1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70 } 71 EXPORT_SYMBOL(of_n_addr_cells); 72 73 int of_n_size_cells(struct device_node *np) 74 { 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86 } 87 EXPORT_SYMBOL(of_n_size_cells); 88 89 #ifdef CONFIG_NUMA 90 int __weak of_node_to_nid(struct device_node *np) 91 { 92 return numa_node_id(); 93 } 94 #endif 95 96 #ifndef CONFIG_OF_DYNAMIC 97 static void of_node_release(struct kobject *kobj) 98 { 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100 } 101 #endif /* CONFIG_OF_DYNAMIC */ 102 103 struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105 }; 106 107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110 { 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113 } 114 115 static const char *safe_name(struct kobject *kobj, const char *orig_name) 116 { 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133 } 134 135 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136 { 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157 } 158 159 int __of_attach_node_sysfs(struct device_node *np) 160 { 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190 } 191 192 static int __init of_init(void) 193 { 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 return -ENOMEM; 202 } 203 for_each_of_allnodes(np) 204 __of_attach_node_sysfs(np); 205 mutex_unlock(&of_mutex); 206 207 /* Symlink in /proc as required by userspace ABI */ 208 if (of_root) 209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 210 211 return 0; 212 } 213 core_initcall(of_init); 214 215 static struct property *__of_find_property(const struct device_node *np, 216 const char *name, int *lenp) 217 { 218 struct property *pp; 219 220 if (!np) 221 return NULL; 222 223 for (pp = np->properties; pp; pp = pp->next) { 224 if (of_prop_cmp(pp->name, name) == 0) { 225 if (lenp) 226 *lenp = pp->length; 227 break; 228 } 229 } 230 231 return pp; 232 } 233 234 struct property *of_find_property(const struct device_node *np, 235 const char *name, 236 int *lenp) 237 { 238 struct property *pp; 239 unsigned long flags; 240 241 raw_spin_lock_irqsave(&devtree_lock, flags); 242 pp = __of_find_property(np, name, lenp); 243 raw_spin_unlock_irqrestore(&devtree_lock, flags); 244 245 return pp; 246 } 247 EXPORT_SYMBOL(of_find_property); 248 249 struct device_node *__of_find_all_nodes(struct device_node *prev) 250 { 251 struct device_node *np; 252 if (!prev) { 253 np = of_root; 254 } else if (prev->child) { 255 np = prev->child; 256 } else { 257 /* Walk back up looking for a sibling, or the end of the structure */ 258 np = prev; 259 while (np->parent && !np->sibling) 260 np = np->parent; 261 np = np->sibling; /* Might be null at the end of the tree */ 262 } 263 return np; 264 } 265 266 /** 267 * of_find_all_nodes - Get next node in global list 268 * @prev: Previous node or NULL to start iteration 269 * of_node_put() will be called on it 270 * 271 * Returns a node pointer with refcount incremented, use 272 * of_node_put() on it when done. 273 */ 274 struct device_node *of_find_all_nodes(struct device_node *prev) 275 { 276 struct device_node *np; 277 unsigned long flags; 278 279 raw_spin_lock_irqsave(&devtree_lock, flags); 280 np = __of_find_all_nodes(prev); 281 of_node_get(np); 282 of_node_put(prev); 283 raw_spin_unlock_irqrestore(&devtree_lock, flags); 284 return np; 285 } 286 EXPORT_SYMBOL(of_find_all_nodes); 287 288 /* 289 * Find a property with a given name for a given node 290 * and return the value. 291 */ 292 const void *__of_get_property(const struct device_node *np, 293 const char *name, int *lenp) 294 { 295 struct property *pp = __of_find_property(np, name, lenp); 296 297 return pp ? pp->value : NULL; 298 } 299 300 /* 301 * Find a property with a given name for a given node 302 * and return the value. 303 */ 304 const void *of_get_property(const struct device_node *np, const char *name, 305 int *lenp) 306 { 307 struct property *pp = of_find_property(np, name, lenp); 308 309 return pp ? pp->value : NULL; 310 } 311 EXPORT_SYMBOL(of_get_property); 312 313 /* 314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 315 * 316 * @cpu: logical cpu index of a core/thread 317 * @phys_id: physical identifier of a core/thread 318 * 319 * CPU logical to physical index mapping is architecture specific. 320 * However this __weak function provides a default match of physical 321 * id to logical cpu index. phys_id provided here is usually values read 322 * from the device tree which must match the hardware internal registers. 323 * 324 * Returns true if the physical identifier and the logical cpu index 325 * correspond to the same core/thread, false otherwise. 326 */ 327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 328 { 329 return (u32)phys_id == cpu; 330 } 331 332 /** 333 * Checks if the given "prop_name" property holds the physical id of the 334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 335 * NULL, local thread number within the core is returned in it. 336 */ 337 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 338 const char *prop_name, int cpu, unsigned int *thread) 339 { 340 const __be32 *cell; 341 int ac, prop_len, tid; 342 u64 hwid; 343 344 ac = of_n_addr_cells(cpun); 345 cell = of_get_property(cpun, prop_name, &prop_len); 346 if (!cell || !ac) 347 return false; 348 prop_len /= sizeof(*cell) * ac; 349 for (tid = 0; tid < prop_len; tid++) { 350 hwid = of_read_number(cell, ac); 351 if (arch_match_cpu_phys_id(cpu, hwid)) { 352 if (thread) 353 *thread = tid; 354 return true; 355 } 356 cell += ac; 357 } 358 return false; 359 } 360 361 /* 362 * arch_find_n_match_cpu_physical_id - See if the given device node is 363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 364 * else false. If 'thread' is non-NULL, the local thread number within the 365 * core is returned in it. 366 */ 367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 368 int cpu, unsigned int *thread) 369 { 370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 371 * for thread ids on PowerPC. If it doesn't exist fallback to 372 * standard "reg" property. 373 */ 374 if (IS_ENABLED(CONFIG_PPC) && 375 __of_find_n_match_cpu_property(cpun, 376 "ibm,ppc-interrupt-server#s", 377 cpu, thread)) 378 return true; 379 380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 381 return true; 382 383 return false; 384 } 385 386 /** 387 * of_get_cpu_node - Get device node associated with the given logical CPU 388 * 389 * @cpu: CPU number(logical index) for which device node is required 390 * @thread: if not NULL, local thread number within the physical core is 391 * returned 392 * 393 * The main purpose of this function is to retrieve the device node for the 394 * given logical CPU index. It should be used to initialize the of_node in 395 * cpu device. Once of_node in cpu device is populated, all the further 396 * references can use that instead. 397 * 398 * CPU logical to physical index mapping is architecture specific and is built 399 * before booting secondary cores. This function uses arch_match_cpu_phys_id 400 * which can be overridden by architecture specific implementation. 401 * 402 * Returns a node pointer for the logical cpu if found, else NULL. 403 */ 404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 405 { 406 struct device_node *cpun; 407 408 for_each_node_by_type(cpun, "cpu") { 409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 410 return cpun; 411 } 412 return NULL; 413 } 414 EXPORT_SYMBOL(of_get_cpu_node); 415 416 /** 417 * __of_device_is_compatible() - Check if the node matches given constraints 418 * @device: pointer to node 419 * @compat: required compatible string, NULL or "" for any match 420 * @type: required device_type value, NULL or "" for any match 421 * @name: required node name, NULL or "" for any match 422 * 423 * Checks if the given @compat, @type and @name strings match the 424 * properties of the given @device. A constraints can be skipped by 425 * passing NULL or an empty string as the constraint. 426 * 427 * Returns 0 for no match, and a positive integer on match. The return 428 * value is a relative score with larger values indicating better 429 * matches. The score is weighted for the most specific compatible value 430 * to get the highest score. Matching type is next, followed by matching 431 * name. Practically speaking, this results in the following priority 432 * order for matches: 433 * 434 * 1. specific compatible && type && name 435 * 2. specific compatible && type 436 * 3. specific compatible && name 437 * 4. specific compatible 438 * 5. general compatible && type && name 439 * 6. general compatible && type 440 * 7. general compatible && name 441 * 8. general compatible 442 * 9. type && name 443 * 10. type 444 * 11. name 445 */ 446 static int __of_device_is_compatible(const struct device_node *device, 447 const char *compat, const char *type, const char *name) 448 { 449 struct property *prop; 450 const char *cp; 451 int index = 0, score = 0; 452 453 /* Compatible match has highest priority */ 454 if (compat && compat[0]) { 455 prop = __of_find_property(device, "compatible", NULL); 456 for (cp = of_prop_next_string(prop, NULL); cp; 457 cp = of_prop_next_string(prop, cp), index++) { 458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 459 score = INT_MAX/2 - (index << 2); 460 break; 461 } 462 } 463 if (!score) 464 return 0; 465 } 466 467 /* Matching type is better than matching name */ 468 if (type && type[0]) { 469 if (!device->type || of_node_cmp(type, device->type)) 470 return 0; 471 score += 2; 472 } 473 474 /* Matching name is a bit better than not */ 475 if (name && name[0]) { 476 if (!device->name || of_node_cmp(name, device->name)) 477 return 0; 478 score++; 479 } 480 481 return score; 482 } 483 484 /** Checks if the given "compat" string matches one of the strings in 485 * the device's "compatible" property 486 */ 487 int of_device_is_compatible(const struct device_node *device, 488 const char *compat) 489 { 490 unsigned long flags; 491 int res; 492 493 raw_spin_lock_irqsave(&devtree_lock, flags); 494 res = __of_device_is_compatible(device, compat, NULL, NULL); 495 raw_spin_unlock_irqrestore(&devtree_lock, flags); 496 return res; 497 } 498 EXPORT_SYMBOL(of_device_is_compatible); 499 500 /** 501 * of_machine_is_compatible - Test root of device tree for a given compatible value 502 * @compat: compatible string to look for in root node's compatible property. 503 * 504 * Returns a positive integer if the root node has the given value in its 505 * compatible property. 506 */ 507 int of_machine_is_compatible(const char *compat) 508 { 509 struct device_node *root; 510 int rc = 0; 511 512 root = of_find_node_by_path("/"); 513 if (root) { 514 rc = of_device_is_compatible(root, compat); 515 of_node_put(root); 516 } 517 return rc; 518 } 519 EXPORT_SYMBOL(of_machine_is_compatible); 520 521 /** 522 * __of_device_is_available - check if a device is available for use 523 * 524 * @device: Node to check for availability, with locks already held 525 * 526 * Returns true if the status property is absent or set to "okay" or "ok", 527 * false otherwise 528 */ 529 static bool __of_device_is_available(const struct device_node *device) 530 { 531 const char *status; 532 int statlen; 533 534 if (!device) 535 return false; 536 537 status = __of_get_property(device, "status", &statlen); 538 if (status == NULL) 539 return true; 540 541 if (statlen > 0) { 542 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 543 return true; 544 } 545 546 return false; 547 } 548 549 /** 550 * of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 bool of_device_is_available(const struct device_node *device) 558 { 559 unsigned long flags; 560 bool res; 561 562 raw_spin_lock_irqsave(&devtree_lock, flags); 563 res = __of_device_is_available(device); 564 raw_spin_unlock_irqrestore(&devtree_lock, flags); 565 return res; 566 567 } 568 EXPORT_SYMBOL(of_device_is_available); 569 570 /** 571 * of_get_parent - Get a node's parent if any 572 * @node: Node to get parent 573 * 574 * Returns a node pointer with refcount incremented, use 575 * of_node_put() on it when done. 576 */ 577 struct device_node *of_get_parent(const struct device_node *node) 578 { 579 struct device_node *np; 580 unsigned long flags; 581 582 if (!node) 583 return NULL; 584 585 raw_spin_lock_irqsave(&devtree_lock, flags); 586 np = of_node_get(node->parent); 587 raw_spin_unlock_irqrestore(&devtree_lock, flags); 588 return np; 589 } 590 EXPORT_SYMBOL(of_get_parent); 591 592 /** 593 * of_get_next_parent - Iterate to a node's parent 594 * @node: Node to get parent of 595 * 596 * This is like of_get_parent() except that it drops the 597 * refcount on the passed node, making it suitable for iterating 598 * through a node's parents. 599 * 600 * Returns a node pointer with refcount incremented, use 601 * of_node_put() on it when done. 602 */ 603 struct device_node *of_get_next_parent(struct device_node *node) 604 { 605 struct device_node *parent; 606 unsigned long flags; 607 608 if (!node) 609 return NULL; 610 611 raw_spin_lock_irqsave(&devtree_lock, flags); 612 parent = of_node_get(node->parent); 613 of_node_put(node); 614 raw_spin_unlock_irqrestore(&devtree_lock, flags); 615 return parent; 616 } 617 EXPORT_SYMBOL(of_get_next_parent); 618 619 static struct device_node *__of_get_next_child(const struct device_node *node, 620 struct device_node *prev) 621 { 622 struct device_node *next; 623 624 if (!node) 625 return NULL; 626 627 next = prev ? prev->sibling : node->child; 628 for (; next; next = next->sibling) 629 if (of_node_get(next)) 630 break; 631 of_node_put(prev); 632 return next; 633 } 634 #define __for_each_child_of_node(parent, child) \ 635 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 636 child = __of_get_next_child(parent, child)) 637 638 /** 639 * of_get_next_child - Iterate a node childs 640 * @node: parent node 641 * @prev: previous child of the parent node, or NULL to get first 642 * 643 * Returns a node pointer with refcount incremented, use 644 * of_node_put() on it when done. 645 */ 646 struct device_node *of_get_next_child(const struct device_node *node, 647 struct device_node *prev) 648 { 649 struct device_node *next; 650 unsigned long flags; 651 652 raw_spin_lock_irqsave(&devtree_lock, flags); 653 next = __of_get_next_child(node, prev); 654 raw_spin_unlock_irqrestore(&devtree_lock, flags); 655 return next; 656 } 657 EXPORT_SYMBOL(of_get_next_child); 658 659 /** 660 * of_get_next_available_child - Find the next available child node 661 * @node: parent node 662 * @prev: previous child of the parent node, or NULL to get first 663 * 664 * This function is like of_get_next_child(), except that it 665 * automatically skips any disabled nodes (i.e. status = "disabled"). 666 */ 667 struct device_node *of_get_next_available_child(const struct device_node *node, 668 struct device_node *prev) 669 { 670 struct device_node *next; 671 unsigned long flags; 672 673 if (!node) 674 return NULL; 675 676 raw_spin_lock_irqsave(&devtree_lock, flags); 677 next = prev ? prev->sibling : node->child; 678 for (; next; next = next->sibling) { 679 if (!__of_device_is_available(next)) 680 continue; 681 if (of_node_get(next)) 682 break; 683 } 684 of_node_put(prev); 685 raw_spin_unlock_irqrestore(&devtree_lock, flags); 686 return next; 687 } 688 EXPORT_SYMBOL(of_get_next_available_child); 689 690 /** 691 * of_get_child_by_name - Find the child node by name for a given parent 692 * @node: parent node 693 * @name: child name to look for. 694 * 695 * This function looks for child node for given matching name 696 * 697 * Returns a node pointer if found, with refcount incremented, use 698 * of_node_put() on it when done. 699 * Returns NULL if node is not found. 700 */ 701 struct device_node *of_get_child_by_name(const struct device_node *node, 702 const char *name) 703 { 704 struct device_node *child; 705 706 for_each_child_of_node(node, child) 707 if (child->name && (of_node_cmp(child->name, name) == 0)) 708 break; 709 return child; 710 } 711 EXPORT_SYMBOL(of_get_child_by_name); 712 713 static struct device_node *__of_find_node_by_path(struct device_node *parent, 714 const char *path) 715 { 716 struct device_node *child; 717 int len = strchrnul(path, '/') - path; 718 int term; 719 720 if (!len) 721 return NULL; 722 723 term = strchrnul(path, ':') - path; 724 if (term < len) 725 len = term; 726 727 __for_each_child_of_node(parent, child) { 728 const char *name = strrchr(child->full_name, '/'); 729 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 730 continue; 731 name++; 732 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 733 return child; 734 } 735 return NULL; 736 } 737 738 /** 739 * of_find_node_opts_by_path - Find a node matching a full OF path 740 * @path: Either the full path to match, or if the path does not 741 * start with '/', the name of a property of the /aliases 742 * node (an alias). In the case of an alias, the node 743 * matching the alias' value will be returned. 744 * @opts: Address of a pointer into which to store the start of 745 * an options string appended to the end of the path with 746 * a ':' separator. 747 * 748 * Valid paths: 749 * /foo/bar Full path 750 * foo Valid alias 751 * foo/bar Valid alias + relative path 752 * 753 * Returns a node pointer with refcount incremented, use 754 * of_node_put() on it when done. 755 */ 756 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 757 { 758 struct device_node *np = NULL; 759 struct property *pp; 760 unsigned long flags; 761 const char *separator = strchr(path, ':'); 762 763 if (opts) 764 *opts = separator ? separator + 1 : NULL; 765 766 if (strcmp(path, "/") == 0) 767 return of_node_get(of_root); 768 769 /* The path could begin with an alias */ 770 if (*path != '/') { 771 char *p = strchrnul(path, '/'); 772 int len = separator ? separator - path : p - path; 773 774 /* of_aliases must not be NULL */ 775 if (!of_aliases) 776 return NULL; 777 778 for_each_property_of_node(of_aliases, pp) { 779 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 780 np = of_find_node_by_path(pp->value); 781 break; 782 } 783 } 784 if (!np) 785 return NULL; 786 path = p; 787 } 788 789 /* Step down the tree matching path components */ 790 raw_spin_lock_irqsave(&devtree_lock, flags); 791 if (!np) 792 np = of_node_get(of_root); 793 while (np && *path == '/') { 794 path++; /* Increment past '/' delimiter */ 795 np = __of_find_node_by_path(np, path); 796 path = strchrnul(path, '/'); 797 } 798 raw_spin_unlock_irqrestore(&devtree_lock, flags); 799 return np; 800 } 801 EXPORT_SYMBOL(of_find_node_opts_by_path); 802 803 /** 804 * of_find_node_by_name - Find a node by its "name" property 805 * @from: The node to start searching from or NULL, the node 806 * you pass will not be searched, only the next one 807 * will; typically, you pass what the previous call 808 * returned. of_node_put() will be called on it 809 * @name: The name string to match against 810 * 811 * Returns a node pointer with refcount incremented, use 812 * of_node_put() on it when done. 813 */ 814 struct device_node *of_find_node_by_name(struct device_node *from, 815 const char *name) 816 { 817 struct device_node *np; 818 unsigned long flags; 819 820 raw_spin_lock_irqsave(&devtree_lock, flags); 821 for_each_of_allnodes_from(from, np) 822 if (np->name && (of_node_cmp(np->name, name) == 0) 823 && of_node_get(np)) 824 break; 825 of_node_put(from); 826 raw_spin_unlock_irqrestore(&devtree_lock, flags); 827 return np; 828 } 829 EXPORT_SYMBOL(of_find_node_by_name); 830 831 /** 832 * of_find_node_by_type - Find a node by its "device_type" property 833 * @from: The node to start searching from, or NULL to start searching 834 * the entire device tree. The node you pass will not be 835 * searched, only the next one will; typically, you pass 836 * what the previous call returned. of_node_put() will be 837 * called on from for you. 838 * @type: The type string to match against 839 * 840 * Returns a node pointer with refcount incremented, use 841 * of_node_put() on it when done. 842 */ 843 struct device_node *of_find_node_by_type(struct device_node *from, 844 const char *type) 845 { 846 struct device_node *np; 847 unsigned long flags; 848 849 raw_spin_lock_irqsave(&devtree_lock, flags); 850 for_each_of_allnodes_from(from, np) 851 if (np->type && (of_node_cmp(np->type, type) == 0) 852 && of_node_get(np)) 853 break; 854 of_node_put(from); 855 raw_spin_unlock_irqrestore(&devtree_lock, flags); 856 return np; 857 } 858 EXPORT_SYMBOL(of_find_node_by_type); 859 860 /** 861 * of_find_compatible_node - Find a node based on type and one of the 862 * tokens in its "compatible" property 863 * @from: The node to start searching from or NULL, the node 864 * you pass will not be searched, only the next one 865 * will; typically, you pass what the previous call 866 * returned. of_node_put() will be called on it 867 * @type: The type string to match "device_type" or NULL to ignore 868 * @compatible: The string to match to one of the tokens in the device 869 * "compatible" list. 870 * 871 * Returns a node pointer with refcount incremented, use 872 * of_node_put() on it when done. 873 */ 874 struct device_node *of_find_compatible_node(struct device_node *from, 875 const char *type, const char *compatible) 876 { 877 struct device_node *np; 878 unsigned long flags; 879 880 raw_spin_lock_irqsave(&devtree_lock, flags); 881 for_each_of_allnodes_from(from, np) 882 if (__of_device_is_compatible(np, compatible, type, NULL) && 883 of_node_get(np)) 884 break; 885 of_node_put(from); 886 raw_spin_unlock_irqrestore(&devtree_lock, flags); 887 return np; 888 } 889 EXPORT_SYMBOL(of_find_compatible_node); 890 891 /** 892 * of_find_node_with_property - Find a node which has a property with 893 * the given name. 894 * @from: The node to start searching from or NULL, the node 895 * you pass will not be searched, only the next one 896 * will; typically, you pass what the previous call 897 * returned. of_node_put() will be called on it 898 * @prop_name: The name of the property to look for. 899 * 900 * Returns a node pointer with refcount incremented, use 901 * of_node_put() on it when done. 902 */ 903 struct device_node *of_find_node_with_property(struct device_node *from, 904 const char *prop_name) 905 { 906 struct device_node *np; 907 struct property *pp; 908 unsigned long flags; 909 910 raw_spin_lock_irqsave(&devtree_lock, flags); 911 for_each_of_allnodes_from(from, np) { 912 for (pp = np->properties; pp; pp = pp->next) { 913 if (of_prop_cmp(pp->name, prop_name) == 0) { 914 of_node_get(np); 915 goto out; 916 } 917 } 918 } 919 out: 920 of_node_put(from); 921 raw_spin_unlock_irqrestore(&devtree_lock, flags); 922 return np; 923 } 924 EXPORT_SYMBOL(of_find_node_with_property); 925 926 static 927 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 928 const struct device_node *node) 929 { 930 const struct of_device_id *best_match = NULL; 931 int score, best_score = 0; 932 933 if (!matches) 934 return NULL; 935 936 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 937 score = __of_device_is_compatible(node, matches->compatible, 938 matches->type, matches->name); 939 if (score > best_score) { 940 best_match = matches; 941 best_score = score; 942 } 943 } 944 945 return best_match; 946 } 947 948 /** 949 * of_match_node - Tell if a device_node has a matching of_match structure 950 * @matches: array of of device match structures to search in 951 * @node: the of device structure to match against 952 * 953 * Low level utility function used by device matching. 954 */ 955 const struct of_device_id *of_match_node(const struct of_device_id *matches, 956 const struct device_node *node) 957 { 958 const struct of_device_id *match; 959 unsigned long flags; 960 961 raw_spin_lock_irqsave(&devtree_lock, flags); 962 match = __of_match_node(matches, node); 963 raw_spin_unlock_irqrestore(&devtree_lock, flags); 964 return match; 965 } 966 EXPORT_SYMBOL(of_match_node); 967 968 /** 969 * of_find_matching_node_and_match - Find a node based on an of_device_id 970 * match table. 971 * @from: The node to start searching from or NULL, the node 972 * you pass will not be searched, only the next one 973 * will; typically, you pass what the previous call 974 * returned. of_node_put() will be called on it 975 * @matches: array of of device match structures to search in 976 * @match Updated to point at the matches entry which matched 977 * 978 * Returns a node pointer with refcount incremented, use 979 * of_node_put() on it when done. 980 */ 981 struct device_node *of_find_matching_node_and_match(struct device_node *from, 982 const struct of_device_id *matches, 983 const struct of_device_id **match) 984 { 985 struct device_node *np; 986 const struct of_device_id *m; 987 unsigned long flags; 988 989 if (match) 990 *match = NULL; 991 992 raw_spin_lock_irqsave(&devtree_lock, flags); 993 for_each_of_allnodes_from(from, np) { 994 m = __of_match_node(matches, np); 995 if (m && of_node_get(np)) { 996 if (match) 997 *match = m; 998 break; 999 } 1000 } 1001 of_node_put(from); 1002 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1003 return np; 1004 } 1005 EXPORT_SYMBOL(of_find_matching_node_and_match); 1006 1007 /** 1008 * of_modalias_node - Lookup appropriate modalias for a device node 1009 * @node: pointer to a device tree node 1010 * @modalias: Pointer to buffer that modalias value will be copied into 1011 * @len: Length of modalias value 1012 * 1013 * Based on the value of the compatible property, this routine will attempt 1014 * to choose an appropriate modalias value for a particular device tree node. 1015 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1016 * from the first entry in the compatible list property. 1017 * 1018 * This routine returns 0 on success, <0 on failure. 1019 */ 1020 int of_modalias_node(struct device_node *node, char *modalias, int len) 1021 { 1022 const char *compatible, *p; 1023 int cplen; 1024 1025 compatible = of_get_property(node, "compatible", &cplen); 1026 if (!compatible || strlen(compatible) > cplen) 1027 return -ENODEV; 1028 p = strchr(compatible, ','); 1029 strlcpy(modalias, p ? p + 1 : compatible, len); 1030 return 0; 1031 } 1032 EXPORT_SYMBOL_GPL(of_modalias_node); 1033 1034 /** 1035 * of_find_node_by_phandle - Find a node given a phandle 1036 * @handle: phandle of the node to find 1037 * 1038 * Returns a node pointer with refcount incremented, use 1039 * of_node_put() on it when done. 1040 */ 1041 struct device_node *of_find_node_by_phandle(phandle handle) 1042 { 1043 struct device_node *np; 1044 unsigned long flags; 1045 1046 if (!handle) 1047 return NULL; 1048 1049 raw_spin_lock_irqsave(&devtree_lock, flags); 1050 for_each_of_allnodes(np) 1051 if (np->phandle == handle) 1052 break; 1053 of_node_get(np); 1054 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1055 return np; 1056 } 1057 EXPORT_SYMBOL(of_find_node_by_phandle); 1058 1059 /** 1060 * of_property_count_elems_of_size - Count the number of elements in a property 1061 * 1062 * @np: device node from which the property value is to be read. 1063 * @propname: name of the property to be searched. 1064 * @elem_size: size of the individual element 1065 * 1066 * Search for a property in a device node and count the number of elements of 1067 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1068 * property does not exist or its length does not match a multiple of elem_size 1069 * and -ENODATA if the property does not have a value. 1070 */ 1071 int of_property_count_elems_of_size(const struct device_node *np, 1072 const char *propname, int elem_size) 1073 { 1074 struct property *prop = of_find_property(np, propname, NULL); 1075 1076 if (!prop) 1077 return -EINVAL; 1078 if (!prop->value) 1079 return -ENODATA; 1080 1081 if (prop->length % elem_size != 0) { 1082 pr_err("size of %s in node %s is not a multiple of %d\n", 1083 propname, np->full_name, elem_size); 1084 return -EINVAL; 1085 } 1086 1087 return prop->length / elem_size; 1088 } 1089 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1090 1091 /** 1092 * of_find_property_value_of_size 1093 * 1094 * @np: device node from which the property value is to be read. 1095 * @propname: name of the property to be searched. 1096 * @len: requested length of property value 1097 * 1098 * Search for a property in a device node and valid the requested size. 1099 * Returns the property value on success, -EINVAL if the property does not 1100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1101 * property data isn't large enough. 1102 * 1103 */ 1104 static void *of_find_property_value_of_size(const struct device_node *np, 1105 const char *propname, u32 len) 1106 { 1107 struct property *prop = of_find_property(np, propname, NULL); 1108 1109 if (!prop) 1110 return ERR_PTR(-EINVAL); 1111 if (!prop->value) 1112 return ERR_PTR(-ENODATA); 1113 if (len > prop->length) 1114 return ERR_PTR(-EOVERFLOW); 1115 1116 return prop->value; 1117 } 1118 1119 /** 1120 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1121 * 1122 * @np: device node from which the property value is to be read. 1123 * @propname: name of the property to be searched. 1124 * @index: index of the u32 in the list of values 1125 * @out_value: pointer to return value, modified only if no error. 1126 * 1127 * Search for a property in a device node and read nth 32-bit value from 1128 * it. Returns 0 on success, -EINVAL if the property does not exist, 1129 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1130 * property data isn't large enough. 1131 * 1132 * The out_value is modified only if a valid u32 value can be decoded. 1133 */ 1134 int of_property_read_u32_index(const struct device_node *np, 1135 const char *propname, 1136 u32 index, u32 *out_value) 1137 { 1138 const u32 *val = of_find_property_value_of_size(np, propname, 1139 ((index + 1) * sizeof(*out_value))); 1140 1141 if (IS_ERR(val)) 1142 return PTR_ERR(val); 1143 1144 *out_value = be32_to_cpup(((__be32 *)val) + index); 1145 return 0; 1146 } 1147 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1148 1149 /** 1150 * of_property_read_u8_array - Find and read an array of u8 from a property. 1151 * 1152 * @np: device node from which the property value is to be read. 1153 * @propname: name of the property to be searched. 1154 * @out_values: pointer to return value, modified only if return value is 0. 1155 * @sz: number of array elements to read 1156 * 1157 * Search for a property in a device node and read 8-bit value(s) from 1158 * it. Returns 0 on success, -EINVAL if the property does not exist, 1159 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1160 * property data isn't large enough. 1161 * 1162 * dts entry of array should be like: 1163 * property = /bits/ 8 <0x50 0x60 0x70>; 1164 * 1165 * The out_values is modified only if a valid u8 value can be decoded. 1166 */ 1167 int of_property_read_u8_array(const struct device_node *np, 1168 const char *propname, u8 *out_values, size_t sz) 1169 { 1170 const u8 *val = of_find_property_value_of_size(np, propname, 1171 (sz * sizeof(*out_values))); 1172 1173 if (IS_ERR(val)) 1174 return PTR_ERR(val); 1175 1176 while (sz--) 1177 *out_values++ = *val++; 1178 return 0; 1179 } 1180 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1181 1182 /** 1183 * of_property_read_u16_array - Find and read an array of u16 from a property. 1184 * 1185 * @np: device node from which the property value is to be read. 1186 * @propname: name of the property to be searched. 1187 * @out_values: pointer to return value, modified only if return value is 0. 1188 * @sz: number of array elements to read 1189 * 1190 * Search for a property in a device node and read 16-bit value(s) from 1191 * it. Returns 0 on success, -EINVAL if the property does not exist, 1192 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1193 * property data isn't large enough. 1194 * 1195 * dts entry of array should be like: 1196 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1197 * 1198 * The out_values is modified only if a valid u16 value can be decoded. 1199 */ 1200 int of_property_read_u16_array(const struct device_node *np, 1201 const char *propname, u16 *out_values, size_t sz) 1202 { 1203 const __be16 *val = of_find_property_value_of_size(np, propname, 1204 (sz * sizeof(*out_values))); 1205 1206 if (IS_ERR(val)) 1207 return PTR_ERR(val); 1208 1209 while (sz--) 1210 *out_values++ = be16_to_cpup(val++); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1214 1215 /** 1216 * of_property_read_u32_array - Find and read an array of 32 bit integers 1217 * from a property. 1218 * 1219 * @np: device node from which the property value is to be read. 1220 * @propname: name of the property to be searched. 1221 * @out_values: pointer to return value, modified only if return value is 0. 1222 * @sz: number of array elements to read 1223 * 1224 * Search for a property in a device node and read 32-bit value(s) from 1225 * it. Returns 0 on success, -EINVAL if the property does not exist, 1226 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1227 * property data isn't large enough. 1228 * 1229 * The out_values is modified only if a valid u32 value can be decoded. 1230 */ 1231 int of_property_read_u32_array(const struct device_node *np, 1232 const char *propname, u32 *out_values, 1233 size_t sz) 1234 { 1235 const __be32 *val = of_find_property_value_of_size(np, propname, 1236 (sz * sizeof(*out_values))); 1237 1238 if (IS_ERR(val)) 1239 return PTR_ERR(val); 1240 1241 while (sz--) 1242 *out_values++ = be32_to_cpup(val++); 1243 return 0; 1244 } 1245 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1246 1247 /** 1248 * of_property_read_u64 - Find and read a 64 bit integer from a property 1249 * @np: device node from which the property value is to be read. 1250 * @propname: name of the property to be searched. 1251 * @out_value: pointer to return value, modified only if return value is 0. 1252 * 1253 * Search for a property in a device node and read a 64-bit value from 1254 * it. Returns 0 on success, -EINVAL if the property does not exist, 1255 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1256 * property data isn't large enough. 1257 * 1258 * The out_value is modified only if a valid u64 value can be decoded. 1259 */ 1260 int of_property_read_u64(const struct device_node *np, const char *propname, 1261 u64 *out_value) 1262 { 1263 const __be32 *val = of_find_property_value_of_size(np, propname, 1264 sizeof(*out_value)); 1265 1266 if (IS_ERR(val)) 1267 return PTR_ERR(val); 1268 1269 *out_value = of_read_number(val, 2); 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(of_property_read_u64); 1273 1274 /** 1275 * of_property_read_u64_array - Find and read an array of 64 bit integers 1276 * from a property. 1277 * 1278 * @np: device node from which the property value is to be read. 1279 * @propname: name of the property to be searched. 1280 * @out_values: pointer to return value, modified only if return value is 0. 1281 * @sz: number of array elements to read 1282 * 1283 * Search for a property in a device node and read 64-bit value(s) from 1284 * it. Returns 0 on success, -EINVAL if the property does not exist, 1285 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1286 * property data isn't large enough. 1287 * 1288 * The out_values is modified only if a valid u64 value can be decoded. 1289 */ 1290 int of_property_read_u64_array(const struct device_node *np, 1291 const char *propname, u64 *out_values, 1292 size_t sz) 1293 { 1294 const __be32 *val = of_find_property_value_of_size(np, propname, 1295 (sz * sizeof(*out_values))); 1296 1297 if (IS_ERR(val)) 1298 return PTR_ERR(val); 1299 1300 while (sz--) { 1301 *out_values++ = of_read_number(val, 2); 1302 val += 2; 1303 } 1304 return 0; 1305 } 1306 EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1307 1308 /** 1309 * of_property_read_string - Find and read a string from a property 1310 * @np: device node from which the property value is to be read. 1311 * @propname: name of the property to be searched. 1312 * @out_string: pointer to null terminated return string, modified only if 1313 * return value is 0. 1314 * 1315 * Search for a property in a device tree node and retrieve a null 1316 * terminated string value (pointer to data, not a copy). Returns 0 on 1317 * success, -EINVAL if the property does not exist, -ENODATA if property 1318 * does not have a value, and -EILSEQ if the string is not null-terminated 1319 * within the length of the property data. 1320 * 1321 * The out_string pointer is modified only if a valid string can be decoded. 1322 */ 1323 int of_property_read_string(struct device_node *np, const char *propname, 1324 const char **out_string) 1325 { 1326 struct property *prop = of_find_property(np, propname, NULL); 1327 if (!prop) 1328 return -EINVAL; 1329 if (!prop->value) 1330 return -ENODATA; 1331 if (strnlen(prop->value, prop->length) >= prop->length) 1332 return -EILSEQ; 1333 *out_string = prop->value; 1334 return 0; 1335 } 1336 EXPORT_SYMBOL_GPL(of_property_read_string); 1337 1338 /** 1339 * of_property_match_string() - Find string in a list and return index 1340 * @np: pointer to node containing string list property 1341 * @propname: string list property name 1342 * @string: pointer to string to search for in string list 1343 * 1344 * This function searches a string list property and returns the index 1345 * of a specific string value. 1346 */ 1347 int of_property_match_string(struct device_node *np, const char *propname, 1348 const char *string) 1349 { 1350 struct property *prop = of_find_property(np, propname, NULL); 1351 size_t l; 1352 int i; 1353 const char *p, *end; 1354 1355 if (!prop) 1356 return -EINVAL; 1357 if (!prop->value) 1358 return -ENODATA; 1359 1360 p = prop->value; 1361 end = p + prop->length; 1362 1363 for (i = 0; p < end; i++, p += l) { 1364 l = strnlen(p, end - p) + 1; 1365 if (p + l > end) 1366 return -EILSEQ; 1367 pr_debug("comparing %s with %s\n", string, p); 1368 if (strcmp(string, p) == 0) 1369 return i; /* Found it; return index */ 1370 } 1371 return -ENODATA; 1372 } 1373 EXPORT_SYMBOL_GPL(of_property_match_string); 1374 1375 /** 1376 * of_property_read_string_helper() - Utility helper for parsing string properties 1377 * @np: device node from which the property value is to be read. 1378 * @propname: name of the property to be searched. 1379 * @out_strs: output array of string pointers. 1380 * @sz: number of array elements to read. 1381 * @skip: Number of strings to skip over at beginning of list. 1382 * 1383 * Don't call this function directly. It is a utility helper for the 1384 * of_property_read_string*() family of functions. 1385 */ 1386 int of_property_read_string_helper(struct device_node *np, const char *propname, 1387 const char **out_strs, size_t sz, int skip) 1388 { 1389 struct property *prop = of_find_property(np, propname, NULL); 1390 int l = 0, i = 0; 1391 const char *p, *end; 1392 1393 if (!prop) 1394 return -EINVAL; 1395 if (!prop->value) 1396 return -ENODATA; 1397 p = prop->value; 1398 end = p + prop->length; 1399 1400 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1401 l = strnlen(p, end - p) + 1; 1402 if (p + l > end) 1403 return -EILSEQ; 1404 if (out_strs && i >= skip) 1405 *out_strs++ = p; 1406 } 1407 i -= skip; 1408 return i <= 0 ? -ENODATA : i; 1409 } 1410 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1411 1412 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1413 { 1414 int i; 1415 printk("%s %s", msg, of_node_full_name(args->np)); 1416 for (i = 0; i < args->args_count; i++) 1417 printk(i ? ",%08x" : ":%08x", args->args[i]); 1418 printk("\n"); 1419 } 1420 1421 static int __of_parse_phandle_with_args(const struct device_node *np, 1422 const char *list_name, 1423 const char *cells_name, 1424 int cell_count, int index, 1425 struct of_phandle_args *out_args) 1426 { 1427 const __be32 *list, *list_end; 1428 int rc = 0, size, cur_index = 0; 1429 uint32_t count = 0; 1430 struct device_node *node = NULL; 1431 phandle phandle; 1432 1433 /* Retrieve the phandle list property */ 1434 list = of_get_property(np, list_name, &size); 1435 if (!list) 1436 return -ENOENT; 1437 list_end = list + size / sizeof(*list); 1438 1439 /* Loop over the phandles until all the requested entry is found */ 1440 while (list < list_end) { 1441 rc = -EINVAL; 1442 count = 0; 1443 1444 /* 1445 * If phandle is 0, then it is an empty entry with no 1446 * arguments. Skip forward to the next entry. 1447 */ 1448 phandle = be32_to_cpup(list++); 1449 if (phandle) { 1450 /* 1451 * Find the provider node and parse the #*-cells 1452 * property to determine the argument length. 1453 * 1454 * This is not needed if the cell count is hard-coded 1455 * (i.e. cells_name not set, but cell_count is set), 1456 * except when we're going to return the found node 1457 * below. 1458 */ 1459 if (cells_name || cur_index == index) { 1460 node = of_find_node_by_phandle(phandle); 1461 if (!node) { 1462 pr_err("%s: could not find phandle\n", 1463 np->full_name); 1464 goto err; 1465 } 1466 } 1467 1468 if (cells_name) { 1469 if (of_property_read_u32(node, cells_name, 1470 &count)) { 1471 pr_err("%s: could not get %s for %s\n", 1472 np->full_name, cells_name, 1473 node->full_name); 1474 goto err; 1475 } 1476 } else { 1477 count = cell_count; 1478 } 1479 1480 /* 1481 * Make sure that the arguments actually fit in the 1482 * remaining property data length 1483 */ 1484 if (list + count > list_end) { 1485 pr_err("%s: arguments longer than property\n", 1486 np->full_name); 1487 goto err; 1488 } 1489 } 1490 1491 /* 1492 * All of the error cases above bail out of the loop, so at 1493 * this point, the parsing is successful. If the requested 1494 * index matches, then fill the out_args structure and return, 1495 * or return -ENOENT for an empty entry. 1496 */ 1497 rc = -ENOENT; 1498 if (cur_index == index) { 1499 if (!phandle) 1500 goto err; 1501 1502 if (out_args) { 1503 int i; 1504 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1505 count = MAX_PHANDLE_ARGS; 1506 out_args->np = node; 1507 out_args->args_count = count; 1508 for (i = 0; i < count; i++) 1509 out_args->args[i] = be32_to_cpup(list++); 1510 } else { 1511 of_node_put(node); 1512 } 1513 1514 /* Found it! return success */ 1515 return 0; 1516 } 1517 1518 of_node_put(node); 1519 node = NULL; 1520 list += count; 1521 cur_index++; 1522 } 1523 1524 /* 1525 * Unlock node before returning result; will be one of: 1526 * -ENOENT : index is for empty phandle 1527 * -EINVAL : parsing error on data 1528 * [1..n] : Number of phandle (count mode; when index = -1) 1529 */ 1530 rc = index < 0 ? cur_index : -ENOENT; 1531 err: 1532 if (node) 1533 of_node_put(node); 1534 return rc; 1535 } 1536 1537 /** 1538 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1539 * @np: Pointer to device node holding phandle property 1540 * @phandle_name: Name of property holding a phandle value 1541 * @index: For properties holding a table of phandles, this is the index into 1542 * the table 1543 * 1544 * Returns the device_node pointer with refcount incremented. Use 1545 * of_node_put() on it when done. 1546 */ 1547 struct device_node *of_parse_phandle(const struct device_node *np, 1548 const char *phandle_name, int index) 1549 { 1550 struct of_phandle_args args; 1551 1552 if (index < 0) 1553 return NULL; 1554 1555 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1556 index, &args)) 1557 return NULL; 1558 1559 return args.np; 1560 } 1561 EXPORT_SYMBOL(of_parse_phandle); 1562 1563 /** 1564 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1565 * @np: pointer to a device tree node containing a list 1566 * @list_name: property name that contains a list 1567 * @cells_name: property name that specifies phandles' arguments count 1568 * @index: index of a phandle to parse out 1569 * @out_args: optional pointer to output arguments structure (will be filled) 1570 * 1571 * This function is useful to parse lists of phandles and their arguments. 1572 * Returns 0 on success and fills out_args, on error returns appropriate 1573 * errno value. 1574 * 1575 * Caller is responsible to call of_node_put() on the returned out_args->np 1576 * pointer. 1577 * 1578 * Example: 1579 * 1580 * phandle1: node1 { 1581 * #list-cells = <2>; 1582 * } 1583 * 1584 * phandle2: node2 { 1585 * #list-cells = <1>; 1586 * } 1587 * 1588 * node3 { 1589 * list = <&phandle1 1 2 &phandle2 3>; 1590 * } 1591 * 1592 * To get a device_node of the `node2' node you may call this: 1593 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1594 */ 1595 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1596 const char *cells_name, int index, 1597 struct of_phandle_args *out_args) 1598 { 1599 if (index < 0) 1600 return -EINVAL; 1601 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1602 index, out_args); 1603 } 1604 EXPORT_SYMBOL(of_parse_phandle_with_args); 1605 1606 /** 1607 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1608 * @np: pointer to a device tree node containing a list 1609 * @list_name: property name that contains a list 1610 * @cell_count: number of argument cells following the phandle 1611 * @index: index of a phandle to parse out 1612 * @out_args: optional pointer to output arguments structure (will be filled) 1613 * 1614 * This function is useful to parse lists of phandles and their arguments. 1615 * Returns 0 on success and fills out_args, on error returns appropriate 1616 * errno value. 1617 * 1618 * Caller is responsible to call of_node_put() on the returned out_args->np 1619 * pointer. 1620 * 1621 * Example: 1622 * 1623 * phandle1: node1 { 1624 * } 1625 * 1626 * phandle2: node2 { 1627 * } 1628 * 1629 * node3 { 1630 * list = <&phandle1 0 2 &phandle2 2 3>; 1631 * } 1632 * 1633 * To get a device_node of the `node2' node you may call this: 1634 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1635 */ 1636 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1637 const char *list_name, int cell_count, 1638 int index, struct of_phandle_args *out_args) 1639 { 1640 if (index < 0) 1641 return -EINVAL; 1642 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1643 index, out_args); 1644 } 1645 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1646 1647 /** 1648 * of_count_phandle_with_args() - Find the number of phandles references in a property 1649 * @np: pointer to a device tree node containing a list 1650 * @list_name: property name that contains a list 1651 * @cells_name: property name that specifies phandles' arguments count 1652 * 1653 * Returns the number of phandle + argument tuples within a property. It 1654 * is a typical pattern to encode a list of phandle and variable 1655 * arguments into a single property. The number of arguments is encoded 1656 * by a property in the phandle-target node. For example, a gpios 1657 * property would contain a list of GPIO specifies consisting of a 1658 * phandle and 1 or more arguments. The number of arguments are 1659 * determined by the #gpio-cells property in the node pointed to by the 1660 * phandle. 1661 */ 1662 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1663 const char *cells_name) 1664 { 1665 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1666 NULL); 1667 } 1668 EXPORT_SYMBOL(of_count_phandle_with_args); 1669 1670 /** 1671 * __of_add_property - Add a property to a node without lock operations 1672 */ 1673 int __of_add_property(struct device_node *np, struct property *prop) 1674 { 1675 struct property **next; 1676 1677 prop->next = NULL; 1678 next = &np->properties; 1679 while (*next) { 1680 if (strcmp(prop->name, (*next)->name) == 0) 1681 /* duplicate ! don't insert it */ 1682 return -EEXIST; 1683 1684 next = &(*next)->next; 1685 } 1686 *next = prop; 1687 1688 return 0; 1689 } 1690 1691 /** 1692 * of_add_property - Add a property to a node 1693 */ 1694 int of_add_property(struct device_node *np, struct property *prop) 1695 { 1696 unsigned long flags; 1697 int rc; 1698 1699 mutex_lock(&of_mutex); 1700 1701 raw_spin_lock_irqsave(&devtree_lock, flags); 1702 rc = __of_add_property(np, prop); 1703 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1704 1705 if (!rc) 1706 __of_add_property_sysfs(np, prop); 1707 1708 mutex_unlock(&of_mutex); 1709 1710 if (!rc) 1711 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1712 1713 return rc; 1714 } 1715 1716 int __of_remove_property(struct device_node *np, struct property *prop) 1717 { 1718 struct property **next; 1719 1720 for (next = &np->properties; *next; next = &(*next)->next) { 1721 if (*next == prop) 1722 break; 1723 } 1724 if (*next == NULL) 1725 return -ENODEV; 1726 1727 /* found the node */ 1728 *next = prop->next; 1729 prop->next = np->deadprops; 1730 np->deadprops = prop; 1731 1732 return 0; 1733 } 1734 1735 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1736 { 1737 if (!IS_ENABLED(CONFIG_SYSFS)) 1738 return; 1739 1740 /* at early boot, bail here and defer setup to of_init() */ 1741 if (of_kset && of_node_is_attached(np)) 1742 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1743 } 1744 1745 /** 1746 * of_remove_property - Remove a property from a node. 1747 * 1748 * Note that we don't actually remove it, since we have given out 1749 * who-knows-how-many pointers to the data using get-property. 1750 * Instead we just move the property to the "dead properties" 1751 * list, so it won't be found any more. 1752 */ 1753 int of_remove_property(struct device_node *np, struct property *prop) 1754 { 1755 unsigned long flags; 1756 int rc; 1757 1758 mutex_lock(&of_mutex); 1759 1760 raw_spin_lock_irqsave(&devtree_lock, flags); 1761 rc = __of_remove_property(np, prop); 1762 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1763 1764 if (!rc) 1765 __of_remove_property_sysfs(np, prop); 1766 1767 mutex_unlock(&of_mutex); 1768 1769 if (!rc) 1770 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1771 1772 return rc; 1773 } 1774 1775 int __of_update_property(struct device_node *np, struct property *newprop, 1776 struct property **oldpropp) 1777 { 1778 struct property **next, *oldprop; 1779 1780 for (next = &np->properties; *next; next = &(*next)->next) { 1781 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1782 break; 1783 } 1784 *oldpropp = oldprop = *next; 1785 1786 if (oldprop) { 1787 /* replace the node */ 1788 newprop->next = oldprop->next; 1789 *next = newprop; 1790 oldprop->next = np->deadprops; 1791 np->deadprops = oldprop; 1792 } else { 1793 /* new node */ 1794 newprop->next = NULL; 1795 *next = newprop; 1796 } 1797 1798 return 0; 1799 } 1800 1801 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1802 struct property *oldprop) 1803 { 1804 if (!IS_ENABLED(CONFIG_SYSFS)) 1805 return; 1806 1807 /* At early boot, bail out and defer setup to of_init() */ 1808 if (!of_kset) 1809 return; 1810 1811 if (oldprop) 1812 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1813 __of_add_property_sysfs(np, newprop); 1814 } 1815 1816 /* 1817 * of_update_property - Update a property in a node, if the property does 1818 * not exist, add it. 1819 * 1820 * Note that we don't actually remove it, since we have given out 1821 * who-knows-how-many pointers to the data using get-property. 1822 * Instead we just move the property to the "dead properties" list, 1823 * and add the new property to the property list 1824 */ 1825 int of_update_property(struct device_node *np, struct property *newprop) 1826 { 1827 struct property *oldprop; 1828 unsigned long flags; 1829 int rc; 1830 1831 if (!newprop->name) 1832 return -EINVAL; 1833 1834 mutex_lock(&of_mutex); 1835 1836 raw_spin_lock_irqsave(&devtree_lock, flags); 1837 rc = __of_update_property(np, newprop, &oldprop); 1838 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1839 1840 if (!rc) 1841 __of_update_property_sysfs(np, newprop, oldprop); 1842 1843 mutex_unlock(&of_mutex); 1844 1845 if (!rc) 1846 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1847 1848 return rc; 1849 } 1850 1851 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1852 int id, const char *stem, int stem_len) 1853 { 1854 ap->np = np; 1855 ap->id = id; 1856 strncpy(ap->stem, stem, stem_len); 1857 ap->stem[stem_len] = 0; 1858 list_add_tail(&ap->link, &aliases_lookup); 1859 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1860 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1861 } 1862 1863 /** 1864 * of_alias_scan - Scan all properties of the 'aliases' node 1865 * 1866 * The function scans all the properties of the 'aliases' node and populates 1867 * the global lookup table with the properties. It returns the 1868 * number of alias properties found, or an error code in case of failure. 1869 * 1870 * @dt_alloc: An allocator that provides a virtual address to memory 1871 * for storing the resulting tree 1872 */ 1873 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1874 { 1875 struct property *pp; 1876 1877 of_aliases = of_find_node_by_path("/aliases"); 1878 of_chosen = of_find_node_by_path("/chosen"); 1879 if (of_chosen == NULL) 1880 of_chosen = of_find_node_by_path("/chosen@0"); 1881 1882 if (of_chosen) { 1883 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1884 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1885 if (!name) 1886 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1887 if (IS_ENABLED(CONFIG_PPC) && !name) 1888 name = of_get_property(of_aliases, "stdout", NULL); 1889 if (name) 1890 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1891 } 1892 1893 if (!of_aliases) 1894 return; 1895 1896 for_each_property_of_node(of_aliases, pp) { 1897 const char *start = pp->name; 1898 const char *end = start + strlen(start); 1899 struct device_node *np; 1900 struct alias_prop *ap; 1901 int id, len; 1902 1903 /* Skip those we do not want to proceed */ 1904 if (!strcmp(pp->name, "name") || 1905 !strcmp(pp->name, "phandle") || 1906 !strcmp(pp->name, "linux,phandle")) 1907 continue; 1908 1909 np = of_find_node_by_path(pp->value); 1910 if (!np) 1911 continue; 1912 1913 /* walk the alias backwards to extract the id and work out 1914 * the 'stem' string */ 1915 while (isdigit(*(end-1)) && end > start) 1916 end--; 1917 len = end - start; 1918 1919 if (kstrtoint(end, 10, &id) < 0) 1920 continue; 1921 1922 /* Allocate an alias_prop with enough space for the stem */ 1923 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1924 if (!ap) 1925 continue; 1926 memset(ap, 0, sizeof(*ap) + len + 1); 1927 ap->alias = start; 1928 of_alias_add(ap, np, id, start, len); 1929 } 1930 } 1931 1932 /** 1933 * of_alias_get_id - Get alias id for the given device_node 1934 * @np: Pointer to the given device_node 1935 * @stem: Alias stem of the given device_node 1936 * 1937 * The function travels the lookup table to get the alias id for the given 1938 * device_node and alias stem. It returns the alias id if found. 1939 */ 1940 int of_alias_get_id(struct device_node *np, const char *stem) 1941 { 1942 struct alias_prop *app; 1943 int id = -ENODEV; 1944 1945 mutex_lock(&of_mutex); 1946 list_for_each_entry(app, &aliases_lookup, link) { 1947 if (strcmp(app->stem, stem) != 0) 1948 continue; 1949 1950 if (np == app->np) { 1951 id = app->id; 1952 break; 1953 } 1954 } 1955 mutex_unlock(&of_mutex); 1956 1957 return id; 1958 } 1959 EXPORT_SYMBOL_GPL(of_alias_get_id); 1960 1961 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1962 u32 *pu) 1963 { 1964 const void *curv = cur; 1965 1966 if (!prop) 1967 return NULL; 1968 1969 if (!cur) { 1970 curv = prop->value; 1971 goto out_val; 1972 } 1973 1974 curv += sizeof(*cur); 1975 if (curv >= prop->value + prop->length) 1976 return NULL; 1977 1978 out_val: 1979 *pu = be32_to_cpup(curv); 1980 return curv; 1981 } 1982 EXPORT_SYMBOL_GPL(of_prop_next_u32); 1983 1984 const char *of_prop_next_string(struct property *prop, const char *cur) 1985 { 1986 const void *curv = cur; 1987 1988 if (!prop) 1989 return NULL; 1990 1991 if (!cur) 1992 return prop->value; 1993 1994 curv += strlen(cur) + 1; 1995 if (curv >= prop->value + prop->length) 1996 return NULL; 1997 1998 return curv; 1999 } 2000 EXPORT_SYMBOL_GPL(of_prop_next_string); 2001 2002 /** 2003 * of_console_check() - Test and setup console for DT setup 2004 * @dn - Pointer to device node 2005 * @name - Name to use for preferred console without index. ex. "ttyS" 2006 * @index - Index to use for preferred console. 2007 * 2008 * Check if the given device node matches the stdout-path property in the 2009 * /chosen node. If it does then register it as the preferred console and return 2010 * TRUE. Otherwise return FALSE. 2011 */ 2012 bool of_console_check(struct device_node *dn, char *name, int index) 2013 { 2014 if (!dn || dn != of_stdout || console_set_on_cmdline) 2015 return false; 2016 return !add_preferred_console(name, index, 2017 kstrdup(of_stdout_options, GFP_KERNEL)); 2018 } 2019 EXPORT_SYMBOL_GPL(of_console_check); 2020 2021 /** 2022 * of_find_next_cache_node - Find a node's subsidiary cache 2023 * @np: node of type "cpu" or "cache" 2024 * 2025 * Returns a node pointer with refcount incremented, use 2026 * of_node_put() on it when done. Caller should hold a reference 2027 * to np. 2028 */ 2029 struct device_node *of_find_next_cache_node(const struct device_node *np) 2030 { 2031 struct device_node *child; 2032 const phandle *handle; 2033 2034 handle = of_get_property(np, "l2-cache", NULL); 2035 if (!handle) 2036 handle = of_get_property(np, "next-level-cache", NULL); 2037 2038 if (handle) 2039 return of_find_node_by_phandle(be32_to_cpup(handle)); 2040 2041 /* OF on pmac has nodes instead of properties named "l2-cache" 2042 * beneath CPU nodes. 2043 */ 2044 if (!strcmp(np->type, "cpu")) 2045 for_each_child_of_node(np, child) 2046 if (!strcmp(child->type, "cache")) 2047 return child; 2048 2049 return NULL; 2050 } 2051 2052 /** 2053 * of_graph_parse_endpoint() - parse common endpoint node properties 2054 * @node: pointer to endpoint device_node 2055 * @endpoint: pointer to the OF endpoint data structure 2056 * 2057 * The caller should hold a reference to @node. 2058 */ 2059 int of_graph_parse_endpoint(const struct device_node *node, 2060 struct of_endpoint *endpoint) 2061 { 2062 struct device_node *port_node = of_get_parent(node); 2063 2064 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2065 __func__, node->full_name); 2066 2067 memset(endpoint, 0, sizeof(*endpoint)); 2068 2069 endpoint->local_node = node; 2070 /* 2071 * It doesn't matter whether the two calls below succeed. 2072 * If they don't then the default value 0 is used. 2073 */ 2074 of_property_read_u32(port_node, "reg", &endpoint->port); 2075 of_property_read_u32(node, "reg", &endpoint->id); 2076 2077 of_node_put(port_node); 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(of_graph_parse_endpoint); 2082 2083 /** 2084 * of_graph_get_next_endpoint() - get next endpoint node 2085 * @parent: pointer to the parent device node 2086 * @prev: previous endpoint node, or NULL to get first 2087 * 2088 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2089 * of the passed @prev node is not decremented, the caller have to use 2090 * of_node_put() on it when done. 2091 */ 2092 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2093 struct device_node *prev) 2094 { 2095 struct device_node *endpoint; 2096 struct device_node *port; 2097 2098 if (!parent) 2099 return NULL; 2100 2101 /* 2102 * Start by locating the port node. If no previous endpoint is specified 2103 * search for the first port node, otherwise get the previous endpoint 2104 * parent port node. 2105 */ 2106 if (!prev) { 2107 struct device_node *node; 2108 2109 node = of_get_child_by_name(parent, "ports"); 2110 if (node) 2111 parent = node; 2112 2113 port = of_get_child_by_name(parent, "port"); 2114 of_node_put(node); 2115 2116 if (!port) { 2117 pr_err("%s(): no port node found in %s\n", 2118 __func__, parent->full_name); 2119 return NULL; 2120 } 2121 } else { 2122 port = of_get_parent(prev); 2123 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2124 __func__, prev->full_name)) 2125 return NULL; 2126 2127 /* 2128 * Avoid dropping prev node refcount to 0 when getting the next 2129 * child below. 2130 */ 2131 of_node_get(prev); 2132 } 2133 2134 while (1) { 2135 /* 2136 * Now that we have a port node, get the next endpoint by 2137 * getting the next child. If the previous endpoint is NULL this 2138 * will return the first child. 2139 */ 2140 endpoint = of_get_next_child(port, prev); 2141 if (endpoint) { 2142 of_node_put(port); 2143 return endpoint; 2144 } 2145 2146 /* No more endpoints under this port, try the next one. */ 2147 prev = NULL; 2148 2149 do { 2150 port = of_get_next_child(parent, port); 2151 if (!port) 2152 return NULL; 2153 } while (of_node_cmp(port->name, "port")); 2154 } 2155 } 2156 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2157 2158 /** 2159 * of_graph_get_remote_port_parent() - get remote port's parent node 2160 * @node: pointer to a local endpoint device_node 2161 * 2162 * Return: Remote device node associated with remote endpoint node linked 2163 * to @node. Use of_node_put() on it when done. 2164 */ 2165 struct device_node *of_graph_get_remote_port_parent( 2166 const struct device_node *node) 2167 { 2168 struct device_node *np; 2169 unsigned int depth; 2170 2171 /* Get remote endpoint node. */ 2172 np = of_parse_phandle(node, "remote-endpoint", 0); 2173 2174 /* Walk 3 levels up only if there is 'ports' node. */ 2175 for (depth = 3; depth && np; depth--) { 2176 np = of_get_next_parent(np); 2177 if (depth == 2 && of_node_cmp(np->name, "ports")) 2178 break; 2179 } 2180 return np; 2181 } 2182 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2183 2184 /** 2185 * of_graph_get_remote_port() - get remote port node 2186 * @node: pointer to a local endpoint device_node 2187 * 2188 * Return: Remote port node associated with remote endpoint node linked 2189 * to @node. Use of_node_put() on it when done. 2190 */ 2191 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2192 { 2193 struct device_node *np; 2194 2195 /* Get remote endpoint node. */ 2196 np = of_parse_phandle(node, "remote-endpoint", 0); 2197 if (!np) 2198 return NULL; 2199 return of_get_next_parent(np); 2200 } 2201 EXPORT_SYMBOL(of_graph_get_remote_port); 2202