xref: /openbmc/linux/drivers/of/base.c (revision a2fb4d78)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27 
28 #include "of_private.h"
29 
30 LIST_HEAD(aliases_lookup);
31 
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37 
38 DEFINE_MUTEX(of_aliases_mutex);
39 
40 /* use when traversing tree through the allnext, child, sibling,
41  * or parent members of struct device_node.
42  */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44 
45 int of_n_addr_cells(struct device_node *np)
46 {
47 	const __be32 *ip;
48 
49 	do {
50 		if (np->parent)
51 			np = np->parent;
52 		ip = of_get_property(np, "#address-cells", NULL);
53 		if (ip)
54 			return be32_to_cpup(ip);
55 	} while (np->parent);
56 	/* No #address-cells property for the root node */
57 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60 
61 int of_n_size_cells(struct device_node *np)
62 {
63 	const __be32 *ip;
64 
65 	do {
66 		if (np->parent)
67 			np = np->parent;
68 		ip = of_get_property(np, "#size-cells", NULL);
69 		if (ip)
70 			return be32_to_cpup(ip);
71 	} while (np->parent);
72 	/* No #size-cells property for the root node */
73 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76 
77 #ifdef CONFIG_NUMA
78 int __weak of_node_to_nid(struct device_node *np)
79 {
80 	return numa_node_id();
81 }
82 #endif
83 
84 #if defined(CONFIG_OF_DYNAMIC)
85 /**
86  *	of_node_get - Increment refcount of a node
87  *	@node:	Node to inc refcount, NULL is supported to
88  *		simplify writing of callers
89  *
90  *	Returns node.
91  */
92 struct device_node *of_node_get(struct device_node *node)
93 {
94 	if (node)
95 		kref_get(&node->kref);
96 	return node;
97 }
98 EXPORT_SYMBOL(of_node_get);
99 
100 static inline struct device_node *kref_to_device_node(struct kref *kref)
101 {
102 	return container_of(kref, struct device_node, kref);
103 }
104 
105 /**
106  *	of_node_release - release a dynamically allocated node
107  *	@kref:  kref element of the node to be released
108  *
109  *	In of_node_put() this function is passed to kref_put()
110  *	as the destructor.
111  */
112 static void of_node_release(struct kref *kref)
113 {
114 	struct device_node *node = kref_to_device_node(kref);
115 	struct property *prop = node->properties;
116 
117 	/* We should never be releasing nodes that haven't been detached. */
118 	if (!of_node_check_flag(node, OF_DETACHED)) {
119 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
120 		dump_stack();
121 		kref_init(&node->kref);
122 		return;
123 	}
124 
125 	if (!of_node_check_flag(node, OF_DYNAMIC))
126 		return;
127 
128 	while (prop) {
129 		struct property *next = prop->next;
130 		kfree(prop->name);
131 		kfree(prop->value);
132 		kfree(prop);
133 		prop = next;
134 
135 		if (!prop) {
136 			prop = node->deadprops;
137 			node->deadprops = NULL;
138 		}
139 	}
140 	kfree(node->full_name);
141 	kfree(node->data);
142 	kfree(node);
143 }
144 
145 /**
146  *	of_node_put - Decrement refcount of a node
147  *	@node:	Node to dec refcount, NULL is supported to
148  *		simplify writing of callers
149  *
150  */
151 void of_node_put(struct device_node *node)
152 {
153 	if (node)
154 		kref_put(&node->kref, of_node_release);
155 }
156 EXPORT_SYMBOL(of_node_put);
157 #endif /* CONFIG_OF_DYNAMIC */
158 
159 static struct property *__of_find_property(const struct device_node *np,
160 					   const char *name, int *lenp)
161 {
162 	struct property *pp;
163 
164 	if (!np)
165 		return NULL;
166 
167 	for (pp = np->properties; pp; pp = pp->next) {
168 		if (of_prop_cmp(pp->name, name) == 0) {
169 			if (lenp)
170 				*lenp = pp->length;
171 			break;
172 		}
173 	}
174 
175 	return pp;
176 }
177 
178 struct property *of_find_property(const struct device_node *np,
179 				  const char *name,
180 				  int *lenp)
181 {
182 	struct property *pp;
183 	unsigned long flags;
184 
185 	raw_spin_lock_irqsave(&devtree_lock, flags);
186 	pp = __of_find_property(np, name, lenp);
187 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
188 
189 	return pp;
190 }
191 EXPORT_SYMBOL(of_find_property);
192 
193 /**
194  * of_find_all_nodes - Get next node in global list
195  * @prev:	Previous node or NULL to start iteration
196  *		of_node_put() will be called on it
197  *
198  * Returns a node pointer with refcount incremented, use
199  * of_node_put() on it when done.
200  */
201 struct device_node *of_find_all_nodes(struct device_node *prev)
202 {
203 	struct device_node *np;
204 	unsigned long flags;
205 
206 	raw_spin_lock_irqsave(&devtree_lock, flags);
207 	np = prev ? prev->allnext : of_allnodes;
208 	for (; np != NULL; np = np->allnext)
209 		if (of_node_get(np))
210 			break;
211 	of_node_put(prev);
212 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
213 	return np;
214 }
215 EXPORT_SYMBOL(of_find_all_nodes);
216 
217 /*
218  * Find a property with a given name for a given node
219  * and return the value.
220  */
221 static const void *__of_get_property(const struct device_node *np,
222 				     const char *name, int *lenp)
223 {
224 	struct property *pp = __of_find_property(np, name, lenp);
225 
226 	return pp ? pp->value : NULL;
227 }
228 
229 /*
230  * Find a property with a given name for a given node
231  * and return the value.
232  */
233 const void *of_get_property(const struct device_node *np, const char *name,
234 			    int *lenp)
235 {
236 	struct property *pp = of_find_property(np, name, lenp);
237 
238 	return pp ? pp->value : NULL;
239 }
240 EXPORT_SYMBOL(of_get_property);
241 
242 /*
243  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
244  *
245  * @cpu: logical cpu index of a core/thread
246  * @phys_id: physical identifier of a core/thread
247  *
248  * CPU logical to physical index mapping is architecture specific.
249  * However this __weak function provides a default match of physical
250  * id to logical cpu index. phys_id provided here is usually values read
251  * from the device tree which must match the hardware internal registers.
252  *
253  * Returns true if the physical identifier and the logical cpu index
254  * correspond to the same core/thread, false otherwise.
255  */
256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
257 {
258 	return (u32)phys_id == cpu;
259 }
260 
261 /**
262  * Checks if the given "prop_name" property holds the physical id of the
263  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
264  * NULL, local thread number within the core is returned in it.
265  */
266 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
267 			const char *prop_name, int cpu, unsigned int *thread)
268 {
269 	const __be32 *cell;
270 	int ac, prop_len, tid;
271 	u64 hwid;
272 
273 	ac = of_n_addr_cells(cpun);
274 	cell = of_get_property(cpun, prop_name, &prop_len);
275 	if (!cell || !ac)
276 		return false;
277 	prop_len /= sizeof(*cell) * ac;
278 	for (tid = 0; tid < prop_len; tid++) {
279 		hwid = of_read_number(cell, ac);
280 		if (arch_match_cpu_phys_id(cpu, hwid)) {
281 			if (thread)
282 				*thread = tid;
283 			return true;
284 		}
285 		cell += ac;
286 	}
287 	return false;
288 }
289 
290 /*
291  * arch_find_n_match_cpu_physical_id - See if the given device node is
292  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
293  * else false.  If 'thread' is non-NULL, the local thread number within the
294  * core is returned in it.
295  */
296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
297 					      int cpu, unsigned int *thread)
298 {
299 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
300 	 * for thread ids on PowerPC. If it doesn't exist fallback to
301 	 * standard "reg" property.
302 	 */
303 	if (IS_ENABLED(CONFIG_PPC) &&
304 	    __of_find_n_match_cpu_property(cpun,
305 					   "ibm,ppc-interrupt-server#s",
306 					   cpu, thread))
307 		return true;
308 
309 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
310 		return true;
311 
312 	return false;
313 }
314 
315 /**
316  * of_get_cpu_node - Get device node associated with the given logical CPU
317  *
318  * @cpu: CPU number(logical index) for which device node is required
319  * @thread: if not NULL, local thread number within the physical core is
320  *          returned
321  *
322  * The main purpose of this function is to retrieve the device node for the
323  * given logical CPU index. It should be used to initialize the of_node in
324  * cpu device. Once of_node in cpu device is populated, all the further
325  * references can use that instead.
326  *
327  * CPU logical to physical index mapping is architecture specific and is built
328  * before booting secondary cores. This function uses arch_match_cpu_phys_id
329  * which can be overridden by architecture specific implementation.
330  *
331  * Returns a node pointer for the logical cpu if found, else NULL.
332  */
333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
334 {
335 	struct device_node *cpun;
336 
337 	for_each_node_by_type(cpun, "cpu") {
338 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
339 			return cpun;
340 	}
341 	return NULL;
342 }
343 EXPORT_SYMBOL(of_get_cpu_node);
344 
345 /**
346  * __of_device_is_compatible() - Check if the node matches given constraints
347  * @device: pointer to node
348  * @compat: required compatible string, NULL or "" for any match
349  * @type: required device_type value, NULL or "" for any match
350  * @name: required node name, NULL or "" for any match
351  *
352  * Checks if the given @compat, @type and @name strings match the
353  * properties of the given @device. A constraints can be skipped by
354  * passing NULL or an empty string as the constraint.
355  *
356  * Returns 0 for no match, and a positive integer on match. The return
357  * value is a relative score with larger values indicating better
358  * matches. The score is weighted for the most specific compatible value
359  * to get the highest score. Matching type is next, followed by matching
360  * name. Practically speaking, this results in the following priority
361  * order for matches:
362  *
363  * 1. specific compatible && type && name
364  * 2. specific compatible && type
365  * 3. specific compatible && name
366  * 4. specific compatible
367  * 5. general compatible && type && name
368  * 6. general compatible && type
369  * 7. general compatible && name
370  * 8. general compatible
371  * 9. type && name
372  * 10. type
373  * 11. name
374  */
375 static int __of_device_is_compatible(const struct device_node *device,
376 				     const char *compat, const char *type, const char *name)
377 {
378 	struct property *prop;
379 	const char *cp;
380 	int index = 0, score = 0;
381 
382 	/* Compatible match has highest priority */
383 	if (compat && compat[0]) {
384 		prop = __of_find_property(device, "compatible", NULL);
385 		for (cp = of_prop_next_string(prop, NULL); cp;
386 		     cp = of_prop_next_string(prop, cp), index++) {
387 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
388 				score = INT_MAX/2 - (index << 2);
389 				break;
390 			}
391 		}
392 		if (!score)
393 			return 0;
394 	}
395 
396 	/* Matching type is better than matching name */
397 	if (type && type[0]) {
398 		if (!device->type || of_node_cmp(type, device->type))
399 			return 0;
400 		score += 2;
401 	}
402 
403 	/* Matching name is a bit better than not */
404 	if (name && name[0]) {
405 		if (!device->name || of_node_cmp(name, device->name))
406 			return 0;
407 		score++;
408 	}
409 
410 	return score;
411 }
412 
413 /** Checks if the given "compat" string matches one of the strings in
414  * the device's "compatible" property
415  */
416 int of_device_is_compatible(const struct device_node *device,
417 		const char *compat)
418 {
419 	unsigned long flags;
420 	int res;
421 
422 	raw_spin_lock_irqsave(&devtree_lock, flags);
423 	res = __of_device_is_compatible(device, compat, NULL, NULL);
424 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
425 	return res;
426 }
427 EXPORT_SYMBOL(of_device_is_compatible);
428 
429 /**
430  * of_machine_is_compatible - Test root of device tree for a given compatible value
431  * @compat: compatible string to look for in root node's compatible property.
432  *
433  * Returns true if the root node has the given value in its
434  * compatible property.
435  */
436 int of_machine_is_compatible(const char *compat)
437 {
438 	struct device_node *root;
439 	int rc = 0;
440 
441 	root = of_find_node_by_path("/");
442 	if (root) {
443 		rc = of_device_is_compatible(root, compat);
444 		of_node_put(root);
445 	}
446 	return rc;
447 }
448 EXPORT_SYMBOL(of_machine_is_compatible);
449 
450 /**
451  *  __of_device_is_available - check if a device is available for use
452  *
453  *  @device: Node to check for availability, with locks already held
454  *
455  *  Returns 1 if the status property is absent or set to "okay" or "ok",
456  *  0 otherwise
457  */
458 static int __of_device_is_available(const struct device_node *device)
459 {
460 	const char *status;
461 	int statlen;
462 
463 	if (!device)
464 		return 0;
465 
466 	status = __of_get_property(device, "status", &statlen);
467 	if (status == NULL)
468 		return 1;
469 
470 	if (statlen > 0) {
471 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
472 			return 1;
473 	}
474 
475 	return 0;
476 }
477 
478 /**
479  *  of_device_is_available - check if a device is available for use
480  *
481  *  @device: Node to check for availability
482  *
483  *  Returns 1 if the status property is absent or set to "okay" or "ok",
484  *  0 otherwise
485  */
486 int of_device_is_available(const struct device_node *device)
487 {
488 	unsigned long flags;
489 	int res;
490 
491 	raw_spin_lock_irqsave(&devtree_lock, flags);
492 	res = __of_device_is_available(device);
493 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
494 	return res;
495 
496 }
497 EXPORT_SYMBOL(of_device_is_available);
498 
499 /**
500  *	of_get_parent - Get a node's parent if any
501  *	@node:	Node to get parent
502  *
503  *	Returns a node pointer with refcount incremented, use
504  *	of_node_put() on it when done.
505  */
506 struct device_node *of_get_parent(const struct device_node *node)
507 {
508 	struct device_node *np;
509 	unsigned long flags;
510 
511 	if (!node)
512 		return NULL;
513 
514 	raw_spin_lock_irqsave(&devtree_lock, flags);
515 	np = of_node_get(node->parent);
516 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
517 	return np;
518 }
519 EXPORT_SYMBOL(of_get_parent);
520 
521 /**
522  *	of_get_next_parent - Iterate to a node's parent
523  *	@node:	Node to get parent of
524  *
525  * 	This is like of_get_parent() except that it drops the
526  * 	refcount on the passed node, making it suitable for iterating
527  * 	through a node's parents.
528  *
529  *	Returns a node pointer with refcount incremented, use
530  *	of_node_put() on it when done.
531  */
532 struct device_node *of_get_next_parent(struct device_node *node)
533 {
534 	struct device_node *parent;
535 	unsigned long flags;
536 
537 	if (!node)
538 		return NULL;
539 
540 	raw_spin_lock_irqsave(&devtree_lock, flags);
541 	parent = of_node_get(node->parent);
542 	of_node_put(node);
543 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
544 	return parent;
545 }
546 EXPORT_SYMBOL(of_get_next_parent);
547 
548 /**
549  *	of_get_next_child - Iterate a node childs
550  *	@node:	parent node
551  *	@prev:	previous child of the parent node, or NULL to get first
552  *
553  *	Returns a node pointer with refcount incremented, use
554  *	of_node_put() on it when done.
555  */
556 struct device_node *of_get_next_child(const struct device_node *node,
557 	struct device_node *prev)
558 {
559 	struct device_node *next;
560 	unsigned long flags;
561 
562 	raw_spin_lock_irqsave(&devtree_lock, flags);
563 	next = prev ? prev->sibling : node->child;
564 	for (; next; next = next->sibling)
565 		if (of_node_get(next))
566 			break;
567 	of_node_put(prev);
568 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
569 	return next;
570 }
571 EXPORT_SYMBOL(of_get_next_child);
572 
573 /**
574  *	of_get_next_available_child - Find the next available child node
575  *	@node:	parent node
576  *	@prev:	previous child of the parent node, or NULL to get first
577  *
578  *      This function is like of_get_next_child(), except that it
579  *      automatically skips any disabled nodes (i.e. status = "disabled").
580  */
581 struct device_node *of_get_next_available_child(const struct device_node *node,
582 	struct device_node *prev)
583 {
584 	struct device_node *next;
585 	unsigned long flags;
586 
587 	raw_spin_lock_irqsave(&devtree_lock, flags);
588 	next = prev ? prev->sibling : node->child;
589 	for (; next; next = next->sibling) {
590 		if (!__of_device_is_available(next))
591 			continue;
592 		if (of_node_get(next))
593 			break;
594 	}
595 	of_node_put(prev);
596 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
597 	return next;
598 }
599 EXPORT_SYMBOL(of_get_next_available_child);
600 
601 /**
602  *	of_get_child_by_name - Find the child node by name for a given parent
603  *	@node:	parent node
604  *	@name:	child name to look for.
605  *
606  *      This function looks for child node for given matching name
607  *
608  *	Returns a node pointer if found, with refcount incremented, use
609  *	of_node_put() on it when done.
610  *	Returns NULL if node is not found.
611  */
612 struct device_node *of_get_child_by_name(const struct device_node *node,
613 				const char *name)
614 {
615 	struct device_node *child;
616 
617 	for_each_child_of_node(node, child)
618 		if (child->name && (of_node_cmp(child->name, name) == 0))
619 			break;
620 	return child;
621 }
622 EXPORT_SYMBOL(of_get_child_by_name);
623 
624 /**
625  *	of_find_node_by_path - Find a node matching a full OF path
626  *	@path:	The full path to match
627  *
628  *	Returns a node pointer with refcount incremented, use
629  *	of_node_put() on it when done.
630  */
631 struct device_node *of_find_node_by_path(const char *path)
632 {
633 	struct device_node *np = of_allnodes;
634 	unsigned long flags;
635 
636 	raw_spin_lock_irqsave(&devtree_lock, flags);
637 	for (; np; np = np->allnext) {
638 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
639 		    && of_node_get(np))
640 			break;
641 	}
642 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
643 	return np;
644 }
645 EXPORT_SYMBOL(of_find_node_by_path);
646 
647 /**
648  *	of_find_node_by_name - Find a node by its "name" property
649  *	@from:	The node to start searching from or NULL, the node
650  *		you pass will not be searched, only the next one
651  *		will; typically, you pass what the previous call
652  *		returned. of_node_put() will be called on it
653  *	@name:	The name string to match against
654  *
655  *	Returns a node pointer with refcount incremented, use
656  *	of_node_put() on it when done.
657  */
658 struct device_node *of_find_node_by_name(struct device_node *from,
659 	const char *name)
660 {
661 	struct device_node *np;
662 	unsigned long flags;
663 
664 	raw_spin_lock_irqsave(&devtree_lock, flags);
665 	np = from ? from->allnext : of_allnodes;
666 	for (; np; np = np->allnext)
667 		if (np->name && (of_node_cmp(np->name, name) == 0)
668 		    && of_node_get(np))
669 			break;
670 	of_node_put(from);
671 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 	return np;
673 }
674 EXPORT_SYMBOL(of_find_node_by_name);
675 
676 /**
677  *	of_find_node_by_type - Find a node by its "device_type" property
678  *	@from:	The node to start searching from, or NULL to start searching
679  *		the entire device tree. The node you pass will not be
680  *		searched, only the next one will; typically, you pass
681  *		what the previous call returned. of_node_put() will be
682  *		called on from for you.
683  *	@type:	The type string to match against
684  *
685  *	Returns a node pointer with refcount incremented, use
686  *	of_node_put() on it when done.
687  */
688 struct device_node *of_find_node_by_type(struct device_node *from,
689 	const char *type)
690 {
691 	struct device_node *np;
692 	unsigned long flags;
693 
694 	raw_spin_lock_irqsave(&devtree_lock, flags);
695 	np = from ? from->allnext : of_allnodes;
696 	for (; np; np = np->allnext)
697 		if (np->type && (of_node_cmp(np->type, type) == 0)
698 		    && of_node_get(np))
699 			break;
700 	of_node_put(from);
701 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
702 	return np;
703 }
704 EXPORT_SYMBOL(of_find_node_by_type);
705 
706 /**
707  *	of_find_compatible_node - Find a node based on type and one of the
708  *                                tokens in its "compatible" property
709  *	@from:		The node to start searching from or NULL, the node
710  *			you pass will not be searched, only the next one
711  *			will; typically, you pass what the previous call
712  *			returned. of_node_put() will be called on it
713  *	@type:		The type string to match "device_type" or NULL to ignore
714  *	@compatible:	The string to match to one of the tokens in the device
715  *			"compatible" list.
716  *
717  *	Returns a node pointer with refcount incremented, use
718  *	of_node_put() on it when done.
719  */
720 struct device_node *of_find_compatible_node(struct device_node *from,
721 	const char *type, const char *compatible)
722 {
723 	struct device_node *np;
724 	unsigned long flags;
725 
726 	raw_spin_lock_irqsave(&devtree_lock, flags);
727 	np = from ? from->allnext : of_allnodes;
728 	for (; np; np = np->allnext) {
729 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
730 		    of_node_get(np))
731 			break;
732 	}
733 	of_node_put(from);
734 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
735 	return np;
736 }
737 EXPORT_SYMBOL(of_find_compatible_node);
738 
739 /**
740  *	of_find_node_with_property - Find a node which has a property with
741  *                                   the given name.
742  *	@from:		The node to start searching from or NULL, the node
743  *			you pass will not be searched, only the next one
744  *			will; typically, you pass what the previous call
745  *			returned. of_node_put() will be called on it
746  *	@prop_name:	The name of the property to look for.
747  *
748  *	Returns a node pointer with refcount incremented, use
749  *	of_node_put() on it when done.
750  */
751 struct device_node *of_find_node_with_property(struct device_node *from,
752 	const char *prop_name)
753 {
754 	struct device_node *np;
755 	struct property *pp;
756 	unsigned long flags;
757 
758 	raw_spin_lock_irqsave(&devtree_lock, flags);
759 	np = from ? from->allnext : of_allnodes;
760 	for (; np; np = np->allnext) {
761 		for (pp = np->properties; pp; pp = pp->next) {
762 			if (of_prop_cmp(pp->name, prop_name) == 0) {
763 				of_node_get(np);
764 				goto out;
765 			}
766 		}
767 	}
768 out:
769 	of_node_put(from);
770 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 	return np;
772 }
773 EXPORT_SYMBOL(of_find_node_with_property);
774 
775 static
776 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
777 					   const struct device_node *node)
778 {
779 	const struct of_device_id *best_match = NULL;
780 	int score, best_score = 0;
781 
782 	if (!matches)
783 		return NULL;
784 
785 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
786 		score = __of_device_is_compatible(node, matches->compatible,
787 						  matches->type, matches->name);
788 		if (score > best_score) {
789 			best_match = matches;
790 			best_score = score;
791 		}
792 	}
793 
794 	return best_match;
795 }
796 
797 /**
798  * of_match_node - Tell if an device_node has a matching of_match structure
799  *	@matches:	array of of device match structures to search in
800  *	@node:		the of device structure to match against
801  *
802  *	Low level utility function used by device matching.
803  */
804 const struct of_device_id *of_match_node(const struct of_device_id *matches,
805 					 const struct device_node *node)
806 {
807 	const struct of_device_id *match;
808 	unsigned long flags;
809 
810 	raw_spin_lock_irqsave(&devtree_lock, flags);
811 	match = __of_match_node(matches, node);
812 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
813 	return match;
814 }
815 EXPORT_SYMBOL(of_match_node);
816 
817 /**
818  *	of_find_matching_node_and_match - Find a node based on an of_device_id
819  *					  match table.
820  *	@from:		The node to start searching from or NULL, the node
821  *			you pass will not be searched, only the next one
822  *			will; typically, you pass what the previous call
823  *			returned. of_node_put() will be called on it
824  *	@matches:	array of of device match structures to search in
825  *	@match		Updated to point at the matches entry which matched
826  *
827  *	Returns a node pointer with refcount incremented, use
828  *	of_node_put() on it when done.
829  */
830 struct device_node *of_find_matching_node_and_match(struct device_node *from,
831 					const struct of_device_id *matches,
832 					const struct of_device_id **match)
833 {
834 	struct device_node *np;
835 	const struct of_device_id *m;
836 	unsigned long flags;
837 
838 	if (match)
839 		*match = NULL;
840 
841 	raw_spin_lock_irqsave(&devtree_lock, flags);
842 	np = from ? from->allnext : of_allnodes;
843 	for (; np; np = np->allnext) {
844 		m = __of_match_node(matches, np);
845 		if (m && of_node_get(np)) {
846 			if (match)
847 				*match = m;
848 			break;
849 		}
850 	}
851 	of_node_put(from);
852 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
853 	return np;
854 }
855 EXPORT_SYMBOL(of_find_matching_node_and_match);
856 
857 /**
858  * of_modalias_node - Lookup appropriate modalias for a device node
859  * @node:	pointer to a device tree node
860  * @modalias:	Pointer to buffer that modalias value will be copied into
861  * @len:	Length of modalias value
862  *
863  * Based on the value of the compatible property, this routine will attempt
864  * to choose an appropriate modalias value for a particular device tree node.
865  * It does this by stripping the manufacturer prefix (as delimited by a ',')
866  * from the first entry in the compatible list property.
867  *
868  * This routine returns 0 on success, <0 on failure.
869  */
870 int of_modalias_node(struct device_node *node, char *modalias, int len)
871 {
872 	const char *compatible, *p;
873 	int cplen;
874 
875 	compatible = of_get_property(node, "compatible", &cplen);
876 	if (!compatible || strlen(compatible) > cplen)
877 		return -ENODEV;
878 	p = strchr(compatible, ',');
879 	strlcpy(modalias, p ? p + 1 : compatible, len);
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(of_modalias_node);
883 
884 /**
885  * of_find_node_by_phandle - Find a node given a phandle
886  * @handle:	phandle of the node to find
887  *
888  * Returns a node pointer with refcount incremented, use
889  * of_node_put() on it when done.
890  */
891 struct device_node *of_find_node_by_phandle(phandle handle)
892 {
893 	struct device_node *np;
894 	unsigned long flags;
895 
896 	raw_spin_lock_irqsave(&devtree_lock, flags);
897 	for (np = of_allnodes; np; np = np->allnext)
898 		if (np->phandle == handle)
899 			break;
900 	of_node_get(np);
901 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
902 	return np;
903 }
904 EXPORT_SYMBOL(of_find_node_by_phandle);
905 
906 /**
907  * of_find_property_value_of_size
908  *
909  * @np:		device node from which the property value is to be read.
910  * @propname:	name of the property to be searched.
911  * @len:	requested length of property value
912  *
913  * Search for a property in a device node and valid the requested size.
914  * Returns the property value on success, -EINVAL if the property does not
915  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
916  * property data isn't large enough.
917  *
918  */
919 static void *of_find_property_value_of_size(const struct device_node *np,
920 			const char *propname, u32 len)
921 {
922 	struct property *prop = of_find_property(np, propname, NULL);
923 
924 	if (!prop)
925 		return ERR_PTR(-EINVAL);
926 	if (!prop->value)
927 		return ERR_PTR(-ENODATA);
928 	if (len > prop->length)
929 		return ERR_PTR(-EOVERFLOW);
930 
931 	return prop->value;
932 }
933 
934 /**
935  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
936  *
937  * @np:		device node from which the property value is to be read.
938  * @propname:	name of the property to be searched.
939  * @index:	index of the u32 in the list of values
940  * @out_value:	pointer to return value, modified only if no error.
941  *
942  * Search for a property in a device node and read nth 32-bit value from
943  * it. Returns 0 on success, -EINVAL if the property does not exist,
944  * -ENODATA if property does not have a value, and -EOVERFLOW if the
945  * property data isn't large enough.
946  *
947  * The out_value is modified only if a valid u32 value can be decoded.
948  */
949 int of_property_read_u32_index(const struct device_node *np,
950 				       const char *propname,
951 				       u32 index, u32 *out_value)
952 {
953 	const u32 *val = of_find_property_value_of_size(np, propname,
954 					((index + 1) * sizeof(*out_value)));
955 
956 	if (IS_ERR(val))
957 		return PTR_ERR(val);
958 
959 	*out_value = be32_to_cpup(((__be32 *)val) + index);
960 	return 0;
961 }
962 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
963 
964 /**
965  * of_property_read_u8_array - Find and read an array of u8 from a property.
966  *
967  * @np:		device node from which the property value is to be read.
968  * @propname:	name of the property to be searched.
969  * @out_values:	pointer to return value, modified only if return value is 0.
970  * @sz:		number of array elements to read
971  *
972  * Search for a property in a device node and read 8-bit value(s) from
973  * it. Returns 0 on success, -EINVAL if the property does not exist,
974  * -ENODATA if property does not have a value, and -EOVERFLOW if the
975  * property data isn't large enough.
976  *
977  * dts entry of array should be like:
978  *	property = /bits/ 8 <0x50 0x60 0x70>;
979  *
980  * The out_values is modified only if a valid u8 value can be decoded.
981  */
982 int of_property_read_u8_array(const struct device_node *np,
983 			const char *propname, u8 *out_values, size_t sz)
984 {
985 	const u8 *val = of_find_property_value_of_size(np, propname,
986 						(sz * sizeof(*out_values)));
987 
988 	if (IS_ERR(val))
989 		return PTR_ERR(val);
990 
991 	while (sz--)
992 		*out_values++ = *val++;
993 	return 0;
994 }
995 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
996 
997 /**
998  * of_property_read_u16_array - Find and read an array of u16 from a property.
999  *
1000  * @np:		device node from which the property value is to be read.
1001  * @propname:	name of the property to be searched.
1002  * @out_values:	pointer to return value, modified only if return value is 0.
1003  * @sz:		number of array elements to read
1004  *
1005  * Search for a property in a device node and read 16-bit value(s) from
1006  * it. Returns 0 on success, -EINVAL if the property does not exist,
1007  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1008  * property data isn't large enough.
1009  *
1010  * dts entry of array should be like:
1011  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1012  *
1013  * The out_values is modified only if a valid u16 value can be decoded.
1014  */
1015 int of_property_read_u16_array(const struct device_node *np,
1016 			const char *propname, u16 *out_values, size_t sz)
1017 {
1018 	const __be16 *val = of_find_property_value_of_size(np, propname,
1019 						(sz * sizeof(*out_values)));
1020 
1021 	if (IS_ERR(val))
1022 		return PTR_ERR(val);
1023 
1024 	while (sz--)
1025 		*out_values++ = be16_to_cpup(val++);
1026 	return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1029 
1030 /**
1031  * of_property_read_u32_array - Find and read an array of 32 bit integers
1032  * from a property.
1033  *
1034  * @np:		device node from which the property value is to be read.
1035  * @propname:	name of the property to be searched.
1036  * @out_values:	pointer to return value, modified only if return value is 0.
1037  * @sz:		number of array elements to read
1038  *
1039  * Search for a property in a device node and read 32-bit value(s) from
1040  * it. Returns 0 on success, -EINVAL if the property does not exist,
1041  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1042  * property data isn't large enough.
1043  *
1044  * The out_values is modified only if a valid u32 value can be decoded.
1045  */
1046 int of_property_read_u32_array(const struct device_node *np,
1047 			       const char *propname, u32 *out_values,
1048 			       size_t sz)
1049 {
1050 	const __be32 *val = of_find_property_value_of_size(np, propname,
1051 						(sz * sizeof(*out_values)));
1052 
1053 	if (IS_ERR(val))
1054 		return PTR_ERR(val);
1055 
1056 	while (sz--)
1057 		*out_values++ = be32_to_cpup(val++);
1058 	return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1061 
1062 /**
1063  * of_property_read_u64 - Find and read a 64 bit integer from a property
1064  * @np:		device node from which the property value is to be read.
1065  * @propname:	name of the property to be searched.
1066  * @out_value:	pointer to return value, modified only if return value is 0.
1067  *
1068  * Search for a property in a device node and read a 64-bit value from
1069  * it. Returns 0 on success, -EINVAL if the property does not exist,
1070  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1071  * property data isn't large enough.
1072  *
1073  * The out_value is modified only if a valid u64 value can be decoded.
1074  */
1075 int of_property_read_u64(const struct device_node *np, const char *propname,
1076 			 u64 *out_value)
1077 {
1078 	const __be32 *val = of_find_property_value_of_size(np, propname,
1079 						sizeof(*out_value));
1080 
1081 	if (IS_ERR(val))
1082 		return PTR_ERR(val);
1083 
1084 	*out_value = of_read_number(val, 2);
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(of_property_read_u64);
1088 
1089 /**
1090  * of_property_read_string - Find and read a string from a property
1091  * @np:		device node from which the property value is to be read.
1092  * @propname:	name of the property to be searched.
1093  * @out_string:	pointer to null terminated return string, modified only if
1094  *		return value is 0.
1095  *
1096  * Search for a property in a device tree node and retrieve a null
1097  * terminated string value (pointer to data, not a copy). Returns 0 on
1098  * success, -EINVAL if the property does not exist, -ENODATA if property
1099  * does not have a value, and -EILSEQ if the string is not null-terminated
1100  * within the length of the property data.
1101  *
1102  * The out_string pointer is modified only if a valid string can be decoded.
1103  */
1104 int of_property_read_string(struct device_node *np, const char *propname,
1105 				const char **out_string)
1106 {
1107 	struct property *prop = of_find_property(np, propname, NULL);
1108 	if (!prop)
1109 		return -EINVAL;
1110 	if (!prop->value)
1111 		return -ENODATA;
1112 	if (strnlen(prop->value, prop->length) >= prop->length)
1113 		return -EILSEQ;
1114 	*out_string = prop->value;
1115 	return 0;
1116 }
1117 EXPORT_SYMBOL_GPL(of_property_read_string);
1118 
1119 /**
1120  * of_property_read_string_index - Find and read a string from a multiple
1121  * strings property.
1122  * @np:		device node from which the property value is to be read.
1123  * @propname:	name of the property to be searched.
1124  * @index:	index of the string in the list of strings
1125  * @out_string:	pointer to null terminated return string, modified only if
1126  *		return value is 0.
1127  *
1128  * Search for a property in a device tree node and retrieve a null
1129  * terminated string value (pointer to data, not a copy) in the list of strings
1130  * contained in that property.
1131  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1132  * property does not have a value, and -EILSEQ if the string is not
1133  * null-terminated within the length of the property data.
1134  *
1135  * The out_string pointer is modified only if a valid string can be decoded.
1136  */
1137 int of_property_read_string_index(struct device_node *np, const char *propname,
1138 				  int index, const char **output)
1139 {
1140 	struct property *prop = of_find_property(np, propname, NULL);
1141 	int i = 0;
1142 	size_t l = 0, total = 0;
1143 	const char *p;
1144 
1145 	if (!prop)
1146 		return -EINVAL;
1147 	if (!prop->value)
1148 		return -ENODATA;
1149 	if (strnlen(prop->value, prop->length) >= prop->length)
1150 		return -EILSEQ;
1151 
1152 	p = prop->value;
1153 
1154 	for (i = 0; total < prop->length; total += l, p += l) {
1155 		l = strlen(p) + 1;
1156 		if (i++ == index) {
1157 			*output = p;
1158 			return 0;
1159 		}
1160 	}
1161 	return -ENODATA;
1162 }
1163 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1164 
1165 /**
1166  * of_property_match_string() - Find string in a list and return index
1167  * @np: pointer to node containing string list property
1168  * @propname: string list property name
1169  * @string: pointer to string to search for in string list
1170  *
1171  * This function searches a string list property and returns the index
1172  * of a specific string value.
1173  */
1174 int of_property_match_string(struct device_node *np, const char *propname,
1175 			     const char *string)
1176 {
1177 	struct property *prop = of_find_property(np, propname, NULL);
1178 	size_t l;
1179 	int i;
1180 	const char *p, *end;
1181 
1182 	if (!prop)
1183 		return -EINVAL;
1184 	if (!prop->value)
1185 		return -ENODATA;
1186 
1187 	p = prop->value;
1188 	end = p + prop->length;
1189 
1190 	for (i = 0; p < end; i++, p += l) {
1191 		l = strlen(p) + 1;
1192 		if (p + l > end)
1193 			return -EILSEQ;
1194 		pr_debug("comparing %s with %s\n", string, p);
1195 		if (strcmp(string, p) == 0)
1196 			return i; /* Found it; return index */
1197 	}
1198 	return -ENODATA;
1199 }
1200 EXPORT_SYMBOL_GPL(of_property_match_string);
1201 
1202 /**
1203  * of_property_count_strings - Find and return the number of strings from a
1204  * multiple strings property.
1205  * @np:		device node from which the property value is to be read.
1206  * @propname:	name of the property to be searched.
1207  *
1208  * Search for a property in a device tree node and retrieve the number of null
1209  * terminated string contain in it. Returns the number of strings on
1210  * success, -EINVAL if the property does not exist, -ENODATA if property
1211  * does not have a value, and -EILSEQ if the string is not null-terminated
1212  * within the length of the property data.
1213  */
1214 int of_property_count_strings(struct device_node *np, const char *propname)
1215 {
1216 	struct property *prop = of_find_property(np, propname, NULL);
1217 	int i = 0;
1218 	size_t l = 0, total = 0;
1219 	const char *p;
1220 
1221 	if (!prop)
1222 		return -EINVAL;
1223 	if (!prop->value)
1224 		return -ENODATA;
1225 	if (strnlen(prop->value, prop->length) >= prop->length)
1226 		return -EILSEQ;
1227 
1228 	p = prop->value;
1229 
1230 	for (i = 0; total < prop->length; total += l, p += l, i++)
1231 		l = strlen(p) + 1;
1232 
1233 	return i;
1234 }
1235 EXPORT_SYMBOL_GPL(of_property_count_strings);
1236 
1237 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1238 {
1239 	int i;
1240 	printk("%s %s", msg, of_node_full_name(args->np));
1241 	for (i = 0; i < args->args_count; i++)
1242 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1243 	printk("\n");
1244 }
1245 
1246 static int __of_parse_phandle_with_args(const struct device_node *np,
1247 					const char *list_name,
1248 					const char *cells_name,
1249 					int cell_count, int index,
1250 					struct of_phandle_args *out_args)
1251 {
1252 	const __be32 *list, *list_end;
1253 	int rc = 0, size, cur_index = 0;
1254 	uint32_t count = 0;
1255 	struct device_node *node = NULL;
1256 	phandle phandle;
1257 
1258 	/* Retrieve the phandle list property */
1259 	list = of_get_property(np, list_name, &size);
1260 	if (!list)
1261 		return -ENOENT;
1262 	list_end = list + size / sizeof(*list);
1263 
1264 	/* Loop over the phandles until all the requested entry is found */
1265 	while (list < list_end) {
1266 		rc = -EINVAL;
1267 		count = 0;
1268 
1269 		/*
1270 		 * If phandle is 0, then it is an empty entry with no
1271 		 * arguments.  Skip forward to the next entry.
1272 		 */
1273 		phandle = be32_to_cpup(list++);
1274 		if (phandle) {
1275 			/*
1276 			 * Find the provider node and parse the #*-cells
1277 			 * property to determine the argument length.
1278 			 *
1279 			 * This is not needed if the cell count is hard-coded
1280 			 * (i.e. cells_name not set, but cell_count is set),
1281 			 * except when we're going to return the found node
1282 			 * below.
1283 			 */
1284 			if (cells_name || cur_index == index) {
1285 				node = of_find_node_by_phandle(phandle);
1286 				if (!node) {
1287 					pr_err("%s: could not find phandle\n",
1288 						np->full_name);
1289 					goto err;
1290 				}
1291 			}
1292 
1293 			if (cells_name) {
1294 				if (of_property_read_u32(node, cells_name,
1295 							 &count)) {
1296 					pr_err("%s: could not get %s for %s\n",
1297 						np->full_name, cells_name,
1298 						node->full_name);
1299 					goto err;
1300 				}
1301 			} else {
1302 				count = cell_count;
1303 			}
1304 
1305 			/*
1306 			 * Make sure that the arguments actually fit in the
1307 			 * remaining property data length
1308 			 */
1309 			if (list + count > list_end) {
1310 				pr_err("%s: arguments longer than property\n",
1311 					 np->full_name);
1312 				goto err;
1313 			}
1314 		}
1315 
1316 		/*
1317 		 * All of the error cases above bail out of the loop, so at
1318 		 * this point, the parsing is successful. If the requested
1319 		 * index matches, then fill the out_args structure and return,
1320 		 * or return -ENOENT for an empty entry.
1321 		 */
1322 		rc = -ENOENT;
1323 		if (cur_index == index) {
1324 			if (!phandle)
1325 				goto err;
1326 
1327 			if (out_args) {
1328 				int i;
1329 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1330 					count = MAX_PHANDLE_ARGS;
1331 				out_args->np = node;
1332 				out_args->args_count = count;
1333 				for (i = 0; i < count; i++)
1334 					out_args->args[i] = be32_to_cpup(list++);
1335 			} else {
1336 				of_node_put(node);
1337 			}
1338 
1339 			/* Found it! return success */
1340 			return 0;
1341 		}
1342 
1343 		of_node_put(node);
1344 		node = NULL;
1345 		list += count;
1346 		cur_index++;
1347 	}
1348 
1349 	/*
1350 	 * Unlock node before returning result; will be one of:
1351 	 * -ENOENT : index is for empty phandle
1352 	 * -EINVAL : parsing error on data
1353 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1354 	 */
1355 	rc = index < 0 ? cur_index : -ENOENT;
1356  err:
1357 	if (node)
1358 		of_node_put(node);
1359 	return rc;
1360 }
1361 
1362 /**
1363  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1364  * @np: Pointer to device node holding phandle property
1365  * @phandle_name: Name of property holding a phandle value
1366  * @index: For properties holding a table of phandles, this is the index into
1367  *         the table
1368  *
1369  * Returns the device_node pointer with refcount incremented.  Use
1370  * of_node_put() on it when done.
1371  */
1372 struct device_node *of_parse_phandle(const struct device_node *np,
1373 				     const char *phandle_name, int index)
1374 {
1375 	struct of_phandle_args args;
1376 
1377 	if (index < 0)
1378 		return NULL;
1379 
1380 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1381 					 index, &args))
1382 		return NULL;
1383 
1384 	return args.np;
1385 }
1386 EXPORT_SYMBOL(of_parse_phandle);
1387 
1388 /**
1389  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1390  * @np:		pointer to a device tree node containing a list
1391  * @list_name:	property name that contains a list
1392  * @cells_name:	property name that specifies phandles' arguments count
1393  * @index:	index of a phandle to parse out
1394  * @out_args:	optional pointer to output arguments structure (will be filled)
1395  *
1396  * This function is useful to parse lists of phandles and their arguments.
1397  * Returns 0 on success and fills out_args, on error returns appropriate
1398  * errno value.
1399  *
1400  * Caller is responsible to call of_node_put() on the returned out_args->node
1401  * pointer.
1402  *
1403  * Example:
1404  *
1405  * phandle1: node1 {
1406  * 	#list-cells = <2>;
1407  * }
1408  *
1409  * phandle2: node2 {
1410  * 	#list-cells = <1>;
1411  * }
1412  *
1413  * node3 {
1414  * 	list = <&phandle1 1 2 &phandle2 3>;
1415  * }
1416  *
1417  * To get a device_node of the `node2' node you may call this:
1418  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1419  */
1420 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1421 				const char *cells_name, int index,
1422 				struct of_phandle_args *out_args)
1423 {
1424 	if (index < 0)
1425 		return -EINVAL;
1426 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1427 					    index, out_args);
1428 }
1429 EXPORT_SYMBOL(of_parse_phandle_with_args);
1430 
1431 /**
1432  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1433  * @np:		pointer to a device tree node containing a list
1434  * @list_name:	property name that contains a list
1435  * @cell_count: number of argument cells following the phandle
1436  * @index:	index of a phandle to parse out
1437  * @out_args:	optional pointer to output arguments structure (will be filled)
1438  *
1439  * This function is useful to parse lists of phandles and their arguments.
1440  * Returns 0 on success and fills out_args, on error returns appropriate
1441  * errno value.
1442  *
1443  * Caller is responsible to call of_node_put() on the returned out_args->node
1444  * pointer.
1445  *
1446  * Example:
1447  *
1448  * phandle1: node1 {
1449  * }
1450  *
1451  * phandle2: node2 {
1452  * }
1453  *
1454  * node3 {
1455  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1456  * }
1457  *
1458  * To get a device_node of the `node2' node you may call this:
1459  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1460  */
1461 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1462 				const char *list_name, int cell_count,
1463 				int index, struct of_phandle_args *out_args)
1464 {
1465 	if (index < 0)
1466 		return -EINVAL;
1467 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1468 					   index, out_args);
1469 }
1470 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1471 
1472 /**
1473  * of_count_phandle_with_args() - Find the number of phandles references in a property
1474  * @np:		pointer to a device tree node containing a list
1475  * @list_name:	property name that contains a list
1476  * @cells_name:	property name that specifies phandles' arguments count
1477  *
1478  * Returns the number of phandle + argument tuples within a property. It
1479  * is a typical pattern to encode a list of phandle and variable
1480  * arguments into a single property. The number of arguments is encoded
1481  * by a property in the phandle-target node. For example, a gpios
1482  * property would contain a list of GPIO specifies consisting of a
1483  * phandle and 1 or more arguments. The number of arguments are
1484  * determined by the #gpio-cells property in the node pointed to by the
1485  * phandle.
1486  */
1487 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1488 				const char *cells_name)
1489 {
1490 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1491 					    NULL);
1492 }
1493 EXPORT_SYMBOL(of_count_phandle_with_args);
1494 
1495 #if defined(CONFIG_OF_DYNAMIC)
1496 static int of_property_notify(int action, struct device_node *np,
1497 			      struct property *prop)
1498 {
1499 	struct of_prop_reconfig pr;
1500 
1501 	pr.dn = np;
1502 	pr.prop = prop;
1503 	return of_reconfig_notify(action, &pr);
1504 }
1505 #else
1506 static int of_property_notify(int action, struct device_node *np,
1507 			      struct property *prop)
1508 {
1509 	return 0;
1510 }
1511 #endif
1512 
1513 /**
1514  * of_add_property - Add a property to a node
1515  */
1516 int of_add_property(struct device_node *np, struct property *prop)
1517 {
1518 	struct property **next;
1519 	unsigned long flags;
1520 	int rc;
1521 
1522 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1523 	if (rc)
1524 		return rc;
1525 
1526 	prop->next = NULL;
1527 	raw_spin_lock_irqsave(&devtree_lock, flags);
1528 	next = &np->properties;
1529 	while (*next) {
1530 		if (strcmp(prop->name, (*next)->name) == 0) {
1531 			/* duplicate ! don't insert it */
1532 			raw_spin_unlock_irqrestore(&devtree_lock, flags);
1533 			return -1;
1534 		}
1535 		next = &(*next)->next;
1536 	}
1537 	*next = prop;
1538 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1539 
1540 #ifdef CONFIG_PROC_DEVICETREE
1541 	/* try to add to proc as well if it was initialized */
1542 	if (np->pde)
1543 		proc_device_tree_add_prop(np->pde, prop);
1544 #endif /* CONFIG_PROC_DEVICETREE */
1545 
1546 	return 0;
1547 }
1548 
1549 /**
1550  * of_remove_property - Remove a property from a node.
1551  *
1552  * Note that we don't actually remove it, since we have given out
1553  * who-knows-how-many pointers to the data using get-property.
1554  * Instead we just move the property to the "dead properties"
1555  * list, so it won't be found any more.
1556  */
1557 int of_remove_property(struct device_node *np, struct property *prop)
1558 {
1559 	struct property **next;
1560 	unsigned long flags;
1561 	int found = 0;
1562 	int rc;
1563 
1564 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1565 	if (rc)
1566 		return rc;
1567 
1568 	raw_spin_lock_irqsave(&devtree_lock, flags);
1569 	next = &np->properties;
1570 	while (*next) {
1571 		if (*next == prop) {
1572 			/* found the node */
1573 			*next = prop->next;
1574 			prop->next = np->deadprops;
1575 			np->deadprops = prop;
1576 			found = 1;
1577 			break;
1578 		}
1579 		next = &(*next)->next;
1580 	}
1581 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1582 
1583 	if (!found)
1584 		return -ENODEV;
1585 
1586 #ifdef CONFIG_PROC_DEVICETREE
1587 	/* try to remove the proc node as well */
1588 	if (np->pde)
1589 		proc_device_tree_remove_prop(np->pde, prop);
1590 #endif /* CONFIG_PROC_DEVICETREE */
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * of_update_property - Update a property in a node, if the property does
1597  * not exist, add it.
1598  *
1599  * Note that we don't actually remove it, since we have given out
1600  * who-knows-how-many pointers to the data using get-property.
1601  * Instead we just move the property to the "dead properties" list,
1602  * and add the new property to the property list
1603  */
1604 int of_update_property(struct device_node *np, struct property *newprop)
1605 {
1606 	struct property **next, *oldprop;
1607 	unsigned long flags;
1608 	int rc, found = 0;
1609 
1610 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1611 	if (rc)
1612 		return rc;
1613 
1614 	if (!newprop->name)
1615 		return -EINVAL;
1616 
1617 	oldprop = of_find_property(np, newprop->name, NULL);
1618 	if (!oldprop)
1619 		return of_add_property(np, newprop);
1620 
1621 	raw_spin_lock_irqsave(&devtree_lock, flags);
1622 	next = &np->properties;
1623 	while (*next) {
1624 		if (*next == oldprop) {
1625 			/* found the node */
1626 			newprop->next = oldprop->next;
1627 			*next = newprop;
1628 			oldprop->next = np->deadprops;
1629 			np->deadprops = oldprop;
1630 			found = 1;
1631 			break;
1632 		}
1633 		next = &(*next)->next;
1634 	}
1635 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1636 
1637 	if (!found)
1638 		return -ENODEV;
1639 
1640 #ifdef CONFIG_PROC_DEVICETREE
1641 	/* try to add to proc as well if it was initialized */
1642 	if (np->pde)
1643 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1644 #endif /* CONFIG_PROC_DEVICETREE */
1645 
1646 	return 0;
1647 }
1648 
1649 #if defined(CONFIG_OF_DYNAMIC)
1650 /*
1651  * Support for dynamic device trees.
1652  *
1653  * On some platforms, the device tree can be manipulated at runtime.
1654  * The routines in this section support adding, removing and changing
1655  * device tree nodes.
1656  */
1657 
1658 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1659 
1660 int of_reconfig_notifier_register(struct notifier_block *nb)
1661 {
1662 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1663 }
1664 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1665 
1666 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1667 {
1668 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1669 }
1670 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1671 
1672 int of_reconfig_notify(unsigned long action, void *p)
1673 {
1674 	int rc;
1675 
1676 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1677 	return notifier_to_errno(rc);
1678 }
1679 
1680 #ifdef CONFIG_PROC_DEVICETREE
1681 static void of_add_proc_dt_entry(struct device_node *dn)
1682 {
1683 	struct proc_dir_entry *ent;
1684 
1685 	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1686 	if (ent)
1687 		proc_device_tree_add_node(dn, ent);
1688 }
1689 #else
1690 static void of_add_proc_dt_entry(struct device_node *dn)
1691 {
1692 	return;
1693 }
1694 #endif
1695 
1696 /**
1697  * of_attach_node - Plug a device node into the tree and global list.
1698  */
1699 int of_attach_node(struct device_node *np)
1700 {
1701 	unsigned long flags;
1702 	int rc;
1703 
1704 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1705 	if (rc)
1706 		return rc;
1707 
1708 	raw_spin_lock_irqsave(&devtree_lock, flags);
1709 	np->sibling = np->parent->child;
1710 	np->allnext = of_allnodes;
1711 	np->parent->child = np;
1712 	of_allnodes = np;
1713 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1714 
1715 	of_add_proc_dt_entry(np);
1716 	return 0;
1717 }
1718 
1719 #ifdef CONFIG_PROC_DEVICETREE
1720 static void of_remove_proc_dt_entry(struct device_node *dn)
1721 {
1722 	proc_remove(dn->pde);
1723 }
1724 #else
1725 static void of_remove_proc_dt_entry(struct device_node *dn)
1726 {
1727 	return;
1728 }
1729 #endif
1730 
1731 /**
1732  * of_detach_node - "Unplug" a node from the device tree.
1733  *
1734  * The caller must hold a reference to the node.  The memory associated with
1735  * the node is not freed until its refcount goes to zero.
1736  */
1737 int of_detach_node(struct device_node *np)
1738 {
1739 	struct device_node *parent;
1740 	unsigned long flags;
1741 	int rc = 0;
1742 
1743 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1744 	if (rc)
1745 		return rc;
1746 
1747 	raw_spin_lock_irqsave(&devtree_lock, flags);
1748 
1749 	if (of_node_check_flag(np, OF_DETACHED)) {
1750 		/* someone already detached it */
1751 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1752 		return rc;
1753 	}
1754 
1755 	parent = np->parent;
1756 	if (!parent) {
1757 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1758 		return rc;
1759 	}
1760 
1761 	if (of_allnodes == np)
1762 		of_allnodes = np->allnext;
1763 	else {
1764 		struct device_node *prev;
1765 		for (prev = of_allnodes;
1766 		     prev->allnext != np;
1767 		     prev = prev->allnext)
1768 			;
1769 		prev->allnext = np->allnext;
1770 	}
1771 
1772 	if (parent->child == np)
1773 		parent->child = np->sibling;
1774 	else {
1775 		struct device_node *prevsib;
1776 		for (prevsib = np->parent->child;
1777 		     prevsib->sibling != np;
1778 		     prevsib = prevsib->sibling)
1779 			;
1780 		prevsib->sibling = np->sibling;
1781 	}
1782 
1783 	of_node_set_flag(np, OF_DETACHED);
1784 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1785 
1786 	of_remove_proc_dt_entry(np);
1787 	return rc;
1788 }
1789 #endif /* defined(CONFIG_OF_DYNAMIC) */
1790 
1791 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1792 			 int id, const char *stem, int stem_len)
1793 {
1794 	ap->np = np;
1795 	ap->id = id;
1796 	strncpy(ap->stem, stem, stem_len);
1797 	ap->stem[stem_len] = 0;
1798 	list_add_tail(&ap->link, &aliases_lookup);
1799 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1800 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1801 }
1802 
1803 /**
1804  * of_alias_scan - Scan all properties of 'aliases' node
1805  *
1806  * The function scans all the properties of 'aliases' node and populate
1807  * the the global lookup table with the properties.  It returns the
1808  * number of alias_prop found, or error code in error case.
1809  *
1810  * @dt_alloc:	An allocator that provides a virtual address to memory
1811  *		for the resulting tree
1812  */
1813 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1814 {
1815 	struct property *pp;
1816 
1817 	of_chosen = of_find_node_by_path("/chosen");
1818 	if (of_chosen == NULL)
1819 		of_chosen = of_find_node_by_path("/chosen@0");
1820 
1821 	if (of_chosen) {
1822 		const char *name;
1823 
1824 		name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1825 		if (name)
1826 			of_stdout = of_find_node_by_path(name);
1827 	}
1828 
1829 	of_aliases = of_find_node_by_path("/aliases");
1830 	if (!of_aliases)
1831 		return;
1832 
1833 	for_each_property_of_node(of_aliases, pp) {
1834 		const char *start = pp->name;
1835 		const char *end = start + strlen(start);
1836 		struct device_node *np;
1837 		struct alias_prop *ap;
1838 		int id, len;
1839 
1840 		/* Skip those we do not want to proceed */
1841 		if (!strcmp(pp->name, "name") ||
1842 		    !strcmp(pp->name, "phandle") ||
1843 		    !strcmp(pp->name, "linux,phandle"))
1844 			continue;
1845 
1846 		np = of_find_node_by_path(pp->value);
1847 		if (!np)
1848 			continue;
1849 
1850 		/* walk the alias backwards to extract the id and work out
1851 		 * the 'stem' string */
1852 		while (isdigit(*(end-1)) && end > start)
1853 			end--;
1854 		len = end - start;
1855 
1856 		if (kstrtoint(end, 10, &id) < 0)
1857 			continue;
1858 
1859 		/* Allocate an alias_prop with enough space for the stem */
1860 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1861 		if (!ap)
1862 			continue;
1863 		memset(ap, 0, sizeof(*ap) + len + 1);
1864 		ap->alias = start;
1865 		of_alias_add(ap, np, id, start, len);
1866 	}
1867 }
1868 
1869 /**
1870  * of_alias_get_id - Get alias id for the given device_node
1871  * @np:		Pointer to the given device_node
1872  * @stem:	Alias stem of the given device_node
1873  *
1874  * The function travels the lookup table to get alias id for the given
1875  * device_node and alias stem.  It returns the alias id if find it.
1876  */
1877 int of_alias_get_id(struct device_node *np, const char *stem)
1878 {
1879 	struct alias_prop *app;
1880 	int id = -ENODEV;
1881 
1882 	mutex_lock(&of_aliases_mutex);
1883 	list_for_each_entry(app, &aliases_lookup, link) {
1884 		if (strcmp(app->stem, stem) != 0)
1885 			continue;
1886 
1887 		if (np == app->np) {
1888 			id = app->id;
1889 			break;
1890 		}
1891 	}
1892 	mutex_unlock(&of_aliases_mutex);
1893 
1894 	return id;
1895 }
1896 EXPORT_SYMBOL_GPL(of_alias_get_id);
1897 
1898 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1899 			       u32 *pu)
1900 {
1901 	const void *curv = cur;
1902 
1903 	if (!prop)
1904 		return NULL;
1905 
1906 	if (!cur) {
1907 		curv = prop->value;
1908 		goto out_val;
1909 	}
1910 
1911 	curv += sizeof(*cur);
1912 	if (curv >= prop->value + prop->length)
1913 		return NULL;
1914 
1915 out_val:
1916 	*pu = be32_to_cpup(curv);
1917 	return curv;
1918 }
1919 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1920 
1921 const char *of_prop_next_string(struct property *prop, const char *cur)
1922 {
1923 	const void *curv = cur;
1924 
1925 	if (!prop)
1926 		return NULL;
1927 
1928 	if (!cur)
1929 		return prop->value;
1930 
1931 	curv += strlen(cur) + 1;
1932 	if (curv >= prop->value + prop->length)
1933 		return NULL;
1934 
1935 	return curv;
1936 }
1937 EXPORT_SYMBOL_GPL(of_prop_next_string);
1938 
1939 /**
1940  * of_device_is_stdout_path - check if a device node matches the
1941  *                            linux,stdout-path property
1942  *
1943  * Check if this device node matches the linux,stdout-path property
1944  * in the chosen node. return true if yes, false otherwise.
1945  */
1946 int of_device_is_stdout_path(struct device_node *dn)
1947 {
1948 	if (!of_stdout)
1949 		return false;
1950 
1951 	return of_stdout == dn;
1952 }
1953 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1954 
1955 /**
1956  *	of_find_next_cache_node - Find a node's subsidiary cache
1957  *	@np:	node of type "cpu" or "cache"
1958  *
1959  *	Returns a node pointer with refcount incremented, use
1960  *	of_node_put() on it when done.  Caller should hold a reference
1961  *	to np.
1962  */
1963 struct device_node *of_find_next_cache_node(const struct device_node *np)
1964 {
1965 	struct device_node *child;
1966 	const phandle *handle;
1967 
1968 	handle = of_get_property(np, "l2-cache", NULL);
1969 	if (!handle)
1970 		handle = of_get_property(np, "next-level-cache", NULL);
1971 
1972 	if (handle)
1973 		return of_find_node_by_phandle(be32_to_cpup(handle));
1974 
1975 	/* OF on pmac has nodes instead of properties named "l2-cache"
1976 	 * beneath CPU nodes.
1977 	 */
1978 	if (!strcmp(np->type, "cpu"))
1979 		for_each_child_of_node(np, child)
1980 			if (!strcmp(child->type, "cache"))
1981 				return child;
1982 
1983 	return NULL;
1984 }
1985