xref: /openbmc/linux/drivers/of/base.c (revision 7b6d864b)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26 
27 #include "of_private.h"
28 
29 LIST_HEAD(aliases_lookup);
30 
31 struct device_node *of_allnodes;
32 EXPORT_SYMBOL(of_allnodes);
33 struct device_node *of_chosen;
34 struct device_node *of_aliases;
35 
36 DEFINE_MUTEX(of_aliases_mutex);
37 
38 /* use when traversing tree through the allnext, child, sibling,
39  * or parent members of struct device_node.
40  */
41 DEFINE_RAW_SPINLOCK(devtree_lock);
42 
43 int of_n_addr_cells(struct device_node *np)
44 {
45 	const __be32 *ip;
46 
47 	do {
48 		if (np->parent)
49 			np = np->parent;
50 		ip = of_get_property(np, "#address-cells", NULL);
51 		if (ip)
52 			return be32_to_cpup(ip);
53 	} while (np->parent);
54 	/* No #address-cells property for the root node */
55 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
56 }
57 EXPORT_SYMBOL(of_n_addr_cells);
58 
59 int of_n_size_cells(struct device_node *np)
60 {
61 	const __be32 *ip;
62 
63 	do {
64 		if (np->parent)
65 			np = np->parent;
66 		ip = of_get_property(np, "#size-cells", NULL);
67 		if (ip)
68 			return be32_to_cpup(ip);
69 	} while (np->parent);
70 	/* No #size-cells property for the root node */
71 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_size_cells);
74 
75 #if defined(CONFIG_OF_DYNAMIC)
76 /**
77  *	of_node_get - Increment refcount of a node
78  *	@node:	Node to inc refcount, NULL is supported to
79  *		simplify writing of callers
80  *
81  *	Returns node.
82  */
83 struct device_node *of_node_get(struct device_node *node)
84 {
85 	if (node)
86 		kref_get(&node->kref);
87 	return node;
88 }
89 EXPORT_SYMBOL(of_node_get);
90 
91 static inline struct device_node *kref_to_device_node(struct kref *kref)
92 {
93 	return container_of(kref, struct device_node, kref);
94 }
95 
96 /**
97  *	of_node_release - release a dynamically allocated node
98  *	@kref:  kref element of the node to be released
99  *
100  *	In of_node_put() this function is passed to kref_put()
101  *	as the destructor.
102  */
103 static void of_node_release(struct kref *kref)
104 {
105 	struct device_node *node = kref_to_device_node(kref);
106 	struct property *prop = node->properties;
107 
108 	/* We should never be releasing nodes that haven't been detached. */
109 	if (!of_node_check_flag(node, OF_DETACHED)) {
110 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
111 		dump_stack();
112 		kref_init(&node->kref);
113 		return;
114 	}
115 
116 	if (!of_node_check_flag(node, OF_DYNAMIC))
117 		return;
118 
119 	while (prop) {
120 		struct property *next = prop->next;
121 		kfree(prop->name);
122 		kfree(prop->value);
123 		kfree(prop);
124 		prop = next;
125 
126 		if (!prop) {
127 			prop = node->deadprops;
128 			node->deadprops = NULL;
129 		}
130 	}
131 	kfree(node->full_name);
132 	kfree(node->data);
133 	kfree(node);
134 }
135 
136 /**
137  *	of_node_put - Decrement refcount of a node
138  *	@node:	Node to dec refcount, NULL is supported to
139  *		simplify writing of callers
140  *
141  */
142 void of_node_put(struct device_node *node)
143 {
144 	if (node)
145 		kref_put(&node->kref, of_node_release);
146 }
147 EXPORT_SYMBOL(of_node_put);
148 #endif /* CONFIG_OF_DYNAMIC */
149 
150 static struct property *__of_find_property(const struct device_node *np,
151 					   const char *name, int *lenp)
152 {
153 	struct property *pp;
154 
155 	if (!np)
156 		return NULL;
157 
158 	for (pp = np->properties; pp; pp = pp->next) {
159 		if (of_prop_cmp(pp->name, name) == 0) {
160 			if (lenp)
161 				*lenp = pp->length;
162 			break;
163 		}
164 	}
165 
166 	return pp;
167 }
168 
169 struct property *of_find_property(const struct device_node *np,
170 				  const char *name,
171 				  int *lenp)
172 {
173 	struct property *pp;
174 	unsigned long flags;
175 
176 	raw_spin_lock_irqsave(&devtree_lock, flags);
177 	pp = __of_find_property(np, name, lenp);
178 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
179 
180 	return pp;
181 }
182 EXPORT_SYMBOL(of_find_property);
183 
184 /**
185  * of_find_all_nodes - Get next node in global list
186  * @prev:	Previous node or NULL to start iteration
187  *		of_node_put() will be called on it
188  *
189  * Returns a node pointer with refcount incremented, use
190  * of_node_put() on it when done.
191  */
192 struct device_node *of_find_all_nodes(struct device_node *prev)
193 {
194 	struct device_node *np;
195 	unsigned long flags;
196 
197 	raw_spin_lock_irqsave(&devtree_lock, flags);
198 	np = prev ? prev->allnext : of_allnodes;
199 	for (; np != NULL; np = np->allnext)
200 		if (of_node_get(np))
201 			break;
202 	of_node_put(prev);
203 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
204 	return np;
205 }
206 EXPORT_SYMBOL(of_find_all_nodes);
207 
208 /*
209  * Find a property with a given name for a given node
210  * and return the value.
211  */
212 static const void *__of_get_property(const struct device_node *np,
213 				     const char *name, int *lenp)
214 {
215 	struct property *pp = __of_find_property(np, name, lenp);
216 
217 	return pp ? pp->value : NULL;
218 }
219 
220 /*
221  * Find a property with a given name for a given node
222  * and return the value.
223  */
224 const void *of_get_property(const struct device_node *np, const char *name,
225 			    int *lenp)
226 {
227 	struct property *pp = of_find_property(np, name, lenp);
228 
229 	return pp ? pp->value : NULL;
230 }
231 EXPORT_SYMBOL(of_get_property);
232 
233 /** Checks if the given "compat" string matches one of the strings in
234  * the device's "compatible" property
235  */
236 static int __of_device_is_compatible(const struct device_node *device,
237 				     const char *compat)
238 {
239 	const char* cp;
240 	int cplen, l;
241 
242 	cp = __of_get_property(device, "compatible", &cplen);
243 	if (cp == NULL)
244 		return 0;
245 	while (cplen > 0) {
246 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
247 			return 1;
248 		l = strlen(cp) + 1;
249 		cp += l;
250 		cplen -= l;
251 	}
252 
253 	return 0;
254 }
255 
256 /** Checks if the given "compat" string matches one of the strings in
257  * the device's "compatible" property
258  */
259 int of_device_is_compatible(const struct device_node *device,
260 		const char *compat)
261 {
262 	unsigned long flags;
263 	int res;
264 
265 	raw_spin_lock_irqsave(&devtree_lock, flags);
266 	res = __of_device_is_compatible(device, compat);
267 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
268 	return res;
269 }
270 EXPORT_SYMBOL(of_device_is_compatible);
271 
272 /**
273  * of_machine_is_compatible - Test root of device tree for a given compatible value
274  * @compat: compatible string to look for in root node's compatible property.
275  *
276  * Returns true if the root node has the given value in its
277  * compatible property.
278  */
279 int of_machine_is_compatible(const char *compat)
280 {
281 	struct device_node *root;
282 	int rc = 0;
283 
284 	root = of_find_node_by_path("/");
285 	if (root) {
286 		rc = of_device_is_compatible(root, compat);
287 		of_node_put(root);
288 	}
289 	return rc;
290 }
291 EXPORT_SYMBOL(of_machine_is_compatible);
292 
293 /**
294  *  __of_device_is_available - check if a device is available for use
295  *
296  *  @device: Node to check for availability, with locks already held
297  *
298  *  Returns 1 if the status property is absent or set to "okay" or "ok",
299  *  0 otherwise
300  */
301 static int __of_device_is_available(const struct device_node *device)
302 {
303 	const char *status;
304 	int statlen;
305 
306 	status = __of_get_property(device, "status", &statlen);
307 	if (status == NULL)
308 		return 1;
309 
310 	if (statlen > 0) {
311 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
312 			return 1;
313 	}
314 
315 	return 0;
316 }
317 
318 /**
319  *  of_device_is_available - check if a device is available for use
320  *
321  *  @device: Node to check for availability
322  *
323  *  Returns 1 if the status property is absent or set to "okay" or "ok",
324  *  0 otherwise
325  */
326 int of_device_is_available(const struct device_node *device)
327 {
328 	unsigned long flags;
329 	int res;
330 
331 	raw_spin_lock_irqsave(&devtree_lock, flags);
332 	res = __of_device_is_available(device);
333 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
334 	return res;
335 
336 }
337 EXPORT_SYMBOL(of_device_is_available);
338 
339 /**
340  *	of_get_parent - Get a node's parent if any
341  *	@node:	Node to get parent
342  *
343  *	Returns a node pointer with refcount incremented, use
344  *	of_node_put() on it when done.
345  */
346 struct device_node *of_get_parent(const struct device_node *node)
347 {
348 	struct device_node *np;
349 	unsigned long flags;
350 
351 	if (!node)
352 		return NULL;
353 
354 	raw_spin_lock_irqsave(&devtree_lock, flags);
355 	np = of_node_get(node->parent);
356 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
357 	return np;
358 }
359 EXPORT_SYMBOL(of_get_parent);
360 
361 /**
362  *	of_get_next_parent - Iterate to a node's parent
363  *	@node:	Node to get parent of
364  *
365  * 	This is like of_get_parent() except that it drops the
366  * 	refcount on the passed node, making it suitable for iterating
367  * 	through a node's parents.
368  *
369  *	Returns a node pointer with refcount incremented, use
370  *	of_node_put() on it when done.
371  */
372 struct device_node *of_get_next_parent(struct device_node *node)
373 {
374 	struct device_node *parent;
375 	unsigned long flags;
376 
377 	if (!node)
378 		return NULL;
379 
380 	raw_spin_lock_irqsave(&devtree_lock, flags);
381 	parent = of_node_get(node->parent);
382 	of_node_put(node);
383 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
384 	return parent;
385 }
386 EXPORT_SYMBOL(of_get_next_parent);
387 
388 /**
389  *	of_get_next_child - Iterate a node childs
390  *	@node:	parent node
391  *	@prev:	previous child of the parent node, or NULL to get first
392  *
393  *	Returns a node pointer with refcount incremented, use
394  *	of_node_put() on it when done.
395  */
396 struct device_node *of_get_next_child(const struct device_node *node,
397 	struct device_node *prev)
398 {
399 	struct device_node *next;
400 	unsigned long flags;
401 
402 	raw_spin_lock_irqsave(&devtree_lock, flags);
403 	next = prev ? prev->sibling : node->child;
404 	for (; next; next = next->sibling)
405 		if (of_node_get(next))
406 			break;
407 	of_node_put(prev);
408 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
409 	return next;
410 }
411 EXPORT_SYMBOL(of_get_next_child);
412 
413 /**
414  *	of_get_next_available_child - Find the next available child node
415  *	@node:	parent node
416  *	@prev:	previous child of the parent node, or NULL to get first
417  *
418  *      This function is like of_get_next_child(), except that it
419  *      automatically skips any disabled nodes (i.e. status = "disabled").
420  */
421 struct device_node *of_get_next_available_child(const struct device_node *node,
422 	struct device_node *prev)
423 {
424 	struct device_node *next;
425 	unsigned long flags;
426 
427 	raw_spin_lock_irqsave(&devtree_lock, flags);
428 	next = prev ? prev->sibling : node->child;
429 	for (; next; next = next->sibling) {
430 		if (!__of_device_is_available(next))
431 			continue;
432 		if (of_node_get(next))
433 			break;
434 	}
435 	of_node_put(prev);
436 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
437 	return next;
438 }
439 EXPORT_SYMBOL(of_get_next_available_child);
440 
441 /**
442  *	of_get_child_by_name - Find the child node by name for a given parent
443  *	@node:	parent node
444  *	@name:	child name to look for.
445  *
446  *      This function looks for child node for given matching name
447  *
448  *	Returns a node pointer if found, with refcount incremented, use
449  *	of_node_put() on it when done.
450  *	Returns NULL if node is not found.
451  */
452 struct device_node *of_get_child_by_name(const struct device_node *node,
453 				const char *name)
454 {
455 	struct device_node *child;
456 
457 	for_each_child_of_node(node, child)
458 		if (child->name && (of_node_cmp(child->name, name) == 0))
459 			break;
460 	return child;
461 }
462 EXPORT_SYMBOL(of_get_child_by_name);
463 
464 /**
465  *	of_find_node_by_path - Find a node matching a full OF path
466  *	@path:	The full path to match
467  *
468  *	Returns a node pointer with refcount incremented, use
469  *	of_node_put() on it when done.
470  */
471 struct device_node *of_find_node_by_path(const char *path)
472 {
473 	struct device_node *np = of_allnodes;
474 	unsigned long flags;
475 
476 	raw_spin_lock_irqsave(&devtree_lock, flags);
477 	for (; np; np = np->allnext) {
478 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
479 		    && of_node_get(np))
480 			break;
481 	}
482 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
483 	return np;
484 }
485 EXPORT_SYMBOL(of_find_node_by_path);
486 
487 /**
488  *	of_find_node_by_name - Find a node by its "name" property
489  *	@from:	The node to start searching from or NULL, the node
490  *		you pass will not be searched, only the next one
491  *		will; typically, you pass what the previous call
492  *		returned. of_node_put() will be called on it
493  *	@name:	The name string to match against
494  *
495  *	Returns a node pointer with refcount incremented, use
496  *	of_node_put() on it when done.
497  */
498 struct device_node *of_find_node_by_name(struct device_node *from,
499 	const char *name)
500 {
501 	struct device_node *np;
502 	unsigned long flags;
503 
504 	raw_spin_lock_irqsave(&devtree_lock, flags);
505 	np = from ? from->allnext : of_allnodes;
506 	for (; np; np = np->allnext)
507 		if (np->name && (of_node_cmp(np->name, name) == 0)
508 		    && of_node_get(np))
509 			break;
510 	of_node_put(from);
511 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
512 	return np;
513 }
514 EXPORT_SYMBOL(of_find_node_by_name);
515 
516 /**
517  *	of_find_node_by_type - Find a node by its "device_type" property
518  *	@from:	The node to start searching from, or NULL to start searching
519  *		the entire device tree. The node you pass will not be
520  *		searched, only the next one will; typically, you pass
521  *		what the previous call returned. of_node_put() will be
522  *		called on from for you.
523  *	@type:	The type string to match against
524  *
525  *	Returns a node pointer with refcount incremented, use
526  *	of_node_put() on it when done.
527  */
528 struct device_node *of_find_node_by_type(struct device_node *from,
529 	const char *type)
530 {
531 	struct device_node *np;
532 	unsigned long flags;
533 
534 	raw_spin_lock_irqsave(&devtree_lock, flags);
535 	np = from ? from->allnext : of_allnodes;
536 	for (; np; np = np->allnext)
537 		if (np->type && (of_node_cmp(np->type, type) == 0)
538 		    && of_node_get(np))
539 			break;
540 	of_node_put(from);
541 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
542 	return np;
543 }
544 EXPORT_SYMBOL(of_find_node_by_type);
545 
546 /**
547  *	of_find_compatible_node - Find a node based on type and one of the
548  *                                tokens in its "compatible" property
549  *	@from:		The node to start searching from or NULL, the node
550  *			you pass will not be searched, only the next one
551  *			will; typically, you pass what the previous call
552  *			returned. of_node_put() will be called on it
553  *	@type:		The type string to match "device_type" or NULL to ignore
554  *	@compatible:	The string to match to one of the tokens in the device
555  *			"compatible" list.
556  *
557  *	Returns a node pointer with refcount incremented, use
558  *	of_node_put() on it when done.
559  */
560 struct device_node *of_find_compatible_node(struct device_node *from,
561 	const char *type, const char *compatible)
562 {
563 	struct device_node *np;
564 	unsigned long flags;
565 
566 	raw_spin_lock_irqsave(&devtree_lock, flags);
567 	np = from ? from->allnext : of_allnodes;
568 	for (; np; np = np->allnext) {
569 		if (type
570 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
571 			continue;
572 		if (__of_device_is_compatible(np, compatible) &&
573 		    of_node_get(np))
574 			break;
575 	}
576 	of_node_put(from);
577 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
578 	return np;
579 }
580 EXPORT_SYMBOL(of_find_compatible_node);
581 
582 /**
583  *	of_find_node_with_property - Find a node which has a property with
584  *                                   the given name.
585  *	@from:		The node to start searching from or NULL, the node
586  *			you pass will not be searched, only the next one
587  *			will; typically, you pass what the previous call
588  *			returned. of_node_put() will be called on it
589  *	@prop_name:	The name of the property to look for.
590  *
591  *	Returns a node pointer with refcount incremented, use
592  *	of_node_put() on it when done.
593  */
594 struct device_node *of_find_node_with_property(struct device_node *from,
595 	const char *prop_name)
596 {
597 	struct device_node *np;
598 	struct property *pp;
599 	unsigned long flags;
600 
601 	raw_spin_lock_irqsave(&devtree_lock, flags);
602 	np = from ? from->allnext : of_allnodes;
603 	for (; np; np = np->allnext) {
604 		for (pp = np->properties; pp; pp = pp->next) {
605 			if (of_prop_cmp(pp->name, prop_name) == 0) {
606 				of_node_get(np);
607 				goto out;
608 			}
609 		}
610 	}
611 out:
612 	of_node_put(from);
613 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
614 	return np;
615 }
616 EXPORT_SYMBOL(of_find_node_with_property);
617 
618 static
619 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
620 					   const struct device_node *node)
621 {
622 	if (!matches)
623 		return NULL;
624 
625 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
626 		int match = 1;
627 		if (matches->name[0])
628 			match &= node->name
629 				&& !strcmp(matches->name, node->name);
630 		if (matches->type[0])
631 			match &= node->type
632 				&& !strcmp(matches->type, node->type);
633 		if (matches->compatible[0])
634 			match &= __of_device_is_compatible(node,
635 							   matches->compatible);
636 		if (match)
637 			return matches;
638 		matches++;
639 	}
640 	return NULL;
641 }
642 
643 /**
644  * of_match_node - Tell if an device_node has a matching of_match structure
645  *	@matches:	array of of device match structures to search in
646  *	@node:		the of device structure to match against
647  *
648  *	Low level utility function used by device matching.
649  */
650 const struct of_device_id *of_match_node(const struct of_device_id *matches,
651 					 const struct device_node *node)
652 {
653 	const struct of_device_id *match;
654 	unsigned long flags;
655 
656 	raw_spin_lock_irqsave(&devtree_lock, flags);
657 	match = __of_match_node(matches, node);
658 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
659 	return match;
660 }
661 EXPORT_SYMBOL(of_match_node);
662 
663 /**
664  *	of_find_matching_node_and_match - Find a node based on an of_device_id
665  *					  match table.
666  *	@from:		The node to start searching from or NULL, the node
667  *			you pass will not be searched, only the next one
668  *			will; typically, you pass what the previous call
669  *			returned. of_node_put() will be called on it
670  *	@matches:	array of of device match structures to search in
671  *	@match		Updated to point at the matches entry which matched
672  *
673  *	Returns a node pointer with refcount incremented, use
674  *	of_node_put() on it when done.
675  */
676 struct device_node *of_find_matching_node_and_match(struct device_node *from,
677 					const struct of_device_id *matches,
678 					const struct of_device_id **match)
679 {
680 	struct device_node *np;
681 	const struct of_device_id *m;
682 	unsigned long flags;
683 
684 	if (match)
685 		*match = NULL;
686 
687 	raw_spin_lock_irqsave(&devtree_lock, flags);
688 	np = from ? from->allnext : of_allnodes;
689 	for (; np; np = np->allnext) {
690 		m = __of_match_node(matches, np);
691 		if (m && of_node_get(np)) {
692 			if (match)
693 				*match = m;
694 			break;
695 		}
696 	}
697 	of_node_put(from);
698 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
699 	return np;
700 }
701 EXPORT_SYMBOL(of_find_matching_node_and_match);
702 
703 /**
704  * of_modalias_node - Lookup appropriate modalias for a device node
705  * @node:	pointer to a device tree node
706  * @modalias:	Pointer to buffer that modalias value will be copied into
707  * @len:	Length of modalias value
708  *
709  * Based on the value of the compatible property, this routine will attempt
710  * to choose an appropriate modalias value for a particular device tree node.
711  * It does this by stripping the manufacturer prefix (as delimited by a ',')
712  * from the first entry in the compatible list property.
713  *
714  * This routine returns 0 on success, <0 on failure.
715  */
716 int of_modalias_node(struct device_node *node, char *modalias, int len)
717 {
718 	const char *compatible, *p;
719 	int cplen;
720 
721 	compatible = of_get_property(node, "compatible", &cplen);
722 	if (!compatible || strlen(compatible) > cplen)
723 		return -ENODEV;
724 	p = strchr(compatible, ',');
725 	strlcpy(modalias, p ? p + 1 : compatible, len);
726 	return 0;
727 }
728 EXPORT_SYMBOL_GPL(of_modalias_node);
729 
730 /**
731  * of_find_node_by_phandle - Find a node given a phandle
732  * @handle:	phandle of the node to find
733  *
734  * Returns a node pointer with refcount incremented, use
735  * of_node_put() on it when done.
736  */
737 struct device_node *of_find_node_by_phandle(phandle handle)
738 {
739 	struct device_node *np;
740 	unsigned long flags;
741 
742 	raw_spin_lock_irqsave(&devtree_lock, flags);
743 	for (np = of_allnodes; np; np = np->allnext)
744 		if (np->phandle == handle)
745 			break;
746 	of_node_get(np);
747 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
748 	return np;
749 }
750 EXPORT_SYMBOL(of_find_node_by_phandle);
751 
752 /**
753  * of_find_property_value_of_size
754  *
755  * @np:		device node from which the property value is to be read.
756  * @propname:	name of the property to be searched.
757  * @len:	requested length of property value
758  *
759  * Search for a property in a device node and valid the requested size.
760  * Returns the property value on success, -EINVAL if the property does not
761  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
762  * property data isn't large enough.
763  *
764  */
765 static void *of_find_property_value_of_size(const struct device_node *np,
766 			const char *propname, u32 len)
767 {
768 	struct property *prop = of_find_property(np, propname, NULL);
769 
770 	if (!prop)
771 		return ERR_PTR(-EINVAL);
772 	if (!prop->value)
773 		return ERR_PTR(-ENODATA);
774 	if (len > prop->length)
775 		return ERR_PTR(-EOVERFLOW);
776 
777 	return prop->value;
778 }
779 
780 /**
781  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
782  *
783  * @np:		device node from which the property value is to be read.
784  * @propname:	name of the property to be searched.
785  * @index:	index of the u32 in the list of values
786  * @out_value:	pointer to return value, modified only if no error.
787  *
788  * Search for a property in a device node and read nth 32-bit value from
789  * it. Returns 0 on success, -EINVAL if the property does not exist,
790  * -ENODATA if property does not have a value, and -EOVERFLOW if the
791  * property data isn't large enough.
792  *
793  * The out_value is modified only if a valid u32 value can be decoded.
794  */
795 int of_property_read_u32_index(const struct device_node *np,
796 				       const char *propname,
797 				       u32 index, u32 *out_value)
798 {
799 	const u32 *val = of_find_property_value_of_size(np, propname,
800 					((index + 1) * sizeof(*out_value)));
801 
802 	if (IS_ERR(val))
803 		return PTR_ERR(val);
804 
805 	*out_value = be32_to_cpup(((__be32 *)val) + index);
806 	return 0;
807 }
808 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
809 
810 /**
811  * of_property_read_u8_array - Find and read an array of u8 from a property.
812  *
813  * @np:		device node from which the property value is to be read.
814  * @propname:	name of the property to be searched.
815  * @out_values:	pointer to return value, modified only if return value is 0.
816  * @sz:		number of array elements to read
817  *
818  * Search for a property in a device node and read 8-bit value(s) from
819  * it. Returns 0 on success, -EINVAL if the property does not exist,
820  * -ENODATA if property does not have a value, and -EOVERFLOW if the
821  * property data isn't large enough.
822  *
823  * dts entry of array should be like:
824  *	property = /bits/ 8 <0x50 0x60 0x70>;
825  *
826  * The out_values is modified only if a valid u8 value can be decoded.
827  */
828 int of_property_read_u8_array(const struct device_node *np,
829 			const char *propname, u8 *out_values, size_t sz)
830 {
831 	const u8 *val = of_find_property_value_of_size(np, propname,
832 						(sz * sizeof(*out_values)));
833 
834 	if (IS_ERR(val))
835 		return PTR_ERR(val);
836 
837 	while (sz--)
838 		*out_values++ = *val++;
839 	return 0;
840 }
841 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
842 
843 /**
844  * of_property_read_u16_array - Find and read an array of u16 from a property.
845  *
846  * @np:		device node from which the property value is to be read.
847  * @propname:	name of the property to be searched.
848  * @out_values:	pointer to return value, modified only if return value is 0.
849  * @sz:		number of array elements to read
850  *
851  * Search for a property in a device node and read 16-bit value(s) from
852  * it. Returns 0 on success, -EINVAL if the property does not exist,
853  * -ENODATA if property does not have a value, and -EOVERFLOW if the
854  * property data isn't large enough.
855  *
856  * dts entry of array should be like:
857  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
858  *
859  * The out_values is modified only if a valid u16 value can be decoded.
860  */
861 int of_property_read_u16_array(const struct device_node *np,
862 			const char *propname, u16 *out_values, size_t sz)
863 {
864 	const __be16 *val = of_find_property_value_of_size(np, propname,
865 						(sz * sizeof(*out_values)));
866 
867 	if (IS_ERR(val))
868 		return PTR_ERR(val);
869 
870 	while (sz--)
871 		*out_values++ = be16_to_cpup(val++);
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
875 
876 /**
877  * of_property_read_u32_array - Find and read an array of 32 bit integers
878  * from a property.
879  *
880  * @np:		device node from which the property value is to be read.
881  * @propname:	name of the property to be searched.
882  * @out_values:	pointer to return value, modified only if return value is 0.
883  * @sz:		number of array elements to read
884  *
885  * Search for a property in a device node and read 32-bit value(s) from
886  * it. Returns 0 on success, -EINVAL if the property does not exist,
887  * -ENODATA if property does not have a value, and -EOVERFLOW if the
888  * property data isn't large enough.
889  *
890  * The out_values is modified only if a valid u32 value can be decoded.
891  */
892 int of_property_read_u32_array(const struct device_node *np,
893 			       const char *propname, u32 *out_values,
894 			       size_t sz)
895 {
896 	const __be32 *val = of_find_property_value_of_size(np, propname,
897 						(sz * sizeof(*out_values)));
898 
899 	if (IS_ERR(val))
900 		return PTR_ERR(val);
901 
902 	while (sz--)
903 		*out_values++ = be32_to_cpup(val++);
904 	return 0;
905 }
906 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
907 
908 /**
909  * of_property_read_u64 - Find and read a 64 bit integer from a property
910  * @np:		device node from which the property value is to be read.
911  * @propname:	name of the property to be searched.
912  * @out_value:	pointer to return value, modified only if return value is 0.
913  *
914  * Search for a property in a device node and read a 64-bit value from
915  * it. Returns 0 on success, -EINVAL if the property does not exist,
916  * -ENODATA if property does not have a value, and -EOVERFLOW if the
917  * property data isn't large enough.
918  *
919  * The out_value is modified only if a valid u64 value can be decoded.
920  */
921 int of_property_read_u64(const struct device_node *np, const char *propname,
922 			 u64 *out_value)
923 {
924 	const __be32 *val = of_find_property_value_of_size(np, propname,
925 						sizeof(*out_value));
926 
927 	if (IS_ERR(val))
928 		return PTR_ERR(val);
929 
930 	*out_value = of_read_number(val, 2);
931 	return 0;
932 }
933 EXPORT_SYMBOL_GPL(of_property_read_u64);
934 
935 /**
936  * of_property_read_string - Find and read a string from a property
937  * @np:		device node from which the property value is to be read.
938  * @propname:	name of the property to be searched.
939  * @out_string:	pointer to null terminated return string, modified only if
940  *		return value is 0.
941  *
942  * Search for a property in a device tree node and retrieve a null
943  * terminated string value (pointer to data, not a copy). Returns 0 on
944  * success, -EINVAL if the property does not exist, -ENODATA if property
945  * does not have a value, and -EILSEQ if the string is not null-terminated
946  * within the length of the property data.
947  *
948  * The out_string pointer is modified only if a valid string can be decoded.
949  */
950 int of_property_read_string(struct device_node *np, const char *propname,
951 				const char **out_string)
952 {
953 	struct property *prop = of_find_property(np, propname, NULL);
954 	if (!prop)
955 		return -EINVAL;
956 	if (!prop->value)
957 		return -ENODATA;
958 	if (strnlen(prop->value, prop->length) >= prop->length)
959 		return -EILSEQ;
960 	*out_string = prop->value;
961 	return 0;
962 }
963 EXPORT_SYMBOL_GPL(of_property_read_string);
964 
965 /**
966  * of_property_read_string_index - Find and read a string from a multiple
967  * strings property.
968  * @np:		device node from which the property value is to be read.
969  * @propname:	name of the property to be searched.
970  * @index:	index of the string in the list of strings
971  * @out_string:	pointer to null terminated return string, modified only if
972  *		return value is 0.
973  *
974  * Search for a property in a device tree node and retrieve a null
975  * terminated string value (pointer to data, not a copy) in the list of strings
976  * contained in that property.
977  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
978  * property does not have a value, and -EILSEQ if the string is not
979  * null-terminated within the length of the property data.
980  *
981  * The out_string pointer is modified only if a valid string can be decoded.
982  */
983 int of_property_read_string_index(struct device_node *np, const char *propname,
984 				  int index, const char **output)
985 {
986 	struct property *prop = of_find_property(np, propname, NULL);
987 	int i = 0;
988 	size_t l = 0, total = 0;
989 	const char *p;
990 
991 	if (!prop)
992 		return -EINVAL;
993 	if (!prop->value)
994 		return -ENODATA;
995 	if (strnlen(prop->value, prop->length) >= prop->length)
996 		return -EILSEQ;
997 
998 	p = prop->value;
999 
1000 	for (i = 0; total < prop->length; total += l, p += l) {
1001 		l = strlen(p) + 1;
1002 		if (i++ == index) {
1003 			*output = p;
1004 			return 0;
1005 		}
1006 	}
1007 	return -ENODATA;
1008 }
1009 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1010 
1011 /**
1012  * of_property_match_string() - Find string in a list and return index
1013  * @np: pointer to node containing string list property
1014  * @propname: string list property name
1015  * @string: pointer to string to search for in string list
1016  *
1017  * This function searches a string list property and returns the index
1018  * of a specific string value.
1019  */
1020 int of_property_match_string(struct device_node *np, const char *propname,
1021 			     const char *string)
1022 {
1023 	struct property *prop = of_find_property(np, propname, NULL);
1024 	size_t l;
1025 	int i;
1026 	const char *p, *end;
1027 
1028 	if (!prop)
1029 		return -EINVAL;
1030 	if (!prop->value)
1031 		return -ENODATA;
1032 
1033 	p = prop->value;
1034 	end = p + prop->length;
1035 
1036 	for (i = 0; p < end; i++, p += l) {
1037 		l = strlen(p) + 1;
1038 		if (p + l > end)
1039 			return -EILSEQ;
1040 		pr_debug("comparing %s with %s\n", string, p);
1041 		if (strcmp(string, p) == 0)
1042 			return i; /* Found it; return index */
1043 	}
1044 	return -ENODATA;
1045 }
1046 EXPORT_SYMBOL_GPL(of_property_match_string);
1047 
1048 /**
1049  * of_property_count_strings - Find and return the number of strings from a
1050  * multiple strings property.
1051  * @np:		device node from which the property value is to be read.
1052  * @propname:	name of the property to be searched.
1053  *
1054  * Search for a property in a device tree node and retrieve the number of null
1055  * terminated string contain in it. Returns the number of strings on
1056  * success, -EINVAL if the property does not exist, -ENODATA if property
1057  * does not have a value, and -EILSEQ if the string is not null-terminated
1058  * within the length of the property data.
1059  */
1060 int of_property_count_strings(struct device_node *np, const char *propname)
1061 {
1062 	struct property *prop = of_find_property(np, propname, NULL);
1063 	int i = 0;
1064 	size_t l = 0, total = 0;
1065 	const char *p;
1066 
1067 	if (!prop)
1068 		return -EINVAL;
1069 	if (!prop->value)
1070 		return -ENODATA;
1071 	if (strnlen(prop->value, prop->length) >= prop->length)
1072 		return -EILSEQ;
1073 
1074 	p = prop->value;
1075 
1076 	for (i = 0; total < prop->length; total += l, p += l, i++)
1077 		l = strlen(p) + 1;
1078 
1079 	return i;
1080 }
1081 EXPORT_SYMBOL_GPL(of_property_count_strings);
1082 
1083 /**
1084  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1085  * @np: Pointer to device node holding phandle property
1086  * @phandle_name: Name of property holding a phandle value
1087  * @index: For properties holding a table of phandles, this is the index into
1088  *         the table
1089  *
1090  * Returns the device_node pointer with refcount incremented.  Use
1091  * of_node_put() on it when done.
1092  */
1093 struct device_node *of_parse_phandle(const struct device_node *np,
1094 				     const char *phandle_name, int index)
1095 {
1096 	const __be32 *phandle;
1097 	int size;
1098 
1099 	phandle = of_get_property(np, phandle_name, &size);
1100 	if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
1101 		return NULL;
1102 
1103 	return of_find_node_by_phandle(be32_to_cpup(phandle + index));
1104 }
1105 EXPORT_SYMBOL(of_parse_phandle);
1106 
1107 /**
1108  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1109  * @np:		pointer to a device tree node containing a list
1110  * @list_name:	property name that contains a list
1111  * @cells_name:	property name that specifies phandles' arguments count
1112  * @index:	index of a phandle to parse out
1113  * @out_args:	optional pointer to output arguments structure (will be filled)
1114  *
1115  * This function is useful to parse lists of phandles and their arguments.
1116  * Returns 0 on success and fills out_args, on error returns appropriate
1117  * errno value.
1118  *
1119  * Caller is responsible to call of_node_put() on the returned out_args->node
1120  * pointer.
1121  *
1122  * Example:
1123  *
1124  * phandle1: node1 {
1125  * 	#list-cells = <2>;
1126  * }
1127  *
1128  * phandle2: node2 {
1129  * 	#list-cells = <1>;
1130  * }
1131  *
1132  * node3 {
1133  * 	list = <&phandle1 1 2 &phandle2 3>;
1134  * }
1135  *
1136  * To get a device_node of the `node2' node you may call this:
1137  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1138  */
1139 static int __of_parse_phandle_with_args(const struct device_node *np,
1140 					const char *list_name,
1141 					const char *cells_name, int index,
1142 					struct of_phandle_args *out_args)
1143 {
1144 	const __be32 *list, *list_end;
1145 	int rc = 0, size, cur_index = 0;
1146 	uint32_t count = 0;
1147 	struct device_node *node = NULL;
1148 	phandle phandle;
1149 
1150 	/* Retrieve the phandle list property */
1151 	list = of_get_property(np, list_name, &size);
1152 	if (!list)
1153 		return -ENOENT;
1154 	list_end = list + size / sizeof(*list);
1155 
1156 	/* Loop over the phandles until all the requested entry is found */
1157 	while (list < list_end) {
1158 		rc = -EINVAL;
1159 		count = 0;
1160 
1161 		/*
1162 		 * If phandle is 0, then it is an empty entry with no
1163 		 * arguments.  Skip forward to the next entry.
1164 		 */
1165 		phandle = be32_to_cpup(list++);
1166 		if (phandle) {
1167 			/*
1168 			 * Find the provider node and parse the #*-cells
1169 			 * property to determine the argument length
1170 			 */
1171 			node = of_find_node_by_phandle(phandle);
1172 			if (!node) {
1173 				pr_err("%s: could not find phandle\n",
1174 					 np->full_name);
1175 				goto err;
1176 			}
1177 			if (of_property_read_u32(node, cells_name, &count)) {
1178 				pr_err("%s: could not get %s for %s\n",
1179 					 np->full_name, cells_name,
1180 					 node->full_name);
1181 				goto err;
1182 			}
1183 
1184 			/*
1185 			 * Make sure that the arguments actually fit in the
1186 			 * remaining property data length
1187 			 */
1188 			if (list + count > list_end) {
1189 				pr_err("%s: arguments longer than property\n",
1190 					 np->full_name);
1191 				goto err;
1192 			}
1193 		}
1194 
1195 		/*
1196 		 * All of the error cases above bail out of the loop, so at
1197 		 * this point, the parsing is successful. If the requested
1198 		 * index matches, then fill the out_args structure and return,
1199 		 * or return -ENOENT for an empty entry.
1200 		 */
1201 		rc = -ENOENT;
1202 		if (cur_index == index) {
1203 			if (!phandle)
1204 				goto err;
1205 
1206 			if (out_args) {
1207 				int i;
1208 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1209 					count = MAX_PHANDLE_ARGS;
1210 				out_args->np = node;
1211 				out_args->args_count = count;
1212 				for (i = 0; i < count; i++)
1213 					out_args->args[i] = be32_to_cpup(list++);
1214 			} else {
1215 				of_node_put(node);
1216 			}
1217 
1218 			/* Found it! return success */
1219 			return 0;
1220 		}
1221 
1222 		of_node_put(node);
1223 		node = NULL;
1224 		list += count;
1225 		cur_index++;
1226 	}
1227 
1228 	/*
1229 	 * Unlock node before returning result; will be one of:
1230 	 * -ENOENT : index is for empty phandle
1231 	 * -EINVAL : parsing error on data
1232 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1233 	 */
1234 	rc = index < 0 ? cur_index : -ENOENT;
1235  err:
1236 	if (node)
1237 		of_node_put(node);
1238 	return rc;
1239 }
1240 
1241 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1242 				const char *cells_name, int index,
1243 				struct of_phandle_args *out_args)
1244 {
1245 	if (index < 0)
1246 		return -EINVAL;
1247 	return __of_parse_phandle_with_args(np, list_name, cells_name, index, out_args);
1248 }
1249 EXPORT_SYMBOL(of_parse_phandle_with_args);
1250 
1251 /**
1252  * of_count_phandle_with_args() - Find the number of phandles references in a property
1253  * @np:		pointer to a device tree node containing a list
1254  * @list_name:	property name that contains a list
1255  * @cells_name:	property name that specifies phandles' arguments count
1256  *
1257  * Returns the number of phandle + argument tuples within a property. It
1258  * is a typical pattern to encode a list of phandle and variable
1259  * arguments into a single property. The number of arguments is encoded
1260  * by a property in the phandle-target node. For example, a gpios
1261  * property would contain a list of GPIO specifies consisting of a
1262  * phandle and 1 or more arguments. The number of arguments are
1263  * determined by the #gpio-cells property in the node pointed to by the
1264  * phandle.
1265  */
1266 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1267 				const char *cells_name)
1268 {
1269 	return __of_parse_phandle_with_args(np, list_name, cells_name, -1, NULL);
1270 }
1271 EXPORT_SYMBOL(of_count_phandle_with_args);
1272 
1273 #if defined(CONFIG_OF_DYNAMIC)
1274 static int of_property_notify(int action, struct device_node *np,
1275 			      struct property *prop)
1276 {
1277 	struct of_prop_reconfig pr;
1278 
1279 	pr.dn = np;
1280 	pr.prop = prop;
1281 	return of_reconfig_notify(action, &pr);
1282 }
1283 #else
1284 static int of_property_notify(int action, struct device_node *np,
1285 			      struct property *prop)
1286 {
1287 	return 0;
1288 }
1289 #endif
1290 
1291 /**
1292  * of_add_property - Add a property to a node
1293  */
1294 int of_add_property(struct device_node *np, struct property *prop)
1295 {
1296 	struct property **next;
1297 	unsigned long flags;
1298 	int rc;
1299 
1300 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1301 	if (rc)
1302 		return rc;
1303 
1304 	prop->next = NULL;
1305 	raw_spin_lock_irqsave(&devtree_lock, flags);
1306 	next = &np->properties;
1307 	while (*next) {
1308 		if (strcmp(prop->name, (*next)->name) == 0) {
1309 			/* duplicate ! don't insert it */
1310 			raw_spin_unlock_irqrestore(&devtree_lock, flags);
1311 			return -1;
1312 		}
1313 		next = &(*next)->next;
1314 	}
1315 	*next = prop;
1316 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1317 
1318 #ifdef CONFIG_PROC_DEVICETREE
1319 	/* try to add to proc as well if it was initialized */
1320 	if (np->pde)
1321 		proc_device_tree_add_prop(np->pde, prop);
1322 #endif /* CONFIG_PROC_DEVICETREE */
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * of_remove_property - Remove a property from a node.
1329  *
1330  * Note that we don't actually remove it, since we have given out
1331  * who-knows-how-many pointers to the data using get-property.
1332  * Instead we just move the property to the "dead properties"
1333  * list, so it won't be found any more.
1334  */
1335 int of_remove_property(struct device_node *np, struct property *prop)
1336 {
1337 	struct property **next;
1338 	unsigned long flags;
1339 	int found = 0;
1340 	int rc;
1341 
1342 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1343 	if (rc)
1344 		return rc;
1345 
1346 	raw_spin_lock_irqsave(&devtree_lock, flags);
1347 	next = &np->properties;
1348 	while (*next) {
1349 		if (*next == prop) {
1350 			/* found the node */
1351 			*next = prop->next;
1352 			prop->next = np->deadprops;
1353 			np->deadprops = prop;
1354 			found = 1;
1355 			break;
1356 		}
1357 		next = &(*next)->next;
1358 	}
1359 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1360 
1361 	if (!found)
1362 		return -ENODEV;
1363 
1364 #ifdef CONFIG_PROC_DEVICETREE
1365 	/* try to remove the proc node as well */
1366 	if (np->pde)
1367 		proc_device_tree_remove_prop(np->pde, prop);
1368 #endif /* CONFIG_PROC_DEVICETREE */
1369 
1370 	return 0;
1371 }
1372 
1373 /*
1374  * of_update_property - Update a property in a node, if the property does
1375  * not exist, add it.
1376  *
1377  * Note that we don't actually remove it, since we have given out
1378  * who-knows-how-many pointers to the data using get-property.
1379  * Instead we just move the property to the "dead properties" list,
1380  * and add the new property to the property list
1381  */
1382 int of_update_property(struct device_node *np, struct property *newprop)
1383 {
1384 	struct property **next, *oldprop;
1385 	unsigned long flags;
1386 	int rc, found = 0;
1387 
1388 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1389 	if (rc)
1390 		return rc;
1391 
1392 	if (!newprop->name)
1393 		return -EINVAL;
1394 
1395 	oldprop = of_find_property(np, newprop->name, NULL);
1396 	if (!oldprop)
1397 		return of_add_property(np, newprop);
1398 
1399 	raw_spin_lock_irqsave(&devtree_lock, flags);
1400 	next = &np->properties;
1401 	while (*next) {
1402 		if (*next == oldprop) {
1403 			/* found the node */
1404 			newprop->next = oldprop->next;
1405 			*next = newprop;
1406 			oldprop->next = np->deadprops;
1407 			np->deadprops = oldprop;
1408 			found = 1;
1409 			break;
1410 		}
1411 		next = &(*next)->next;
1412 	}
1413 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1414 
1415 	if (!found)
1416 		return -ENODEV;
1417 
1418 #ifdef CONFIG_PROC_DEVICETREE
1419 	/* try to add to proc as well if it was initialized */
1420 	if (np->pde)
1421 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1422 #endif /* CONFIG_PROC_DEVICETREE */
1423 
1424 	return 0;
1425 }
1426 
1427 #if defined(CONFIG_OF_DYNAMIC)
1428 /*
1429  * Support for dynamic device trees.
1430  *
1431  * On some platforms, the device tree can be manipulated at runtime.
1432  * The routines in this section support adding, removing and changing
1433  * device tree nodes.
1434  */
1435 
1436 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1437 
1438 int of_reconfig_notifier_register(struct notifier_block *nb)
1439 {
1440 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1441 }
1442 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1443 
1444 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1445 {
1446 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1447 }
1448 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1449 
1450 int of_reconfig_notify(unsigned long action, void *p)
1451 {
1452 	int rc;
1453 
1454 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1455 	return notifier_to_errno(rc);
1456 }
1457 
1458 #ifdef CONFIG_PROC_DEVICETREE
1459 static void of_add_proc_dt_entry(struct device_node *dn)
1460 {
1461 	struct proc_dir_entry *ent;
1462 
1463 	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1464 	if (ent)
1465 		proc_device_tree_add_node(dn, ent);
1466 }
1467 #else
1468 static void of_add_proc_dt_entry(struct device_node *dn)
1469 {
1470 	return;
1471 }
1472 #endif
1473 
1474 /**
1475  * of_attach_node - Plug a device node into the tree and global list.
1476  */
1477 int of_attach_node(struct device_node *np)
1478 {
1479 	unsigned long flags;
1480 	int rc;
1481 
1482 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1483 	if (rc)
1484 		return rc;
1485 
1486 	raw_spin_lock_irqsave(&devtree_lock, flags);
1487 	np->sibling = np->parent->child;
1488 	np->allnext = of_allnodes;
1489 	np->parent->child = np;
1490 	of_allnodes = np;
1491 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1492 
1493 	of_add_proc_dt_entry(np);
1494 	return 0;
1495 }
1496 
1497 #ifdef CONFIG_PROC_DEVICETREE
1498 static void of_remove_proc_dt_entry(struct device_node *dn)
1499 {
1500 	proc_remove(dn->pde);
1501 }
1502 #else
1503 static void of_remove_proc_dt_entry(struct device_node *dn)
1504 {
1505 	return;
1506 }
1507 #endif
1508 
1509 /**
1510  * of_detach_node - "Unplug" a node from the device tree.
1511  *
1512  * The caller must hold a reference to the node.  The memory associated with
1513  * the node is not freed until its refcount goes to zero.
1514  */
1515 int of_detach_node(struct device_node *np)
1516 {
1517 	struct device_node *parent;
1518 	unsigned long flags;
1519 	int rc = 0;
1520 
1521 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1522 	if (rc)
1523 		return rc;
1524 
1525 	raw_spin_lock_irqsave(&devtree_lock, flags);
1526 
1527 	if (of_node_check_flag(np, OF_DETACHED)) {
1528 		/* someone already detached it */
1529 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1530 		return rc;
1531 	}
1532 
1533 	parent = np->parent;
1534 	if (!parent) {
1535 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1536 		return rc;
1537 	}
1538 
1539 	if (of_allnodes == np)
1540 		of_allnodes = np->allnext;
1541 	else {
1542 		struct device_node *prev;
1543 		for (prev = of_allnodes;
1544 		     prev->allnext != np;
1545 		     prev = prev->allnext)
1546 			;
1547 		prev->allnext = np->allnext;
1548 	}
1549 
1550 	if (parent->child == np)
1551 		parent->child = np->sibling;
1552 	else {
1553 		struct device_node *prevsib;
1554 		for (prevsib = np->parent->child;
1555 		     prevsib->sibling != np;
1556 		     prevsib = prevsib->sibling)
1557 			;
1558 		prevsib->sibling = np->sibling;
1559 	}
1560 
1561 	of_node_set_flag(np, OF_DETACHED);
1562 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1563 
1564 	of_remove_proc_dt_entry(np);
1565 	return rc;
1566 }
1567 #endif /* defined(CONFIG_OF_DYNAMIC) */
1568 
1569 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1570 			 int id, const char *stem, int stem_len)
1571 {
1572 	ap->np = np;
1573 	ap->id = id;
1574 	strncpy(ap->stem, stem, stem_len);
1575 	ap->stem[stem_len] = 0;
1576 	list_add_tail(&ap->link, &aliases_lookup);
1577 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1578 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1579 }
1580 
1581 /**
1582  * of_alias_scan - Scan all properties of 'aliases' node
1583  *
1584  * The function scans all the properties of 'aliases' node and populate
1585  * the the global lookup table with the properties.  It returns the
1586  * number of alias_prop found, or error code in error case.
1587  *
1588  * @dt_alloc:	An allocator that provides a virtual address to memory
1589  *		for the resulting tree
1590  */
1591 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1592 {
1593 	struct property *pp;
1594 
1595 	of_chosen = of_find_node_by_path("/chosen");
1596 	if (of_chosen == NULL)
1597 		of_chosen = of_find_node_by_path("/chosen@0");
1598 	of_aliases = of_find_node_by_path("/aliases");
1599 	if (!of_aliases)
1600 		return;
1601 
1602 	for_each_property_of_node(of_aliases, pp) {
1603 		const char *start = pp->name;
1604 		const char *end = start + strlen(start);
1605 		struct device_node *np;
1606 		struct alias_prop *ap;
1607 		int id, len;
1608 
1609 		/* Skip those we do not want to proceed */
1610 		if (!strcmp(pp->name, "name") ||
1611 		    !strcmp(pp->name, "phandle") ||
1612 		    !strcmp(pp->name, "linux,phandle"))
1613 			continue;
1614 
1615 		np = of_find_node_by_path(pp->value);
1616 		if (!np)
1617 			continue;
1618 
1619 		/* walk the alias backwards to extract the id and work out
1620 		 * the 'stem' string */
1621 		while (isdigit(*(end-1)) && end > start)
1622 			end--;
1623 		len = end - start;
1624 
1625 		if (kstrtoint(end, 10, &id) < 0)
1626 			continue;
1627 
1628 		/* Allocate an alias_prop with enough space for the stem */
1629 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1630 		if (!ap)
1631 			continue;
1632 		ap->alias = start;
1633 		of_alias_add(ap, np, id, start, len);
1634 	}
1635 }
1636 
1637 /**
1638  * of_alias_get_id - Get alias id for the given device_node
1639  * @np:		Pointer to the given device_node
1640  * @stem:	Alias stem of the given device_node
1641  *
1642  * The function travels the lookup table to get alias id for the given
1643  * device_node and alias stem.  It returns the alias id if find it.
1644  */
1645 int of_alias_get_id(struct device_node *np, const char *stem)
1646 {
1647 	struct alias_prop *app;
1648 	int id = -ENODEV;
1649 
1650 	mutex_lock(&of_aliases_mutex);
1651 	list_for_each_entry(app, &aliases_lookup, link) {
1652 		if (strcmp(app->stem, stem) != 0)
1653 			continue;
1654 
1655 		if (np == app->np) {
1656 			id = app->id;
1657 			break;
1658 		}
1659 	}
1660 	mutex_unlock(&of_aliases_mutex);
1661 
1662 	return id;
1663 }
1664 EXPORT_SYMBOL_GPL(of_alias_get_id);
1665 
1666 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1667 			       u32 *pu)
1668 {
1669 	const void *curv = cur;
1670 
1671 	if (!prop)
1672 		return NULL;
1673 
1674 	if (!cur) {
1675 		curv = prop->value;
1676 		goto out_val;
1677 	}
1678 
1679 	curv += sizeof(*cur);
1680 	if (curv >= prop->value + prop->length)
1681 		return NULL;
1682 
1683 out_val:
1684 	*pu = be32_to_cpup(curv);
1685 	return curv;
1686 }
1687 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1688 
1689 const char *of_prop_next_string(struct property *prop, const char *cur)
1690 {
1691 	const void *curv = cur;
1692 
1693 	if (!prop)
1694 		return NULL;
1695 
1696 	if (!cur)
1697 		return prop->value;
1698 
1699 	curv += strlen(cur) + 1;
1700 	if (curv >= prop->value + prop->length)
1701 		return NULL;
1702 
1703 	return curv;
1704 }
1705 EXPORT_SYMBOL_GPL(of_prop_next_string);
1706