1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/spinlock.h> 25 #include <linux/slab.h> 26 #include <linux/proc_fs.h> 27 28 #include "of_private.h" 29 30 LIST_HEAD(aliases_lookup); 31 32 struct device_node *of_allnodes; 33 EXPORT_SYMBOL(of_allnodes); 34 struct device_node *of_chosen; 35 struct device_node *of_aliases; 36 static struct device_node *of_stdout; 37 38 DEFINE_MUTEX(of_aliases_mutex); 39 40 /* use when traversing tree through the allnext, child, sibling, 41 * or parent members of struct device_node. 42 */ 43 DEFINE_RAW_SPINLOCK(devtree_lock); 44 45 int of_n_addr_cells(struct device_node *np) 46 { 47 const __be32 *ip; 48 49 do { 50 if (np->parent) 51 np = np->parent; 52 ip = of_get_property(np, "#address-cells", NULL); 53 if (ip) 54 return be32_to_cpup(ip); 55 } while (np->parent); 56 /* No #address-cells property for the root node */ 57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 58 } 59 EXPORT_SYMBOL(of_n_addr_cells); 60 61 int of_n_size_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#size-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #size-cells property for the root node */ 73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_size_cells); 76 77 #ifdef CONFIG_NUMA 78 int __weak of_node_to_nid(struct device_node *np) 79 { 80 return numa_node_id(); 81 } 82 #endif 83 84 #if defined(CONFIG_OF_DYNAMIC) 85 /** 86 * of_node_get - Increment refcount of a node 87 * @node: Node to inc refcount, NULL is supported to 88 * simplify writing of callers 89 * 90 * Returns node. 91 */ 92 struct device_node *of_node_get(struct device_node *node) 93 { 94 if (node) 95 kref_get(&node->kref); 96 return node; 97 } 98 EXPORT_SYMBOL(of_node_get); 99 100 static inline struct device_node *kref_to_device_node(struct kref *kref) 101 { 102 return container_of(kref, struct device_node, kref); 103 } 104 105 /** 106 * of_node_release - release a dynamically allocated node 107 * @kref: kref element of the node to be released 108 * 109 * In of_node_put() this function is passed to kref_put() 110 * as the destructor. 111 */ 112 static void of_node_release(struct kref *kref) 113 { 114 struct device_node *node = kref_to_device_node(kref); 115 struct property *prop = node->properties; 116 117 /* We should never be releasing nodes that haven't been detached. */ 118 if (!of_node_check_flag(node, OF_DETACHED)) { 119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); 120 dump_stack(); 121 kref_init(&node->kref); 122 return; 123 } 124 125 if (!of_node_check_flag(node, OF_DYNAMIC)) 126 return; 127 128 while (prop) { 129 struct property *next = prop->next; 130 kfree(prop->name); 131 kfree(prop->value); 132 kfree(prop); 133 prop = next; 134 135 if (!prop) { 136 prop = node->deadprops; 137 node->deadprops = NULL; 138 } 139 } 140 kfree(node->full_name); 141 kfree(node->data); 142 kfree(node); 143 } 144 145 /** 146 * of_node_put - Decrement refcount of a node 147 * @node: Node to dec refcount, NULL is supported to 148 * simplify writing of callers 149 * 150 */ 151 void of_node_put(struct device_node *node) 152 { 153 if (node) 154 kref_put(&node->kref, of_node_release); 155 } 156 EXPORT_SYMBOL(of_node_put); 157 #endif /* CONFIG_OF_DYNAMIC */ 158 159 static struct property *__of_find_property(const struct device_node *np, 160 const char *name, int *lenp) 161 { 162 struct property *pp; 163 164 if (!np) 165 return NULL; 166 167 for (pp = np->properties; pp; pp = pp->next) { 168 if (of_prop_cmp(pp->name, name) == 0) { 169 if (lenp) 170 *lenp = pp->length; 171 break; 172 } 173 } 174 175 return pp; 176 } 177 178 struct property *of_find_property(const struct device_node *np, 179 const char *name, 180 int *lenp) 181 { 182 struct property *pp; 183 unsigned long flags; 184 185 raw_spin_lock_irqsave(&devtree_lock, flags); 186 pp = __of_find_property(np, name, lenp); 187 raw_spin_unlock_irqrestore(&devtree_lock, flags); 188 189 return pp; 190 } 191 EXPORT_SYMBOL(of_find_property); 192 193 /** 194 * of_find_all_nodes - Get next node in global list 195 * @prev: Previous node or NULL to start iteration 196 * of_node_put() will be called on it 197 * 198 * Returns a node pointer with refcount incremented, use 199 * of_node_put() on it when done. 200 */ 201 struct device_node *of_find_all_nodes(struct device_node *prev) 202 { 203 struct device_node *np; 204 unsigned long flags; 205 206 raw_spin_lock_irqsave(&devtree_lock, flags); 207 np = prev ? prev->allnext : of_allnodes; 208 for (; np != NULL; np = np->allnext) 209 if (of_node_get(np)) 210 break; 211 of_node_put(prev); 212 raw_spin_unlock_irqrestore(&devtree_lock, flags); 213 return np; 214 } 215 EXPORT_SYMBOL(of_find_all_nodes); 216 217 /* 218 * Find a property with a given name for a given node 219 * and return the value. 220 */ 221 static const void *__of_get_property(const struct device_node *np, 222 const char *name, int *lenp) 223 { 224 struct property *pp = __of_find_property(np, name, lenp); 225 226 return pp ? pp->value : NULL; 227 } 228 229 /* 230 * Find a property with a given name for a given node 231 * and return the value. 232 */ 233 const void *of_get_property(const struct device_node *np, const char *name, 234 int *lenp) 235 { 236 struct property *pp = of_find_property(np, name, lenp); 237 238 return pp ? pp->value : NULL; 239 } 240 EXPORT_SYMBOL(of_get_property); 241 242 /* 243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 244 * 245 * @cpu: logical cpu index of a core/thread 246 * @phys_id: physical identifier of a core/thread 247 * 248 * CPU logical to physical index mapping is architecture specific. 249 * However this __weak function provides a default match of physical 250 * id to logical cpu index. phys_id provided here is usually values read 251 * from the device tree which must match the hardware internal registers. 252 * 253 * Returns true if the physical identifier and the logical cpu index 254 * correspond to the same core/thread, false otherwise. 255 */ 256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 257 { 258 return (u32)phys_id == cpu; 259 } 260 261 /** 262 * Checks if the given "prop_name" property holds the physical id of the 263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 264 * NULL, local thread number within the core is returned in it. 265 */ 266 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 267 const char *prop_name, int cpu, unsigned int *thread) 268 { 269 const __be32 *cell; 270 int ac, prop_len, tid; 271 u64 hwid; 272 273 ac = of_n_addr_cells(cpun); 274 cell = of_get_property(cpun, prop_name, &prop_len); 275 if (!cell || !ac) 276 return false; 277 prop_len /= sizeof(*cell) * ac; 278 for (tid = 0; tid < prop_len; tid++) { 279 hwid = of_read_number(cell, ac); 280 if (arch_match_cpu_phys_id(cpu, hwid)) { 281 if (thread) 282 *thread = tid; 283 return true; 284 } 285 cell += ac; 286 } 287 return false; 288 } 289 290 /* 291 * arch_find_n_match_cpu_physical_id - See if the given device node is 292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 293 * else false. If 'thread' is non-NULL, the local thread number within the 294 * core is returned in it. 295 */ 296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 297 int cpu, unsigned int *thread) 298 { 299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 300 * for thread ids on PowerPC. If it doesn't exist fallback to 301 * standard "reg" property. 302 */ 303 if (IS_ENABLED(CONFIG_PPC) && 304 __of_find_n_match_cpu_property(cpun, 305 "ibm,ppc-interrupt-server#s", 306 cpu, thread)) 307 return true; 308 309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 310 return true; 311 312 return false; 313 } 314 315 /** 316 * of_get_cpu_node - Get device node associated with the given logical CPU 317 * 318 * @cpu: CPU number(logical index) for which device node is required 319 * @thread: if not NULL, local thread number within the physical core is 320 * returned 321 * 322 * The main purpose of this function is to retrieve the device node for the 323 * given logical CPU index. It should be used to initialize the of_node in 324 * cpu device. Once of_node in cpu device is populated, all the further 325 * references can use that instead. 326 * 327 * CPU logical to physical index mapping is architecture specific and is built 328 * before booting secondary cores. This function uses arch_match_cpu_phys_id 329 * which can be overridden by architecture specific implementation. 330 * 331 * Returns a node pointer for the logical cpu if found, else NULL. 332 */ 333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 334 { 335 struct device_node *cpun; 336 337 for_each_node_by_type(cpun, "cpu") { 338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 339 return cpun; 340 } 341 return NULL; 342 } 343 EXPORT_SYMBOL(of_get_cpu_node); 344 345 /** 346 * __of_device_is_compatible() - Check if the node matches given constraints 347 * @device: pointer to node 348 * @compat: required compatible string, NULL or "" for any match 349 * @type: required device_type value, NULL or "" for any match 350 * @name: required node name, NULL or "" for any match 351 * 352 * Checks if the given @compat, @type and @name strings match the 353 * properties of the given @device. A constraints can be skipped by 354 * passing NULL or an empty string as the constraint. 355 * 356 * Returns 0 for no match, and a positive integer on match. The return 357 * value is a relative score with larger values indicating better 358 * matches. The score is weighted for the most specific compatible value 359 * to get the highest score. Matching type is next, followed by matching 360 * name. Practically speaking, this results in the following priority 361 * order for matches: 362 * 363 * 1. specific compatible && type && name 364 * 2. specific compatible && type 365 * 3. specific compatible && name 366 * 4. specific compatible 367 * 5. general compatible && type && name 368 * 6. general compatible && type 369 * 7. general compatible && name 370 * 8. general compatible 371 * 9. type && name 372 * 10. type 373 * 11. name 374 */ 375 static int __of_device_is_compatible(const struct device_node *device, 376 const char *compat, const char *type, const char *name) 377 { 378 struct property *prop; 379 const char *cp; 380 int index = 0, score = 0; 381 382 /* Compatible match has highest priority */ 383 if (compat && compat[0]) { 384 prop = __of_find_property(device, "compatible", NULL); 385 for (cp = of_prop_next_string(prop, NULL); cp; 386 cp = of_prop_next_string(prop, cp), index++) { 387 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 388 score = INT_MAX/2 - (index << 2); 389 break; 390 } 391 } 392 if (!score) 393 return 0; 394 } 395 396 /* Matching type is better than matching name */ 397 if (type && type[0]) { 398 if (!device->type || of_node_cmp(type, device->type)) 399 return 0; 400 score += 2; 401 } 402 403 /* Matching name is a bit better than not */ 404 if (name && name[0]) { 405 if (!device->name || of_node_cmp(name, device->name)) 406 return 0; 407 score++; 408 } 409 410 return score; 411 } 412 413 /** Checks if the given "compat" string matches one of the strings in 414 * the device's "compatible" property 415 */ 416 int of_device_is_compatible(const struct device_node *device, 417 const char *compat) 418 { 419 unsigned long flags; 420 int res; 421 422 raw_spin_lock_irqsave(&devtree_lock, flags); 423 res = __of_device_is_compatible(device, compat, NULL, NULL); 424 raw_spin_unlock_irqrestore(&devtree_lock, flags); 425 return res; 426 } 427 EXPORT_SYMBOL(of_device_is_compatible); 428 429 /** 430 * of_machine_is_compatible - Test root of device tree for a given compatible value 431 * @compat: compatible string to look for in root node's compatible property. 432 * 433 * Returns true if the root node has the given value in its 434 * compatible property. 435 */ 436 int of_machine_is_compatible(const char *compat) 437 { 438 struct device_node *root; 439 int rc = 0; 440 441 root = of_find_node_by_path("/"); 442 if (root) { 443 rc = of_device_is_compatible(root, compat); 444 of_node_put(root); 445 } 446 return rc; 447 } 448 EXPORT_SYMBOL(of_machine_is_compatible); 449 450 /** 451 * __of_device_is_available - check if a device is available for use 452 * 453 * @device: Node to check for availability, with locks already held 454 * 455 * Returns 1 if the status property is absent or set to "okay" or "ok", 456 * 0 otherwise 457 */ 458 static int __of_device_is_available(const struct device_node *device) 459 { 460 const char *status; 461 int statlen; 462 463 if (!device) 464 return 0; 465 466 status = __of_get_property(device, "status", &statlen); 467 if (status == NULL) 468 return 1; 469 470 if (statlen > 0) { 471 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 472 return 1; 473 } 474 475 return 0; 476 } 477 478 /** 479 * of_device_is_available - check if a device is available for use 480 * 481 * @device: Node to check for availability 482 * 483 * Returns 1 if the status property is absent or set to "okay" or "ok", 484 * 0 otherwise 485 */ 486 int of_device_is_available(const struct device_node *device) 487 { 488 unsigned long flags; 489 int res; 490 491 raw_spin_lock_irqsave(&devtree_lock, flags); 492 res = __of_device_is_available(device); 493 raw_spin_unlock_irqrestore(&devtree_lock, flags); 494 return res; 495 496 } 497 EXPORT_SYMBOL(of_device_is_available); 498 499 /** 500 * of_get_parent - Get a node's parent if any 501 * @node: Node to get parent 502 * 503 * Returns a node pointer with refcount incremented, use 504 * of_node_put() on it when done. 505 */ 506 struct device_node *of_get_parent(const struct device_node *node) 507 { 508 struct device_node *np; 509 unsigned long flags; 510 511 if (!node) 512 return NULL; 513 514 raw_spin_lock_irqsave(&devtree_lock, flags); 515 np = of_node_get(node->parent); 516 raw_spin_unlock_irqrestore(&devtree_lock, flags); 517 return np; 518 } 519 EXPORT_SYMBOL(of_get_parent); 520 521 /** 522 * of_get_next_parent - Iterate to a node's parent 523 * @node: Node to get parent of 524 * 525 * This is like of_get_parent() except that it drops the 526 * refcount on the passed node, making it suitable for iterating 527 * through a node's parents. 528 * 529 * Returns a node pointer with refcount incremented, use 530 * of_node_put() on it when done. 531 */ 532 struct device_node *of_get_next_parent(struct device_node *node) 533 { 534 struct device_node *parent; 535 unsigned long flags; 536 537 if (!node) 538 return NULL; 539 540 raw_spin_lock_irqsave(&devtree_lock, flags); 541 parent = of_node_get(node->parent); 542 of_node_put(node); 543 raw_spin_unlock_irqrestore(&devtree_lock, flags); 544 return parent; 545 } 546 EXPORT_SYMBOL(of_get_next_parent); 547 548 /** 549 * of_get_next_child - Iterate a node childs 550 * @node: parent node 551 * @prev: previous child of the parent node, or NULL to get first 552 * 553 * Returns a node pointer with refcount incremented, use 554 * of_node_put() on it when done. 555 */ 556 struct device_node *of_get_next_child(const struct device_node *node, 557 struct device_node *prev) 558 { 559 struct device_node *next; 560 unsigned long flags; 561 562 raw_spin_lock_irqsave(&devtree_lock, flags); 563 next = prev ? prev->sibling : node->child; 564 for (; next; next = next->sibling) 565 if (of_node_get(next)) 566 break; 567 of_node_put(prev); 568 raw_spin_unlock_irqrestore(&devtree_lock, flags); 569 return next; 570 } 571 EXPORT_SYMBOL(of_get_next_child); 572 573 /** 574 * of_get_next_available_child - Find the next available child node 575 * @node: parent node 576 * @prev: previous child of the parent node, or NULL to get first 577 * 578 * This function is like of_get_next_child(), except that it 579 * automatically skips any disabled nodes (i.e. status = "disabled"). 580 */ 581 struct device_node *of_get_next_available_child(const struct device_node *node, 582 struct device_node *prev) 583 { 584 struct device_node *next; 585 unsigned long flags; 586 587 raw_spin_lock_irqsave(&devtree_lock, flags); 588 next = prev ? prev->sibling : node->child; 589 for (; next; next = next->sibling) { 590 if (!__of_device_is_available(next)) 591 continue; 592 if (of_node_get(next)) 593 break; 594 } 595 of_node_put(prev); 596 raw_spin_unlock_irqrestore(&devtree_lock, flags); 597 return next; 598 } 599 EXPORT_SYMBOL(of_get_next_available_child); 600 601 /** 602 * of_get_child_by_name - Find the child node by name for a given parent 603 * @node: parent node 604 * @name: child name to look for. 605 * 606 * This function looks for child node for given matching name 607 * 608 * Returns a node pointer if found, with refcount incremented, use 609 * of_node_put() on it when done. 610 * Returns NULL if node is not found. 611 */ 612 struct device_node *of_get_child_by_name(const struct device_node *node, 613 const char *name) 614 { 615 struct device_node *child; 616 617 for_each_child_of_node(node, child) 618 if (child->name && (of_node_cmp(child->name, name) == 0)) 619 break; 620 return child; 621 } 622 EXPORT_SYMBOL(of_get_child_by_name); 623 624 /** 625 * of_find_node_by_path - Find a node matching a full OF path 626 * @path: The full path to match 627 * 628 * Returns a node pointer with refcount incremented, use 629 * of_node_put() on it when done. 630 */ 631 struct device_node *of_find_node_by_path(const char *path) 632 { 633 struct device_node *np = of_allnodes; 634 unsigned long flags; 635 636 raw_spin_lock_irqsave(&devtree_lock, flags); 637 for (; np; np = np->allnext) { 638 if (np->full_name && (of_node_cmp(np->full_name, path) == 0) 639 && of_node_get(np)) 640 break; 641 } 642 raw_spin_unlock_irqrestore(&devtree_lock, flags); 643 return np; 644 } 645 EXPORT_SYMBOL(of_find_node_by_path); 646 647 /** 648 * of_find_node_by_name - Find a node by its "name" property 649 * @from: The node to start searching from or NULL, the node 650 * you pass will not be searched, only the next one 651 * will; typically, you pass what the previous call 652 * returned. of_node_put() will be called on it 653 * @name: The name string to match against 654 * 655 * Returns a node pointer with refcount incremented, use 656 * of_node_put() on it when done. 657 */ 658 struct device_node *of_find_node_by_name(struct device_node *from, 659 const char *name) 660 { 661 struct device_node *np; 662 unsigned long flags; 663 664 raw_spin_lock_irqsave(&devtree_lock, flags); 665 np = from ? from->allnext : of_allnodes; 666 for (; np; np = np->allnext) 667 if (np->name && (of_node_cmp(np->name, name) == 0) 668 && of_node_get(np)) 669 break; 670 of_node_put(from); 671 raw_spin_unlock_irqrestore(&devtree_lock, flags); 672 return np; 673 } 674 EXPORT_SYMBOL(of_find_node_by_name); 675 676 /** 677 * of_find_node_by_type - Find a node by its "device_type" property 678 * @from: The node to start searching from, or NULL to start searching 679 * the entire device tree. The node you pass will not be 680 * searched, only the next one will; typically, you pass 681 * what the previous call returned. of_node_put() will be 682 * called on from for you. 683 * @type: The type string to match against 684 * 685 * Returns a node pointer with refcount incremented, use 686 * of_node_put() on it when done. 687 */ 688 struct device_node *of_find_node_by_type(struct device_node *from, 689 const char *type) 690 { 691 struct device_node *np; 692 unsigned long flags; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 np = from ? from->allnext : of_allnodes; 696 for (; np; np = np->allnext) 697 if (np->type && (of_node_cmp(np->type, type) == 0) 698 && of_node_get(np)) 699 break; 700 of_node_put(from); 701 raw_spin_unlock_irqrestore(&devtree_lock, flags); 702 return np; 703 } 704 EXPORT_SYMBOL(of_find_node_by_type); 705 706 /** 707 * of_find_compatible_node - Find a node based on type and one of the 708 * tokens in its "compatible" property 709 * @from: The node to start searching from or NULL, the node 710 * you pass will not be searched, only the next one 711 * will; typically, you pass what the previous call 712 * returned. of_node_put() will be called on it 713 * @type: The type string to match "device_type" or NULL to ignore 714 * @compatible: The string to match to one of the tokens in the device 715 * "compatible" list. 716 * 717 * Returns a node pointer with refcount incremented, use 718 * of_node_put() on it when done. 719 */ 720 struct device_node *of_find_compatible_node(struct device_node *from, 721 const char *type, const char *compatible) 722 { 723 struct device_node *np; 724 unsigned long flags; 725 726 raw_spin_lock_irqsave(&devtree_lock, flags); 727 np = from ? from->allnext : of_allnodes; 728 for (; np; np = np->allnext) { 729 if (__of_device_is_compatible(np, compatible, type, NULL) && 730 of_node_get(np)) 731 break; 732 } 733 of_node_put(from); 734 raw_spin_unlock_irqrestore(&devtree_lock, flags); 735 return np; 736 } 737 EXPORT_SYMBOL(of_find_compatible_node); 738 739 /** 740 * of_find_node_with_property - Find a node which has a property with 741 * the given name. 742 * @from: The node to start searching from or NULL, the node 743 * you pass will not be searched, only the next one 744 * will; typically, you pass what the previous call 745 * returned. of_node_put() will be called on it 746 * @prop_name: The name of the property to look for. 747 * 748 * Returns a node pointer with refcount incremented, use 749 * of_node_put() on it when done. 750 */ 751 struct device_node *of_find_node_with_property(struct device_node *from, 752 const char *prop_name) 753 { 754 struct device_node *np; 755 struct property *pp; 756 unsigned long flags; 757 758 raw_spin_lock_irqsave(&devtree_lock, flags); 759 np = from ? from->allnext : of_allnodes; 760 for (; np; np = np->allnext) { 761 for (pp = np->properties; pp; pp = pp->next) { 762 if (of_prop_cmp(pp->name, prop_name) == 0) { 763 of_node_get(np); 764 goto out; 765 } 766 } 767 } 768 out: 769 of_node_put(from); 770 raw_spin_unlock_irqrestore(&devtree_lock, flags); 771 return np; 772 } 773 EXPORT_SYMBOL(of_find_node_with_property); 774 775 static 776 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 777 const struct device_node *node) 778 { 779 const struct of_device_id *best_match = NULL; 780 int score, best_score = 0; 781 782 if (!matches) 783 return NULL; 784 785 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 786 score = __of_device_is_compatible(node, matches->compatible, 787 matches->type, matches->name); 788 if (score > best_score) { 789 best_match = matches; 790 best_score = score; 791 } 792 } 793 794 return best_match; 795 } 796 797 /** 798 * of_match_node - Tell if an device_node has a matching of_match structure 799 * @matches: array of of device match structures to search in 800 * @node: the of device structure to match against 801 * 802 * Low level utility function used by device matching. 803 */ 804 const struct of_device_id *of_match_node(const struct of_device_id *matches, 805 const struct device_node *node) 806 { 807 const struct of_device_id *match; 808 unsigned long flags; 809 810 raw_spin_lock_irqsave(&devtree_lock, flags); 811 match = __of_match_node(matches, node); 812 raw_spin_unlock_irqrestore(&devtree_lock, flags); 813 return match; 814 } 815 EXPORT_SYMBOL(of_match_node); 816 817 /** 818 * of_find_matching_node_and_match - Find a node based on an of_device_id 819 * match table. 820 * @from: The node to start searching from or NULL, the node 821 * you pass will not be searched, only the next one 822 * will; typically, you pass what the previous call 823 * returned. of_node_put() will be called on it 824 * @matches: array of of device match structures to search in 825 * @match Updated to point at the matches entry which matched 826 * 827 * Returns a node pointer with refcount incremented, use 828 * of_node_put() on it when done. 829 */ 830 struct device_node *of_find_matching_node_and_match(struct device_node *from, 831 const struct of_device_id *matches, 832 const struct of_device_id **match) 833 { 834 struct device_node *np; 835 const struct of_device_id *m; 836 unsigned long flags; 837 838 if (match) 839 *match = NULL; 840 841 raw_spin_lock_irqsave(&devtree_lock, flags); 842 np = from ? from->allnext : of_allnodes; 843 for (; np; np = np->allnext) { 844 m = __of_match_node(matches, np); 845 if (m && of_node_get(np)) { 846 if (match) 847 *match = m; 848 break; 849 } 850 } 851 of_node_put(from); 852 raw_spin_unlock_irqrestore(&devtree_lock, flags); 853 return np; 854 } 855 EXPORT_SYMBOL(of_find_matching_node_and_match); 856 857 /** 858 * of_modalias_node - Lookup appropriate modalias for a device node 859 * @node: pointer to a device tree node 860 * @modalias: Pointer to buffer that modalias value will be copied into 861 * @len: Length of modalias value 862 * 863 * Based on the value of the compatible property, this routine will attempt 864 * to choose an appropriate modalias value for a particular device tree node. 865 * It does this by stripping the manufacturer prefix (as delimited by a ',') 866 * from the first entry in the compatible list property. 867 * 868 * This routine returns 0 on success, <0 on failure. 869 */ 870 int of_modalias_node(struct device_node *node, char *modalias, int len) 871 { 872 const char *compatible, *p; 873 int cplen; 874 875 compatible = of_get_property(node, "compatible", &cplen); 876 if (!compatible || strlen(compatible) > cplen) 877 return -ENODEV; 878 p = strchr(compatible, ','); 879 strlcpy(modalias, p ? p + 1 : compatible, len); 880 return 0; 881 } 882 EXPORT_SYMBOL_GPL(of_modalias_node); 883 884 /** 885 * of_find_node_by_phandle - Find a node given a phandle 886 * @handle: phandle of the node to find 887 * 888 * Returns a node pointer with refcount incremented, use 889 * of_node_put() on it when done. 890 */ 891 struct device_node *of_find_node_by_phandle(phandle handle) 892 { 893 struct device_node *np; 894 unsigned long flags; 895 896 raw_spin_lock_irqsave(&devtree_lock, flags); 897 for (np = of_allnodes; np; np = np->allnext) 898 if (np->phandle == handle) 899 break; 900 of_node_get(np); 901 raw_spin_unlock_irqrestore(&devtree_lock, flags); 902 return np; 903 } 904 EXPORT_SYMBOL(of_find_node_by_phandle); 905 906 /** 907 * of_find_property_value_of_size 908 * 909 * @np: device node from which the property value is to be read. 910 * @propname: name of the property to be searched. 911 * @len: requested length of property value 912 * 913 * Search for a property in a device node and valid the requested size. 914 * Returns the property value on success, -EINVAL if the property does not 915 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 916 * property data isn't large enough. 917 * 918 */ 919 static void *of_find_property_value_of_size(const struct device_node *np, 920 const char *propname, u32 len) 921 { 922 struct property *prop = of_find_property(np, propname, NULL); 923 924 if (!prop) 925 return ERR_PTR(-EINVAL); 926 if (!prop->value) 927 return ERR_PTR(-ENODATA); 928 if (len > prop->length) 929 return ERR_PTR(-EOVERFLOW); 930 931 return prop->value; 932 } 933 934 /** 935 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 936 * 937 * @np: device node from which the property value is to be read. 938 * @propname: name of the property to be searched. 939 * @index: index of the u32 in the list of values 940 * @out_value: pointer to return value, modified only if no error. 941 * 942 * Search for a property in a device node and read nth 32-bit value from 943 * it. Returns 0 on success, -EINVAL if the property does not exist, 944 * -ENODATA if property does not have a value, and -EOVERFLOW if the 945 * property data isn't large enough. 946 * 947 * The out_value is modified only if a valid u32 value can be decoded. 948 */ 949 int of_property_read_u32_index(const struct device_node *np, 950 const char *propname, 951 u32 index, u32 *out_value) 952 { 953 const u32 *val = of_find_property_value_of_size(np, propname, 954 ((index + 1) * sizeof(*out_value))); 955 956 if (IS_ERR(val)) 957 return PTR_ERR(val); 958 959 *out_value = be32_to_cpup(((__be32 *)val) + index); 960 return 0; 961 } 962 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 963 964 /** 965 * of_property_read_u8_array - Find and read an array of u8 from a property. 966 * 967 * @np: device node from which the property value is to be read. 968 * @propname: name of the property to be searched. 969 * @out_values: pointer to return value, modified only if return value is 0. 970 * @sz: number of array elements to read 971 * 972 * Search for a property in a device node and read 8-bit value(s) from 973 * it. Returns 0 on success, -EINVAL if the property does not exist, 974 * -ENODATA if property does not have a value, and -EOVERFLOW if the 975 * property data isn't large enough. 976 * 977 * dts entry of array should be like: 978 * property = /bits/ 8 <0x50 0x60 0x70>; 979 * 980 * The out_values is modified only if a valid u8 value can be decoded. 981 */ 982 int of_property_read_u8_array(const struct device_node *np, 983 const char *propname, u8 *out_values, size_t sz) 984 { 985 const u8 *val = of_find_property_value_of_size(np, propname, 986 (sz * sizeof(*out_values))); 987 988 if (IS_ERR(val)) 989 return PTR_ERR(val); 990 991 while (sz--) 992 *out_values++ = *val++; 993 return 0; 994 } 995 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 996 997 /** 998 * of_property_read_u16_array - Find and read an array of u16 from a property. 999 * 1000 * @np: device node from which the property value is to be read. 1001 * @propname: name of the property to be searched. 1002 * @out_values: pointer to return value, modified only if return value is 0. 1003 * @sz: number of array elements to read 1004 * 1005 * Search for a property in a device node and read 16-bit value(s) from 1006 * it. Returns 0 on success, -EINVAL if the property does not exist, 1007 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1008 * property data isn't large enough. 1009 * 1010 * dts entry of array should be like: 1011 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1012 * 1013 * The out_values is modified only if a valid u16 value can be decoded. 1014 */ 1015 int of_property_read_u16_array(const struct device_node *np, 1016 const char *propname, u16 *out_values, size_t sz) 1017 { 1018 const __be16 *val = of_find_property_value_of_size(np, propname, 1019 (sz * sizeof(*out_values))); 1020 1021 if (IS_ERR(val)) 1022 return PTR_ERR(val); 1023 1024 while (sz--) 1025 *out_values++ = be16_to_cpup(val++); 1026 return 0; 1027 } 1028 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1029 1030 /** 1031 * of_property_read_u32_array - Find and read an array of 32 bit integers 1032 * from a property. 1033 * 1034 * @np: device node from which the property value is to be read. 1035 * @propname: name of the property to be searched. 1036 * @out_values: pointer to return value, modified only if return value is 0. 1037 * @sz: number of array elements to read 1038 * 1039 * Search for a property in a device node and read 32-bit value(s) from 1040 * it. Returns 0 on success, -EINVAL if the property does not exist, 1041 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1042 * property data isn't large enough. 1043 * 1044 * The out_values is modified only if a valid u32 value can be decoded. 1045 */ 1046 int of_property_read_u32_array(const struct device_node *np, 1047 const char *propname, u32 *out_values, 1048 size_t sz) 1049 { 1050 const __be32 *val = of_find_property_value_of_size(np, propname, 1051 (sz * sizeof(*out_values))); 1052 1053 if (IS_ERR(val)) 1054 return PTR_ERR(val); 1055 1056 while (sz--) 1057 *out_values++ = be32_to_cpup(val++); 1058 return 0; 1059 } 1060 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1061 1062 /** 1063 * of_property_read_u64 - Find and read a 64 bit integer from a property 1064 * @np: device node from which the property value is to be read. 1065 * @propname: name of the property to be searched. 1066 * @out_value: pointer to return value, modified only if return value is 0. 1067 * 1068 * Search for a property in a device node and read a 64-bit value from 1069 * it. Returns 0 on success, -EINVAL if the property does not exist, 1070 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1071 * property data isn't large enough. 1072 * 1073 * The out_value is modified only if a valid u64 value can be decoded. 1074 */ 1075 int of_property_read_u64(const struct device_node *np, const char *propname, 1076 u64 *out_value) 1077 { 1078 const __be32 *val = of_find_property_value_of_size(np, propname, 1079 sizeof(*out_value)); 1080 1081 if (IS_ERR(val)) 1082 return PTR_ERR(val); 1083 1084 *out_value = of_read_number(val, 2); 1085 return 0; 1086 } 1087 EXPORT_SYMBOL_GPL(of_property_read_u64); 1088 1089 /** 1090 * of_property_read_string - Find and read a string from a property 1091 * @np: device node from which the property value is to be read. 1092 * @propname: name of the property to be searched. 1093 * @out_string: pointer to null terminated return string, modified only if 1094 * return value is 0. 1095 * 1096 * Search for a property in a device tree node and retrieve a null 1097 * terminated string value (pointer to data, not a copy). Returns 0 on 1098 * success, -EINVAL if the property does not exist, -ENODATA if property 1099 * does not have a value, and -EILSEQ if the string is not null-terminated 1100 * within the length of the property data. 1101 * 1102 * The out_string pointer is modified only if a valid string can be decoded. 1103 */ 1104 int of_property_read_string(struct device_node *np, const char *propname, 1105 const char **out_string) 1106 { 1107 struct property *prop = of_find_property(np, propname, NULL); 1108 if (!prop) 1109 return -EINVAL; 1110 if (!prop->value) 1111 return -ENODATA; 1112 if (strnlen(prop->value, prop->length) >= prop->length) 1113 return -EILSEQ; 1114 *out_string = prop->value; 1115 return 0; 1116 } 1117 EXPORT_SYMBOL_GPL(of_property_read_string); 1118 1119 /** 1120 * of_property_read_string_index - Find and read a string from a multiple 1121 * strings property. 1122 * @np: device node from which the property value is to be read. 1123 * @propname: name of the property to be searched. 1124 * @index: index of the string in the list of strings 1125 * @out_string: pointer to null terminated return string, modified only if 1126 * return value is 0. 1127 * 1128 * Search for a property in a device tree node and retrieve a null 1129 * terminated string value (pointer to data, not a copy) in the list of strings 1130 * contained in that property. 1131 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if 1132 * property does not have a value, and -EILSEQ if the string is not 1133 * null-terminated within the length of the property data. 1134 * 1135 * The out_string pointer is modified only if a valid string can be decoded. 1136 */ 1137 int of_property_read_string_index(struct device_node *np, const char *propname, 1138 int index, const char **output) 1139 { 1140 struct property *prop = of_find_property(np, propname, NULL); 1141 int i = 0; 1142 size_t l = 0, total = 0; 1143 const char *p; 1144 1145 if (!prop) 1146 return -EINVAL; 1147 if (!prop->value) 1148 return -ENODATA; 1149 if (strnlen(prop->value, prop->length) >= prop->length) 1150 return -EILSEQ; 1151 1152 p = prop->value; 1153 1154 for (i = 0; total < prop->length; total += l, p += l) { 1155 l = strlen(p) + 1; 1156 if (i++ == index) { 1157 *output = p; 1158 return 0; 1159 } 1160 } 1161 return -ENODATA; 1162 } 1163 EXPORT_SYMBOL_GPL(of_property_read_string_index); 1164 1165 /** 1166 * of_property_match_string() - Find string in a list and return index 1167 * @np: pointer to node containing string list property 1168 * @propname: string list property name 1169 * @string: pointer to string to search for in string list 1170 * 1171 * This function searches a string list property and returns the index 1172 * of a specific string value. 1173 */ 1174 int of_property_match_string(struct device_node *np, const char *propname, 1175 const char *string) 1176 { 1177 struct property *prop = of_find_property(np, propname, NULL); 1178 size_t l; 1179 int i; 1180 const char *p, *end; 1181 1182 if (!prop) 1183 return -EINVAL; 1184 if (!prop->value) 1185 return -ENODATA; 1186 1187 p = prop->value; 1188 end = p + prop->length; 1189 1190 for (i = 0; p < end; i++, p += l) { 1191 l = strlen(p) + 1; 1192 if (p + l > end) 1193 return -EILSEQ; 1194 pr_debug("comparing %s with %s\n", string, p); 1195 if (strcmp(string, p) == 0) 1196 return i; /* Found it; return index */ 1197 } 1198 return -ENODATA; 1199 } 1200 EXPORT_SYMBOL_GPL(of_property_match_string); 1201 1202 /** 1203 * of_property_count_strings - Find and return the number of strings from a 1204 * multiple strings property. 1205 * @np: device node from which the property value is to be read. 1206 * @propname: name of the property to be searched. 1207 * 1208 * Search for a property in a device tree node and retrieve the number of null 1209 * terminated string contain in it. Returns the number of strings on 1210 * success, -EINVAL if the property does not exist, -ENODATA if property 1211 * does not have a value, and -EILSEQ if the string is not null-terminated 1212 * within the length of the property data. 1213 */ 1214 int of_property_count_strings(struct device_node *np, const char *propname) 1215 { 1216 struct property *prop = of_find_property(np, propname, NULL); 1217 int i = 0; 1218 size_t l = 0, total = 0; 1219 const char *p; 1220 1221 if (!prop) 1222 return -EINVAL; 1223 if (!prop->value) 1224 return -ENODATA; 1225 if (strnlen(prop->value, prop->length) >= prop->length) 1226 return -EILSEQ; 1227 1228 p = prop->value; 1229 1230 for (i = 0; total < prop->length; total += l, p += l, i++) 1231 l = strlen(p) + 1; 1232 1233 return i; 1234 } 1235 EXPORT_SYMBOL_GPL(of_property_count_strings); 1236 1237 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1238 { 1239 int i; 1240 printk("%s %s", msg, of_node_full_name(args->np)); 1241 for (i = 0; i < args->args_count; i++) 1242 printk(i ? ",%08x" : ":%08x", args->args[i]); 1243 printk("\n"); 1244 } 1245 1246 static int __of_parse_phandle_with_args(const struct device_node *np, 1247 const char *list_name, 1248 const char *cells_name, 1249 int cell_count, int index, 1250 struct of_phandle_args *out_args) 1251 { 1252 const __be32 *list, *list_end; 1253 int rc = 0, size, cur_index = 0; 1254 uint32_t count = 0; 1255 struct device_node *node = NULL; 1256 phandle phandle; 1257 1258 /* Retrieve the phandle list property */ 1259 list = of_get_property(np, list_name, &size); 1260 if (!list) 1261 return -ENOENT; 1262 list_end = list + size / sizeof(*list); 1263 1264 /* Loop over the phandles until all the requested entry is found */ 1265 while (list < list_end) { 1266 rc = -EINVAL; 1267 count = 0; 1268 1269 /* 1270 * If phandle is 0, then it is an empty entry with no 1271 * arguments. Skip forward to the next entry. 1272 */ 1273 phandle = be32_to_cpup(list++); 1274 if (phandle) { 1275 /* 1276 * Find the provider node and parse the #*-cells 1277 * property to determine the argument length. 1278 * 1279 * This is not needed if the cell count is hard-coded 1280 * (i.e. cells_name not set, but cell_count is set), 1281 * except when we're going to return the found node 1282 * below. 1283 */ 1284 if (cells_name || cur_index == index) { 1285 node = of_find_node_by_phandle(phandle); 1286 if (!node) { 1287 pr_err("%s: could not find phandle\n", 1288 np->full_name); 1289 goto err; 1290 } 1291 } 1292 1293 if (cells_name) { 1294 if (of_property_read_u32(node, cells_name, 1295 &count)) { 1296 pr_err("%s: could not get %s for %s\n", 1297 np->full_name, cells_name, 1298 node->full_name); 1299 goto err; 1300 } 1301 } else { 1302 count = cell_count; 1303 } 1304 1305 /* 1306 * Make sure that the arguments actually fit in the 1307 * remaining property data length 1308 */ 1309 if (list + count > list_end) { 1310 pr_err("%s: arguments longer than property\n", 1311 np->full_name); 1312 goto err; 1313 } 1314 } 1315 1316 /* 1317 * All of the error cases above bail out of the loop, so at 1318 * this point, the parsing is successful. If the requested 1319 * index matches, then fill the out_args structure and return, 1320 * or return -ENOENT for an empty entry. 1321 */ 1322 rc = -ENOENT; 1323 if (cur_index == index) { 1324 if (!phandle) 1325 goto err; 1326 1327 if (out_args) { 1328 int i; 1329 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1330 count = MAX_PHANDLE_ARGS; 1331 out_args->np = node; 1332 out_args->args_count = count; 1333 for (i = 0; i < count; i++) 1334 out_args->args[i] = be32_to_cpup(list++); 1335 } else { 1336 of_node_put(node); 1337 } 1338 1339 /* Found it! return success */ 1340 return 0; 1341 } 1342 1343 of_node_put(node); 1344 node = NULL; 1345 list += count; 1346 cur_index++; 1347 } 1348 1349 /* 1350 * Unlock node before returning result; will be one of: 1351 * -ENOENT : index is for empty phandle 1352 * -EINVAL : parsing error on data 1353 * [1..n] : Number of phandle (count mode; when index = -1) 1354 */ 1355 rc = index < 0 ? cur_index : -ENOENT; 1356 err: 1357 if (node) 1358 of_node_put(node); 1359 return rc; 1360 } 1361 1362 /** 1363 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1364 * @np: Pointer to device node holding phandle property 1365 * @phandle_name: Name of property holding a phandle value 1366 * @index: For properties holding a table of phandles, this is the index into 1367 * the table 1368 * 1369 * Returns the device_node pointer with refcount incremented. Use 1370 * of_node_put() on it when done. 1371 */ 1372 struct device_node *of_parse_phandle(const struct device_node *np, 1373 const char *phandle_name, int index) 1374 { 1375 struct of_phandle_args args; 1376 1377 if (index < 0) 1378 return NULL; 1379 1380 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1381 index, &args)) 1382 return NULL; 1383 1384 return args.np; 1385 } 1386 EXPORT_SYMBOL(of_parse_phandle); 1387 1388 /** 1389 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1390 * @np: pointer to a device tree node containing a list 1391 * @list_name: property name that contains a list 1392 * @cells_name: property name that specifies phandles' arguments count 1393 * @index: index of a phandle to parse out 1394 * @out_args: optional pointer to output arguments structure (will be filled) 1395 * 1396 * This function is useful to parse lists of phandles and their arguments. 1397 * Returns 0 on success and fills out_args, on error returns appropriate 1398 * errno value. 1399 * 1400 * Caller is responsible to call of_node_put() on the returned out_args->node 1401 * pointer. 1402 * 1403 * Example: 1404 * 1405 * phandle1: node1 { 1406 * #list-cells = <2>; 1407 * } 1408 * 1409 * phandle2: node2 { 1410 * #list-cells = <1>; 1411 * } 1412 * 1413 * node3 { 1414 * list = <&phandle1 1 2 &phandle2 3>; 1415 * } 1416 * 1417 * To get a device_node of the `node2' node you may call this: 1418 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1419 */ 1420 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1421 const char *cells_name, int index, 1422 struct of_phandle_args *out_args) 1423 { 1424 if (index < 0) 1425 return -EINVAL; 1426 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1427 index, out_args); 1428 } 1429 EXPORT_SYMBOL(of_parse_phandle_with_args); 1430 1431 /** 1432 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1433 * @np: pointer to a device tree node containing a list 1434 * @list_name: property name that contains a list 1435 * @cell_count: number of argument cells following the phandle 1436 * @index: index of a phandle to parse out 1437 * @out_args: optional pointer to output arguments structure (will be filled) 1438 * 1439 * This function is useful to parse lists of phandles and their arguments. 1440 * Returns 0 on success and fills out_args, on error returns appropriate 1441 * errno value. 1442 * 1443 * Caller is responsible to call of_node_put() on the returned out_args->node 1444 * pointer. 1445 * 1446 * Example: 1447 * 1448 * phandle1: node1 { 1449 * } 1450 * 1451 * phandle2: node2 { 1452 * } 1453 * 1454 * node3 { 1455 * list = <&phandle1 0 2 &phandle2 2 3>; 1456 * } 1457 * 1458 * To get a device_node of the `node2' node you may call this: 1459 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1460 */ 1461 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1462 const char *list_name, int cell_count, 1463 int index, struct of_phandle_args *out_args) 1464 { 1465 if (index < 0) 1466 return -EINVAL; 1467 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1468 index, out_args); 1469 } 1470 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1471 1472 /** 1473 * of_count_phandle_with_args() - Find the number of phandles references in a property 1474 * @np: pointer to a device tree node containing a list 1475 * @list_name: property name that contains a list 1476 * @cells_name: property name that specifies phandles' arguments count 1477 * 1478 * Returns the number of phandle + argument tuples within a property. It 1479 * is a typical pattern to encode a list of phandle and variable 1480 * arguments into a single property. The number of arguments is encoded 1481 * by a property in the phandle-target node. For example, a gpios 1482 * property would contain a list of GPIO specifies consisting of a 1483 * phandle and 1 or more arguments. The number of arguments are 1484 * determined by the #gpio-cells property in the node pointed to by the 1485 * phandle. 1486 */ 1487 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1488 const char *cells_name) 1489 { 1490 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1491 NULL); 1492 } 1493 EXPORT_SYMBOL(of_count_phandle_with_args); 1494 1495 #if defined(CONFIG_OF_DYNAMIC) 1496 static int of_property_notify(int action, struct device_node *np, 1497 struct property *prop) 1498 { 1499 struct of_prop_reconfig pr; 1500 1501 pr.dn = np; 1502 pr.prop = prop; 1503 return of_reconfig_notify(action, &pr); 1504 } 1505 #else 1506 static int of_property_notify(int action, struct device_node *np, 1507 struct property *prop) 1508 { 1509 return 0; 1510 } 1511 #endif 1512 1513 /** 1514 * of_add_property - Add a property to a node 1515 */ 1516 int of_add_property(struct device_node *np, struct property *prop) 1517 { 1518 struct property **next; 1519 unsigned long flags; 1520 int rc; 1521 1522 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); 1523 if (rc) 1524 return rc; 1525 1526 prop->next = NULL; 1527 raw_spin_lock_irqsave(&devtree_lock, flags); 1528 next = &np->properties; 1529 while (*next) { 1530 if (strcmp(prop->name, (*next)->name) == 0) { 1531 /* duplicate ! don't insert it */ 1532 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1533 return -1; 1534 } 1535 next = &(*next)->next; 1536 } 1537 *next = prop; 1538 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1539 1540 #ifdef CONFIG_PROC_DEVICETREE 1541 /* try to add to proc as well if it was initialized */ 1542 if (np->pde) 1543 proc_device_tree_add_prop(np->pde, prop); 1544 #endif /* CONFIG_PROC_DEVICETREE */ 1545 1546 return 0; 1547 } 1548 1549 /** 1550 * of_remove_property - Remove a property from a node. 1551 * 1552 * Note that we don't actually remove it, since we have given out 1553 * who-knows-how-many pointers to the data using get-property. 1554 * Instead we just move the property to the "dead properties" 1555 * list, so it won't be found any more. 1556 */ 1557 int of_remove_property(struct device_node *np, struct property *prop) 1558 { 1559 struct property **next; 1560 unsigned long flags; 1561 int found = 0; 1562 int rc; 1563 1564 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); 1565 if (rc) 1566 return rc; 1567 1568 raw_spin_lock_irqsave(&devtree_lock, flags); 1569 next = &np->properties; 1570 while (*next) { 1571 if (*next == prop) { 1572 /* found the node */ 1573 *next = prop->next; 1574 prop->next = np->deadprops; 1575 np->deadprops = prop; 1576 found = 1; 1577 break; 1578 } 1579 next = &(*next)->next; 1580 } 1581 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1582 1583 if (!found) 1584 return -ENODEV; 1585 1586 #ifdef CONFIG_PROC_DEVICETREE 1587 /* try to remove the proc node as well */ 1588 if (np->pde) 1589 proc_device_tree_remove_prop(np->pde, prop); 1590 #endif /* CONFIG_PROC_DEVICETREE */ 1591 1592 return 0; 1593 } 1594 1595 /* 1596 * of_update_property - Update a property in a node, if the property does 1597 * not exist, add it. 1598 * 1599 * Note that we don't actually remove it, since we have given out 1600 * who-knows-how-many pointers to the data using get-property. 1601 * Instead we just move the property to the "dead properties" list, 1602 * and add the new property to the property list 1603 */ 1604 int of_update_property(struct device_node *np, struct property *newprop) 1605 { 1606 struct property **next, *oldprop; 1607 unsigned long flags; 1608 int rc, found = 0; 1609 1610 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); 1611 if (rc) 1612 return rc; 1613 1614 if (!newprop->name) 1615 return -EINVAL; 1616 1617 oldprop = of_find_property(np, newprop->name, NULL); 1618 if (!oldprop) 1619 return of_add_property(np, newprop); 1620 1621 raw_spin_lock_irqsave(&devtree_lock, flags); 1622 next = &np->properties; 1623 while (*next) { 1624 if (*next == oldprop) { 1625 /* found the node */ 1626 newprop->next = oldprop->next; 1627 *next = newprop; 1628 oldprop->next = np->deadprops; 1629 np->deadprops = oldprop; 1630 found = 1; 1631 break; 1632 } 1633 next = &(*next)->next; 1634 } 1635 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1636 1637 if (!found) 1638 return -ENODEV; 1639 1640 #ifdef CONFIG_PROC_DEVICETREE 1641 /* try to add to proc as well if it was initialized */ 1642 if (np->pde) 1643 proc_device_tree_update_prop(np->pde, newprop, oldprop); 1644 #endif /* CONFIG_PROC_DEVICETREE */ 1645 1646 return 0; 1647 } 1648 1649 #if defined(CONFIG_OF_DYNAMIC) 1650 /* 1651 * Support for dynamic device trees. 1652 * 1653 * On some platforms, the device tree can be manipulated at runtime. 1654 * The routines in this section support adding, removing and changing 1655 * device tree nodes. 1656 */ 1657 1658 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); 1659 1660 int of_reconfig_notifier_register(struct notifier_block *nb) 1661 { 1662 return blocking_notifier_chain_register(&of_reconfig_chain, nb); 1663 } 1664 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); 1665 1666 int of_reconfig_notifier_unregister(struct notifier_block *nb) 1667 { 1668 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); 1669 } 1670 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); 1671 1672 int of_reconfig_notify(unsigned long action, void *p) 1673 { 1674 int rc; 1675 1676 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); 1677 return notifier_to_errno(rc); 1678 } 1679 1680 #ifdef CONFIG_PROC_DEVICETREE 1681 static void of_add_proc_dt_entry(struct device_node *dn) 1682 { 1683 struct proc_dir_entry *ent; 1684 1685 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde); 1686 if (ent) 1687 proc_device_tree_add_node(dn, ent); 1688 } 1689 #else 1690 static void of_add_proc_dt_entry(struct device_node *dn) 1691 { 1692 return; 1693 } 1694 #endif 1695 1696 /** 1697 * of_attach_node - Plug a device node into the tree and global list. 1698 */ 1699 int of_attach_node(struct device_node *np) 1700 { 1701 unsigned long flags; 1702 int rc; 1703 1704 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); 1705 if (rc) 1706 return rc; 1707 1708 raw_spin_lock_irqsave(&devtree_lock, flags); 1709 np->sibling = np->parent->child; 1710 np->allnext = of_allnodes; 1711 np->parent->child = np; 1712 of_allnodes = np; 1713 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1714 1715 of_add_proc_dt_entry(np); 1716 return 0; 1717 } 1718 1719 #ifdef CONFIG_PROC_DEVICETREE 1720 static void of_remove_proc_dt_entry(struct device_node *dn) 1721 { 1722 proc_remove(dn->pde); 1723 } 1724 #else 1725 static void of_remove_proc_dt_entry(struct device_node *dn) 1726 { 1727 return; 1728 } 1729 #endif 1730 1731 /** 1732 * of_detach_node - "Unplug" a node from the device tree. 1733 * 1734 * The caller must hold a reference to the node. The memory associated with 1735 * the node is not freed until its refcount goes to zero. 1736 */ 1737 int of_detach_node(struct device_node *np) 1738 { 1739 struct device_node *parent; 1740 unsigned long flags; 1741 int rc = 0; 1742 1743 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); 1744 if (rc) 1745 return rc; 1746 1747 raw_spin_lock_irqsave(&devtree_lock, flags); 1748 1749 if (of_node_check_flag(np, OF_DETACHED)) { 1750 /* someone already detached it */ 1751 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1752 return rc; 1753 } 1754 1755 parent = np->parent; 1756 if (!parent) { 1757 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1758 return rc; 1759 } 1760 1761 if (of_allnodes == np) 1762 of_allnodes = np->allnext; 1763 else { 1764 struct device_node *prev; 1765 for (prev = of_allnodes; 1766 prev->allnext != np; 1767 prev = prev->allnext) 1768 ; 1769 prev->allnext = np->allnext; 1770 } 1771 1772 if (parent->child == np) 1773 parent->child = np->sibling; 1774 else { 1775 struct device_node *prevsib; 1776 for (prevsib = np->parent->child; 1777 prevsib->sibling != np; 1778 prevsib = prevsib->sibling) 1779 ; 1780 prevsib->sibling = np->sibling; 1781 } 1782 1783 of_node_set_flag(np, OF_DETACHED); 1784 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1785 1786 of_remove_proc_dt_entry(np); 1787 return rc; 1788 } 1789 #endif /* defined(CONFIG_OF_DYNAMIC) */ 1790 1791 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1792 int id, const char *stem, int stem_len) 1793 { 1794 ap->np = np; 1795 ap->id = id; 1796 strncpy(ap->stem, stem, stem_len); 1797 ap->stem[stem_len] = 0; 1798 list_add_tail(&ap->link, &aliases_lookup); 1799 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1800 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1801 } 1802 1803 /** 1804 * of_alias_scan - Scan all properties of 'aliases' node 1805 * 1806 * The function scans all the properties of 'aliases' node and populate 1807 * the the global lookup table with the properties. It returns the 1808 * number of alias_prop found, or error code in error case. 1809 * 1810 * @dt_alloc: An allocator that provides a virtual address to memory 1811 * for the resulting tree 1812 */ 1813 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1814 { 1815 struct property *pp; 1816 1817 of_chosen = of_find_node_by_path("/chosen"); 1818 if (of_chosen == NULL) 1819 of_chosen = of_find_node_by_path("/chosen@0"); 1820 1821 if (of_chosen) { 1822 const char *name; 1823 1824 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1825 if (name) 1826 of_stdout = of_find_node_by_path(name); 1827 } 1828 1829 of_aliases = of_find_node_by_path("/aliases"); 1830 if (!of_aliases) 1831 return; 1832 1833 for_each_property_of_node(of_aliases, pp) { 1834 const char *start = pp->name; 1835 const char *end = start + strlen(start); 1836 struct device_node *np; 1837 struct alias_prop *ap; 1838 int id, len; 1839 1840 /* Skip those we do not want to proceed */ 1841 if (!strcmp(pp->name, "name") || 1842 !strcmp(pp->name, "phandle") || 1843 !strcmp(pp->name, "linux,phandle")) 1844 continue; 1845 1846 np = of_find_node_by_path(pp->value); 1847 if (!np) 1848 continue; 1849 1850 /* walk the alias backwards to extract the id and work out 1851 * the 'stem' string */ 1852 while (isdigit(*(end-1)) && end > start) 1853 end--; 1854 len = end - start; 1855 1856 if (kstrtoint(end, 10, &id) < 0) 1857 continue; 1858 1859 /* Allocate an alias_prop with enough space for the stem */ 1860 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1861 if (!ap) 1862 continue; 1863 memset(ap, 0, sizeof(*ap) + len + 1); 1864 ap->alias = start; 1865 of_alias_add(ap, np, id, start, len); 1866 } 1867 } 1868 1869 /** 1870 * of_alias_get_id - Get alias id for the given device_node 1871 * @np: Pointer to the given device_node 1872 * @stem: Alias stem of the given device_node 1873 * 1874 * The function travels the lookup table to get alias id for the given 1875 * device_node and alias stem. It returns the alias id if find it. 1876 */ 1877 int of_alias_get_id(struct device_node *np, const char *stem) 1878 { 1879 struct alias_prop *app; 1880 int id = -ENODEV; 1881 1882 mutex_lock(&of_aliases_mutex); 1883 list_for_each_entry(app, &aliases_lookup, link) { 1884 if (strcmp(app->stem, stem) != 0) 1885 continue; 1886 1887 if (np == app->np) { 1888 id = app->id; 1889 break; 1890 } 1891 } 1892 mutex_unlock(&of_aliases_mutex); 1893 1894 return id; 1895 } 1896 EXPORT_SYMBOL_GPL(of_alias_get_id); 1897 1898 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1899 u32 *pu) 1900 { 1901 const void *curv = cur; 1902 1903 if (!prop) 1904 return NULL; 1905 1906 if (!cur) { 1907 curv = prop->value; 1908 goto out_val; 1909 } 1910 1911 curv += sizeof(*cur); 1912 if (curv >= prop->value + prop->length) 1913 return NULL; 1914 1915 out_val: 1916 *pu = be32_to_cpup(curv); 1917 return curv; 1918 } 1919 EXPORT_SYMBOL_GPL(of_prop_next_u32); 1920 1921 const char *of_prop_next_string(struct property *prop, const char *cur) 1922 { 1923 const void *curv = cur; 1924 1925 if (!prop) 1926 return NULL; 1927 1928 if (!cur) 1929 return prop->value; 1930 1931 curv += strlen(cur) + 1; 1932 if (curv >= prop->value + prop->length) 1933 return NULL; 1934 1935 return curv; 1936 } 1937 EXPORT_SYMBOL_GPL(of_prop_next_string); 1938 1939 /** 1940 * of_device_is_stdout_path - check if a device node matches the 1941 * linux,stdout-path property 1942 * 1943 * Check if this device node matches the linux,stdout-path property 1944 * in the chosen node. return true if yes, false otherwise. 1945 */ 1946 int of_device_is_stdout_path(struct device_node *dn) 1947 { 1948 if (!of_stdout) 1949 return false; 1950 1951 return of_stdout == dn; 1952 } 1953 EXPORT_SYMBOL_GPL(of_device_is_stdout_path); 1954 1955 /** 1956 * of_find_next_cache_node - Find a node's subsidiary cache 1957 * @np: node of type "cpu" or "cache" 1958 * 1959 * Returns a node pointer with refcount incremented, use 1960 * of_node_put() on it when done. Caller should hold a reference 1961 * to np. 1962 */ 1963 struct device_node *of_find_next_cache_node(const struct device_node *np) 1964 { 1965 struct device_node *child; 1966 const phandle *handle; 1967 1968 handle = of_get_property(np, "l2-cache", NULL); 1969 if (!handle) 1970 handle = of_get_property(np, "next-level-cache", NULL); 1971 1972 if (handle) 1973 return of_find_node_by_phandle(be32_to_cpup(handle)); 1974 1975 /* OF on pmac has nodes instead of properties named "l2-cache" 1976 * beneath CPU nodes. 1977 */ 1978 if (!strcmp(np->type, "cpu")) 1979 for_each_child_of_node(np, child) 1980 if (!strcmp(child->type, "cache")) 1981 return child; 1982 1983 return NULL; 1984 } 1985