1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 21 #define pr_fmt(fmt) "OF: " fmt 22 23 #include <linux/console.h> 24 #include <linux/ctype.h> 25 #include <linux/cpu.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_graph.h> 29 #include <linux/spinlock.h> 30 #include <linux/slab.h> 31 #include <linux/string.h> 32 #include <linux/proc_fs.h> 33 34 #include "of_private.h" 35 36 LIST_HEAD(aliases_lookup); 37 38 struct device_node *of_root; 39 EXPORT_SYMBOL(of_root); 40 struct device_node *of_chosen; 41 struct device_node *of_aliases; 42 struct device_node *of_stdout; 43 static const char *of_stdout_options; 44 45 struct kset *of_kset; 46 47 /* 48 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 49 * This mutex must be held whenever modifications are being made to the 50 * device tree. The of_{attach,detach}_node() and 51 * of_{add,remove,update}_property() helpers make sure this happens. 52 */ 53 DEFINE_MUTEX(of_mutex); 54 55 /* use when traversing tree through the child, sibling, 56 * or parent members of struct device_node. 57 */ 58 DEFINE_RAW_SPINLOCK(devtree_lock); 59 60 int of_n_addr_cells(struct device_node *np) 61 { 62 const __be32 *ip; 63 64 do { 65 if (np->parent) 66 np = np->parent; 67 ip = of_get_property(np, "#address-cells", NULL); 68 if (ip) 69 return be32_to_cpup(ip); 70 } while (np->parent); 71 /* No #address-cells property for the root node */ 72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 73 } 74 EXPORT_SYMBOL(of_n_addr_cells); 75 76 int of_n_size_cells(struct device_node *np) 77 { 78 const __be32 *ip; 79 80 do { 81 if (np->parent) 82 np = np->parent; 83 ip = of_get_property(np, "#size-cells", NULL); 84 if (ip) 85 return be32_to_cpup(ip); 86 } while (np->parent); 87 /* No #size-cells property for the root node */ 88 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 89 } 90 EXPORT_SYMBOL(of_n_size_cells); 91 92 #ifdef CONFIG_NUMA 93 int __weak of_node_to_nid(struct device_node *np) 94 { 95 return NUMA_NO_NODE; 96 } 97 #endif 98 99 #ifndef CONFIG_OF_DYNAMIC 100 static void of_node_release(struct kobject *kobj) 101 { 102 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 103 } 104 #endif /* CONFIG_OF_DYNAMIC */ 105 106 struct kobj_type of_node_ktype = { 107 .release = of_node_release, 108 }; 109 110 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 111 struct bin_attribute *bin_attr, char *buf, 112 loff_t offset, size_t count) 113 { 114 struct property *pp = container_of(bin_attr, struct property, attr); 115 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 116 } 117 118 /* always return newly allocated name, caller must free after use */ 119 static const char *safe_name(struct kobject *kobj, const char *orig_name) 120 { 121 const char *name = orig_name; 122 struct kernfs_node *kn; 123 int i = 0; 124 125 /* don't be a hero. After 16 tries give up */ 126 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 127 sysfs_put(kn); 128 if (name != orig_name) 129 kfree(name); 130 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 131 } 132 133 if (name == orig_name) { 134 name = kstrdup(orig_name, GFP_KERNEL); 135 } else { 136 pr_warn("Duplicate name in %s, renamed to \"%s\"\n", 137 kobject_name(kobj), name); 138 } 139 return name; 140 } 141 142 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 143 { 144 int rc; 145 146 /* Important: Don't leak passwords */ 147 bool secure = strncmp(pp->name, "security-", 9) == 0; 148 149 if (!IS_ENABLED(CONFIG_SYSFS)) 150 return 0; 151 152 if (!of_kset || !of_node_is_attached(np)) 153 return 0; 154 155 sysfs_bin_attr_init(&pp->attr); 156 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 157 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 158 pp->attr.size = secure ? 0 : pp->length; 159 pp->attr.read = of_node_property_read; 160 161 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 162 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 163 return rc; 164 } 165 166 int __of_attach_node_sysfs(struct device_node *np) 167 { 168 const char *name; 169 struct kobject *parent; 170 struct property *pp; 171 int rc; 172 173 if (!IS_ENABLED(CONFIG_SYSFS)) 174 return 0; 175 176 if (!of_kset) 177 return 0; 178 179 np->kobj.kset = of_kset; 180 if (!np->parent) { 181 /* Nodes without parents are new top level trees */ 182 name = safe_name(&of_kset->kobj, "base"); 183 parent = NULL; 184 } else { 185 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 186 parent = &np->parent->kobj; 187 } 188 if (!name) 189 return -ENOMEM; 190 rc = kobject_add(&np->kobj, parent, "%s", name); 191 kfree(name); 192 if (rc) 193 return rc; 194 195 for_each_property_of_node(np, pp) 196 __of_add_property_sysfs(np, pp); 197 198 return 0; 199 } 200 201 void __init of_core_init(void) 202 { 203 struct device_node *np; 204 205 /* Create the kset, and register existing nodes */ 206 mutex_lock(&of_mutex); 207 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 208 if (!of_kset) { 209 mutex_unlock(&of_mutex); 210 pr_err("failed to register existing nodes\n"); 211 return; 212 } 213 for_each_of_allnodes(np) 214 __of_attach_node_sysfs(np); 215 mutex_unlock(&of_mutex); 216 217 /* Symlink in /proc as required by userspace ABI */ 218 if (of_root) 219 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 220 } 221 222 static struct property *__of_find_property(const struct device_node *np, 223 const char *name, int *lenp) 224 { 225 struct property *pp; 226 227 if (!np) 228 return NULL; 229 230 for (pp = np->properties; pp; pp = pp->next) { 231 if (of_prop_cmp(pp->name, name) == 0) { 232 if (lenp) 233 *lenp = pp->length; 234 break; 235 } 236 } 237 238 return pp; 239 } 240 241 struct property *of_find_property(const struct device_node *np, 242 const char *name, 243 int *lenp) 244 { 245 struct property *pp; 246 unsigned long flags; 247 248 raw_spin_lock_irqsave(&devtree_lock, flags); 249 pp = __of_find_property(np, name, lenp); 250 raw_spin_unlock_irqrestore(&devtree_lock, flags); 251 252 return pp; 253 } 254 EXPORT_SYMBOL(of_find_property); 255 256 struct device_node *__of_find_all_nodes(struct device_node *prev) 257 { 258 struct device_node *np; 259 if (!prev) { 260 np = of_root; 261 } else if (prev->child) { 262 np = prev->child; 263 } else { 264 /* Walk back up looking for a sibling, or the end of the structure */ 265 np = prev; 266 while (np->parent && !np->sibling) 267 np = np->parent; 268 np = np->sibling; /* Might be null at the end of the tree */ 269 } 270 return np; 271 } 272 273 /** 274 * of_find_all_nodes - Get next node in global list 275 * @prev: Previous node or NULL to start iteration 276 * of_node_put() will be called on it 277 * 278 * Returns a node pointer with refcount incremented, use 279 * of_node_put() on it when done. 280 */ 281 struct device_node *of_find_all_nodes(struct device_node *prev) 282 { 283 struct device_node *np; 284 unsigned long flags; 285 286 raw_spin_lock_irqsave(&devtree_lock, flags); 287 np = __of_find_all_nodes(prev); 288 of_node_get(np); 289 of_node_put(prev); 290 raw_spin_unlock_irqrestore(&devtree_lock, flags); 291 return np; 292 } 293 EXPORT_SYMBOL(of_find_all_nodes); 294 295 /* 296 * Find a property with a given name for a given node 297 * and return the value. 298 */ 299 const void *__of_get_property(const struct device_node *np, 300 const char *name, int *lenp) 301 { 302 struct property *pp = __of_find_property(np, name, lenp); 303 304 return pp ? pp->value : NULL; 305 } 306 307 /* 308 * Find a property with a given name for a given node 309 * and return the value. 310 */ 311 const void *of_get_property(const struct device_node *np, const char *name, 312 int *lenp) 313 { 314 struct property *pp = of_find_property(np, name, lenp); 315 316 return pp ? pp->value : NULL; 317 } 318 EXPORT_SYMBOL(of_get_property); 319 320 /* 321 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 322 * 323 * @cpu: logical cpu index of a core/thread 324 * @phys_id: physical identifier of a core/thread 325 * 326 * CPU logical to physical index mapping is architecture specific. 327 * However this __weak function provides a default match of physical 328 * id to logical cpu index. phys_id provided here is usually values read 329 * from the device tree which must match the hardware internal registers. 330 * 331 * Returns true if the physical identifier and the logical cpu index 332 * correspond to the same core/thread, false otherwise. 333 */ 334 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 335 { 336 return (u32)phys_id == cpu; 337 } 338 339 /** 340 * Checks if the given "prop_name" property holds the physical id of the 341 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 342 * NULL, local thread number within the core is returned in it. 343 */ 344 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 345 const char *prop_name, int cpu, unsigned int *thread) 346 { 347 const __be32 *cell; 348 int ac, prop_len, tid; 349 u64 hwid; 350 351 ac = of_n_addr_cells(cpun); 352 cell = of_get_property(cpun, prop_name, &prop_len); 353 if (!cell || !ac) 354 return false; 355 prop_len /= sizeof(*cell) * ac; 356 for (tid = 0; tid < prop_len; tid++) { 357 hwid = of_read_number(cell, ac); 358 if (arch_match_cpu_phys_id(cpu, hwid)) { 359 if (thread) 360 *thread = tid; 361 return true; 362 } 363 cell += ac; 364 } 365 return false; 366 } 367 368 /* 369 * arch_find_n_match_cpu_physical_id - See if the given device node is 370 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 371 * else false. If 'thread' is non-NULL, the local thread number within the 372 * core is returned in it. 373 */ 374 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 375 int cpu, unsigned int *thread) 376 { 377 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 378 * for thread ids on PowerPC. If it doesn't exist fallback to 379 * standard "reg" property. 380 */ 381 if (IS_ENABLED(CONFIG_PPC) && 382 __of_find_n_match_cpu_property(cpun, 383 "ibm,ppc-interrupt-server#s", 384 cpu, thread)) 385 return true; 386 387 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 388 } 389 390 /** 391 * of_get_cpu_node - Get device node associated with the given logical CPU 392 * 393 * @cpu: CPU number(logical index) for which device node is required 394 * @thread: if not NULL, local thread number within the physical core is 395 * returned 396 * 397 * The main purpose of this function is to retrieve the device node for the 398 * given logical CPU index. It should be used to initialize the of_node in 399 * cpu device. Once of_node in cpu device is populated, all the further 400 * references can use that instead. 401 * 402 * CPU logical to physical index mapping is architecture specific and is built 403 * before booting secondary cores. This function uses arch_match_cpu_phys_id 404 * which can be overridden by architecture specific implementation. 405 * 406 * Returns a node pointer for the logical cpu with refcount incremented, use 407 * of_node_put() on it when done. Returns NULL if not found. 408 */ 409 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 410 { 411 struct device_node *cpun; 412 413 for_each_node_by_type(cpun, "cpu") { 414 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 415 return cpun; 416 } 417 return NULL; 418 } 419 EXPORT_SYMBOL(of_get_cpu_node); 420 421 /** 422 * __of_device_is_compatible() - Check if the node matches given constraints 423 * @device: pointer to node 424 * @compat: required compatible string, NULL or "" for any match 425 * @type: required device_type value, NULL or "" for any match 426 * @name: required node name, NULL or "" for any match 427 * 428 * Checks if the given @compat, @type and @name strings match the 429 * properties of the given @device. A constraints can be skipped by 430 * passing NULL or an empty string as the constraint. 431 * 432 * Returns 0 for no match, and a positive integer on match. The return 433 * value is a relative score with larger values indicating better 434 * matches. The score is weighted for the most specific compatible value 435 * to get the highest score. Matching type is next, followed by matching 436 * name. Practically speaking, this results in the following priority 437 * order for matches: 438 * 439 * 1. specific compatible && type && name 440 * 2. specific compatible && type 441 * 3. specific compatible && name 442 * 4. specific compatible 443 * 5. general compatible && type && name 444 * 6. general compatible && type 445 * 7. general compatible && name 446 * 8. general compatible 447 * 9. type && name 448 * 10. type 449 * 11. name 450 */ 451 static int __of_device_is_compatible(const struct device_node *device, 452 const char *compat, const char *type, const char *name) 453 { 454 struct property *prop; 455 const char *cp; 456 int index = 0, score = 0; 457 458 /* Compatible match has highest priority */ 459 if (compat && compat[0]) { 460 prop = __of_find_property(device, "compatible", NULL); 461 for (cp = of_prop_next_string(prop, NULL); cp; 462 cp = of_prop_next_string(prop, cp), index++) { 463 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 464 score = INT_MAX/2 - (index << 2); 465 break; 466 } 467 } 468 if (!score) 469 return 0; 470 } 471 472 /* Matching type is better than matching name */ 473 if (type && type[0]) { 474 if (!device->type || of_node_cmp(type, device->type)) 475 return 0; 476 score += 2; 477 } 478 479 /* Matching name is a bit better than not */ 480 if (name && name[0]) { 481 if (!device->name || of_node_cmp(name, device->name)) 482 return 0; 483 score++; 484 } 485 486 return score; 487 } 488 489 /** Checks if the given "compat" string matches one of the strings in 490 * the device's "compatible" property 491 */ 492 int of_device_is_compatible(const struct device_node *device, 493 const char *compat) 494 { 495 unsigned long flags; 496 int res; 497 498 raw_spin_lock_irqsave(&devtree_lock, flags); 499 res = __of_device_is_compatible(device, compat, NULL, NULL); 500 raw_spin_unlock_irqrestore(&devtree_lock, flags); 501 return res; 502 } 503 EXPORT_SYMBOL(of_device_is_compatible); 504 505 /** 506 * of_machine_is_compatible - Test root of device tree for a given compatible value 507 * @compat: compatible string to look for in root node's compatible property. 508 * 509 * Returns a positive integer if the root node has the given value in its 510 * compatible property. 511 */ 512 int of_machine_is_compatible(const char *compat) 513 { 514 struct device_node *root; 515 int rc = 0; 516 517 root = of_find_node_by_path("/"); 518 if (root) { 519 rc = of_device_is_compatible(root, compat); 520 of_node_put(root); 521 } 522 return rc; 523 } 524 EXPORT_SYMBOL(of_machine_is_compatible); 525 526 /** 527 * __of_device_is_available - check if a device is available for use 528 * 529 * @device: Node to check for availability, with locks already held 530 * 531 * Returns true if the status property is absent or set to "okay" or "ok", 532 * false otherwise 533 */ 534 static bool __of_device_is_available(const struct device_node *device) 535 { 536 const char *status; 537 int statlen; 538 539 if (!device) 540 return false; 541 542 status = __of_get_property(device, "status", &statlen); 543 if (status == NULL) 544 return true; 545 546 if (statlen > 0) { 547 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 548 return true; 549 } 550 551 return false; 552 } 553 554 /** 555 * of_device_is_available - check if a device is available for use 556 * 557 * @device: Node to check for availability 558 * 559 * Returns true if the status property is absent or set to "okay" or "ok", 560 * false otherwise 561 */ 562 bool of_device_is_available(const struct device_node *device) 563 { 564 unsigned long flags; 565 bool res; 566 567 raw_spin_lock_irqsave(&devtree_lock, flags); 568 res = __of_device_is_available(device); 569 raw_spin_unlock_irqrestore(&devtree_lock, flags); 570 return res; 571 572 } 573 EXPORT_SYMBOL(of_device_is_available); 574 575 /** 576 * of_device_is_big_endian - check if a device has BE registers 577 * 578 * @device: Node to check for endianness 579 * 580 * Returns true if the device has a "big-endian" property, or if the kernel 581 * was compiled for BE *and* the device has a "native-endian" property. 582 * Returns false otherwise. 583 * 584 * Callers would nominally use ioread32be/iowrite32be if 585 * of_device_is_big_endian() == true, or readl/writel otherwise. 586 */ 587 bool of_device_is_big_endian(const struct device_node *device) 588 { 589 if (of_property_read_bool(device, "big-endian")) 590 return true; 591 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 592 of_property_read_bool(device, "native-endian")) 593 return true; 594 return false; 595 } 596 EXPORT_SYMBOL(of_device_is_big_endian); 597 598 /** 599 * of_get_parent - Get a node's parent if any 600 * @node: Node to get parent 601 * 602 * Returns a node pointer with refcount incremented, use 603 * of_node_put() on it when done. 604 */ 605 struct device_node *of_get_parent(const struct device_node *node) 606 { 607 struct device_node *np; 608 unsigned long flags; 609 610 if (!node) 611 return NULL; 612 613 raw_spin_lock_irqsave(&devtree_lock, flags); 614 np = of_node_get(node->parent); 615 raw_spin_unlock_irqrestore(&devtree_lock, flags); 616 return np; 617 } 618 EXPORT_SYMBOL(of_get_parent); 619 620 /** 621 * of_get_next_parent - Iterate to a node's parent 622 * @node: Node to get parent of 623 * 624 * This is like of_get_parent() except that it drops the 625 * refcount on the passed node, making it suitable for iterating 626 * through a node's parents. 627 * 628 * Returns a node pointer with refcount incremented, use 629 * of_node_put() on it when done. 630 */ 631 struct device_node *of_get_next_parent(struct device_node *node) 632 { 633 struct device_node *parent; 634 unsigned long flags; 635 636 if (!node) 637 return NULL; 638 639 raw_spin_lock_irqsave(&devtree_lock, flags); 640 parent = of_node_get(node->parent); 641 of_node_put(node); 642 raw_spin_unlock_irqrestore(&devtree_lock, flags); 643 return parent; 644 } 645 EXPORT_SYMBOL(of_get_next_parent); 646 647 static struct device_node *__of_get_next_child(const struct device_node *node, 648 struct device_node *prev) 649 { 650 struct device_node *next; 651 652 if (!node) 653 return NULL; 654 655 next = prev ? prev->sibling : node->child; 656 for (; next; next = next->sibling) 657 if (of_node_get(next)) 658 break; 659 of_node_put(prev); 660 return next; 661 } 662 #define __for_each_child_of_node(parent, child) \ 663 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 664 child = __of_get_next_child(parent, child)) 665 666 /** 667 * of_get_next_child - Iterate a node childs 668 * @node: parent node 669 * @prev: previous child of the parent node, or NULL to get first 670 * 671 * Returns a node pointer with refcount incremented, use of_node_put() on 672 * it when done. Returns NULL when prev is the last child. Decrements the 673 * refcount of prev. 674 */ 675 struct device_node *of_get_next_child(const struct device_node *node, 676 struct device_node *prev) 677 { 678 struct device_node *next; 679 unsigned long flags; 680 681 raw_spin_lock_irqsave(&devtree_lock, flags); 682 next = __of_get_next_child(node, prev); 683 raw_spin_unlock_irqrestore(&devtree_lock, flags); 684 return next; 685 } 686 EXPORT_SYMBOL(of_get_next_child); 687 688 /** 689 * of_get_next_available_child - Find the next available child node 690 * @node: parent node 691 * @prev: previous child of the parent node, or NULL to get first 692 * 693 * This function is like of_get_next_child(), except that it 694 * automatically skips any disabled nodes (i.e. status = "disabled"). 695 */ 696 struct device_node *of_get_next_available_child(const struct device_node *node, 697 struct device_node *prev) 698 { 699 struct device_node *next; 700 unsigned long flags; 701 702 if (!node) 703 return NULL; 704 705 raw_spin_lock_irqsave(&devtree_lock, flags); 706 next = prev ? prev->sibling : node->child; 707 for (; next; next = next->sibling) { 708 if (!__of_device_is_available(next)) 709 continue; 710 if (of_node_get(next)) 711 break; 712 } 713 of_node_put(prev); 714 raw_spin_unlock_irqrestore(&devtree_lock, flags); 715 return next; 716 } 717 EXPORT_SYMBOL(of_get_next_available_child); 718 719 /** 720 * of_get_child_by_name - Find the child node by name for a given parent 721 * @node: parent node 722 * @name: child name to look for. 723 * 724 * This function looks for child node for given matching name 725 * 726 * Returns a node pointer if found, with refcount incremented, use 727 * of_node_put() on it when done. 728 * Returns NULL if node is not found. 729 */ 730 struct device_node *of_get_child_by_name(const struct device_node *node, 731 const char *name) 732 { 733 struct device_node *child; 734 735 for_each_child_of_node(node, child) 736 if (child->name && (of_node_cmp(child->name, name) == 0)) 737 break; 738 return child; 739 } 740 EXPORT_SYMBOL(of_get_child_by_name); 741 742 static struct device_node *__of_find_node_by_path(struct device_node *parent, 743 const char *path) 744 { 745 struct device_node *child; 746 int len; 747 748 len = strcspn(path, "/:"); 749 if (!len) 750 return NULL; 751 752 __for_each_child_of_node(parent, child) { 753 const char *name = strrchr(child->full_name, '/'); 754 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 755 continue; 756 name++; 757 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 758 return child; 759 } 760 return NULL; 761 } 762 763 /** 764 * of_find_node_opts_by_path - Find a node matching a full OF path 765 * @path: Either the full path to match, or if the path does not 766 * start with '/', the name of a property of the /aliases 767 * node (an alias). In the case of an alias, the node 768 * matching the alias' value will be returned. 769 * @opts: Address of a pointer into which to store the start of 770 * an options string appended to the end of the path with 771 * a ':' separator. 772 * 773 * Valid paths: 774 * /foo/bar Full path 775 * foo Valid alias 776 * foo/bar Valid alias + relative path 777 * 778 * Returns a node pointer with refcount incremented, use 779 * of_node_put() on it when done. 780 */ 781 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 782 { 783 struct device_node *np = NULL; 784 struct property *pp; 785 unsigned long flags; 786 const char *separator = strchr(path, ':'); 787 788 if (opts) 789 *opts = separator ? separator + 1 : NULL; 790 791 if (strcmp(path, "/") == 0) 792 return of_node_get(of_root); 793 794 /* The path could begin with an alias */ 795 if (*path != '/') { 796 int len; 797 const char *p = separator; 798 799 if (!p) 800 p = strchrnul(path, '/'); 801 len = p - path; 802 803 /* of_aliases must not be NULL */ 804 if (!of_aliases) 805 return NULL; 806 807 for_each_property_of_node(of_aliases, pp) { 808 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 809 np = of_find_node_by_path(pp->value); 810 break; 811 } 812 } 813 if (!np) 814 return NULL; 815 path = p; 816 } 817 818 /* Step down the tree matching path components */ 819 raw_spin_lock_irqsave(&devtree_lock, flags); 820 if (!np) 821 np = of_node_get(of_root); 822 while (np && *path == '/') { 823 path++; /* Increment past '/' delimiter */ 824 np = __of_find_node_by_path(np, path); 825 path = strchrnul(path, '/'); 826 if (separator && separator < path) 827 break; 828 } 829 raw_spin_unlock_irqrestore(&devtree_lock, flags); 830 return np; 831 } 832 EXPORT_SYMBOL(of_find_node_opts_by_path); 833 834 /** 835 * of_find_node_by_name - Find a node by its "name" property 836 * @from: The node to start searching from or NULL, the node 837 * you pass will not be searched, only the next one 838 * will; typically, you pass what the previous call 839 * returned. of_node_put() will be called on it 840 * @name: The name string to match against 841 * 842 * Returns a node pointer with refcount incremented, use 843 * of_node_put() on it when done. 844 */ 845 struct device_node *of_find_node_by_name(struct device_node *from, 846 const char *name) 847 { 848 struct device_node *np; 849 unsigned long flags; 850 851 raw_spin_lock_irqsave(&devtree_lock, flags); 852 for_each_of_allnodes_from(from, np) 853 if (np->name && (of_node_cmp(np->name, name) == 0) 854 && of_node_get(np)) 855 break; 856 of_node_put(from); 857 raw_spin_unlock_irqrestore(&devtree_lock, flags); 858 return np; 859 } 860 EXPORT_SYMBOL(of_find_node_by_name); 861 862 /** 863 * of_find_node_by_type - Find a node by its "device_type" property 864 * @from: The node to start searching from, or NULL to start searching 865 * the entire device tree. The node you pass will not be 866 * searched, only the next one will; typically, you pass 867 * what the previous call returned. of_node_put() will be 868 * called on from for you. 869 * @type: The type string to match against 870 * 871 * Returns a node pointer with refcount incremented, use 872 * of_node_put() on it when done. 873 */ 874 struct device_node *of_find_node_by_type(struct device_node *from, 875 const char *type) 876 { 877 struct device_node *np; 878 unsigned long flags; 879 880 raw_spin_lock_irqsave(&devtree_lock, flags); 881 for_each_of_allnodes_from(from, np) 882 if (np->type && (of_node_cmp(np->type, type) == 0) 883 && of_node_get(np)) 884 break; 885 of_node_put(from); 886 raw_spin_unlock_irqrestore(&devtree_lock, flags); 887 return np; 888 } 889 EXPORT_SYMBOL(of_find_node_by_type); 890 891 /** 892 * of_find_compatible_node - Find a node based on type and one of the 893 * tokens in its "compatible" property 894 * @from: The node to start searching from or NULL, the node 895 * you pass will not be searched, only the next one 896 * will; typically, you pass what the previous call 897 * returned. of_node_put() will be called on it 898 * @type: The type string to match "device_type" or NULL to ignore 899 * @compatible: The string to match to one of the tokens in the device 900 * "compatible" list. 901 * 902 * Returns a node pointer with refcount incremented, use 903 * of_node_put() on it when done. 904 */ 905 struct device_node *of_find_compatible_node(struct device_node *from, 906 const char *type, const char *compatible) 907 { 908 struct device_node *np; 909 unsigned long flags; 910 911 raw_spin_lock_irqsave(&devtree_lock, flags); 912 for_each_of_allnodes_from(from, np) 913 if (__of_device_is_compatible(np, compatible, type, NULL) && 914 of_node_get(np)) 915 break; 916 of_node_put(from); 917 raw_spin_unlock_irqrestore(&devtree_lock, flags); 918 return np; 919 } 920 EXPORT_SYMBOL(of_find_compatible_node); 921 922 /** 923 * of_find_node_with_property - Find a node which has a property with 924 * the given name. 925 * @from: The node to start searching from or NULL, the node 926 * you pass will not be searched, only the next one 927 * will; typically, you pass what the previous call 928 * returned. of_node_put() will be called on it 929 * @prop_name: The name of the property to look for. 930 * 931 * Returns a node pointer with refcount incremented, use 932 * of_node_put() on it when done. 933 */ 934 struct device_node *of_find_node_with_property(struct device_node *from, 935 const char *prop_name) 936 { 937 struct device_node *np; 938 struct property *pp; 939 unsigned long flags; 940 941 raw_spin_lock_irqsave(&devtree_lock, flags); 942 for_each_of_allnodes_from(from, np) { 943 for (pp = np->properties; pp; pp = pp->next) { 944 if (of_prop_cmp(pp->name, prop_name) == 0) { 945 of_node_get(np); 946 goto out; 947 } 948 } 949 } 950 out: 951 of_node_put(from); 952 raw_spin_unlock_irqrestore(&devtree_lock, flags); 953 return np; 954 } 955 EXPORT_SYMBOL(of_find_node_with_property); 956 957 static 958 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 959 const struct device_node *node) 960 { 961 const struct of_device_id *best_match = NULL; 962 int score, best_score = 0; 963 964 if (!matches) 965 return NULL; 966 967 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 968 score = __of_device_is_compatible(node, matches->compatible, 969 matches->type, matches->name); 970 if (score > best_score) { 971 best_match = matches; 972 best_score = score; 973 } 974 } 975 976 return best_match; 977 } 978 979 /** 980 * of_match_node - Tell if a device_node has a matching of_match structure 981 * @matches: array of of device match structures to search in 982 * @node: the of device structure to match against 983 * 984 * Low level utility function used by device matching. 985 */ 986 const struct of_device_id *of_match_node(const struct of_device_id *matches, 987 const struct device_node *node) 988 { 989 const struct of_device_id *match; 990 unsigned long flags; 991 992 raw_spin_lock_irqsave(&devtree_lock, flags); 993 match = __of_match_node(matches, node); 994 raw_spin_unlock_irqrestore(&devtree_lock, flags); 995 return match; 996 } 997 EXPORT_SYMBOL(of_match_node); 998 999 /** 1000 * of_find_matching_node_and_match - Find a node based on an of_device_id 1001 * match table. 1002 * @from: The node to start searching from or NULL, the node 1003 * you pass will not be searched, only the next one 1004 * will; typically, you pass what the previous call 1005 * returned. of_node_put() will be called on it 1006 * @matches: array of of device match structures to search in 1007 * @match Updated to point at the matches entry which matched 1008 * 1009 * Returns a node pointer with refcount incremented, use 1010 * of_node_put() on it when done. 1011 */ 1012 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1013 const struct of_device_id *matches, 1014 const struct of_device_id **match) 1015 { 1016 struct device_node *np; 1017 const struct of_device_id *m; 1018 unsigned long flags; 1019 1020 if (match) 1021 *match = NULL; 1022 1023 raw_spin_lock_irqsave(&devtree_lock, flags); 1024 for_each_of_allnodes_from(from, np) { 1025 m = __of_match_node(matches, np); 1026 if (m && of_node_get(np)) { 1027 if (match) 1028 *match = m; 1029 break; 1030 } 1031 } 1032 of_node_put(from); 1033 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1034 return np; 1035 } 1036 EXPORT_SYMBOL(of_find_matching_node_and_match); 1037 1038 /** 1039 * of_modalias_node - Lookup appropriate modalias for a device node 1040 * @node: pointer to a device tree node 1041 * @modalias: Pointer to buffer that modalias value will be copied into 1042 * @len: Length of modalias value 1043 * 1044 * Based on the value of the compatible property, this routine will attempt 1045 * to choose an appropriate modalias value for a particular device tree node. 1046 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1047 * from the first entry in the compatible list property. 1048 * 1049 * This routine returns 0 on success, <0 on failure. 1050 */ 1051 int of_modalias_node(struct device_node *node, char *modalias, int len) 1052 { 1053 const char *compatible, *p; 1054 int cplen; 1055 1056 compatible = of_get_property(node, "compatible", &cplen); 1057 if (!compatible || strlen(compatible) > cplen) 1058 return -ENODEV; 1059 p = strchr(compatible, ','); 1060 strlcpy(modalias, p ? p + 1 : compatible, len); 1061 return 0; 1062 } 1063 EXPORT_SYMBOL_GPL(of_modalias_node); 1064 1065 /** 1066 * of_find_node_by_phandle - Find a node given a phandle 1067 * @handle: phandle of the node to find 1068 * 1069 * Returns a node pointer with refcount incremented, use 1070 * of_node_put() on it when done. 1071 */ 1072 struct device_node *of_find_node_by_phandle(phandle handle) 1073 { 1074 struct device_node *np; 1075 unsigned long flags; 1076 1077 if (!handle) 1078 return NULL; 1079 1080 raw_spin_lock_irqsave(&devtree_lock, flags); 1081 for_each_of_allnodes(np) 1082 if (np->phandle == handle) 1083 break; 1084 of_node_get(np); 1085 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1086 return np; 1087 } 1088 EXPORT_SYMBOL(of_find_node_by_phandle); 1089 1090 /** 1091 * of_property_count_elems_of_size - Count the number of elements in a property 1092 * 1093 * @np: device node from which the property value is to be read. 1094 * @propname: name of the property to be searched. 1095 * @elem_size: size of the individual element 1096 * 1097 * Search for a property in a device node and count the number of elements of 1098 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1099 * property does not exist or its length does not match a multiple of elem_size 1100 * and -ENODATA if the property does not have a value. 1101 */ 1102 int of_property_count_elems_of_size(const struct device_node *np, 1103 const char *propname, int elem_size) 1104 { 1105 struct property *prop = of_find_property(np, propname, NULL); 1106 1107 if (!prop) 1108 return -EINVAL; 1109 if (!prop->value) 1110 return -ENODATA; 1111 1112 if (prop->length % elem_size != 0) { 1113 pr_err("size of %s in node %s is not a multiple of %d\n", 1114 propname, np->full_name, elem_size); 1115 return -EINVAL; 1116 } 1117 1118 return prop->length / elem_size; 1119 } 1120 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1121 1122 /** 1123 * of_find_property_value_of_size 1124 * 1125 * @np: device node from which the property value is to be read. 1126 * @propname: name of the property to be searched. 1127 * @len: requested length of property value 1128 * 1129 * Search for a property in a device node and valid the requested size. 1130 * Returns the property value on success, -EINVAL if the property does not 1131 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1132 * property data isn't large enough. 1133 * 1134 */ 1135 static void *of_find_property_value_of_size(const struct device_node *np, 1136 const char *propname, u32 len) 1137 { 1138 struct property *prop = of_find_property(np, propname, NULL); 1139 1140 if (!prop) 1141 return ERR_PTR(-EINVAL); 1142 if (!prop->value) 1143 return ERR_PTR(-ENODATA); 1144 if (len > prop->length) 1145 return ERR_PTR(-EOVERFLOW); 1146 1147 return prop->value; 1148 } 1149 1150 /** 1151 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1152 * 1153 * @np: device node from which the property value is to be read. 1154 * @propname: name of the property to be searched. 1155 * @index: index of the u32 in the list of values 1156 * @out_value: pointer to return value, modified only if no error. 1157 * 1158 * Search for a property in a device node and read nth 32-bit value from 1159 * it. Returns 0 on success, -EINVAL if the property does not exist, 1160 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1161 * property data isn't large enough. 1162 * 1163 * The out_value is modified only if a valid u32 value can be decoded. 1164 */ 1165 int of_property_read_u32_index(const struct device_node *np, 1166 const char *propname, 1167 u32 index, u32 *out_value) 1168 { 1169 const u32 *val = of_find_property_value_of_size(np, propname, 1170 ((index + 1) * sizeof(*out_value))); 1171 1172 if (IS_ERR(val)) 1173 return PTR_ERR(val); 1174 1175 *out_value = be32_to_cpup(((__be32 *)val) + index); 1176 return 0; 1177 } 1178 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1179 1180 /** 1181 * of_property_read_u8_array - Find and read an array of u8 from a property. 1182 * 1183 * @np: device node from which the property value is to be read. 1184 * @propname: name of the property to be searched. 1185 * @out_values: pointer to return value, modified only if return value is 0. 1186 * @sz: number of array elements to read 1187 * 1188 * Search for a property in a device node and read 8-bit value(s) from 1189 * it. Returns 0 on success, -EINVAL if the property does not exist, 1190 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1191 * property data isn't large enough. 1192 * 1193 * dts entry of array should be like: 1194 * property = /bits/ 8 <0x50 0x60 0x70>; 1195 * 1196 * The out_values is modified only if a valid u8 value can be decoded. 1197 */ 1198 int of_property_read_u8_array(const struct device_node *np, 1199 const char *propname, u8 *out_values, size_t sz) 1200 { 1201 const u8 *val = of_find_property_value_of_size(np, propname, 1202 (sz * sizeof(*out_values))); 1203 1204 if (IS_ERR(val)) 1205 return PTR_ERR(val); 1206 1207 while (sz--) 1208 *out_values++ = *val++; 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1212 1213 /** 1214 * of_property_read_u16_array - Find and read an array of u16 from a property. 1215 * 1216 * @np: device node from which the property value is to be read. 1217 * @propname: name of the property to be searched. 1218 * @out_values: pointer to return value, modified only if return value is 0. 1219 * @sz: number of array elements to read 1220 * 1221 * Search for a property in a device node and read 16-bit value(s) from 1222 * it. Returns 0 on success, -EINVAL if the property does not exist, 1223 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1224 * property data isn't large enough. 1225 * 1226 * dts entry of array should be like: 1227 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1228 * 1229 * The out_values is modified only if a valid u16 value can be decoded. 1230 */ 1231 int of_property_read_u16_array(const struct device_node *np, 1232 const char *propname, u16 *out_values, size_t sz) 1233 { 1234 const __be16 *val = of_find_property_value_of_size(np, propname, 1235 (sz * sizeof(*out_values))); 1236 1237 if (IS_ERR(val)) 1238 return PTR_ERR(val); 1239 1240 while (sz--) 1241 *out_values++ = be16_to_cpup(val++); 1242 return 0; 1243 } 1244 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1245 1246 /** 1247 * of_property_read_u32_array - Find and read an array of 32 bit integers 1248 * from a property. 1249 * 1250 * @np: device node from which the property value is to be read. 1251 * @propname: name of the property to be searched. 1252 * @out_values: pointer to return value, modified only if return value is 0. 1253 * @sz: number of array elements to read 1254 * 1255 * Search for a property in a device node and read 32-bit value(s) from 1256 * it. Returns 0 on success, -EINVAL if the property does not exist, 1257 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1258 * property data isn't large enough. 1259 * 1260 * The out_values is modified only if a valid u32 value can be decoded. 1261 */ 1262 int of_property_read_u32_array(const struct device_node *np, 1263 const char *propname, u32 *out_values, 1264 size_t sz) 1265 { 1266 const __be32 *val = of_find_property_value_of_size(np, propname, 1267 (sz * sizeof(*out_values))); 1268 1269 if (IS_ERR(val)) 1270 return PTR_ERR(val); 1271 1272 while (sz--) 1273 *out_values++ = be32_to_cpup(val++); 1274 return 0; 1275 } 1276 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1277 1278 /** 1279 * of_property_read_u64 - Find and read a 64 bit integer from a property 1280 * @np: device node from which the property value is to be read. 1281 * @propname: name of the property to be searched. 1282 * @out_value: pointer to return value, modified only if return value is 0. 1283 * 1284 * Search for a property in a device node and read a 64-bit value from 1285 * it. Returns 0 on success, -EINVAL if the property does not exist, 1286 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1287 * property data isn't large enough. 1288 * 1289 * The out_value is modified only if a valid u64 value can be decoded. 1290 */ 1291 int of_property_read_u64(const struct device_node *np, const char *propname, 1292 u64 *out_value) 1293 { 1294 const __be32 *val = of_find_property_value_of_size(np, propname, 1295 sizeof(*out_value)); 1296 1297 if (IS_ERR(val)) 1298 return PTR_ERR(val); 1299 1300 *out_value = of_read_number(val, 2); 1301 return 0; 1302 } 1303 EXPORT_SYMBOL_GPL(of_property_read_u64); 1304 1305 /** 1306 * of_property_read_u64_array - Find and read an array of 64 bit integers 1307 * from a property. 1308 * 1309 * @np: device node from which the property value is to be read. 1310 * @propname: name of the property to be searched. 1311 * @out_values: pointer to return value, modified only if return value is 0. 1312 * @sz: number of array elements to read 1313 * 1314 * Search for a property in a device node and read 64-bit value(s) from 1315 * it. Returns 0 on success, -EINVAL if the property does not exist, 1316 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1317 * property data isn't large enough. 1318 * 1319 * The out_values is modified only if a valid u64 value can be decoded. 1320 */ 1321 int of_property_read_u64_array(const struct device_node *np, 1322 const char *propname, u64 *out_values, 1323 size_t sz) 1324 { 1325 const __be32 *val = of_find_property_value_of_size(np, propname, 1326 (sz * sizeof(*out_values))); 1327 1328 if (IS_ERR(val)) 1329 return PTR_ERR(val); 1330 1331 while (sz--) { 1332 *out_values++ = of_read_number(val, 2); 1333 val += 2; 1334 } 1335 return 0; 1336 } 1337 EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1338 1339 /** 1340 * of_property_read_string - Find and read a string from a property 1341 * @np: device node from which the property value is to be read. 1342 * @propname: name of the property to be searched. 1343 * @out_string: pointer to null terminated return string, modified only if 1344 * return value is 0. 1345 * 1346 * Search for a property in a device tree node and retrieve a null 1347 * terminated string value (pointer to data, not a copy). Returns 0 on 1348 * success, -EINVAL if the property does not exist, -ENODATA if property 1349 * does not have a value, and -EILSEQ if the string is not null-terminated 1350 * within the length of the property data. 1351 * 1352 * The out_string pointer is modified only if a valid string can be decoded. 1353 */ 1354 int of_property_read_string(const struct device_node *np, const char *propname, 1355 const char **out_string) 1356 { 1357 const struct property *prop = of_find_property(np, propname, NULL); 1358 if (!prop) 1359 return -EINVAL; 1360 if (!prop->value) 1361 return -ENODATA; 1362 if (strnlen(prop->value, prop->length) >= prop->length) 1363 return -EILSEQ; 1364 *out_string = prop->value; 1365 return 0; 1366 } 1367 EXPORT_SYMBOL_GPL(of_property_read_string); 1368 1369 /** 1370 * of_property_match_string() - Find string in a list and return index 1371 * @np: pointer to node containing string list property 1372 * @propname: string list property name 1373 * @string: pointer to string to search for in string list 1374 * 1375 * This function searches a string list property and returns the index 1376 * of a specific string value. 1377 */ 1378 int of_property_match_string(const struct device_node *np, const char *propname, 1379 const char *string) 1380 { 1381 const struct property *prop = of_find_property(np, propname, NULL); 1382 size_t l; 1383 int i; 1384 const char *p, *end; 1385 1386 if (!prop) 1387 return -EINVAL; 1388 if (!prop->value) 1389 return -ENODATA; 1390 1391 p = prop->value; 1392 end = p + prop->length; 1393 1394 for (i = 0; p < end; i++, p += l) { 1395 l = strnlen(p, end - p) + 1; 1396 if (p + l > end) 1397 return -EILSEQ; 1398 pr_debug("comparing %s with %s\n", string, p); 1399 if (strcmp(string, p) == 0) 1400 return i; /* Found it; return index */ 1401 } 1402 return -ENODATA; 1403 } 1404 EXPORT_SYMBOL_GPL(of_property_match_string); 1405 1406 /** 1407 * of_property_read_string_helper() - Utility helper for parsing string properties 1408 * @np: device node from which the property value is to be read. 1409 * @propname: name of the property to be searched. 1410 * @out_strs: output array of string pointers. 1411 * @sz: number of array elements to read. 1412 * @skip: Number of strings to skip over at beginning of list. 1413 * 1414 * Don't call this function directly. It is a utility helper for the 1415 * of_property_read_string*() family of functions. 1416 */ 1417 int of_property_read_string_helper(const struct device_node *np, 1418 const char *propname, const char **out_strs, 1419 size_t sz, int skip) 1420 { 1421 const struct property *prop = of_find_property(np, propname, NULL); 1422 int l = 0, i = 0; 1423 const char *p, *end; 1424 1425 if (!prop) 1426 return -EINVAL; 1427 if (!prop->value) 1428 return -ENODATA; 1429 p = prop->value; 1430 end = p + prop->length; 1431 1432 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1433 l = strnlen(p, end - p) + 1; 1434 if (p + l > end) 1435 return -EILSEQ; 1436 if (out_strs && i >= skip) 1437 *out_strs++ = p; 1438 } 1439 i -= skip; 1440 return i <= 0 ? -ENODATA : i; 1441 } 1442 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1443 1444 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1445 { 1446 int i; 1447 printk("%s %s", msg, of_node_full_name(args->np)); 1448 for (i = 0; i < args->args_count; i++) 1449 printk(i ? ",%08x" : ":%08x", args->args[i]); 1450 printk("\n"); 1451 } 1452 1453 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1454 const struct device_node *np, 1455 const char *list_name, 1456 const char *cells_name, 1457 int cell_count) 1458 { 1459 const __be32 *list; 1460 int size; 1461 1462 memset(it, 0, sizeof(*it)); 1463 1464 list = of_get_property(np, list_name, &size); 1465 if (!list) 1466 return -ENOENT; 1467 1468 it->cells_name = cells_name; 1469 it->cell_count = cell_count; 1470 it->parent = np; 1471 it->list_end = list + size / sizeof(*list); 1472 it->phandle_end = list; 1473 it->cur = list; 1474 1475 return 0; 1476 } 1477 1478 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1479 { 1480 uint32_t count = 0; 1481 1482 if (it->node) { 1483 of_node_put(it->node); 1484 it->node = NULL; 1485 } 1486 1487 if (!it->cur || it->phandle_end >= it->list_end) 1488 return -ENOENT; 1489 1490 it->cur = it->phandle_end; 1491 1492 /* If phandle is 0, then it is an empty entry with no arguments. */ 1493 it->phandle = be32_to_cpup(it->cur++); 1494 1495 if (it->phandle) { 1496 1497 /* 1498 * Find the provider node and parse the #*-cells property to 1499 * determine the argument length. 1500 */ 1501 it->node = of_find_node_by_phandle(it->phandle); 1502 1503 if (it->cells_name) { 1504 if (!it->node) { 1505 pr_err("%s: could not find phandle\n", 1506 it->parent->full_name); 1507 goto err; 1508 } 1509 1510 if (of_property_read_u32(it->node, it->cells_name, 1511 &count)) { 1512 pr_err("%s: could not get %s for %s\n", 1513 it->parent->full_name, 1514 it->cells_name, 1515 it->node->full_name); 1516 goto err; 1517 } 1518 } else { 1519 count = it->cell_count; 1520 } 1521 1522 /* 1523 * Make sure that the arguments actually fit in the remaining 1524 * property data length 1525 */ 1526 if (it->cur + count > it->list_end) { 1527 pr_err("%s: arguments longer than property\n", 1528 it->parent->full_name); 1529 goto err; 1530 } 1531 } 1532 1533 it->phandle_end = it->cur + count; 1534 it->cur_count = count; 1535 1536 return 0; 1537 1538 err: 1539 if (it->node) { 1540 of_node_put(it->node); 1541 it->node = NULL; 1542 } 1543 1544 return -EINVAL; 1545 } 1546 1547 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1548 uint32_t *args, 1549 int size) 1550 { 1551 int i, count; 1552 1553 count = it->cur_count; 1554 1555 if (WARN_ON(size < count)) 1556 count = size; 1557 1558 for (i = 0; i < count; i++) 1559 args[i] = be32_to_cpup(it->cur++); 1560 1561 return count; 1562 } 1563 1564 static int __of_parse_phandle_with_args(const struct device_node *np, 1565 const char *list_name, 1566 const char *cells_name, 1567 int cell_count, int index, 1568 struct of_phandle_args *out_args) 1569 { 1570 struct of_phandle_iterator it; 1571 int rc, cur_index = 0; 1572 1573 /* Loop over the phandles until all the requested entry is found */ 1574 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1575 /* 1576 * All of the error cases bail out of the loop, so at 1577 * this point, the parsing is successful. If the requested 1578 * index matches, then fill the out_args structure and return, 1579 * or return -ENOENT for an empty entry. 1580 */ 1581 rc = -ENOENT; 1582 if (cur_index == index) { 1583 if (!it.phandle) 1584 goto err; 1585 1586 if (out_args) { 1587 int c; 1588 1589 c = of_phandle_iterator_args(&it, 1590 out_args->args, 1591 MAX_PHANDLE_ARGS); 1592 out_args->np = it.node; 1593 out_args->args_count = c; 1594 } else { 1595 of_node_put(it.node); 1596 } 1597 1598 /* Found it! return success */ 1599 return 0; 1600 } 1601 1602 cur_index++; 1603 } 1604 1605 /* 1606 * Unlock node before returning result; will be one of: 1607 * -ENOENT : index is for empty phandle 1608 * -EINVAL : parsing error on data 1609 */ 1610 1611 err: 1612 if (it.node) 1613 of_node_put(it.node); 1614 return rc; 1615 } 1616 1617 /** 1618 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1619 * @np: Pointer to device node holding phandle property 1620 * @phandle_name: Name of property holding a phandle value 1621 * @index: For properties holding a table of phandles, this is the index into 1622 * the table 1623 * 1624 * Returns the device_node pointer with refcount incremented. Use 1625 * of_node_put() on it when done. 1626 */ 1627 struct device_node *of_parse_phandle(const struct device_node *np, 1628 const char *phandle_name, int index) 1629 { 1630 struct of_phandle_args args; 1631 1632 if (index < 0) 1633 return NULL; 1634 1635 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1636 index, &args)) 1637 return NULL; 1638 1639 return args.np; 1640 } 1641 EXPORT_SYMBOL(of_parse_phandle); 1642 1643 /** 1644 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1645 * @np: pointer to a device tree node containing a list 1646 * @list_name: property name that contains a list 1647 * @cells_name: property name that specifies phandles' arguments count 1648 * @index: index of a phandle to parse out 1649 * @out_args: optional pointer to output arguments structure (will be filled) 1650 * 1651 * This function is useful to parse lists of phandles and their arguments. 1652 * Returns 0 on success and fills out_args, on error returns appropriate 1653 * errno value. 1654 * 1655 * Caller is responsible to call of_node_put() on the returned out_args->np 1656 * pointer. 1657 * 1658 * Example: 1659 * 1660 * phandle1: node1 { 1661 * #list-cells = <2>; 1662 * } 1663 * 1664 * phandle2: node2 { 1665 * #list-cells = <1>; 1666 * } 1667 * 1668 * node3 { 1669 * list = <&phandle1 1 2 &phandle2 3>; 1670 * } 1671 * 1672 * To get a device_node of the `node2' node you may call this: 1673 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1674 */ 1675 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1676 const char *cells_name, int index, 1677 struct of_phandle_args *out_args) 1678 { 1679 if (index < 0) 1680 return -EINVAL; 1681 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1682 index, out_args); 1683 } 1684 EXPORT_SYMBOL(of_parse_phandle_with_args); 1685 1686 /** 1687 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1688 * @np: pointer to a device tree node containing a list 1689 * @list_name: property name that contains a list 1690 * @cell_count: number of argument cells following the phandle 1691 * @index: index of a phandle to parse out 1692 * @out_args: optional pointer to output arguments structure (will be filled) 1693 * 1694 * This function is useful to parse lists of phandles and their arguments. 1695 * Returns 0 on success and fills out_args, on error returns appropriate 1696 * errno value. 1697 * 1698 * Caller is responsible to call of_node_put() on the returned out_args->np 1699 * pointer. 1700 * 1701 * Example: 1702 * 1703 * phandle1: node1 { 1704 * } 1705 * 1706 * phandle2: node2 { 1707 * } 1708 * 1709 * node3 { 1710 * list = <&phandle1 0 2 &phandle2 2 3>; 1711 * } 1712 * 1713 * To get a device_node of the `node2' node you may call this: 1714 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1715 */ 1716 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1717 const char *list_name, int cell_count, 1718 int index, struct of_phandle_args *out_args) 1719 { 1720 if (index < 0) 1721 return -EINVAL; 1722 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1723 index, out_args); 1724 } 1725 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1726 1727 /** 1728 * of_count_phandle_with_args() - Find the number of phandles references in a property 1729 * @np: pointer to a device tree node containing a list 1730 * @list_name: property name that contains a list 1731 * @cells_name: property name that specifies phandles' arguments count 1732 * 1733 * Returns the number of phandle + argument tuples within a property. It 1734 * is a typical pattern to encode a list of phandle and variable 1735 * arguments into a single property. The number of arguments is encoded 1736 * by a property in the phandle-target node. For example, a gpios 1737 * property would contain a list of GPIO specifies consisting of a 1738 * phandle and 1 or more arguments. The number of arguments are 1739 * determined by the #gpio-cells property in the node pointed to by the 1740 * phandle. 1741 */ 1742 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1743 const char *cells_name) 1744 { 1745 struct of_phandle_iterator it; 1746 int rc, cur_index = 0; 1747 1748 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1749 if (rc) 1750 return rc; 1751 1752 while ((rc = of_phandle_iterator_next(&it)) == 0) 1753 cur_index += 1; 1754 1755 if (rc != -ENOENT) 1756 return rc; 1757 1758 return cur_index; 1759 } 1760 EXPORT_SYMBOL(of_count_phandle_with_args); 1761 1762 /** 1763 * __of_add_property - Add a property to a node without lock operations 1764 */ 1765 int __of_add_property(struct device_node *np, struct property *prop) 1766 { 1767 struct property **next; 1768 1769 prop->next = NULL; 1770 next = &np->properties; 1771 while (*next) { 1772 if (strcmp(prop->name, (*next)->name) == 0) 1773 /* duplicate ! don't insert it */ 1774 return -EEXIST; 1775 1776 next = &(*next)->next; 1777 } 1778 *next = prop; 1779 1780 return 0; 1781 } 1782 1783 /** 1784 * of_add_property - Add a property to a node 1785 */ 1786 int of_add_property(struct device_node *np, struct property *prop) 1787 { 1788 unsigned long flags; 1789 int rc; 1790 1791 mutex_lock(&of_mutex); 1792 1793 raw_spin_lock_irqsave(&devtree_lock, flags); 1794 rc = __of_add_property(np, prop); 1795 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1796 1797 if (!rc) 1798 __of_add_property_sysfs(np, prop); 1799 1800 mutex_unlock(&of_mutex); 1801 1802 if (!rc) 1803 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1804 1805 return rc; 1806 } 1807 1808 int __of_remove_property(struct device_node *np, struct property *prop) 1809 { 1810 struct property **next; 1811 1812 for (next = &np->properties; *next; next = &(*next)->next) { 1813 if (*next == prop) 1814 break; 1815 } 1816 if (*next == NULL) 1817 return -ENODEV; 1818 1819 /* found the node */ 1820 *next = prop->next; 1821 prop->next = np->deadprops; 1822 np->deadprops = prop; 1823 1824 return 0; 1825 } 1826 1827 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) 1828 { 1829 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1830 kfree(prop->attr.attr.name); 1831 } 1832 1833 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1834 { 1835 if (!IS_ENABLED(CONFIG_SYSFS)) 1836 return; 1837 1838 /* at early boot, bail here and defer setup to of_init() */ 1839 if (of_kset && of_node_is_attached(np)) 1840 __of_sysfs_remove_bin_file(np, prop); 1841 } 1842 1843 /** 1844 * of_remove_property - Remove a property from a node. 1845 * 1846 * Note that we don't actually remove it, since we have given out 1847 * who-knows-how-many pointers to the data using get-property. 1848 * Instead we just move the property to the "dead properties" 1849 * list, so it won't be found any more. 1850 */ 1851 int of_remove_property(struct device_node *np, struct property *prop) 1852 { 1853 unsigned long flags; 1854 int rc; 1855 1856 if (!prop) 1857 return -ENODEV; 1858 1859 mutex_lock(&of_mutex); 1860 1861 raw_spin_lock_irqsave(&devtree_lock, flags); 1862 rc = __of_remove_property(np, prop); 1863 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1864 1865 if (!rc) 1866 __of_remove_property_sysfs(np, prop); 1867 1868 mutex_unlock(&of_mutex); 1869 1870 if (!rc) 1871 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1872 1873 return rc; 1874 } 1875 1876 int __of_update_property(struct device_node *np, struct property *newprop, 1877 struct property **oldpropp) 1878 { 1879 struct property **next, *oldprop; 1880 1881 for (next = &np->properties; *next; next = &(*next)->next) { 1882 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1883 break; 1884 } 1885 *oldpropp = oldprop = *next; 1886 1887 if (oldprop) { 1888 /* replace the node */ 1889 newprop->next = oldprop->next; 1890 *next = newprop; 1891 oldprop->next = np->deadprops; 1892 np->deadprops = oldprop; 1893 } else { 1894 /* new node */ 1895 newprop->next = NULL; 1896 *next = newprop; 1897 } 1898 1899 return 0; 1900 } 1901 1902 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1903 struct property *oldprop) 1904 { 1905 if (!IS_ENABLED(CONFIG_SYSFS)) 1906 return; 1907 1908 /* At early boot, bail out and defer setup to of_init() */ 1909 if (!of_kset) 1910 return; 1911 1912 if (oldprop) 1913 __of_sysfs_remove_bin_file(np, oldprop); 1914 __of_add_property_sysfs(np, newprop); 1915 } 1916 1917 /* 1918 * of_update_property - Update a property in a node, if the property does 1919 * not exist, add it. 1920 * 1921 * Note that we don't actually remove it, since we have given out 1922 * who-knows-how-many pointers to the data using get-property. 1923 * Instead we just move the property to the "dead properties" list, 1924 * and add the new property to the property list 1925 */ 1926 int of_update_property(struct device_node *np, struct property *newprop) 1927 { 1928 struct property *oldprop; 1929 unsigned long flags; 1930 int rc; 1931 1932 if (!newprop->name) 1933 return -EINVAL; 1934 1935 mutex_lock(&of_mutex); 1936 1937 raw_spin_lock_irqsave(&devtree_lock, flags); 1938 rc = __of_update_property(np, newprop, &oldprop); 1939 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1940 1941 if (!rc) 1942 __of_update_property_sysfs(np, newprop, oldprop); 1943 1944 mutex_unlock(&of_mutex); 1945 1946 if (!rc) 1947 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1948 1949 return rc; 1950 } 1951 1952 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1953 int id, const char *stem, int stem_len) 1954 { 1955 ap->np = np; 1956 ap->id = id; 1957 strncpy(ap->stem, stem, stem_len); 1958 ap->stem[stem_len] = 0; 1959 list_add_tail(&ap->link, &aliases_lookup); 1960 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1961 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1962 } 1963 1964 /** 1965 * of_alias_scan - Scan all properties of the 'aliases' node 1966 * 1967 * The function scans all the properties of the 'aliases' node and populates 1968 * the global lookup table with the properties. It returns the 1969 * number of alias properties found, or an error code in case of failure. 1970 * 1971 * @dt_alloc: An allocator that provides a virtual address to memory 1972 * for storing the resulting tree 1973 */ 1974 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1975 { 1976 struct property *pp; 1977 1978 of_aliases = of_find_node_by_path("/aliases"); 1979 of_chosen = of_find_node_by_path("/chosen"); 1980 if (of_chosen == NULL) 1981 of_chosen = of_find_node_by_path("/chosen@0"); 1982 1983 if (of_chosen) { 1984 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1985 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1986 if (!name) 1987 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1988 if (IS_ENABLED(CONFIG_PPC) && !name) 1989 name = of_get_property(of_aliases, "stdout", NULL); 1990 if (name) 1991 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1992 } 1993 1994 if (!of_aliases) 1995 return; 1996 1997 for_each_property_of_node(of_aliases, pp) { 1998 const char *start = pp->name; 1999 const char *end = start + strlen(start); 2000 struct device_node *np; 2001 struct alias_prop *ap; 2002 int id, len; 2003 2004 /* Skip those we do not want to proceed */ 2005 if (!strcmp(pp->name, "name") || 2006 !strcmp(pp->name, "phandle") || 2007 !strcmp(pp->name, "linux,phandle")) 2008 continue; 2009 2010 np = of_find_node_by_path(pp->value); 2011 if (!np) 2012 continue; 2013 2014 /* walk the alias backwards to extract the id and work out 2015 * the 'stem' string */ 2016 while (isdigit(*(end-1)) && end > start) 2017 end--; 2018 len = end - start; 2019 2020 if (kstrtoint(end, 10, &id) < 0) 2021 continue; 2022 2023 /* Allocate an alias_prop with enough space for the stem */ 2024 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 2025 if (!ap) 2026 continue; 2027 memset(ap, 0, sizeof(*ap) + len + 1); 2028 ap->alias = start; 2029 of_alias_add(ap, np, id, start, len); 2030 } 2031 } 2032 2033 /** 2034 * of_alias_get_id - Get alias id for the given device_node 2035 * @np: Pointer to the given device_node 2036 * @stem: Alias stem of the given device_node 2037 * 2038 * The function travels the lookup table to get the alias id for the given 2039 * device_node and alias stem. It returns the alias id if found. 2040 */ 2041 int of_alias_get_id(struct device_node *np, const char *stem) 2042 { 2043 struct alias_prop *app; 2044 int id = -ENODEV; 2045 2046 mutex_lock(&of_mutex); 2047 list_for_each_entry(app, &aliases_lookup, link) { 2048 if (strcmp(app->stem, stem) != 0) 2049 continue; 2050 2051 if (np == app->np) { 2052 id = app->id; 2053 break; 2054 } 2055 } 2056 mutex_unlock(&of_mutex); 2057 2058 return id; 2059 } 2060 EXPORT_SYMBOL_GPL(of_alias_get_id); 2061 2062 /** 2063 * of_alias_get_highest_id - Get highest alias id for the given stem 2064 * @stem: Alias stem to be examined 2065 * 2066 * The function travels the lookup table to get the highest alias id for the 2067 * given alias stem. It returns the alias id if found. 2068 */ 2069 int of_alias_get_highest_id(const char *stem) 2070 { 2071 struct alias_prop *app; 2072 int id = -ENODEV; 2073 2074 mutex_lock(&of_mutex); 2075 list_for_each_entry(app, &aliases_lookup, link) { 2076 if (strcmp(app->stem, stem) != 0) 2077 continue; 2078 2079 if (app->id > id) 2080 id = app->id; 2081 } 2082 mutex_unlock(&of_mutex); 2083 2084 return id; 2085 } 2086 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2087 2088 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2089 u32 *pu) 2090 { 2091 const void *curv = cur; 2092 2093 if (!prop) 2094 return NULL; 2095 2096 if (!cur) { 2097 curv = prop->value; 2098 goto out_val; 2099 } 2100 2101 curv += sizeof(*cur); 2102 if (curv >= prop->value + prop->length) 2103 return NULL; 2104 2105 out_val: 2106 *pu = be32_to_cpup(curv); 2107 return curv; 2108 } 2109 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2110 2111 const char *of_prop_next_string(struct property *prop, const char *cur) 2112 { 2113 const void *curv = cur; 2114 2115 if (!prop) 2116 return NULL; 2117 2118 if (!cur) 2119 return prop->value; 2120 2121 curv += strlen(cur) + 1; 2122 if (curv >= prop->value + prop->length) 2123 return NULL; 2124 2125 return curv; 2126 } 2127 EXPORT_SYMBOL_GPL(of_prop_next_string); 2128 2129 /** 2130 * of_console_check() - Test and setup console for DT setup 2131 * @dn - Pointer to device node 2132 * @name - Name to use for preferred console without index. ex. "ttyS" 2133 * @index - Index to use for preferred console. 2134 * 2135 * Check if the given device node matches the stdout-path property in the 2136 * /chosen node. If it does then register it as the preferred console and return 2137 * TRUE. Otherwise return FALSE. 2138 */ 2139 bool of_console_check(struct device_node *dn, char *name, int index) 2140 { 2141 if (!dn || dn != of_stdout || console_set_on_cmdline) 2142 return false; 2143 return !add_preferred_console(name, index, 2144 kstrdup(of_stdout_options, GFP_KERNEL)); 2145 } 2146 EXPORT_SYMBOL_GPL(of_console_check); 2147 2148 /** 2149 * of_find_next_cache_node - Find a node's subsidiary cache 2150 * @np: node of type "cpu" or "cache" 2151 * 2152 * Returns a node pointer with refcount incremented, use 2153 * of_node_put() on it when done. Caller should hold a reference 2154 * to np. 2155 */ 2156 struct device_node *of_find_next_cache_node(const struct device_node *np) 2157 { 2158 struct device_node *child; 2159 const phandle *handle; 2160 2161 handle = of_get_property(np, "l2-cache", NULL); 2162 if (!handle) 2163 handle = of_get_property(np, "next-level-cache", NULL); 2164 2165 if (handle) 2166 return of_find_node_by_phandle(be32_to_cpup(handle)); 2167 2168 /* OF on pmac has nodes instead of properties named "l2-cache" 2169 * beneath CPU nodes. 2170 */ 2171 if (!strcmp(np->type, "cpu")) 2172 for_each_child_of_node(np, child) 2173 if (!strcmp(child->type, "cache")) 2174 return child; 2175 2176 return NULL; 2177 } 2178 2179 /** 2180 * of_graph_parse_endpoint() - parse common endpoint node properties 2181 * @node: pointer to endpoint device_node 2182 * @endpoint: pointer to the OF endpoint data structure 2183 * 2184 * The caller should hold a reference to @node. 2185 */ 2186 int of_graph_parse_endpoint(const struct device_node *node, 2187 struct of_endpoint *endpoint) 2188 { 2189 struct device_node *port_node = of_get_parent(node); 2190 2191 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2192 __func__, node->full_name); 2193 2194 memset(endpoint, 0, sizeof(*endpoint)); 2195 2196 endpoint->local_node = node; 2197 /* 2198 * It doesn't matter whether the two calls below succeed. 2199 * If they don't then the default value 0 is used. 2200 */ 2201 of_property_read_u32(port_node, "reg", &endpoint->port); 2202 of_property_read_u32(node, "reg", &endpoint->id); 2203 2204 of_node_put(port_node); 2205 2206 return 0; 2207 } 2208 EXPORT_SYMBOL(of_graph_parse_endpoint); 2209 2210 /** 2211 * of_graph_get_port_by_id() - get the port matching a given id 2212 * @parent: pointer to the parent device node 2213 * @id: id of the port 2214 * 2215 * Return: A 'port' node pointer with refcount incremented. The caller 2216 * has to use of_node_put() on it when done. 2217 */ 2218 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2219 { 2220 struct device_node *node, *port; 2221 2222 node = of_get_child_by_name(parent, "ports"); 2223 if (node) 2224 parent = node; 2225 2226 for_each_child_of_node(parent, port) { 2227 u32 port_id = 0; 2228 2229 if (of_node_cmp(port->name, "port") != 0) 2230 continue; 2231 of_property_read_u32(port, "reg", &port_id); 2232 if (id == port_id) 2233 break; 2234 } 2235 2236 of_node_put(node); 2237 2238 return port; 2239 } 2240 EXPORT_SYMBOL(of_graph_get_port_by_id); 2241 2242 /** 2243 * of_graph_get_next_endpoint() - get next endpoint node 2244 * @parent: pointer to the parent device node 2245 * @prev: previous endpoint node, or NULL to get first 2246 * 2247 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2248 * of the passed @prev node is decremented. 2249 */ 2250 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2251 struct device_node *prev) 2252 { 2253 struct device_node *endpoint; 2254 struct device_node *port; 2255 2256 if (!parent) 2257 return NULL; 2258 2259 /* 2260 * Start by locating the port node. If no previous endpoint is specified 2261 * search for the first port node, otherwise get the previous endpoint 2262 * parent port node. 2263 */ 2264 if (!prev) { 2265 struct device_node *node; 2266 2267 node = of_get_child_by_name(parent, "ports"); 2268 if (node) 2269 parent = node; 2270 2271 port = of_get_child_by_name(parent, "port"); 2272 of_node_put(node); 2273 2274 if (!port) { 2275 pr_err("graph: no port node found in %s\n", 2276 parent->full_name); 2277 return NULL; 2278 } 2279 } else { 2280 port = of_get_parent(prev); 2281 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2282 __func__, prev->full_name)) 2283 return NULL; 2284 } 2285 2286 while (1) { 2287 /* 2288 * Now that we have a port node, get the next endpoint by 2289 * getting the next child. If the previous endpoint is NULL this 2290 * will return the first child. 2291 */ 2292 endpoint = of_get_next_child(port, prev); 2293 if (endpoint) { 2294 of_node_put(port); 2295 return endpoint; 2296 } 2297 2298 /* No more endpoints under this port, try the next one. */ 2299 prev = NULL; 2300 2301 do { 2302 port = of_get_next_child(parent, port); 2303 if (!port) 2304 return NULL; 2305 } while (of_node_cmp(port->name, "port")); 2306 } 2307 } 2308 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2309 2310 /** 2311 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2312 * @parent: pointer to the parent device node 2313 * @port_reg: identifier (value of reg property) of the parent port node 2314 * @reg: identifier (value of reg property) of the endpoint node 2315 * 2316 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2317 * is the child of a port node identified by port_reg. reg and port_reg are 2318 * ignored when they are -1. 2319 */ 2320 struct device_node *of_graph_get_endpoint_by_regs( 2321 const struct device_node *parent, int port_reg, int reg) 2322 { 2323 struct of_endpoint endpoint; 2324 struct device_node *node, *prev_node = NULL; 2325 2326 while (1) { 2327 node = of_graph_get_next_endpoint(parent, prev_node); 2328 of_node_put(prev_node); 2329 if (!node) 2330 break; 2331 2332 of_graph_parse_endpoint(node, &endpoint); 2333 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2334 ((reg == -1) || (endpoint.id == reg))) 2335 return node; 2336 2337 prev_node = node; 2338 } 2339 2340 return NULL; 2341 } 2342 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2343 2344 /** 2345 * of_graph_get_remote_port_parent() - get remote port's parent node 2346 * @node: pointer to a local endpoint device_node 2347 * 2348 * Return: Remote device node associated with remote endpoint node linked 2349 * to @node. Use of_node_put() on it when done. 2350 */ 2351 struct device_node *of_graph_get_remote_port_parent( 2352 const struct device_node *node) 2353 { 2354 struct device_node *np; 2355 unsigned int depth; 2356 2357 /* Get remote endpoint node. */ 2358 np = of_parse_phandle(node, "remote-endpoint", 0); 2359 2360 /* Walk 3 levels up only if there is 'ports' node. */ 2361 for (depth = 3; depth && np; depth--) { 2362 np = of_get_next_parent(np); 2363 if (depth == 2 && of_node_cmp(np->name, "ports")) 2364 break; 2365 } 2366 return np; 2367 } 2368 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2369 2370 /** 2371 * of_graph_get_remote_port() - get remote port node 2372 * @node: pointer to a local endpoint device_node 2373 * 2374 * Return: Remote port node associated with remote endpoint node linked 2375 * to @node. Use of_node_put() on it when done. 2376 */ 2377 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2378 { 2379 struct device_node *np; 2380 2381 /* Get remote endpoint node. */ 2382 np = of_parse_phandle(node, "remote-endpoint", 0); 2383 if (!np) 2384 return NULL; 2385 return of_get_next_parent(np); 2386 } 2387 EXPORT_SYMBOL(of_graph_get_remote_port); 2388