xref: /openbmc/linux/drivers/of/base.c (revision 92a2c6b2)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 int of_n_addr_cells(struct device_node *np)
58 {
59 	const __be32 *ip;
60 
61 	do {
62 		if (np->parent)
63 			np = np->parent;
64 		ip = of_get_property(np, "#address-cells", NULL);
65 		if (ip)
66 			return be32_to_cpup(ip);
67 	} while (np->parent);
68 	/* No #address-cells property for the root node */
69 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72 
73 int of_n_size_cells(struct device_node *np)
74 {
75 	const __be32 *ip;
76 
77 	do {
78 		if (np->parent)
79 			np = np->parent;
80 		ip = of_get_property(np, "#size-cells", NULL);
81 		if (ip)
82 			return be32_to_cpup(ip);
83 	} while (np->parent);
84 	/* No #size-cells property for the root node */
85 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88 
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 	return numa_node_id();
93 }
94 #endif
95 
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102 
103 struct kobj_type of_node_ktype = {
104 	.release = of_node_release,
105 };
106 
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 				struct bin_attribute *bin_attr, char *buf,
109 				loff_t offset, size_t count)
110 {
111 	struct property *pp = container_of(bin_attr, struct property, attr);
112 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114 
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 	const char *name = orig_name;
118 	struct kernfs_node *kn;
119 	int i = 0;
120 
121 	/* don't be a hero. After 16 tries give up */
122 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 		sysfs_put(kn);
124 		if (name != orig_name)
125 			kfree(name);
126 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 	}
128 
129 	if (name != orig_name)
130 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 			kobject_name(kobj), name);
132 	return name;
133 }
134 
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 	int rc;
138 
139 	/* Important: Don't leak passwords */
140 	bool secure = strncmp(pp->name, "security-", 9) == 0;
141 
142 	if (!IS_ENABLED(CONFIG_SYSFS))
143 		return 0;
144 
145 	if (!of_kset || !of_node_is_attached(np))
146 		return 0;
147 
148 	sysfs_bin_attr_init(&pp->attr);
149 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 	pp->attr.size = secure ? 0 : pp->length;
152 	pp->attr.read = of_node_property_read;
153 
154 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 	return rc;
157 }
158 
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 	const char *name;
162 	struct property *pp;
163 	int rc;
164 
165 	if (!IS_ENABLED(CONFIG_SYSFS))
166 		return 0;
167 
168 	if (!of_kset)
169 		return 0;
170 
171 	np->kobj.kset = of_kset;
172 	if (!np->parent) {
173 		/* Nodes without parents are new top level trees */
174 		rc = kobject_add(&np->kobj, NULL, "%s",
175 				 safe_name(&of_kset->kobj, "base"));
176 	} else {
177 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 		if (!name || !name[0])
179 			return -EINVAL;
180 
181 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 	}
183 	if (rc)
184 		return rc;
185 
186 	for_each_property_of_node(np, pp)
187 		__of_add_property_sysfs(np, pp);
188 
189 	return 0;
190 }
191 
192 static int __init of_init(void)
193 {
194 	struct device_node *np;
195 
196 	/* Create the kset, and register existing nodes */
197 	mutex_lock(&of_mutex);
198 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 	if (!of_kset) {
200 		mutex_unlock(&of_mutex);
201 		return -ENOMEM;
202 	}
203 	for_each_of_allnodes(np)
204 		__of_attach_node_sysfs(np);
205 	mutex_unlock(&of_mutex);
206 
207 	/* Symlink in /proc as required by userspace ABI */
208 	if (of_root)
209 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
210 
211 	return 0;
212 }
213 core_initcall(of_init);
214 
215 static struct property *__of_find_property(const struct device_node *np,
216 					   const char *name, int *lenp)
217 {
218 	struct property *pp;
219 
220 	if (!np)
221 		return NULL;
222 
223 	for (pp = np->properties; pp; pp = pp->next) {
224 		if (of_prop_cmp(pp->name, name) == 0) {
225 			if (lenp)
226 				*lenp = pp->length;
227 			break;
228 		}
229 	}
230 
231 	return pp;
232 }
233 
234 struct property *of_find_property(const struct device_node *np,
235 				  const char *name,
236 				  int *lenp)
237 {
238 	struct property *pp;
239 	unsigned long flags;
240 
241 	raw_spin_lock_irqsave(&devtree_lock, flags);
242 	pp = __of_find_property(np, name, lenp);
243 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
244 
245 	return pp;
246 }
247 EXPORT_SYMBOL(of_find_property);
248 
249 struct device_node *__of_find_all_nodes(struct device_node *prev)
250 {
251 	struct device_node *np;
252 	if (!prev) {
253 		np = of_root;
254 	} else if (prev->child) {
255 		np = prev->child;
256 	} else {
257 		/* Walk back up looking for a sibling, or the end of the structure */
258 		np = prev;
259 		while (np->parent && !np->sibling)
260 			np = np->parent;
261 		np = np->sibling; /* Might be null at the end of the tree */
262 	}
263 	return np;
264 }
265 
266 /**
267  * of_find_all_nodes - Get next node in global list
268  * @prev:	Previous node or NULL to start iteration
269  *		of_node_put() will be called on it
270  *
271  * Returns a node pointer with refcount incremented, use
272  * of_node_put() on it when done.
273  */
274 struct device_node *of_find_all_nodes(struct device_node *prev)
275 {
276 	struct device_node *np;
277 	unsigned long flags;
278 
279 	raw_spin_lock_irqsave(&devtree_lock, flags);
280 	np = __of_find_all_nodes(prev);
281 	of_node_get(np);
282 	of_node_put(prev);
283 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
284 	return np;
285 }
286 EXPORT_SYMBOL(of_find_all_nodes);
287 
288 /*
289  * Find a property with a given name for a given node
290  * and return the value.
291  */
292 const void *__of_get_property(const struct device_node *np,
293 			      const char *name, int *lenp)
294 {
295 	struct property *pp = __of_find_property(np, name, lenp);
296 
297 	return pp ? pp->value : NULL;
298 }
299 
300 /*
301  * Find a property with a given name for a given node
302  * and return the value.
303  */
304 const void *of_get_property(const struct device_node *np, const char *name,
305 			    int *lenp)
306 {
307 	struct property *pp = of_find_property(np, name, lenp);
308 
309 	return pp ? pp->value : NULL;
310 }
311 EXPORT_SYMBOL(of_get_property);
312 
313 /*
314  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
315  *
316  * @cpu: logical cpu index of a core/thread
317  * @phys_id: physical identifier of a core/thread
318  *
319  * CPU logical to physical index mapping is architecture specific.
320  * However this __weak function provides a default match of physical
321  * id to logical cpu index. phys_id provided here is usually values read
322  * from the device tree which must match the hardware internal registers.
323  *
324  * Returns true if the physical identifier and the logical cpu index
325  * correspond to the same core/thread, false otherwise.
326  */
327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
328 {
329 	return (u32)phys_id == cpu;
330 }
331 
332 /**
333  * Checks if the given "prop_name" property holds the physical id of the
334  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
335  * NULL, local thread number within the core is returned in it.
336  */
337 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
338 			const char *prop_name, int cpu, unsigned int *thread)
339 {
340 	const __be32 *cell;
341 	int ac, prop_len, tid;
342 	u64 hwid;
343 
344 	ac = of_n_addr_cells(cpun);
345 	cell = of_get_property(cpun, prop_name, &prop_len);
346 	if (!cell || !ac)
347 		return false;
348 	prop_len /= sizeof(*cell) * ac;
349 	for (tid = 0; tid < prop_len; tid++) {
350 		hwid = of_read_number(cell, ac);
351 		if (arch_match_cpu_phys_id(cpu, hwid)) {
352 			if (thread)
353 				*thread = tid;
354 			return true;
355 		}
356 		cell += ac;
357 	}
358 	return false;
359 }
360 
361 /*
362  * arch_find_n_match_cpu_physical_id - See if the given device node is
363  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
364  * else false.  If 'thread' is non-NULL, the local thread number within the
365  * core is returned in it.
366  */
367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 					      int cpu, unsigned int *thread)
369 {
370 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 	 * for thread ids on PowerPC. If it doesn't exist fallback to
372 	 * standard "reg" property.
373 	 */
374 	if (IS_ENABLED(CONFIG_PPC) &&
375 	    __of_find_n_match_cpu_property(cpun,
376 					   "ibm,ppc-interrupt-server#s",
377 					   cpu, thread))
378 		return true;
379 
380 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
381 		return true;
382 
383 	return false;
384 }
385 
386 /**
387  * of_get_cpu_node - Get device node associated with the given logical CPU
388  *
389  * @cpu: CPU number(logical index) for which device node is required
390  * @thread: if not NULL, local thread number within the physical core is
391  *          returned
392  *
393  * The main purpose of this function is to retrieve the device node for the
394  * given logical CPU index. It should be used to initialize the of_node in
395  * cpu device. Once of_node in cpu device is populated, all the further
396  * references can use that instead.
397  *
398  * CPU logical to physical index mapping is architecture specific and is built
399  * before booting secondary cores. This function uses arch_match_cpu_phys_id
400  * which can be overridden by architecture specific implementation.
401  *
402  * Returns a node pointer for the logical cpu if found, else NULL.
403  */
404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
405 {
406 	struct device_node *cpun;
407 
408 	for_each_node_by_type(cpun, "cpu") {
409 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
410 			return cpun;
411 	}
412 	return NULL;
413 }
414 EXPORT_SYMBOL(of_get_cpu_node);
415 
416 /**
417  * __of_device_is_compatible() - Check if the node matches given constraints
418  * @device: pointer to node
419  * @compat: required compatible string, NULL or "" for any match
420  * @type: required device_type value, NULL or "" for any match
421  * @name: required node name, NULL or "" for any match
422  *
423  * Checks if the given @compat, @type and @name strings match the
424  * properties of the given @device. A constraints can be skipped by
425  * passing NULL or an empty string as the constraint.
426  *
427  * Returns 0 for no match, and a positive integer on match. The return
428  * value is a relative score with larger values indicating better
429  * matches. The score is weighted for the most specific compatible value
430  * to get the highest score. Matching type is next, followed by matching
431  * name. Practically speaking, this results in the following priority
432  * order for matches:
433  *
434  * 1. specific compatible && type && name
435  * 2. specific compatible && type
436  * 3. specific compatible && name
437  * 4. specific compatible
438  * 5. general compatible && type && name
439  * 6. general compatible && type
440  * 7. general compatible && name
441  * 8. general compatible
442  * 9. type && name
443  * 10. type
444  * 11. name
445  */
446 static int __of_device_is_compatible(const struct device_node *device,
447 				     const char *compat, const char *type, const char *name)
448 {
449 	struct property *prop;
450 	const char *cp;
451 	int index = 0, score = 0;
452 
453 	/* Compatible match has highest priority */
454 	if (compat && compat[0]) {
455 		prop = __of_find_property(device, "compatible", NULL);
456 		for (cp = of_prop_next_string(prop, NULL); cp;
457 		     cp = of_prop_next_string(prop, cp), index++) {
458 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
459 				score = INT_MAX/2 - (index << 2);
460 				break;
461 			}
462 		}
463 		if (!score)
464 			return 0;
465 	}
466 
467 	/* Matching type is better than matching name */
468 	if (type && type[0]) {
469 		if (!device->type || of_node_cmp(type, device->type))
470 			return 0;
471 		score += 2;
472 	}
473 
474 	/* Matching name is a bit better than not */
475 	if (name && name[0]) {
476 		if (!device->name || of_node_cmp(name, device->name))
477 			return 0;
478 		score++;
479 	}
480 
481 	return score;
482 }
483 
484 /** Checks if the given "compat" string matches one of the strings in
485  * the device's "compatible" property
486  */
487 int of_device_is_compatible(const struct device_node *device,
488 		const char *compat)
489 {
490 	unsigned long flags;
491 	int res;
492 
493 	raw_spin_lock_irqsave(&devtree_lock, flags);
494 	res = __of_device_is_compatible(device, compat, NULL, NULL);
495 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
496 	return res;
497 }
498 EXPORT_SYMBOL(of_device_is_compatible);
499 
500 /**
501  * of_machine_is_compatible - Test root of device tree for a given compatible value
502  * @compat: compatible string to look for in root node's compatible property.
503  *
504  * Returns a positive integer if the root node has the given value in its
505  * compatible property.
506  */
507 int of_machine_is_compatible(const char *compat)
508 {
509 	struct device_node *root;
510 	int rc = 0;
511 
512 	root = of_find_node_by_path("/");
513 	if (root) {
514 		rc = of_device_is_compatible(root, compat);
515 		of_node_put(root);
516 	}
517 	return rc;
518 }
519 EXPORT_SYMBOL(of_machine_is_compatible);
520 
521 /**
522  *  __of_device_is_available - check if a device is available for use
523  *
524  *  @device: Node to check for availability, with locks already held
525  *
526  *  Returns true if the status property is absent or set to "okay" or "ok",
527  *  false otherwise
528  */
529 static bool __of_device_is_available(const struct device_node *device)
530 {
531 	const char *status;
532 	int statlen;
533 
534 	if (!device)
535 		return false;
536 
537 	status = __of_get_property(device, "status", &statlen);
538 	if (status == NULL)
539 		return true;
540 
541 	if (statlen > 0) {
542 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
543 			return true;
544 	}
545 
546 	return false;
547 }
548 
549 /**
550  *  of_device_is_available - check if a device is available for use
551  *
552  *  @device: Node to check for availability
553  *
554  *  Returns true if the status property is absent or set to "okay" or "ok",
555  *  false otherwise
556  */
557 bool of_device_is_available(const struct device_node *device)
558 {
559 	unsigned long flags;
560 	bool res;
561 
562 	raw_spin_lock_irqsave(&devtree_lock, flags);
563 	res = __of_device_is_available(device);
564 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
565 	return res;
566 
567 }
568 EXPORT_SYMBOL(of_device_is_available);
569 
570 /**
571  *	of_get_parent - Get a node's parent if any
572  *	@node:	Node to get parent
573  *
574  *	Returns a node pointer with refcount incremented, use
575  *	of_node_put() on it when done.
576  */
577 struct device_node *of_get_parent(const struct device_node *node)
578 {
579 	struct device_node *np;
580 	unsigned long flags;
581 
582 	if (!node)
583 		return NULL;
584 
585 	raw_spin_lock_irqsave(&devtree_lock, flags);
586 	np = of_node_get(node->parent);
587 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
588 	return np;
589 }
590 EXPORT_SYMBOL(of_get_parent);
591 
592 /**
593  *	of_get_next_parent - Iterate to a node's parent
594  *	@node:	Node to get parent of
595  *
596  *	This is like of_get_parent() except that it drops the
597  *	refcount on the passed node, making it suitable for iterating
598  *	through a node's parents.
599  *
600  *	Returns a node pointer with refcount incremented, use
601  *	of_node_put() on it when done.
602  */
603 struct device_node *of_get_next_parent(struct device_node *node)
604 {
605 	struct device_node *parent;
606 	unsigned long flags;
607 
608 	if (!node)
609 		return NULL;
610 
611 	raw_spin_lock_irqsave(&devtree_lock, flags);
612 	parent = of_node_get(node->parent);
613 	of_node_put(node);
614 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
615 	return parent;
616 }
617 EXPORT_SYMBOL(of_get_next_parent);
618 
619 static struct device_node *__of_get_next_child(const struct device_node *node,
620 						struct device_node *prev)
621 {
622 	struct device_node *next;
623 
624 	if (!node)
625 		return NULL;
626 
627 	next = prev ? prev->sibling : node->child;
628 	for (; next; next = next->sibling)
629 		if (of_node_get(next))
630 			break;
631 	of_node_put(prev);
632 	return next;
633 }
634 #define __for_each_child_of_node(parent, child) \
635 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
636 	     child = __of_get_next_child(parent, child))
637 
638 /**
639  *	of_get_next_child - Iterate a node childs
640  *	@node:	parent node
641  *	@prev:	previous child of the parent node, or NULL to get first
642  *
643  *	Returns a node pointer with refcount incremented, use
644  *	of_node_put() on it when done.
645  */
646 struct device_node *of_get_next_child(const struct device_node *node,
647 	struct device_node *prev)
648 {
649 	struct device_node *next;
650 	unsigned long flags;
651 
652 	raw_spin_lock_irqsave(&devtree_lock, flags);
653 	next = __of_get_next_child(node, prev);
654 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
655 	return next;
656 }
657 EXPORT_SYMBOL(of_get_next_child);
658 
659 /**
660  *	of_get_next_available_child - Find the next available child node
661  *	@node:	parent node
662  *	@prev:	previous child of the parent node, or NULL to get first
663  *
664  *      This function is like of_get_next_child(), except that it
665  *      automatically skips any disabled nodes (i.e. status = "disabled").
666  */
667 struct device_node *of_get_next_available_child(const struct device_node *node,
668 	struct device_node *prev)
669 {
670 	struct device_node *next;
671 	unsigned long flags;
672 
673 	if (!node)
674 		return NULL;
675 
676 	raw_spin_lock_irqsave(&devtree_lock, flags);
677 	next = prev ? prev->sibling : node->child;
678 	for (; next; next = next->sibling) {
679 		if (!__of_device_is_available(next))
680 			continue;
681 		if (of_node_get(next))
682 			break;
683 	}
684 	of_node_put(prev);
685 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
686 	return next;
687 }
688 EXPORT_SYMBOL(of_get_next_available_child);
689 
690 /**
691  *	of_get_child_by_name - Find the child node by name for a given parent
692  *	@node:	parent node
693  *	@name:	child name to look for.
694  *
695  *      This function looks for child node for given matching name
696  *
697  *	Returns a node pointer if found, with refcount incremented, use
698  *	of_node_put() on it when done.
699  *	Returns NULL if node is not found.
700  */
701 struct device_node *of_get_child_by_name(const struct device_node *node,
702 				const char *name)
703 {
704 	struct device_node *child;
705 
706 	for_each_child_of_node(node, child)
707 		if (child->name && (of_node_cmp(child->name, name) == 0))
708 			break;
709 	return child;
710 }
711 EXPORT_SYMBOL(of_get_child_by_name);
712 
713 static struct device_node *__of_find_node_by_path(struct device_node *parent,
714 						const char *path)
715 {
716 	struct device_node *child;
717 	int len = strchrnul(path, '/') - path;
718 	int term;
719 
720 	if (!len)
721 		return NULL;
722 
723 	term = strchrnul(path, ':') - path;
724 	if (term < len)
725 		len = term;
726 
727 	__for_each_child_of_node(parent, child) {
728 		const char *name = strrchr(child->full_name, '/');
729 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
730 			continue;
731 		name++;
732 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
733 			return child;
734 	}
735 	return NULL;
736 }
737 
738 /**
739  *	of_find_node_opts_by_path - Find a node matching a full OF path
740  *	@path: Either the full path to match, or if the path does not
741  *	       start with '/', the name of a property of the /aliases
742  *	       node (an alias).  In the case of an alias, the node
743  *	       matching the alias' value will be returned.
744  *	@opts: Address of a pointer into which to store the start of
745  *	       an options string appended to the end of the path with
746  *	       a ':' separator.
747  *
748  *	Valid paths:
749  *		/foo/bar	Full path
750  *		foo		Valid alias
751  *		foo/bar		Valid alias + relative path
752  *
753  *	Returns a node pointer with refcount incremented, use
754  *	of_node_put() on it when done.
755  */
756 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
757 {
758 	struct device_node *np = NULL;
759 	struct property *pp;
760 	unsigned long flags;
761 	const char *separator = strchr(path, ':');
762 
763 	if (opts)
764 		*opts = separator ? separator + 1 : NULL;
765 
766 	if (strcmp(path, "/") == 0)
767 		return of_node_get(of_root);
768 
769 	/* The path could begin with an alias */
770 	if (*path != '/') {
771 		char *p = strchrnul(path, '/');
772 		int len = separator ? separator - path : p - path;
773 
774 		/* of_aliases must not be NULL */
775 		if (!of_aliases)
776 			return NULL;
777 
778 		for_each_property_of_node(of_aliases, pp) {
779 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
780 				np = of_find_node_by_path(pp->value);
781 				break;
782 			}
783 		}
784 		if (!np)
785 			return NULL;
786 		path = p;
787 	}
788 
789 	/* Step down the tree matching path components */
790 	raw_spin_lock_irqsave(&devtree_lock, flags);
791 	if (!np)
792 		np = of_node_get(of_root);
793 	while (np && *path == '/') {
794 		path++; /* Increment past '/' delimiter */
795 		np = __of_find_node_by_path(np, path);
796 		path = strchrnul(path, '/');
797 	}
798 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
799 	return np;
800 }
801 EXPORT_SYMBOL(of_find_node_opts_by_path);
802 
803 /**
804  *	of_find_node_by_name - Find a node by its "name" property
805  *	@from:	The node to start searching from or NULL, the node
806  *		you pass will not be searched, only the next one
807  *		will; typically, you pass what the previous call
808  *		returned. of_node_put() will be called on it
809  *	@name:	The name string to match against
810  *
811  *	Returns a node pointer with refcount incremented, use
812  *	of_node_put() on it when done.
813  */
814 struct device_node *of_find_node_by_name(struct device_node *from,
815 	const char *name)
816 {
817 	struct device_node *np;
818 	unsigned long flags;
819 
820 	raw_spin_lock_irqsave(&devtree_lock, flags);
821 	for_each_of_allnodes_from(from, np)
822 		if (np->name && (of_node_cmp(np->name, name) == 0)
823 		    && of_node_get(np))
824 			break;
825 	of_node_put(from);
826 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
827 	return np;
828 }
829 EXPORT_SYMBOL(of_find_node_by_name);
830 
831 /**
832  *	of_find_node_by_type - Find a node by its "device_type" property
833  *	@from:	The node to start searching from, or NULL to start searching
834  *		the entire device tree. The node you pass will not be
835  *		searched, only the next one will; typically, you pass
836  *		what the previous call returned. of_node_put() will be
837  *		called on from for you.
838  *	@type:	The type string to match against
839  *
840  *	Returns a node pointer with refcount incremented, use
841  *	of_node_put() on it when done.
842  */
843 struct device_node *of_find_node_by_type(struct device_node *from,
844 	const char *type)
845 {
846 	struct device_node *np;
847 	unsigned long flags;
848 
849 	raw_spin_lock_irqsave(&devtree_lock, flags);
850 	for_each_of_allnodes_from(from, np)
851 		if (np->type && (of_node_cmp(np->type, type) == 0)
852 		    && of_node_get(np))
853 			break;
854 	of_node_put(from);
855 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
856 	return np;
857 }
858 EXPORT_SYMBOL(of_find_node_by_type);
859 
860 /**
861  *	of_find_compatible_node - Find a node based on type and one of the
862  *                                tokens in its "compatible" property
863  *	@from:		The node to start searching from or NULL, the node
864  *			you pass will not be searched, only the next one
865  *			will; typically, you pass what the previous call
866  *			returned. of_node_put() will be called on it
867  *	@type:		The type string to match "device_type" or NULL to ignore
868  *	@compatible:	The string to match to one of the tokens in the device
869  *			"compatible" list.
870  *
871  *	Returns a node pointer with refcount incremented, use
872  *	of_node_put() on it when done.
873  */
874 struct device_node *of_find_compatible_node(struct device_node *from,
875 	const char *type, const char *compatible)
876 {
877 	struct device_node *np;
878 	unsigned long flags;
879 
880 	raw_spin_lock_irqsave(&devtree_lock, flags);
881 	for_each_of_allnodes_from(from, np)
882 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
883 		    of_node_get(np))
884 			break;
885 	of_node_put(from);
886 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
887 	return np;
888 }
889 EXPORT_SYMBOL(of_find_compatible_node);
890 
891 /**
892  *	of_find_node_with_property - Find a node which has a property with
893  *                                   the given name.
894  *	@from:		The node to start searching from or NULL, the node
895  *			you pass will not be searched, only the next one
896  *			will; typically, you pass what the previous call
897  *			returned. of_node_put() will be called on it
898  *	@prop_name:	The name of the property to look for.
899  *
900  *	Returns a node pointer with refcount incremented, use
901  *	of_node_put() on it when done.
902  */
903 struct device_node *of_find_node_with_property(struct device_node *from,
904 	const char *prop_name)
905 {
906 	struct device_node *np;
907 	struct property *pp;
908 	unsigned long flags;
909 
910 	raw_spin_lock_irqsave(&devtree_lock, flags);
911 	for_each_of_allnodes_from(from, np) {
912 		for (pp = np->properties; pp; pp = pp->next) {
913 			if (of_prop_cmp(pp->name, prop_name) == 0) {
914 				of_node_get(np);
915 				goto out;
916 			}
917 		}
918 	}
919 out:
920 	of_node_put(from);
921 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
922 	return np;
923 }
924 EXPORT_SYMBOL(of_find_node_with_property);
925 
926 static
927 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
928 					   const struct device_node *node)
929 {
930 	const struct of_device_id *best_match = NULL;
931 	int score, best_score = 0;
932 
933 	if (!matches)
934 		return NULL;
935 
936 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
937 		score = __of_device_is_compatible(node, matches->compatible,
938 						  matches->type, matches->name);
939 		if (score > best_score) {
940 			best_match = matches;
941 			best_score = score;
942 		}
943 	}
944 
945 	return best_match;
946 }
947 
948 /**
949  * of_match_node - Tell if a device_node has a matching of_match structure
950  *	@matches:	array of of device match structures to search in
951  *	@node:		the of device structure to match against
952  *
953  *	Low level utility function used by device matching.
954  */
955 const struct of_device_id *of_match_node(const struct of_device_id *matches,
956 					 const struct device_node *node)
957 {
958 	const struct of_device_id *match;
959 	unsigned long flags;
960 
961 	raw_spin_lock_irqsave(&devtree_lock, flags);
962 	match = __of_match_node(matches, node);
963 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
964 	return match;
965 }
966 EXPORT_SYMBOL(of_match_node);
967 
968 /**
969  *	of_find_matching_node_and_match - Find a node based on an of_device_id
970  *					  match table.
971  *	@from:		The node to start searching from or NULL, the node
972  *			you pass will not be searched, only the next one
973  *			will; typically, you pass what the previous call
974  *			returned. of_node_put() will be called on it
975  *	@matches:	array of of device match structures to search in
976  *	@match		Updated to point at the matches entry which matched
977  *
978  *	Returns a node pointer with refcount incremented, use
979  *	of_node_put() on it when done.
980  */
981 struct device_node *of_find_matching_node_and_match(struct device_node *from,
982 					const struct of_device_id *matches,
983 					const struct of_device_id **match)
984 {
985 	struct device_node *np;
986 	const struct of_device_id *m;
987 	unsigned long flags;
988 
989 	if (match)
990 		*match = NULL;
991 
992 	raw_spin_lock_irqsave(&devtree_lock, flags);
993 	for_each_of_allnodes_from(from, np) {
994 		m = __of_match_node(matches, np);
995 		if (m && of_node_get(np)) {
996 			if (match)
997 				*match = m;
998 			break;
999 		}
1000 	}
1001 	of_node_put(from);
1002 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1003 	return np;
1004 }
1005 EXPORT_SYMBOL(of_find_matching_node_and_match);
1006 
1007 /**
1008  * of_modalias_node - Lookup appropriate modalias for a device node
1009  * @node:	pointer to a device tree node
1010  * @modalias:	Pointer to buffer that modalias value will be copied into
1011  * @len:	Length of modalias value
1012  *
1013  * Based on the value of the compatible property, this routine will attempt
1014  * to choose an appropriate modalias value for a particular device tree node.
1015  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1016  * from the first entry in the compatible list property.
1017  *
1018  * This routine returns 0 on success, <0 on failure.
1019  */
1020 int of_modalias_node(struct device_node *node, char *modalias, int len)
1021 {
1022 	const char *compatible, *p;
1023 	int cplen;
1024 
1025 	compatible = of_get_property(node, "compatible", &cplen);
1026 	if (!compatible || strlen(compatible) > cplen)
1027 		return -ENODEV;
1028 	p = strchr(compatible, ',');
1029 	strlcpy(modalias, p ? p + 1 : compatible, len);
1030 	return 0;
1031 }
1032 EXPORT_SYMBOL_GPL(of_modalias_node);
1033 
1034 /**
1035  * of_find_node_by_phandle - Find a node given a phandle
1036  * @handle:	phandle of the node to find
1037  *
1038  * Returns a node pointer with refcount incremented, use
1039  * of_node_put() on it when done.
1040  */
1041 struct device_node *of_find_node_by_phandle(phandle handle)
1042 {
1043 	struct device_node *np;
1044 	unsigned long flags;
1045 
1046 	if (!handle)
1047 		return NULL;
1048 
1049 	raw_spin_lock_irqsave(&devtree_lock, flags);
1050 	for_each_of_allnodes(np)
1051 		if (np->phandle == handle)
1052 			break;
1053 	of_node_get(np);
1054 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1055 	return np;
1056 }
1057 EXPORT_SYMBOL(of_find_node_by_phandle);
1058 
1059 /**
1060  * of_property_count_elems_of_size - Count the number of elements in a property
1061  *
1062  * @np:		device node from which the property value is to be read.
1063  * @propname:	name of the property to be searched.
1064  * @elem_size:	size of the individual element
1065  *
1066  * Search for a property in a device node and count the number of elements of
1067  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1068  * property does not exist or its length does not match a multiple of elem_size
1069  * and -ENODATA if the property does not have a value.
1070  */
1071 int of_property_count_elems_of_size(const struct device_node *np,
1072 				const char *propname, int elem_size)
1073 {
1074 	struct property *prop = of_find_property(np, propname, NULL);
1075 
1076 	if (!prop)
1077 		return -EINVAL;
1078 	if (!prop->value)
1079 		return -ENODATA;
1080 
1081 	if (prop->length % elem_size != 0) {
1082 		pr_err("size of %s in node %s is not a multiple of %d\n",
1083 		       propname, np->full_name, elem_size);
1084 		return -EINVAL;
1085 	}
1086 
1087 	return prop->length / elem_size;
1088 }
1089 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1090 
1091 /**
1092  * of_find_property_value_of_size
1093  *
1094  * @np:		device node from which the property value is to be read.
1095  * @propname:	name of the property to be searched.
1096  * @len:	requested length of property value
1097  *
1098  * Search for a property in a device node and valid the requested size.
1099  * Returns the property value on success, -EINVAL if the property does not
1100  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1101  * property data isn't large enough.
1102  *
1103  */
1104 static void *of_find_property_value_of_size(const struct device_node *np,
1105 			const char *propname, u32 len)
1106 {
1107 	struct property *prop = of_find_property(np, propname, NULL);
1108 
1109 	if (!prop)
1110 		return ERR_PTR(-EINVAL);
1111 	if (!prop->value)
1112 		return ERR_PTR(-ENODATA);
1113 	if (len > prop->length)
1114 		return ERR_PTR(-EOVERFLOW);
1115 
1116 	return prop->value;
1117 }
1118 
1119 /**
1120  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1121  *
1122  * @np:		device node from which the property value is to be read.
1123  * @propname:	name of the property to be searched.
1124  * @index:	index of the u32 in the list of values
1125  * @out_value:	pointer to return value, modified only if no error.
1126  *
1127  * Search for a property in a device node and read nth 32-bit value from
1128  * it. Returns 0 on success, -EINVAL if the property does not exist,
1129  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1130  * property data isn't large enough.
1131  *
1132  * The out_value is modified only if a valid u32 value can be decoded.
1133  */
1134 int of_property_read_u32_index(const struct device_node *np,
1135 				       const char *propname,
1136 				       u32 index, u32 *out_value)
1137 {
1138 	const u32 *val = of_find_property_value_of_size(np, propname,
1139 					((index + 1) * sizeof(*out_value)));
1140 
1141 	if (IS_ERR(val))
1142 		return PTR_ERR(val);
1143 
1144 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1145 	return 0;
1146 }
1147 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1148 
1149 /**
1150  * of_property_read_u8_array - Find and read an array of u8 from a property.
1151  *
1152  * @np:		device node from which the property value is to be read.
1153  * @propname:	name of the property to be searched.
1154  * @out_values:	pointer to return value, modified only if return value is 0.
1155  * @sz:		number of array elements to read
1156  *
1157  * Search for a property in a device node and read 8-bit value(s) from
1158  * it. Returns 0 on success, -EINVAL if the property does not exist,
1159  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1160  * property data isn't large enough.
1161  *
1162  * dts entry of array should be like:
1163  *	property = /bits/ 8 <0x50 0x60 0x70>;
1164  *
1165  * The out_values is modified only if a valid u8 value can be decoded.
1166  */
1167 int of_property_read_u8_array(const struct device_node *np,
1168 			const char *propname, u8 *out_values, size_t sz)
1169 {
1170 	const u8 *val = of_find_property_value_of_size(np, propname,
1171 						(sz * sizeof(*out_values)));
1172 
1173 	if (IS_ERR(val))
1174 		return PTR_ERR(val);
1175 
1176 	while (sz--)
1177 		*out_values++ = *val++;
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1181 
1182 /**
1183  * of_property_read_u16_array - Find and read an array of u16 from a property.
1184  *
1185  * @np:		device node from which the property value is to be read.
1186  * @propname:	name of the property to be searched.
1187  * @out_values:	pointer to return value, modified only if return value is 0.
1188  * @sz:		number of array elements to read
1189  *
1190  * Search for a property in a device node and read 16-bit value(s) from
1191  * it. Returns 0 on success, -EINVAL if the property does not exist,
1192  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1193  * property data isn't large enough.
1194  *
1195  * dts entry of array should be like:
1196  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1197  *
1198  * The out_values is modified only if a valid u16 value can be decoded.
1199  */
1200 int of_property_read_u16_array(const struct device_node *np,
1201 			const char *propname, u16 *out_values, size_t sz)
1202 {
1203 	const __be16 *val = of_find_property_value_of_size(np, propname,
1204 						(sz * sizeof(*out_values)));
1205 
1206 	if (IS_ERR(val))
1207 		return PTR_ERR(val);
1208 
1209 	while (sz--)
1210 		*out_values++ = be16_to_cpup(val++);
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1214 
1215 /**
1216  * of_property_read_u32_array - Find and read an array of 32 bit integers
1217  * from a property.
1218  *
1219  * @np:		device node from which the property value is to be read.
1220  * @propname:	name of the property to be searched.
1221  * @out_values:	pointer to return value, modified only if return value is 0.
1222  * @sz:		number of array elements to read
1223  *
1224  * Search for a property in a device node and read 32-bit value(s) from
1225  * it. Returns 0 on success, -EINVAL if the property does not exist,
1226  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1227  * property data isn't large enough.
1228  *
1229  * The out_values is modified only if a valid u32 value can be decoded.
1230  */
1231 int of_property_read_u32_array(const struct device_node *np,
1232 			       const char *propname, u32 *out_values,
1233 			       size_t sz)
1234 {
1235 	const __be32 *val = of_find_property_value_of_size(np, propname,
1236 						(sz * sizeof(*out_values)));
1237 
1238 	if (IS_ERR(val))
1239 		return PTR_ERR(val);
1240 
1241 	while (sz--)
1242 		*out_values++ = be32_to_cpup(val++);
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1246 
1247 /**
1248  * of_property_read_u64 - Find and read a 64 bit integer from a property
1249  * @np:		device node from which the property value is to be read.
1250  * @propname:	name of the property to be searched.
1251  * @out_value:	pointer to return value, modified only if return value is 0.
1252  *
1253  * Search for a property in a device node and read a 64-bit value from
1254  * it. Returns 0 on success, -EINVAL if the property does not exist,
1255  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1256  * property data isn't large enough.
1257  *
1258  * The out_value is modified only if a valid u64 value can be decoded.
1259  */
1260 int of_property_read_u64(const struct device_node *np, const char *propname,
1261 			 u64 *out_value)
1262 {
1263 	const __be32 *val = of_find_property_value_of_size(np, propname,
1264 						sizeof(*out_value));
1265 
1266 	if (IS_ERR(val))
1267 		return PTR_ERR(val);
1268 
1269 	*out_value = of_read_number(val, 2);
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(of_property_read_u64);
1273 
1274 /**
1275  * of_property_read_u64_array - Find and read an array of 64 bit integers
1276  * from a property.
1277  *
1278  * @np:		device node from which the property value is to be read.
1279  * @propname:	name of the property to be searched.
1280  * @out_values:	pointer to return value, modified only if return value is 0.
1281  * @sz:		number of array elements to read
1282  *
1283  * Search for a property in a device node and read 64-bit value(s) from
1284  * it. Returns 0 on success, -EINVAL if the property does not exist,
1285  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1286  * property data isn't large enough.
1287  *
1288  * The out_values is modified only if a valid u64 value can be decoded.
1289  */
1290 int of_property_read_u64_array(const struct device_node *np,
1291 			       const char *propname, u64 *out_values,
1292 			       size_t sz)
1293 {
1294 	const __be32 *val = of_find_property_value_of_size(np, propname,
1295 						(sz * sizeof(*out_values)));
1296 
1297 	if (IS_ERR(val))
1298 		return PTR_ERR(val);
1299 
1300 	while (sz--) {
1301 		*out_values++ = of_read_number(val, 2);
1302 		val += 2;
1303 	}
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1307 
1308 /**
1309  * of_property_read_string - Find and read a string from a property
1310  * @np:		device node from which the property value is to be read.
1311  * @propname:	name of the property to be searched.
1312  * @out_string:	pointer to null terminated return string, modified only if
1313  *		return value is 0.
1314  *
1315  * Search for a property in a device tree node and retrieve a null
1316  * terminated string value (pointer to data, not a copy). Returns 0 on
1317  * success, -EINVAL if the property does not exist, -ENODATA if property
1318  * does not have a value, and -EILSEQ if the string is not null-terminated
1319  * within the length of the property data.
1320  *
1321  * The out_string pointer is modified only if a valid string can be decoded.
1322  */
1323 int of_property_read_string(struct device_node *np, const char *propname,
1324 				const char **out_string)
1325 {
1326 	struct property *prop = of_find_property(np, propname, NULL);
1327 	if (!prop)
1328 		return -EINVAL;
1329 	if (!prop->value)
1330 		return -ENODATA;
1331 	if (strnlen(prop->value, prop->length) >= prop->length)
1332 		return -EILSEQ;
1333 	*out_string = prop->value;
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(of_property_read_string);
1337 
1338 /**
1339  * of_property_match_string() - Find string in a list and return index
1340  * @np: pointer to node containing string list property
1341  * @propname: string list property name
1342  * @string: pointer to string to search for in string list
1343  *
1344  * This function searches a string list property and returns the index
1345  * of a specific string value.
1346  */
1347 int of_property_match_string(struct device_node *np, const char *propname,
1348 			     const char *string)
1349 {
1350 	struct property *prop = of_find_property(np, propname, NULL);
1351 	size_t l;
1352 	int i;
1353 	const char *p, *end;
1354 
1355 	if (!prop)
1356 		return -EINVAL;
1357 	if (!prop->value)
1358 		return -ENODATA;
1359 
1360 	p = prop->value;
1361 	end = p + prop->length;
1362 
1363 	for (i = 0; p < end; i++, p += l) {
1364 		l = strnlen(p, end - p) + 1;
1365 		if (p + l > end)
1366 			return -EILSEQ;
1367 		pr_debug("comparing %s with %s\n", string, p);
1368 		if (strcmp(string, p) == 0)
1369 			return i; /* Found it; return index */
1370 	}
1371 	return -ENODATA;
1372 }
1373 EXPORT_SYMBOL_GPL(of_property_match_string);
1374 
1375 /**
1376  * of_property_read_string_helper() - Utility helper for parsing string properties
1377  * @np:		device node from which the property value is to be read.
1378  * @propname:	name of the property to be searched.
1379  * @out_strs:	output array of string pointers.
1380  * @sz:		number of array elements to read.
1381  * @skip:	Number of strings to skip over at beginning of list.
1382  *
1383  * Don't call this function directly. It is a utility helper for the
1384  * of_property_read_string*() family of functions.
1385  */
1386 int of_property_read_string_helper(struct device_node *np, const char *propname,
1387 				   const char **out_strs, size_t sz, int skip)
1388 {
1389 	struct property *prop = of_find_property(np, propname, NULL);
1390 	int l = 0, i = 0;
1391 	const char *p, *end;
1392 
1393 	if (!prop)
1394 		return -EINVAL;
1395 	if (!prop->value)
1396 		return -ENODATA;
1397 	p = prop->value;
1398 	end = p + prop->length;
1399 
1400 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1401 		l = strnlen(p, end - p) + 1;
1402 		if (p + l > end)
1403 			return -EILSEQ;
1404 		if (out_strs && i >= skip)
1405 			*out_strs++ = p;
1406 	}
1407 	i -= skip;
1408 	return i <= 0 ? -ENODATA : i;
1409 }
1410 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1411 
1412 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1413 {
1414 	int i;
1415 	printk("%s %s", msg, of_node_full_name(args->np));
1416 	for (i = 0; i < args->args_count; i++)
1417 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1418 	printk("\n");
1419 }
1420 
1421 static int __of_parse_phandle_with_args(const struct device_node *np,
1422 					const char *list_name,
1423 					const char *cells_name,
1424 					int cell_count, int index,
1425 					struct of_phandle_args *out_args)
1426 {
1427 	const __be32 *list, *list_end;
1428 	int rc = 0, size, cur_index = 0;
1429 	uint32_t count = 0;
1430 	struct device_node *node = NULL;
1431 	phandle phandle;
1432 
1433 	/* Retrieve the phandle list property */
1434 	list = of_get_property(np, list_name, &size);
1435 	if (!list)
1436 		return -ENOENT;
1437 	list_end = list + size / sizeof(*list);
1438 
1439 	/* Loop over the phandles until all the requested entry is found */
1440 	while (list < list_end) {
1441 		rc = -EINVAL;
1442 		count = 0;
1443 
1444 		/*
1445 		 * If phandle is 0, then it is an empty entry with no
1446 		 * arguments.  Skip forward to the next entry.
1447 		 */
1448 		phandle = be32_to_cpup(list++);
1449 		if (phandle) {
1450 			/*
1451 			 * Find the provider node and parse the #*-cells
1452 			 * property to determine the argument length.
1453 			 *
1454 			 * This is not needed if the cell count is hard-coded
1455 			 * (i.e. cells_name not set, but cell_count is set),
1456 			 * except when we're going to return the found node
1457 			 * below.
1458 			 */
1459 			if (cells_name || cur_index == index) {
1460 				node = of_find_node_by_phandle(phandle);
1461 				if (!node) {
1462 					pr_err("%s: could not find phandle\n",
1463 						np->full_name);
1464 					goto err;
1465 				}
1466 			}
1467 
1468 			if (cells_name) {
1469 				if (of_property_read_u32(node, cells_name,
1470 							 &count)) {
1471 					pr_err("%s: could not get %s for %s\n",
1472 						np->full_name, cells_name,
1473 						node->full_name);
1474 					goto err;
1475 				}
1476 			} else {
1477 				count = cell_count;
1478 			}
1479 
1480 			/*
1481 			 * Make sure that the arguments actually fit in the
1482 			 * remaining property data length
1483 			 */
1484 			if (list + count > list_end) {
1485 				pr_err("%s: arguments longer than property\n",
1486 					 np->full_name);
1487 				goto err;
1488 			}
1489 		}
1490 
1491 		/*
1492 		 * All of the error cases above bail out of the loop, so at
1493 		 * this point, the parsing is successful. If the requested
1494 		 * index matches, then fill the out_args structure and return,
1495 		 * or return -ENOENT for an empty entry.
1496 		 */
1497 		rc = -ENOENT;
1498 		if (cur_index == index) {
1499 			if (!phandle)
1500 				goto err;
1501 
1502 			if (out_args) {
1503 				int i;
1504 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1505 					count = MAX_PHANDLE_ARGS;
1506 				out_args->np = node;
1507 				out_args->args_count = count;
1508 				for (i = 0; i < count; i++)
1509 					out_args->args[i] = be32_to_cpup(list++);
1510 			} else {
1511 				of_node_put(node);
1512 			}
1513 
1514 			/* Found it! return success */
1515 			return 0;
1516 		}
1517 
1518 		of_node_put(node);
1519 		node = NULL;
1520 		list += count;
1521 		cur_index++;
1522 	}
1523 
1524 	/*
1525 	 * Unlock node before returning result; will be one of:
1526 	 * -ENOENT : index is for empty phandle
1527 	 * -EINVAL : parsing error on data
1528 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1529 	 */
1530 	rc = index < 0 ? cur_index : -ENOENT;
1531  err:
1532 	if (node)
1533 		of_node_put(node);
1534 	return rc;
1535 }
1536 
1537 /**
1538  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1539  * @np: Pointer to device node holding phandle property
1540  * @phandle_name: Name of property holding a phandle value
1541  * @index: For properties holding a table of phandles, this is the index into
1542  *         the table
1543  *
1544  * Returns the device_node pointer with refcount incremented.  Use
1545  * of_node_put() on it when done.
1546  */
1547 struct device_node *of_parse_phandle(const struct device_node *np,
1548 				     const char *phandle_name, int index)
1549 {
1550 	struct of_phandle_args args;
1551 
1552 	if (index < 0)
1553 		return NULL;
1554 
1555 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1556 					 index, &args))
1557 		return NULL;
1558 
1559 	return args.np;
1560 }
1561 EXPORT_SYMBOL(of_parse_phandle);
1562 
1563 /**
1564  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1565  * @np:		pointer to a device tree node containing a list
1566  * @list_name:	property name that contains a list
1567  * @cells_name:	property name that specifies phandles' arguments count
1568  * @index:	index of a phandle to parse out
1569  * @out_args:	optional pointer to output arguments structure (will be filled)
1570  *
1571  * This function is useful to parse lists of phandles and their arguments.
1572  * Returns 0 on success and fills out_args, on error returns appropriate
1573  * errno value.
1574  *
1575  * Caller is responsible to call of_node_put() on the returned out_args->np
1576  * pointer.
1577  *
1578  * Example:
1579  *
1580  * phandle1: node1 {
1581  *	#list-cells = <2>;
1582  * }
1583  *
1584  * phandle2: node2 {
1585  *	#list-cells = <1>;
1586  * }
1587  *
1588  * node3 {
1589  *	list = <&phandle1 1 2 &phandle2 3>;
1590  * }
1591  *
1592  * To get a device_node of the `node2' node you may call this:
1593  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1594  */
1595 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1596 				const char *cells_name, int index,
1597 				struct of_phandle_args *out_args)
1598 {
1599 	if (index < 0)
1600 		return -EINVAL;
1601 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1602 					    index, out_args);
1603 }
1604 EXPORT_SYMBOL(of_parse_phandle_with_args);
1605 
1606 /**
1607  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1608  * @np:		pointer to a device tree node containing a list
1609  * @list_name:	property name that contains a list
1610  * @cell_count: number of argument cells following the phandle
1611  * @index:	index of a phandle to parse out
1612  * @out_args:	optional pointer to output arguments structure (will be filled)
1613  *
1614  * This function is useful to parse lists of phandles and their arguments.
1615  * Returns 0 on success and fills out_args, on error returns appropriate
1616  * errno value.
1617  *
1618  * Caller is responsible to call of_node_put() on the returned out_args->np
1619  * pointer.
1620  *
1621  * Example:
1622  *
1623  * phandle1: node1 {
1624  * }
1625  *
1626  * phandle2: node2 {
1627  * }
1628  *
1629  * node3 {
1630  *	list = <&phandle1 0 2 &phandle2 2 3>;
1631  * }
1632  *
1633  * To get a device_node of the `node2' node you may call this:
1634  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1635  */
1636 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1637 				const char *list_name, int cell_count,
1638 				int index, struct of_phandle_args *out_args)
1639 {
1640 	if (index < 0)
1641 		return -EINVAL;
1642 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1643 					   index, out_args);
1644 }
1645 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1646 
1647 /**
1648  * of_count_phandle_with_args() - Find the number of phandles references in a property
1649  * @np:		pointer to a device tree node containing a list
1650  * @list_name:	property name that contains a list
1651  * @cells_name:	property name that specifies phandles' arguments count
1652  *
1653  * Returns the number of phandle + argument tuples within a property. It
1654  * is a typical pattern to encode a list of phandle and variable
1655  * arguments into a single property. The number of arguments is encoded
1656  * by a property in the phandle-target node. For example, a gpios
1657  * property would contain a list of GPIO specifies consisting of a
1658  * phandle and 1 or more arguments. The number of arguments are
1659  * determined by the #gpio-cells property in the node pointed to by the
1660  * phandle.
1661  */
1662 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1663 				const char *cells_name)
1664 {
1665 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1666 					    NULL);
1667 }
1668 EXPORT_SYMBOL(of_count_phandle_with_args);
1669 
1670 /**
1671  * __of_add_property - Add a property to a node without lock operations
1672  */
1673 int __of_add_property(struct device_node *np, struct property *prop)
1674 {
1675 	struct property **next;
1676 
1677 	prop->next = NULL;
1678 	next = &np->properties;
1679 	while (*next) {
1680 		if (strcmp(prop->name, (*next)->name) == 0)
1681 			/* duplicate ! don't insert it */
1682 			return -EEXIST;
1683 
1684 		next = &(*next)->next;
1685 	}
1686 	*next = prop;
1687 
1688 	return 0;
1689 }
1690 
1691 /**
1692  * of_add_property - Add a property to a node
1693  */
1694 int of_add_property(struct device_node *np, struct property *prop)
1695 {
1696 	unsigned long flags;
1697 	int rc;
1698 
1699 	mutex_lock(&of_mutex);
1700 
1701 	raw_spin_lock_irqsave(&devtree_lock, flags);
1702 	rc = __of_add_property(np, prop);
1703 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1704 
1705 	if (!rc)
1706 		__of_add_property_sysfs(np, prop);
1707 
1708 	mutex_unlock(&of_mutex);
1709 
1710 	if (!rc)
1711 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1712 
1713 	return rc;
1714 }
1715 
1716 int __of_remove_property(struct device_node *np, struct property *prop)
1717 {
1718 	struct property **next;
1719 
1720 	for (next = &np->properties; *next; next = &(*next)->next) {
1721 		if (*next == prop)
1722 			break;
1723 	}
1724 	if (*next == NULL)
1725 		return -ENODEV;
1726 
1727 	/* found the node */
1728 	*next = prop->next;
1729 	prop->next = np->deadprops;
1730 	np->deadprops = prop;
1731 
1732 	return 0;
1733 }
1734 
1735 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1736 {
1737 	if (!IS_ENABLED(CONFIG_SYSFS))
1738 		return;
1739 
1740 	/* at early boot, bail here and defer setup to of_init() */
1741 	if (of_kset && of_node_is_attached(np))
1742 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1743 }
1744 
1745 /**
1746  * of_remove_property - Remove a property from a node.
1747  *
1748  * Note that we don't actually remove it, since we have given out
1749  * who-knows-how-many pointers to the data using get-property.
1750  * Instead we just move the property to the "dead properties"
1751  * list, so it won't be found any more.
1752  */
1753 int of_remove_property(struct device_node *np, struct property *prop)
1754 {
1755 	unsigned long flags;
1756 	int rc;
1757 
1758 	mutex_lock(&of_mutex);
1759 
1760 	raw_spin_lock_irqsave(&devtree_lock, flags);
1761 	rc = __of_remove_property(np, prop);
1762 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1763 
1764 	if (!rc)
1765 		__of_remove_property_sysfs(np, prop);
1766 
1767 	mutex_unlock(&of_mutex);
1768 
1769 	if (!rc)
1770 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1771 
1772 	return rc;
1773 }
1774 
1775 int __of_update_property(struct device_node *np, struct property *newprop,
1776 		struct property **oldpropp)
1777 {
1778 	struct property **next, *oldprop;
1779 
1780 	for (next = &np->properties; *next; next = &(*next)->next) {
1781 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1782 			break;
1783 	}
1784 	*oldpropp = oldprop = *next;
1785 
1786 	if (oldprop) {
1787 		/* replace the node */
1788 		newprop->next = oldprop->next;
1789 		*next = newprop;
1790 		oldprop->next = np->deadprops;
1791 		np->deadprops = oldprop;
1792 	} else {
1793 		/* new node */
1794 		newprop->next = NULL;
1795 		*next = newprop;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1802 		struct property *oldprop)
1803 {
1804 	if (!IS_ENABLED(CONFIG_SYSFS))
1805 		return;
1806 
1807 	/* At early boot, bail out and defer setup to of_init() */
1808 	if (!of_kset)
1809 		return;
1810 
1811 	if (oldprop)
1812 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1813 	__of_add_property_sysfs(np, newprop);
1814 }
1815 
1816 /*
1817  * of_update_property - Update a property in a node, if the property does
1818  * not exist, add it.
1819  *
1820  * Note that we don't actually remove it, since we have given out
1821  * who-knows-how-many pointers to the data using get-property.
1822  * Instead we just move the property to the "dead properties" list,
1823  * and add the new property to the property list
1824  */
1825 int of_update_property(struct device_node *np, struct property *newprop)
1826 {
1827 	struct property *oldprop;
1828 	unsigned long flags;
1829 	int rc;
1830 
1831 	if (!newprop->name)
1832 		return -EINVAL;
1833 
1834 	mutex_lock(&of_mutex);
1835 
1836 	raw_spin_lock_irqsave(&devtree_lock, flags);
1837 	rc = __of_update_property(np, newprop, &oldprop);
1838 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1839 
1840 	if (!rc)
1841 		__of_update_property_sysfs(np, newprop, oldprop);
1842 
1843 	mutex_unlock(&of_mutex);
1844 
1845 	if (!rc)
1846 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1847 
1848 	return rc;
1849 }
1850 
1851 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1852 			 int id, const char *stem, int stem_len)
1853 {
1854 	ap->np = np;
1855 	ap->id = id;
1856 	strncpy(ap->stem, stem, stem_len);
1857 	ap->stem[stem_len] = 0;
1858 	list_add_tail(&ap->link, &aliases_lookup);
1859 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1860 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1861 }
1862 
1863 /**
1864  * of_alias_scan - Scan all properties of the 'aliases' node
1865  *
1866  * The function scans all the properties of the 'aliases' node and populates
1867  * the global lookup table with the properties.  It returns the
1868  * number of alias properties found, or an error code in case of failure.
1869  *
1870  * @dt_alloc:	An allocator that provides a virtual address to memory
1871  *		for storing the resulting tree
1872  */
1873 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1874 {
1875 	struct property *pp;
1876 
1877 	of_aliases = of_find_node_by_path("/aliases");
1878 	of_chosen = of_find_node_by_path("/chosen");
1879 	if (of_chosen == NULL)
1880 		of_chosen = of_find_node_by_path("/chosen@0");
1881 
1882 	if (of_chosen) {
1883 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1884 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1885 		if (!name)
1886 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1887 		if (IS_ENABLED(CONFIG_PPC) && !name)
1888 			name = of_get_property(of_aliases, "stdout", NULL);
1889 		if (name)
1890 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1891 	}
1892 
1893 	if (!of_aliases)
1894 		return;
1895 
1896 	for_each_property_of_node(of_aliases, pp) {
1897 		const char *start = pp->name;
1898 		const char *end = start + strlen(start);
1899 		struct device_node *np;
1900 		struct alias_prop *ap;
1901 		int id, len;
1902 
1903 		/* Skip those we do not want to proceed */
1904 		if (!strcmp(pp->name, "name") ||
1905 		    !strcmp(pp->name, "phandle") ||
1906 		    !strcmp(pp->name, "linux,phandle"))
1907 			continue;
1908 
1909 		np = of_find_node_by_path(pp->value);
1910 		if (!np)
1911 			continue;
1912 
1913 		/* walk the alias backwards to extract the id and work out
1914 		 * the 'stem' string */
1915 		while (isdigit(*(end-1)) && end > start)
1916 			end--;
1917 		len = end - start;
1918 
1919 		if (kstrtoint(end, 10, &id) < 0)
1920 			continue;
1921 
1922 		/* Allocate an alias_prop with enough space for the stem */
1923 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1924 		if (!ap)
1925 			continue;
1926 		memset(ap, 0, sizeof(*ap) + len + 1);
1927 		ap->alias = start;
1928 		of_alias_add(ap, np, id, start, len);
1929 	}
1930 }
1931 
1932 /**
1933  * of_alias_get_id - Get alias id for the given device_node
1934  * @np:		Pointer to the given device_node
1935  * @stem:	Alias stem of the given device_node
1936  *
1937  * The function travels the lookup table to get the alias id for the given
1938  * device_node and alias stem.  It returns the alias id if found.
1939  */
1940 int of_alias_get_id(struct device_node *np, const char *stem)
1941 {
1942 	struct alias_prop *app;
1943 	int id = -ENODEV;
1944 
1945 	mutex_lock(&of_mutex);
1946 	list_for_each_entry(app, &aliases_lookup, link) {
1947 		if (strcmp(app->stem, stem) != 0)
1948 			continue;
1949 
1950 		if (np == app->np) {
1951 			id = app->id;
1952 			break;
1953 		}
1954 	}
1955 	mutex_unlock(&of_mutex);
1956 
1957 	return id;
1958 }
1959 EXPORT_SYMBOL_GPL(of_alias_get_id);
1960 
1961 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1962 			       u32 *pu)
1963 {
1964 	const void *curv = cur;
1965 
1966 	if (!prop)
1967 		return NULL;
1968 
1969 	if (!cur) {
1970 		curv = prop->value;
1971 		goto out_val;
1972 	}
1973 
1974 	curv += sizeof(*cur);
1975 	if (curv >= prop->value + prop->length)
1976 		return NULL;
1977 
1978 out_val:
1979 	*pu = be32_to_cpup(curv);
1980 	return curv;
1981 }
1982 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1983 
1984 const char *of_prop_next_string(struct property *prop, const char *cur)
1985 {
1986 	const void *curv = cur;
1987 
1988 	if (!prop)
1989 		return NULL;
1990 
1991 	if (!cur)
1992 		return prop->value;
1993 
1994 	curv += strlen(cur) + 1;
1995 	if (curv >= prop->value + prop->length)
1996 		return NULL;
1997 
1998 	return curv;
1999 }
2000 EXPORT_SYMBOL_GPL(of_prop_next_string);
2001 
2002 /**
2003  * of_console_check() - Test and setup console for DT setup
2004  * @dn - Pointer to device node
2005  * @name - Name to use for preferred console without index. ex. "ttyS"
2006  * @index - Index to use for preferred console.
2007  *
2008  * Check if the given device node matches the stdout-path property in the
2009  * /chosen node. If it does then register it as the preferred console and return
2010  * TRUE. Otherwise return FALSE.
2011  */
2012 bool of_console_check(struct device_node *dn, char *name, int index)
2013 {
2014 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2015 		return false;
2016 	return !add_preferred_console(name, index,
2017 				      kstrdup(of_stdout_options, GFP_KERNEL));
2018 }
2019 EXPORT_SYMBOL_GPL(of_console_check);
2020 
2021 /**
2022  *	of_find_next_cache_node - Find a node's subsidiary cache
2023  *	@np:	node of type "cpu" or "cache"
2024  *
2025  *	Returns a node pointer with refcount incremented, use
2026  *	of_node_put() on it when done.  Caller should hold a reference
2027  *	to np.
2028  */
2029 struct device_node *of_find_next_cache_node(const struct device_node *np)
2030 {
2031 	struct device_node *child;
2032 	const phandle *handle;
2033 
2034 	handle = of_get_property(np, "l2-cache", NULL);
2035 	if (!handle)
2036 		handle = of_get_property(np, "next-level-cache", NULL);
2037 
2038 	if (handle)
2039 		return of_find_node_by_phandle(be32_to_cpup(handle));
2040 
2041 	/* OF on pmac has nodes instead of properties named "l2-cache"
2042 	 * beneath CPU nodes.
2043 	 */
2044 	if (!strcmp(np->type, "cpu"))
2045 		for_each_child_of_node(np, child)
2046 			if (!strcmp(child->type, "cache"))
2047 				return child;
2048 
2049 	return NULL;
2050 }
2051 
2052 /**
2053  * of_graph_parse_endpoint() - parse common endpoint node properties
2054  * @node: pointer to endpoint device_node
2055  * @endpoint: pointer to the OF endpoint data structure
2056  *
2057  * The caller should hold a reference to @node.
2058  */
2059 int of_graph_parse_endpoint(const struct device_node *node,
2060 			    struct of_endpoint *endpoint)
2061 {
2062 	struct device_node *port_node = of_get_parent(node);
2063 
2064 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2065 		  __func__, node->full_name);
2066 
2067 	memset(endpoint, 0, sizeof(*endpoint));
2068 
2069 	endpoint->local_node = node;
2070 	/*
2071 	 * It doesn't matter whether the two calls below succeed.
2072 	 * If they don't then the default value 0 is used.
2073 	 */
2074 	of_property_read_u32(port_node, "reg", &endpoint->port);
2075 	of_property_read_u32(node, "reg", &endpoint->id);
2076 
2077 	of_node_put(port_node);
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(of_graph_parse_endpoint);
2082 
2083 /**
2084  * of_graph_get_next_endpoint() - get next endpoint node
2085  * @parent: pointer to the parent device node
2086  * @prev: previous endpoint node, or NULL to get first
2087  *
2088  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2089  * of the passed @prev node is not decremented, the caller have to use
2090  * of_node_put() on it when done.
2091  */
2092 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2093 					struct device_node *prev)
2094 {
2095 	struct device_node *endpoint;
2096 	struct device_node *port;
2097 
2098 	if (!parent)
2099 		return NULL;
2100 
2101 	/*
2102 	 * Start by locating the port node. If no previous endpoint is specified
2103 	 * search for the first port node, otherwise get the previous endpoint
2104 	 * parent port node.
2105 	 */
2106 	if (!prev) {
2107 		struct device_node *node;
2108 
2109 		node = of_get_child_by_name(parent, "ports");
2110 		if (node)
2111 			parent = node;
2112 
2113 		port = of_get_child_by_name(parent, "port");
2114 		of_node_put(node);
2115 
2116 		if (!port) {
2117 			pr_err("%s(): no port node found in %s\n",
2118 			       __func__, parent->full_name);
2119 			return NULL;
2120 		}
2121 	} else {
2122 		port = of_get_parent(prev);
2123 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2124 			      __func__, prev->full_name))
2125 			return NULL;
2126 
2127 		/*
2128 		 * Avoid dropping prev node refcount to 0 when getting the next
2129 		 * child below.
2130 		 */
2131 		of_node_get(prev);
2132 	}
2133 
2134 	while (1) {
2135 		/*
2136 		 * Now that we have a port node, get the next endpoint by
2137 		 * getting the next child. If the previous endpoint is NULL this
2138 		 * will return the first child.
2139 		 */
2140 		endpoint = of_get_next_child(port, prev);
2141 		if (endpoint) {
2142 			of_node_put(port);
2143 			return endpoint;
2144 		}
2145 
2146 		/* No more endpoints under this port, try the next one. */
2147 		prev = NULL;
2148 
2149 		do {
2150 			port = of_get_next_child(parent, port);
2151 			if (!port)
2152 				return NULL;
2153 		} while (of_node_cmp(port->name, "port"));
2154 	}
2155 }
2156 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2157 
2158 /**
2159  * of_graph_get_remote_port_parent() - get remote port's parent node
2160  * @node: pointer to a local endpoint device_node
2161  *
2162  * Return: Remote device node associated with remote endpoint node linked
2163  *	   to @node. Use of_node_put() on it when done.
2164  */
2165 struct device_node *of_graph_get_remote_port_parent(
2166 			       const struct device_node *node)
2167 {
2168 	struct device_node *np;
2169 	unsigned int depth;
2170 
2171 	/* Get remote endpoint node. */
2172 	np = of_parse_phandle(node, "remote-endpoint", 0);
2173 
2174 	/* Walk 3 levels up only if there is 'ports' node. */
2175 	for (depth = 3; depth && np; depth--) {
2176 		np = of_get_next_parent(np);
2177 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2178 			break;
2179 	}
2180 	return np;
2181 }
2182 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2183 
2184 /**
2185  * of_graph_get_remote_port() - get remote port node
2186  * @node: pointer to a local endpoint device_node
2187  *
2188  * Return: Remote port node associated with remote endpoint node linked
2189  *	   to @node. Use of_node_put() on it when done.
2190  */
2191 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2192 {
2193 	struct device_node *np;
2194 
2195 	/* Get remote endpoint node. */
2196 	np = of_parse_phandle(node, "remote-endpoint", 0);
2197 	if (!np)
2198 		return NULL;
2199 	return of_get_next_parent(np);
2200 }
2201 EXPORT_SYMBOL(of_graph_get_remote_port);
2202