next; 723 unsigned long flags; 724 725 if (!node) 726 return NULL; 727 728 raw_spin_lock_irqsave(&devtree_lock, flags); 729 next = prev ? prev->sibling : node->child; 730 for (; next; next = next->sibling) { 731 if (!__of_device_is_available(next)) 732 continue; 733 if (of_node_get(next)) 734 break; 735 } 736 of_node_put(prev); 737 raw_spin_unlock_irqrestore(&devtree_lock, flags); 738 return next; 739 } 740 EXPORT_SYMBOL(of_get_next_available_child); 741 742 /** 743 * of_get_child_by_name - Find the child node by name for a given parent 744 * @node: parent node 745 * @name: child name to look for. 746 * 747 * This function looks for child node for given matching name 748 * 749 * Returns a node pointer if found, with refcount incremented, use 750 * of_node_put() on it when done. 751 * Returns NULL if node is not found. 752 */ 753 struct device_node *of_get_child_by_name(const struct device_node *node, 754 const char *name) 755 { 756 struct device_node *child; 757 758 for_each_child_of_node(node, child) 759 if (child->name && (of_node_cmp(child->name, name) == 0)) 760 break; 761 return child; 762 } 763 EXPORT_SYMBOL(of_get_child_by_name); 764 765 static struct device_node *__of_find_node_by_path(struct device_node *parent, 766 const char *path) 767 { 768 struct device_node *child; 769 int len; 770 771 len = strcspn(path, "/:"); 772 if (!len) 773 return NULL; 774 775 __for_each_child_of_node(parent, child) { 776 const char *name = strrchr(child->full_name, '/'); 777 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 778 continue; 779 name++; 780 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 781 return child; 782 } 783 return NULL; 784 } 785 786 /** 787 * of_find_node_opts_by_path - Find a node matching a full OF path 788 * @path: Either the full path to match, or if the path does not 789 * start with '/', the name of a property of the /aliases 790 * node (an alias). In the case of an alias, the node 791 * matching the alias' value will be returned. 792 * @opts: Address of a pointer into which to store the start of 793 * an options string appended to the end of the path with 794 * a ':' separator. 795 * 796 * Valid paths: 797 * /foo/bar Full path 798 * foo Valid alias 799 * foo/bar Valid alias + relative path 800 * 801 * Returns a node pointer with refcount incremented, use 802 * of_node_put() on it when done. 803 */ 804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 805 { 806 struct device_node *np = NULL; 807 struct property *pp; 808 unsigned long flags; 809 const char *separator = strchr(path, ':'); 810 811 if (opts) 812 *opts = separator ? separator + 1 : NULL; 813 814 if (strcmp(path, "/") == 0) 815 return of_node_get(of_root); 816 817 /* The path could begin with an alias */ 818 if (*path != '/') { 819 int len; 820 const char *p = separator; 821 822 if (!p) 823 p = strchrnul(path, '/'); 824 len = p - path; 825 826 /* of_aliases must not be NULL */ 827 if (!of_aliases) 828 return NULL; 829 830 for_each_property_of_node(of_aliases, pp) { 831 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 832 np = of_find_node_by_path(pp->value); 833 break; 834 } 835 } 836 if (!np) 837 return NULL; 838 path = p; 839 } 840 841 /* Step down the tree matching path components */ 842 raw_spin_lock_irqsave(&devtree_lock, flags); 843 if (!np) 844 np = of_node_get(of_root); 845 while (np && *path == '/') { 846 struct device_node *tmp = np; 847 848 path++; /* Increment past '/' delimiter */ 849 np = __of_find_node_by_path(np, path); 850 of_node_put(tmp); 851 path = strchrnul(path, '/'); 852 if (separator && separator < path) 853 break; 854 } 855 raw_spin_unlock_irqrestore(&devtree_lock, flags); 856 return np; 857 } 858 EXPORT_SYMBOL(of_find_node_opts_by_path); 859 860 /** 861 * of_find_node_by_name - Find a node by its "name" property 862 * @from: The node to start searching from or NULL, the node 863 * you pass will not be searched, only the next one 864 * will; typically, you pass what the previous call 865 * returned. of_node_put() will be called on it 866 * @name: The name string to match against 867 * 868 * Returns a node pointer with refcount incremented, use 869 * of_node_put() on it when done. 870 */ 871 struct device_node *of_find_node_by_name(struct device_node *from, 872 const char *name) 873 { 874 struct device_node *np; 875 unsigned long flags; 876 877 raw_spin_lock_irqsave(&devtree_lock, flags); 878 for_each_of_allnodes_from(from, np) 879 if (np->name && (of_node_cmp(np->name, name) == 0) 880 && of_node_get(np)) 881 break; 882 of_node_put(from); 883 raw_spin_unlock_irqrestore(&devtree_lock, flags); 884 return np; 885 } 886 EXPORT_SYMBOL(of_find_node_by_name); 887 888 /** 889 * of_find_node_by_type - Find a node by its "device_type" property 890 * @from: The node to start searching from, or NULL to start searching 891 * the entire device tree. The node you pass will not be 892 * searched, only the next one will; typically, you pass 893 * what the previous call returned. of_node_put() will be 894 * called on from for you. 895 * @type: The type string to match against 896 * 897 * Returns a node pointer with refcount incremented, use 898 * of_node_put() on it when done. 899 */ 900 struct device_node *of_find_node_by_type(struct device_node *from, 901 const char *type) 902 { 903 struct device_node *np; 904 unsigned long flags; 905 906 raw_spin_lock_irqsave(&devtree_lock, flags); 907 for_each_of_allnodes_from(from, np) 908 if (np->type && (of_node_cmp(np->type, type) == 0) 909 && of_node_get(np)) 910 break; 911 of_node_put(from); 912 raw_spin_unlock_irqrestore(&devtree_lock, flags); 913 return np; 914 } 915 EXPORT_SYMBOL(of_find_node_by_type); 916 917 /** 918 * of_find_compatible_node - Find a node based on type and one of the 919 * tokens in its "compatible" property 920 * @from: The node to start searching from or NULL, the node 921 * you pass will not be searched, only the next one 922 * will; typically, you pass what the previous call 923 * returned. of_node_put() will be called on it 924 * @type: The type string to match "device_type" or NULL to ignore 925 * @compatible: The string to match to one of the tokens in the device 926 * "compatible" list. 927 * 928 * Returns a node pointer with refcount incremented, use 929 * of_node_put() on it when done. 930 */ 931 struct device_node *of_find_compatible_node(struct device_node *from, 932 const char *type, const char *compatible) 933 { 934 struct device_node *np; 935 unsigned long flags; 936 937 raw_spin_lock_irqsave(&devtree_lock, flags); 938 for_each_of_allnodes_from(from, np) 939 if (__of_device_is_compatible(np, compatible, type, NULL) && 940 of_node_get(np)) 941 break; 942 of_node_put(from); 943 raw_spin_unlock_irqrestore(&devtree_lock, flags); 944 return np; 945 } 946 EXPORT_SYMBOL(of_find_compatible_node); 947 948 /** 949 * of_find_node_with_property - Find a node which has a property with 950 * the given name. 951 * @from: The node to start searching from or NULL, the node 952 * you pass will not be searched, only the next one 953 * will; typically, you pass what the previous call 954 * returned. of_node_put() will be called on it 955 * @prop_name: The name of the property to look for. 956 * 957 * Returns a node pointer with refcount incremented, use 958 * of_node_put() on it when done. 959 */ 960 struct device_node *of_find_node_with_property(struct device_node *from, 961 const char *prop_name) 962 { 963 struct device_node *np; 964 struct property *pp; 965 unsigned long flags; 966 967 raw_spin_lock_irqsave(&devtree_lock, flags); 968 for_each_of_allnodes_from(from, np) { 969 for (pp = np->properties; pp; pp = pp->next) { 970 if (of_prop_cmp(pp->name, prop_name) == 0) { 971 of_node_get(np); 972 goto out; 973 } 974 } 975 } 976 out: 977 of_node_put(from); 978 raw_spin_unlock_irqrestore(&devtree_lock, flags); 979 return np; 980 } 981 EXPORT_SYMBOL(of_find_node_with_property); 982 983 static 984 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 985 const struct device_node *node) 986 { 987 const struct of_device_id *best_match = NULL; 988 int score, best_score = 0; 989 990 if (!matches) 991 return NULL; 992 993 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 994 score = __of_device_is_compatible(node, matches->compatible, 995 matches->type, matches->name); 996 if (score > best_score) { 997 best_match = matches; 998 best_score = score; 999 } 1000 } 1001 1002 return best_match; 1003 } 1004 1005 /** 1006 * of_match_node - Tell if a device_node has a matching of_match structure 1007 * @matches: array of of device match structures to search in 1008 * @node: the of device structure to match against 1009 * 1010 * Low level utility function used by device matching. 1011 */ 1012 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1013 const struct device_node *node) 1014 { 1015 const struct of_device_id *match; 1016 unsigned long flags; 1017 1018 raw_spin_lock_irqsave(&devtree_lock, flags); 1019 match = __of_match_node(matches, node); 1020 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1021 return match; 1022 } 1023 EXPORT_SYMBOL(of_match_node); 1024 1025 /** 1026 * of_find_matching_node_and_match - Find a node based on an of_device_id 1027 * match table. 1028 * @from: The node to start searching from or NULL, the node 1029 * you pass will not be searched, only the next one 1030 * will; typically, you pass what the previous call 1031 * returned. of_node_put() will be called on it 1032 * @matches: array of of device match structures to search in 1033 * @match Updated to point at the matches entry which matched 1034 * 1035 * Returns a node pointer with refcount incremented, use 1036 * of_node_put() on it when done. 1037 */ 1038 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1039 const struct of_device_id *matches, 1040 const struct of_device_id **match) 1041 { 1042 struct device_node *np; 1043 const struct of_device_id *m; 1044 unsigned long flags; 1045 1046 if (match) 1047 *match = NULL; 1048 1049 raw_spin_lock_irqsave(&devtree_lock, flags); 1050 for_each_of_allnodes_from(from, np) { 1051 m = __of_match_node(matches, np); 1052 if (m && of_node_get(np)) { 1053 if (match) 1054 *match = m; 1055 break; 1056 } 1057 } 1058 of_node_put(from); 1059 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1060 return np; 1061 } 1062 EXPORT_SYMBOL(of_find_matching_node_and_match); 1063 1064 /** 1065 * of_modalias_node - Lookup appropriate modalias for a device node 1066 * @node: pointer to a device tree node 1067 * @modalias: Pointer to buffer that modalias value will be copied into 1068 * @len: Length of modalias value 1069 * 1070 * Based on the value of the compatible property, this routine will attempt 1071 * to choose an appropriate modalias value for a particular device tree node. 1072 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1073 * from the first entry in the compatible list property. 1074 * 1075 * This routine returns 0 on success, <0 on failure. 1076 */ 1077 int of_modalias_node(struct device_node *node, char *modalias, int len) 1078 { 1079 const char *compatible, *p; 1080 int cplen; 1081 1082 compatible = of_get_property(node, "compatible", &cplen); 1083 if (!compatible || strlen(compatible) > cplen) 1084 return -ENODEV; 1085 p = strchr(compatible, ','); 1086 strlcpy(modalias, p ? p + 1 : compatible, len); 1087 return 0; 1088 } 1089 EXPORT_SYMBOL_GPL(of_modalias_node); 1090 1091 /** 1092 * of_find_node_by_phandle - Find a node given a phandle 1093 * @handle: phandle of the node to find 1094 * 1095 * Returns a node pointer with refcount incremented, use 1096 * of_node_put() on it when done. 1097 */ 1098 struct device_node *of_find_node_by_phandle(phandle handle) 1099 { 1100 struct device_node *np; 1101 unsigned long flags; 1102 1103 if (!handle) 1104 return NULL; 1105 1106 raw_spin_lock_irqsave(&devtree_lock, flags); 1107 for_each_of_allnodes(np) 1108 if (np->phandle == handle) 1109 break; 1110 of_node_get(np); 1111 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1112 return np; 1113 } 1114 EXPORT_SYMBOL(of_find_node_by_phandle); 1115 1116 /** 1117 * of_property_count_elems_of_size - Count the number of elements in a property 1118 * 1119 * @np: device node from which the property value is to be read. 1120 * @propname: name of the property to be searched. 1121 * @elem_size: size of the individual element 1122 * 1123 * Search for a property in a device node and count the number of elements of 1124 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1125 * property does not exist or its length does not match a multiple of elem_size 1126 * and -ENODATA if the property does not have a value. 1127 */ 1128 int of_property_count_elems_of_size(const struct device_node *np, 1129 const char *propname, int elem_size) 1130 { 1131 struct property *prop = of_find_property(np, propname, NULL); 1132 1133 if (!prop) 1134 return -EINVAL; 1135 if (!prop->value) 1136 return -ENODATA; 1137 1138 if (prop->length % elem_size != 0) { 1139 pr_err("size of %s in node %s is not a multiple of %d\n", 1140 propname, np->full_name, elem_size); 1141 return -EINVAL; 1142 } 1143 1144 return prop->length / elem_size; 1145 } 1146 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1147 1148 /** 1149 * of_find_property_value_of_size 1150 * 1151 * @np: device node from which the property value is to be read. 1152 * @propname: name of the property to be searched. 1153 * @min: minimum allowed length of property value 1154 * @max: maximum allowed length of property value (0 means unlimited) 1155 * @len: if !=NULL, actual length is written to here 1156 * 1157 * Search for a property in a device node and valid the requested size. 1158 * Returns the property value on success, -EINVAL if the property does not 1159 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1160 * property data is too small or too large. 1161 * 1162 */ 1163 static void *of_find_property_value_of_size(const struct device_node *np, 1164 const char *propname, u32 min, u32 max, size_t *len) 1165 { 1166 struct property *prop = of_find_property(np, propname, NULL); 1167 1168 if (!prop) 1169 return ERR_PTR(-EINVAL); 1170 if (!prop->value) 1171 return ERR_PTR(-ENODATA); 1172 if (prop->length < min) 1173 return ERR_PTR(-EOVERFLOW); 1174 if (max && prop->length > max) 1175 return ERR_PTR(-EOVERFLOW); 1176 1177 if (len) 1178 *len = prop->length; 1179 1180 return prop->value; 1181 } 1182 1183 /** 1184 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1185 * 1186 * @np: device node from which the property value is to be read. 1187 * @propname: name of the property to be searched. 1188 * @index: index of the u32 in the list of values 1189 * @out_value: pointer to return value, modified only if no error. 1190 * 1191 * Search for a property in a device node and read nth 32-bit value from 1192 * it. Returns 0 on success, -EINVAL if the property does not exist, 1193 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1194 * property data isn't large enough. 1195 * 1196 * The out_value is modified only if a valid u32 value can be decoded. 1197 */ 1198 int of_property_read_u32_index(const struct device_node *np, 1199 const char *propname, 1200 u32 index, u32 *out_value) 1201 { 1202 const u32 *val = of_find_property_value_of_size(np, propname, 1203 ((index + 1) * sizeof(*out_value)), 1204 0, 1205 NULL); 1206 1207 if (IS_ERR(val)) 1208 return PTR_ERR(val); 1209 1210 *out_value = be32_to_cpup(((__be32 *)val) + index); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1214 1215 /** 1216 * of_property_read_variable_u8_array - Find and read an array of u8 from a 1217 * property, with bounds on the minimum and maximum array size. 1218 * 1219 * @np: device node from which the property value is to be read. 1220 * @propname: name of the property to be searched. 1221 * @out_values: pointer to return value, modified only if return value is 0. 1222 * @sz_min: minimum number of array elements to read 1223 * @sz_max: maximum number of array elements to read, if zero there is no 1224 * upper limit on the number of elements in the dts entry but only 1225 * sz_min will be read. 1226 * 1227 * Search for a property in a device node and read 8-bit value(s) from 1228 * it. Returns number of elements read on success, -EINVAL if the property 1229 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1230 * if the property data is smaller than sz_min or longer than sz_max. 1231 * 1232 * dts entry of array should be like: 1233 * property = /bits/ 8 <0x50 0x60 0x70>; 1234 * 1235 * The out_values is modified only if a valid u8 value can be decoded. 1236 */ 1237 int of_property_read_variable_u8_array(const struct device_node *np, 1238 const char *propname, u8 *out_values, 1239 size_t sz_min, size_t sz_max) 1240 { 1241 size_t sz, count; 1242 const u8 *val = of_find_property_value_of_size(np, propname, 1243 (sz_min * sizeof(*out_values)), 1244 (sz_max * sizeof(*out_values)), 1245 &sz); 1246 1247 if (IS_ERR(val)) 1248 return PTR_ERR(val); 1249 1250 if (!sz_max) 1251 sz = sz_min; 1252 else 1253 sz /= sizeof(*out_values); 1254 1255 count = sz; 1256 while (count--) 1257 *out_values++ = *val++; 1258 1259 return sz; 1260 } 1261 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 1262 1263 /** 1264 * of_property_read_variable_u16_array - Find and read an array of u16 from a 1265 * property, with bounds on the minimum and maximum array size. 1266 * 1267 * @np: device node from which the property value is to be read. 1268 * @propname: name of the property to be searched. 1269 * @out_values: pointer to return value, modified only if return value is 0. 1270 * @sz_min: minimum number of array elements to read 1271 * @sz_max: maximum number of array elements to read, if zero there is no 1272 * upper limit on the number of elements in the dts entry but only 1273 * sz_min will be read. 1274 * 1275 * Search for a property in a device node and read 16-bit value(s) from 1276 * it. Returns number of elements read on success, -EINVAL if the property 1277 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1278 * if the property data is smaller than sz_min or longer than sz_max. 1279 * 1280 * dts entry of array should be like: 1281 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1282 * 1283 * The out_values is modified only if a valid u16 value can be decoded. 1284 */ 1285 int of_property_read_variable_u16_array(const struct device_node *np, 1286 const char *propname, u16 *out_values, 1287 size_t sz_min, size_t sz_max) 1288 { 1289 size_t sz, count; 1290 const __be16 *val = of_find_property_value_of_size(np, propname, 1291 (sz_min * sizeof(*out_values)), 1292 (sz_max * sizeof(*out_values)), 1293 &sz); 1294 1295 if (IS_ERR(val)) 1296 return PTR_ERR(val); 1297 1298 if (!sz_max) 1299 sz = sz_min; 1300 else 1301 sz /= sizeof(*out_values); 1302 1303 count = sz; 1304 while (count--) 1305 *out_values++ = be16_to_cpup(val++); 1306 1307 return sz; 1308 } 1309 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 1310 1311 /** 1312 * of_property_read_variable_u32_array - Find and read an array of 32 bit 1313 * integers from a property, with bounds on the minimum and maximum array size. 1314 * 1315 * @np: device node from which the property value is to be read. 1316 * @propname: name of the property to be searched. 1317 * @out_values: pointer to return value, modified only if return value is 0. 1318 * @sz_min: minimum number of array elements to read 1319 * @sz_max: maximum number of array elements to read, if zero there is no 1320 * upper limit on the number of elements in the dts entry but only 1321 * sz_min will be read. 1322 * 1323 * Search for a property in a device node and read 32-bit value(s) from 1324 * it. Returns number of elements read on success, -EINVAL if the property 1325 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1326 * if the property data is smaller than sz_min or longer than sz_max. 1327 * 1328 * The out_values is modified only if a valid u32 value can be decoded. 1329 */ 1330 int of_property_read_variable_u32_array(const struct device_node *np, 1331 const char *propname, u32 *out_values, 1332 size_t sz_min, size_t sz_max) 1333 { 1334 size_t sz, count; 1335 const __be32 *val = of_find_property_value_of_size(np, propname, 1336 (sz_min * sizeof(*out_values)), 1337 (sz_max * sizeof(*out_values)), 1338 &sz); 1339 1340 if (IS_ERR(val)) 1341 return PTR_ERR(val); 1342 1343 if (!sz_max) 1344 sz = sz_min; 1345 else 1346 sz /= sizeof(*out_values); 1347 1348 count = sz; 1349 while (count--) 1350 *out_values++ = be32_to_cpup(val++); 1351 1352 return sz; 1353 } 1354 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 1355 1356 /** 1357 * of_property_read_u64 - Find and read a 64 bit integer from a property 1358 * @np: device node from which the property value is to be read. 1359 * @propname: name of the property to be searched. 1360 * @out_value: pointer to return value, modified only if return value is 0. 1361 * 1362 * Search for a property in a device node and read a 64-bit value from 1363 * it. Returns 0 on success, -EINVAL if the property does not exist, 1364 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1365 * property data isn't large enough. 1366 * 1367 * The out_value is modified only if a valid u64 value can be decoded. 1368 */ 1369 int of_property_read_u64(const struct device_node *np, const char *propname, 1370 u64 *out_value) 1371 { 1372 const __be32 *val = of_find_property_value_of_size(np, propname, 1373 sizeof(*out_value), 1374 0, 1375 NULL); 1376 1377 if (IS_ERR(val)) 1378 return PTR_ERR(val); 1379 1380 *out_value = of_read_number(val, 2); 1381 return 0; 1382 } 1383 EXPORT_SYMBOL_GPL(of_property_read_u64); 1384 1385 /** 1386 * of_property_read_variable_u64_array - Find and read an array of 64 bit 1387 * integers from a property, with bounds on the minimum and maximum array size. 1388 * 1389 * @np: device node from which the property value is to be read. 1390 * @propname: name of the property to be searched. 1391 * @out_values: pointer to return value, modified only if return value is 0. 1392 * @sz_min: minimum number of array elements to read 1393 * @sz_max: maximum number of array elements to read, if zero there is no 1394 * upper limit on the number of elements in the dts entry but only 1395 * sz_min will be read. 1396 * 1397 * Search for a property in a device node and read 64-bit value(s) from 1398 * it. Returns number of elements read on success, -EINVAL if the property 1399 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1400 * if the property data is smaller than sz_min or longer than sz_max. 1401 * 1402 * The out_values is modified only if a valid u64 value can be decoded. 1403 */ 1404 int of_property_read_variable_u64_array(const struct device_node *np, 1405 const char *propname, u64 *out_values, 1406 size_t sz_min, size_t sz_max) 1407 { 1408 size_t sz, count; 1409 const __be32 *val = of_find_property_value_of_size(np, propname, 1410 (sz_min * sizeof(*out_values)), 1411 (sz_max * sizeof(*out_values)), 1412 &sz); 1413 1414 if (IS_ERR(val)) 1415 return PTR_ERR(val); 1416 1417 if (!sz_max) 1418 sz = sz_min; 1419 else 1420 sz /= sizeof(*out_values); 1421 1422 count = sz; 1423 while (count--) { 1424 *out_values++ = of_read_number(val, 2); 1425 val += 2; 1426 } 1427 1428 return sz; 1429 } 1430 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 1431 1432 /** 1433 * of_property_read_string - Find and read a string from a property 1434 * @np: device node from which the property value is to be read. 1435 * @propname: name of the property to be searched. 1436 * @out_string: pointer to null terminated return string, modified only if 1437 * return value is 0. 1438 * 1439 * Search for a property in a device tree node and retrieve a null 1440 * terminated string value (pointer to data, not a copy). Returns 0 on 1441 * success, -EINVAL if the property does not exist, -ENODATA if property 1442 * does not have a value, and -EILSEQ if the string is not null-terminated 1443 * within the length of the property data. 1444 * 1445 * The out_string pointer is modified only if a valid string can be decoded. 1446 */ 1447 int of_property_read_string(const struct device_node *np, const char *propname, 1448 const char **out_string) 1449 { 1450 const struct property *prop = of_find_property(np, propname, NULL); 1451 if (!prop) 1452 return -EINVAL; 1453 if (!prop->value) 1454 return -ENODATA; 1455 if (strnlen(prop->value, prop->length) >= prop->length) 1456 return -EILSEQ; 1457 *out_string = prop->value; 1458 return 0; 1459 } 1460 EXPORT_SYMBOL_GPL(of_property_read_string); 1461 1462 /** 1463 * of_property_match_string() - Find string in a list and return index 1464 * @np: pointer to node containing string list property 1465 * @propname: string list property name 1466 * @string: pointer to string to search for in string list 1467 * 1468 * This function searches a string list property and returns the index 1469 * of a specific string value. 1470 */ 1471 int of_property_match_string(const struct device_node *np, const char *propname, 1472 const char *string) 1473 { 1474 const struct property *prop = of_find_property(np, propname, NULL); 1475 size_t l; 1476 int i; 1477 const char *p, *end; 1478 1479 if (!prop) 1480 return -EINVAL; 1481 if (!prop->value) 1482 return -ENODATA; 1483 1484 p = prop->value; 1485 end = p + prop->length; 1486 1487 for (i = 0; p < end; i++, p += l) { 1488 l = strnlen(p, end - p) + 1; 1489 if (p + l > end) 1490 return -EILSEQ; 1491 pr_debug("comparing %s with %s\n", string, p); 1492 if (strcmp(string, p) == 0) 1493 return i; /* Found it; return index */ 1494 } 1495 return -ENODATA; 1496 } 1497 EXPORT_SYMBOL_GPL(of_property_match_string); 1498 1499 /** 1500 * of_property_read_string_helper() - Utility helper for parsing string properties 1501 * @np: device node from which the property value is to be read. 1502 * @propname: name of the property to be searched. 1503 * @out_strs: output array of string pointers. 1504 * @sz: number of array elements to read. 1505 * @skip: Number of strings to skip over at beginning of list. 1506 * 1507 * Don't call this function directly. It is a utility helper for the 1508 * of_property_read_string*() family of functions. 1509 */ 1510 int of_property_read_string_helper(const struct device_node *np, 1511 const char *propname, const char **out_strs, 1512 size_t sz, int skip) 1513 { 1514 const struct property *prop = of_find_property(np, propname, NULL); 1515 int l = 0, i = 0; 1516 const char *p, *end; 1517 1518 if (!prop) 1519 return -EINVAL; 1520 if (!prop->value) 1521 return -ENODATA; 1522 p = prop->value; 1523 end = p + prop->length; 1524 1525 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1526 l = strnlen(p, end - p) + 1; 1527 if (p + l > end) 1528 return -EILSEQ; 1529 if (out_strs && i >= skip) 1530 *out_strs++ = p; 1531 } 1532 i -= skip; 1533 return i <= 0 ? -ENODATA : i; 1534 } 1535 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1536 1537 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1538 { 1539 int i; 1540 printk("%s %s", msg, of_node_full_name(args->np)); 1541 for (i = 0; i < args->args_count; i++) { 1542 const char delim = i ? ',' : ':'; 1543 1544 pr_cont("%c%08x", delim, args->args[i]); 1545 } 1546 pr_cont("\n"); 1547 } 1548 1549 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1550 const struct device_node *np, 1551 const char *list_name, 1552 const char *cells_name, 1553 int cell_count) 1554 { 1555 const __be32 *list; 1556 int size; 1557 1558 memset(it, 0, sizeof(*it)); 1559 1560 list = of_get_property(np, list_name, &size); 1561 if (!list) 1562 return -ENOENT; 1563 1564 it->cells_name = cells_name; 1565 it->cell_count = cell_count; 1566 it->parent = np; 1567 it->list_end = list + size / sizeof(*list); 1568 it->phandle_end = list; 1569 it->cur = list; 1570 1571 return 0; 1572 } 1573 1574 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1575 { 1576 uint32_t count = 0; 1577 1578 if (it->node) { 1579 of_node_put(it->node); 1580 it->node = NULL; 1581 } 1582 1583 if (!it->cur || it->phandle_end >= it->list_end) 1584 return -ENOENT; 1585 1586 it->cur = it->phandle_end; 1587 1588 /* If phandle is 0, then it is an empty entry with no arguments. */ 1589 it->phandle = be32_to_cpup(it->cur++); 1590 1591 if (it->phandle) { 1592 1593 /* 1594 * Find the provider node and parse the #*-cells property to 1595 * determine the argument length. 1596 */ 1597 it->node = of_find_node_by_phandle(it->phandle); 1598 1599 if (it->cells_name) { 1600 if (!it->node) { 1601 pr_err("%s: could not find phandle\n", 1602 it->parent->full_name); 1603 goto err; 1604 } 1605 1606 if (of_property_read_u32(it->node, it->cells_name, 1607 &count)) { 1608 pr_err("%s: could not get %s for %s\n", 1609 it->parent->full_name, 1610 it->cells_name, 1611 it->node->full_name); 1612 goto err; 1613 } 1614 } else { 1615 count = it->cell_count; 1616 } 1617 1618 /* 1619 * Make sure that the arguments actually fit in the remaining 1620 * property data length 1621 */ 1622 if (it->cur + count > it->list_end) { 1623 pr_err("%s: arguments longer than property\n", 1624 it->parent->full_name); 1625 goto err; 1626 } 1627 } 1628 1629 it->phandle_end = it->cur + count; 1630 it->cur_count = count; 1631 1632 return 0; 1633 1634 err: 1635 if (it->node) { 1636 of_node_put(it->node); 1637 it->node = NULL; 1638 } 1639 1640 return -EINVAL; 1641 } 1642 1643 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1644 uint32_t *args, 1645 int size) 1646 { 1647 int i, count; 1648 1649 count = it->cur_count; 1650 1651 if (WARN_ON(size < count)) 1652 count = size; 1653 1654 for (i = 0; i < count; i++) 1655 args[i] = be32_to_cpup(it->cur++); 1656 1657 return count; 1658 } 1659 1660 static int __of_parse_phandle_with_args(const struct device_node *np, 1661 const char *list_name, 1662 const char *cells_name, 1663 int cell_count, int index, 1664 struct of_phandle_args *out_args) 1665 { 1666 struct of_phandle_iterator it; 1667 int rc, cur_index = 0; 1668 1669 /* Loop over the phandles until all the requested entry is found */ 1670 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1671 /* 1672 * All of the error cases bail out of the loop, so at 1673 * this point, the parsing is successful. If the requested 1674 * index matches, then fill the out_args structure and return, 1675 * or return -ENOENT for an empty entry. 1676 */ 1677 rc = -ENOENT; 1678 if (cur_index == index) { 1679 if (!it.phandle) 1680 goto err; 1681 1682 if (out_args) { 1683 int c; 1684 1685 c = of_phandle_iterator_args(&it, 1686 out_args->args, 1687 MAX_PHANDLE_ARGS); 1688 out_args->np = it.node; 1689 out_args->args_count = c; 1690 } else { 1691 of_node_put(it.node); 1692 } 1693 1694 /* Found it! return success */ 1695 return 0; 1696 } 1697 1698 cur_index++; 1699 } 1700 1701 /* 1702 * Unlock node before returning result; will be one of: 1703 * -ENOENT : index is for empty phandle 1704 * -EINVAL : parsing error on data 1705 */ 1706 1707 err: 1708 of_node_put(it.node); 1709 return rc; 1710 } 1711 1712 /** 1713 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1714 * @np: Pointer to device node holding phandle property 1715 * @phandle_name: Name of property holding a phandle value 1716 * @index: For properties holding a table of phandles, this is the index into 1717 * the table 1718 * 1719 * Returns the device_node pointer with refcount incremented. Use 1720 * of_node_put() on it when done. 1721 */ 1722 struct device_node *of_parse_phandle(const struct device_node *np, 1723 const char *phandle_name, int index) 1724 { 1725 struct of_phandle_args args; 1726 1727 if (index < 0) 1728 return NULL; 1729 1730 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1731 index, &args)) 1732 return NULL; 1733 1734 return args.np; 1735 } 1736 EXPORT_SYMBOL(of_parse_phandle); 1737 1738 /** 1739 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1740 * @np: pointer to a device tree node containing a list 1741 * @list_name: property name that contains a list 1742 * @cells_name: property name that specifies phandles' arguments count 1743 * @index: index of a phandle to parse out 1744 * @out_args: optional pointer to output arguments structure (will be filled) 1745 * 1746 * This function is useful to parse lists of phandles and their arguments. 1747 * Returns 0 on success and fills out_args, on error returns appropriate 1748 * errno value. 1749 * 1750 * Caller is responsible to call of_node_put() on the returned out_args->np 1751 * pointer. 1752 * 1753 * Example: 1754 * 1755 * phandle1: node1 { 1756 * #list-cells = <2>; 1757 * } 1758 * 1759 * phandle2: node2 { 1760 * #list-cells = <1>; 1761 * } 1762 * 1763 * node3 { 1764 * list = <&phandle1 1 2 &phandle2 3>; 1765 * } 1766 * 1767 * To get a device_node of the `node2' node you may call this: 1768 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1769 */ 1770 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1771 const char *cells_name, int index, 1772 struct of_phandle_args *out_args) 1773 { 1774 if (index < 0) 1775 return -EINVAL; 1776 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1777 index, out_args); 1778 } 1779 EXPORT_SYMBOL(of_parse_phandle_with_args); 1780 1781 /** 1782 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1783 * @np: pointer to a device tree node containing a list 1784 * @list_name: property name that contains a list 1785 * @cell_count: number of argument cells following the phandle 1786 * @index: index of a phandle to parse out 1787 * @out_args: optional pointer to output arguments structure (will be filled) 1788 * 1789 * This function is useful to parse lists of phandles and their arguments. 1790 * Returns 0 on success and fills out_args, on error returns appropriate 1791 * errno value. 1792 * 1793 * Caller is responsible to call of_node_put() on the returned out_args->np 1794 * pointer. 1795 * 1796 * Example: 1797 * 1798 * phandle1: node1 { 1799 * } 1800 * 1801 * phandle2: node2 { 1802 * } 1803 * 1804 * node3 { 1805 * list = <&phandle1 0 2 &phandle2 2 3>; 1806 * } 1807 * 1808 * To get a device_node of the `node2' node you may call this: 1809 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1810 */ 1811 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1812 const char *list_name, int cell_count, 1813 int index, struct of_phandle_args *out_args) 1814 { 1815 if (index < 0) 1816 return -EINVAL; 1817 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1818 index, out_args); 1819 } 1820 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1821 1822 /** 1823 * of_count_phandle_with_args() - Find the number of phandles references in a property 1824 * @np: pointer to a device tree node containing a list 1825 * @list_name: property name that contains a list 1826 * @cells_name: property name that specifies phandles' arguments count 1827 * 1828 * Returns the number of phandle + argument tuples within a property. It 1829 * is a typical pattern to encode a list of phandle and variable 1830 * arguments into a single property. The number of arguments is encoded 1831 * by a property in the phandle-target node. For example, a gpios 1832 * property would contain a list of GPIO specifies consisting of a 1833 * phandle and 1 or more arguments. The number of arguments are 1834 * determined by the #gpio-cells property in the node pointed to by the 1835 * phandle. 1836 */ 1837 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1838 const char *cells_name) 1839 { 1840 struct of_phandle_iterator it; 1841 int rc, cur_index = 0; 1842 1843 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1844 if (rc) 1845 return rc; 1846 1847 while ((rc = of_phandle_iterator_next(&it)) == 0) 1848 cur_index += 1; 1849 1850 if (rc != -ENOENT) 1851 return rc; 1852 1853 return cur_index; 1854 } 1855 EXPORT_SYMBOL(of_count_phandle_with_args); 1856 1857 /** 1858 * __of_add_property - Add a property to a node without lock operations 1859 */ 1860 int __of_add_property(struct device_node *np, struct property *prop) 1861 { 1862 struct property **next; 1863 1864 prop->next = NULL; 1865 next = &np->properties; 1866 while (*next) { 1867 if (strcmp(prop->name, (*next)->name) == 0) 1868 /* duplicate ! don't insert it */ 1869 return -EEXIST; 1870 1871 next = &(*next)->next; 1872 } 1873 *next = prop; 1874 1875 return 0; 1876 } 1877 1878 /** 1879 * of_add_property - Add a property to a node 1880 */ 1881 int of_add_property(struct device_node *np, struct property *prop) 1882 { 1883 unsigned long flags; 1884 int rc; 1885 1886 mutex_lock(&of_mutex); 1887 1888 raw_spin_lock_irqsave(&devtree_lock, flags); 1889 rc = __of_add_property(np, prop); 1890 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1891 1892 if (!rc) 1893 __of_add_property_sysfs(np, prop); 1894 1895 mutex_unlock(&of_mutex); 1896 1897 if (!rc) 1898 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1899 1900 return rc; 1901 } 1902 1903 int __of_remove_property(struct device_node *np, struct property *prop) 1904 { 1905 struct property **next; 1906 1907 for (next = &np->properties; *next; next = &(*next)->next) { 1908 if (*next == prop) 1909 break; 1910 } 1911 if (*next == NULL) 1912 return -ENODEV; 1913 1914 /* found the node */ 1915 *next = prop->next; 1916 prop->next = np->deadprops; 1917 np->deadprops = prop; 1918 1919 return 0; 1920 } 1921 1922 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) 1923 { 1924 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1925 kfree(prop->attr.attr.name); 1926 } 1927 1928 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1929 { 1930 if (!IS_ENABLED(CONFIG_SYSFS)) 1931 return; 1932 1933 /* at early boot, bail here and defer setup to of_init() */ 1934 if (of_kset && of_node_is_attached(np)) 1935 __of_sysfs_remove_bin_file(np, prop); 1936 } 1937 1938 /** 1939 * of_remove_property - Remove a property from a node. 1940 * 1941 * Note that we don't actually remove it, since we have given out 1942 * who-knows-how-many pointers to the data using get-property. 1943 * Instead we just move the property to the "dead properties" 1944 * list, so it won't be found any more. 1945 */ 1946 int of_remove_property(struct device_node *np, struct property *prop) 1947 { 1948 unsigned long flags; 1949 int rc; 1950 1951 if (!prop) 1952 return -ENODEV; 1953 1954 mutex_lock(&of_mutex); 1955 1956 raw_spin_lock_irqsave(&devtree_lock, flags); 1957 rc = __of_remove_property(np, prop); 1958 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1959 1960 if (!rc) 1961 __of_remove_property_sysfs(np, prop); 1962 1963 mutex_unlock(&of_mutex); 1964 1965 if (!rc) 1966 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1967 1968 return rc; 1969 } 1970 1971 int __of_update_property(struct device_node *np, struct property *newprop, 1972 struct property **oldpropp) 1973 { 1974 struct property **next, *oldprop; 1975 1976 for (next = &np->properties; *next; next = &(*next)->next) { 1977 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1978 break; 1979 } 1980 *oldpropp = oldprop = *next; 1981 1982 if (oldprop) { 1983 /* replace the node */ 1984 newprop->next = oldprop->next; 1985 *next = newprop; 1986 oldprop->next = np->deadprops; 1987 np->deadprops = oldprop; 1988 } else { 1989 /* new node */ 1990 newprop->next = NULL; 1991 *next = newprop; 1992 } 1993 1994 return 0; 1995 } 1996 1997 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1998 struct property *oldprop) 1999 { 2000 if (!IS_ENABLED(CONFIG_SYSFS)) 2001 return; 2002 2003 /* At early boot, bail out and defer setup to of_init() */ 2004 if (!of_kset) 2005 return; 2006 2007 if (oldprop) 2008 __of_sysfs_remove_bin_file(np, oldprop); 2009 __of_add_property_sysfs(np, newprop); 2010 } 2011 2012 /* 2013 * of_update_property - Update a property in a node, if the property does 2014 * not exist, add it. 2015 * 2016 * Note that we don't actually remove it, since we have given out 2017 * who-knows-how-many pointers to the data using get-property. 2018 * Instead we just move the property to the "dead properties" list, 2019 * and add the new property to the property list 2020 */ 2021 int of_update_property(struct device_node *np, struct property *newprop) 2022 { 2023 struct property *oldprop; 2024 unsigned long flags; 2025 int rc; 2026 2027 if (!newprop->name) 2028 return -EINVAL; 2029 2030 mutex_lock(&of_mutex); 2031 2032 raw_spin_lock_irqsave(&devtree_lock, flags); 2033 rc = __of_update_property(np, newprop, &oldprop); 2034 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2035 2036 if (!rc) 2037 __of_update_property_sysfs(np, newprop, oldprop); 2038 2039 mutex_unlock(&of_mutex); 2040 2041 if (!rc) 2042 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 2043 2044 return rc; 2045 } 2046 2047 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 2048 int id, const char *stem, int stem_len) 2049 { 2050 ap->np = np; 2051 ap->id = id; 2052 strncpy(ap->stem, stem, stem_len); 2053 ap->stem[stem_len] = 0; 2054 list_add_tail(&ap->link, &aliases_lookup); 2055 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 2056 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 2057 } 2058 2059 /** 2060 * of_alias_scan - Scan all properties of the 'aliases' node 2061 * 2062 * The function scans all the properties of the 'aliases' node and populates 2063 * the global lookup table with the properties. It returns the 2064 * number of alias properties found, or an error code in case of failure. 2065 * 2066 * @dt_alloc: An allocator that provides a virtual address to memory 2067 * for storing the resulting tree 2068 */ 2069 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2070 { 2071 struct property *pp; 2072 2073 of_aliases = of_find_node_by_path("/aliases"); 2074 of_chosen = of_find_node_by_path("/chosen"); 2075 if (of_chosen == NULL) 2076 of_chosen = of_find_node_by_path("/chosen@0"); 2077 2078 if (of_chosen) { 2079 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 2080 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 2081 if (!name) 2082 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 2083 if (IS_ENABLED(CONFIG_PPC) && !name) 2084 name = of_get_property(of_aliases, "stdout", NULL); 2085 if (name) 2086 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2087 } 2088 2089 if (!of_aliases) 2090 return; 2091 2092 for_each_property_of_node(of_aliases, pp) { 2093 const char *start = pp->name; 2094 const char *end = start + strlen(start); 2095 struct device_node *np; 2096 struct alias_prop *ap; 2097 int id, len; 2098 2099 /* Skip those we do not want to proceed */ 2100 if (!strcmp(pp->name, "name") || 2101 !strcmp(pp->name, "phandle") || 2102 !strcmp(pp->name, "linux,phandle")) 2103 continue; 2104 2105 np = of_find_node_by_path(pp->value); 2106 if (!np) 2107 continue; 2108 2109 /* walk the alias backwards to extract the id and work out 2110 * the 'stem' string */ 2111 while (isdigit(*(end-1)) && end > start) 2112 end--; 2113 len = end - start; 2114 2115 if (kstrtoint(end, 10, &id) < 0) 2116 continue; 2117 2118 /* Allocate an alias_prop with enough space for the stem */ 2119 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2120 if (!ap) 2121 continue; 2122 memset(ap, 0, sizeof(*ap) + len + 1); 2123 ap->alias = start; 2124 of_alias_add(ap, np, id, start, len); 2125 } 2126 } 2127 2128 /** 2129 * of_alias_get_id - Get alias id for the given device_node 2130 * @np: Pointer to the given device_node 2131 * @stem: Alias stem of the given device_node 2132 * 2133 * The function travels the lookup table to get the alias id for the given 2134 * device_node and alias stem. It returns the alias id if found. 2135 */ 2136 int of_alias_get_id(struct device_node *np, const char *stem) 2137 { 2138 struct alias_prop *app; 2139 int id = -ENODEV; 2140 2141 mutex_lock(&of_mutex); 2142 list_for_each_entry(app, &aliases_lookup, link) { 2143 if (strcmp(app->stem, stem) != 0) 2144 continue; 2145 2146 if (np == app->np) { 2147 id = app->id; 2148 break; 2149 } 2150 } 2151 mutex_unlock(&of_mutex); 2152 2153 return id; 2154 } 2155 EXPORT_SYMBOL_GPL(of_alias_get_id); 2156 2157 /** 2158 * of_alias_get_highest_id - Get highest alias id for the given stem 2159 * @stem: Alias stem to be examined 2160 * 2161 * The function travels the lookup table to get the highest alias id for the 2162 * given alias stem. It returns the alias id if found. 2163 */ 2164 int of_alias_get_highest_id(const char *stem) 2165 { 2166 struct alias_prop *app; 2167 int id = -ENODEV; 2168 2169 mutex_lock(&of_mutex); 2170 list_for_each_entry(app, &aliases_lookup, link) { 2171 if (strcmp(app->stem, stem) != 0) 2172 continue; 2173 2174 if (app->id > id) 2175 id = app->id; 2176 } 2177 mutex_unlock(&of_mutex); 2178 2179 return id; 2180 } 2181 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2182 2183 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2184 u32 *pu) 2185 { 2186 const void *curv = cur; 2187 2188 if (!prop) 2189 return NULL; 2190 2191 if (!cur) { 2192 curv = prop->value; 2193 goto out_val; 2194 } 2195 2196 curv += sizeof(*cur); 2197 if (curv >= prop->value + prop->length) 2198 return NULL; 2199 2200 out_val: 2201 *pu = be32_to_cpup(curv); 2202 return curv; 2203 } 2204 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2205 2206 const char *of_prop_next_string(struct property *prop, const char *cur) 2207 { 2208 const void *curv = cur; 2209 2210 if (!prop) 2211 return NULL; 2212 2213 if (!cur) 2214 return prop->value; 2215 2216 curv += strlen(cur) + 1; 2217 if (curv >= prop->value + prop->length) 2218 return NULL; 2219 2220 return curv; 2221 } 2222 EXPORT_SYMBOL_GPL(of_prop_next_string); 2223 2224 /** 2225 * of_console_check() - Test and setup console for DT setup 2226 * @dn - Pointer to device node 2227 * @name - Name to use for preferred console without index. ex. "ttyS" 2228 * @index - Index to use for preferred console. 2229 * 2230 * Check if the given device node matches the stdout-path property in the 2231 * /chosen node. If it does then register it as the preferred console and return 2232 * TRUE. Otherwise return FALSE. 2233 */ 2234 bool of_console_check(struct device_node *dn, char *name, int index) 2235 { 2236 if (!dn || dn != of_stdout || console_set_on_cmdline) 2237 return false; 2238 return !add_preferred_console(name, index, 2239 kstrdup(of_stdout_options, GFP_KERNEL)); 2240 } 2241 EXPORT_SYMBOL_GPL(of_console_check); 2242 2243 /** 2244 * of_find_next_cache_node - Find a node's subsidiary cache 2245 * @np: node of type "cpu" or "cache" 2246 * 2247 * Returns a node pointer with refcount incremented, use 2248 * of_node_put() on it when done. Caller should hold a reference 2249 * to np. 2250 */ 2251 struct device_node *of_find_next_cache_node(const struct device_node *np) 2252 { 2253 struct device_node *child; 2254 const phandle *handle; 2255 2256 handle = of_get_property(np, "l2-cache", NULL); 2257 if (!handle) 2258 handle = of_get_property(np, "next-level-cache", NULL); 2259 2260 if (handle) 2261 return of_find_node_by_phandle(be32_to_cpup(handle)); 2262 2263 /* OF on pmac has nodes instead of properties named "l2-cache" 2264 * beneath CPU nodes. 2265 */ 2266 if (!strcmp(np->type, "cpu")) 2267 for_each_child_of_node(np, child) 2268 if (!strcmp(child->type, "cache")) 2269 return child; 2270 2271 return NULL; 2272 } 2273 2274 /** 2275 * of_find_last_cache_level - Find the level at which the last cache is 2276 * present for the given logical cpu 2277 * 2278 * @cpu: cpu number(logical index) for which the last cache level is needed 2279 * 2280 * Returns the the level at which the last cache is present. It is exactly 2281 * same as the total number of cache levels for the given logical cpu. 2282 */ 2283 int of_find_last_cache_level(unsigned int cpu) 2284 { 2285 u32 cache_level = 0; 2286 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2287 2288 while (np) { 2289 prev = np; 2290 of_node_put(np); 2291 np = of_find_next_cache_node(np); 2292 } 2293 2294 of_property_read_u32(prev, "cache-level", &cache_level); 2295 2296 return cache_level; 2297 } 2298 2299 /** 2300 * of_graph_parse_endpoint() - parse common endpoint node properties 2301 * @node: pointer to endpoint device_node 2302 * @endpoint: pointer to the OF endpoint data structure 2303 * 2304 * The caller should hold a reference to @node. 2305 */ 2306 int of_graph_parse_endpoint(const struct device_node *node, 2307 struct of_endpoint *endpoint) 2308 { 2309 struct device_node *port_node = of_get_parent(node); 2310 2311 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2312 __func__, node->full_name); 2313 2314 memset(endpoint, 0, sizeof(*endpoint)); 2315 2316 endpoint->local_node = node; 2317 /* 2318 * It doesn't matter whether the two calls below succeed. 2319 * If they don't then the default value 0 is used. 2320 */ 2321 of_property_read_u32(port_node, "reg", &endpoint->port); 2322 of_property_read_u32(node, "reg", &endpoint->id); 2323 2324 of_node_put(port_node); 2325 2326 return 0; 2327 } 2328 EXPORT_SYMBOL(of_graph_parse_endpoint); 2329 2330 /** 2331 * of_graph_get_port_by_id() - get the port matching a given id 2332 * @parent: pointer to the parent device node 2333 * @id: id of the port 2334 * 2335 * Return: A 'port' node pointer with refcount incremented. The caller 2336 * has to use of_node_put() on it when done. 2337 */ 2338 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2339 { 2340 struct device_node *node, *port; 2341 2342 node = of_get_child_by_name(parent, "ports"); 2343 if (node) 2344 parent = node; 2345 2346 for_each_child_of_node(parent, port) { 2347 u32 port_id = 0; 2348 2349 if (of_node_cmp(port->name, "port") != 0) 2350 continue; 2351 of_property_read_u32(port, "reg", &port_id); 2352 if (id == port_id) 2353 break; 2354 } 2355 2356 of_node_put(node); 2357 2358 return port; 2359 } 2360 EXPORT_SYMBOL(of_graph_get_port_by_id); 2361 2362 /** 2363 * of_graph_get_next_endpoint() - get next endpoint node 2364 * @parent: pointer to the parent device node 2365 * @prev: previous endpoint node, or NULL to get first 2366 * 2367 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2368 * of the passed @prev node is decremented. 2369 */ 2370 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2371 struct device_node *prev) 2372 { 2373 struct device_node *endpoint; 2374 struct device_node *port; 2375 2376 if (!parent) 2377 return NULL; 2378 2379 /* 2380 * Start by locating the port node. If no previous endpoint is specified 2381 * search for the first port node, otherwise get the previous endpoint 2382 * parent port node. 2383 */ 2384 if (!prev) { 2385 struct device_node *node; 2386 2387 node = of_get_child_by_name(parent, "ports"); 2388 if (node) 2389 parent = node; 2390 2391 port = of_get_child_by_name(parent, "port"); 2392 of_node_put(node); 2393 2394 if (!port) { 2395 pr_err("graph: no port node found in %s\n", 2396 parent->full_name); 2397 return NULL; 2398 } 2399 } else { 2400 port = of_get_parent(prev); 2401 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2402 __func__, prev->full_name)) 2403 return NULL; 2404 } 2405 2406 while (1) { 2407 /* 2408 * Now that we have a port node, get the next endpoint by 2409 * getting the next child. If the previous endpoint is NULL this 2410 * will return the first child. 2411 */ 2412 endpoint = of_get_next_child(port, prev); 2413 if (endpoint) { 2414 of_node_put(port); 2415 return endpoint; 2416 } 2417 2418 /* No more endpoints under this port, try the next one. */ 2419 prev = NULL; 2420 2421 do { 2422 port = of_get_next_child(parent, port); 2423 if (!port) 2424 return NULL; 2425 } while (of_node_cmp(port->name, "port")); 2426 } 2427 } 2428 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2429 2430 /** 2431 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2432 * @parent: pointer to the parent device node 2433 * @port_reg: identifier (value of reg property) of the parent port node 2434 * @reg: identifier (value of reg property) of the endpoint node 2435 * 2436 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2437 * is the child of a port node identified by port_reg. reg and port_reg are 2438 * ignored when they are -1. 2439 */ 2440 struct device_node *of_graph_get_endpoint_by_regs( 2441 const struct device_node *parent, int port_reg, int reg) 2442 { 2443 struct of_endpoint endpoint; 2444 struct device_node *node = NULL; 2445 2446 for_each_endpoint_of_node(parent, node) { 2447 of_graph_parse_endpoint(node, &endpoint); 2448 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2449 ((reg == -1) || (endpoint.id == reg))) 2450 return node; 2451 } 2452 2453 return NULL; 2454 } 2455 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2456 2457 /** 2458 * of_graph_get_remote_port_parent() - get remote port's parent node 2459 * @node: pointer to a local endpoint device_node 2460 * 2461 * Return: Remote device node associated with remote endpoint node linked 2462 * to @node. Use of_node_put() on it when done. 2463 */ 2464 struct device_node *of_graph_get_remote_port_parent( 2465 const struct device_node *node) 2466 { 2467 struct device_node *np; 2468 unsigned int depth; 2469 2470 /* Get remote endpoint node. */ 2471 np = of_parse_phandle(node, "remote-endpoint", 0); 2472 2473 /* Walk 3 levels up only if there is 'ports' node. */ 2474 for (depth = 3; depth && np; depth--) { 2475 np = of_get_next_parent(np); 2476 if (depth == 2 && of_node_cmp(np->name, "ports")) 2477 break; 2478 } 2479 return np; 2480 } 2481 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2482 2483 /** 2484 * of_graph_get_remote_port() - get remote port node 2485 * @node: pointer to a local endpoint device_node 2486 * 2487 * Return: Remote port node associated with remote endpoint node linked 2488 * to @node. Use of_node_put() on it when done. 2489 */ 2490 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2491 { 2492 struct device_node *np; 2493 2494 /* Get remote endpoint node. */ 2495 np = of_parse_phandle(node, "remote-endpoint", 0); 2496 if (!np) 2497 return NULL; 2498 return of_get_next_parent(np); 2499 } 2500 EXPORT_SYMBOL(of_graph_get_remote_port); 2501 2502 /** 2503 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 2504 * @node: pointer to parent device_node containing graph port/endpoint 2505 * @port: identifier (value of reg property) of the parent port node 2506 * @endpoint: identifier (value of reg property) of the endpoint node 2507 * 2508 * Return: Remote device node associated with remote endpoint node linked 2509 * to @node. Use of_node_put() on it when done. 2510 */ 2511 struct device_node *of_graph_get_remote_node(const struct device_node *node, 2512 u32 port, u32 endpoint) 2513 { 2514 struct device_node *endpoint_node, *remote; 2515 2516 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 2517 if (!endpoint_node) { 2518 pr_debug("no valid endpoint (%d, %d) for node %s\n", 2519 port, endpoint, node->full_name); 2520 return NULL; 2521 } 2522 2523 remote = of_graph_get_remote_port_parent(endpoint_node); 2524 of_node_put(endpoint_node); 2525 if (!remote) { 2526 pr_debug("no valid remote node\n"); 2527 return NULL; 2528 } 2529 2530 if (!of_device_is_available(remote)) { 2531 pr_debug("not available for remote node\n"); 2532 return NULL; 2533 } 2534 2535 return remote; 2536 } 2537 EXPORT_SYMBOL(of_graph_get_remote_node); 2538