xref: /openbmc/linux/drivers/of/base.c (revision 7587eb18)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 
21 #define pr_fmt(fmt)	"OF: " fmt
22 
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_graph.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/proc_fs.h>
33 
34 #include "of_private.h"
35 
36 LIST_HEAD(aliases_lookup);
37 
38 struct device_node *of_root;
39 EXPORT_SYMBOL(of_root);
40 struct device_node *of_chosen;
41 struct device_node *of_aliases;
42 struct device_node *of_stdout;
43 static const char *of_stdout_options;
44 
45 struct kset *of_kset;
46 
47 /*
48  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
49  * This mutex must be held whenever modifications are being made to the
50  * device tree. The of_{attach,detach}_node() and
51  * of_{add,remove,update}_property() helpers make sure this happens.
52  */
53 DEFINE_MUTEX(of_mutex);
54 
55 /* use when traversing tree through the child, sibling,
56  * or parent members of struct device_node.
57  */
58 DEFINE_RAW_SPINLOCK(devtree_lock);
59 
60 int of_n_addr_cells(struct device_node *np)
61 {
62 	const __be32 *ip;
63 
64 	do {
65 		if (np->parent)
66 			np = np->parent;
67 		ip = of_get_property(np, "#address-cells", NULL);
68 		if (ip)
69 			return be32_to_cpup(ip);
70 	} while (np->parent);
71 	/* No #address-cells property for the root node */
72 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75 
76 int of_n_size_cells(struct device_node *np)
77 {
78 	const __be32 *ip;
79 
80 	do {
81 		if (np->parent)
82 			np = np->parent;
83 		ip = of_get_property(np, "#size-cells", NULL);
84 		if (ip)
85 			return be32_to_cpup(ip);
86 	} while (np->parent);
87 	/* No #size-cells property for the root node */
88 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
89 }
90 EXPORT_SYMBOL(of_n_size_cells);
91 
92 #ifdef CONFIG_NUMA
93 int __weak of_node_to_nid(struct device_node *np)
94 {
95 	return NUMA_NO_NODE;
96 }
97 #endif
98 
99 #ifndef CONFIG_OF_DYNAMIC
100 static void of_node_release(struct kobject *kobj)
101 {
102 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
103 }
104 #endif /* CONFIG_OF_DYNAMIC */
105 
106 struct kobj_type of_node_ktype = {
107 	.release = of_node_release,
108 };
109 
110 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
111 				struct bin_attribute *bin_attr, char *buf,
112 				loff_t offset, size_t count)
113 {
114 	struct property *pp = container_of(bin_attr, struct property, attr);
115 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
116 }
117 
118 /* always return newly allocated name, caller must free after use */
119 static const char *safe_name(struct kobject *kobj, const char *orig_name)
120 {
121 	const char *name = orig_name;
122 	struct kernfs_node *kn;
123 	int i = 0;
124 
125 	/* don't be a hero. After 16 tries give up */
126 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
127 		sysfs_put(kn);
128 		if (name != orig_name)
129 			kfree(name);
130 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
131 	}
132 
133 	if (name == orig_name) {
134 		name = kstrdup(orig_name, GFP_KERNEL);
135 	} else {
136 		pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
137 			kobject_name(kobj), name);
138 	}
139 	return name;
140 }
141 
142 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
143 {
144 	int rc;
145 
146 	/* Important: Don't leak passwords */
147 	bool secure = strncmp(pp->name, "security-", 9) == 0;
148 
149 	if (!IS_ENABLED(CONFIG_SYSFS))
150 		return 0;
151 
152 	if (!of_kset || !of_node_is_attached(np))
153 		return 0;
154 
155 	sysfs_bin_attr_init(&pp->attr);
156 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
157 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
158 	pp->attr.size = secure ? 0 : pp->length;
159 	pp->attr.read = of_node_property_read;
160 
161 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
162 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
163 	return rc;
164 }
165 
166 int __of_attach_node_sysfs(struct device_node *np)
167 {
168 	const char *name;
169 	struct kobject *parent;
170 	struct property *pp;
171 	int rc;
172 
173 	if (!IS_ENABLED(CONFIG_SYSFS))
174 		return 0;
175 
176 	if (!of_kset)
177 		return 0;
178 
179 	np->kobj.kset = of_kset;
180 	if (!np->parent) {
181 		/* Nodes without parents are new top level trees */
182 		name = safe_name(&of_kset->kobj, "base");
183 		parent = NULL;
184 	} else {
185 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
186 		parent = &np->parent->kobj;
187 	}
188 	if (!name)
189 		return -ENOMEM;
190 	rc = kobject_add(&np->kobj, parent, "%s", name);
191 	kfree(name);
192 	if (rc)
193 		return rc;
194 
195 	for_each_property_of_node(np, pp)
196 		__of_add_property_sysfs(np, pp);
197 
198 	return 0;
199 }
200 
201 void __init of_core_init(void)
202 {
203 	struct device_node *np;
204 
205 	/* Create the kset, and register existing nodes */
206 	mutex_lock(&of_mutex);
207 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
208 	if (!of_kset) {
209 		mutex_unlock(&of_mutex);
210 		pr_err("failed to register existing nodes\n");
211 		return;
212 	}
213 	for_each_of_allnodes(np)
214 		__of_attach_node_sysfs(np);
215 	mutex_unlock(&of_mutex);
216 
217 	/* Symlink in /proc as required by userspace ABI */
218 	if (of_root)
219 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
220 }
221 
222 static struct property *__of_find_property(const struct device_node *np,
223 					   const char *name, int *lenp)
224 {
225 	struct property *pp;
226 
227 	if (!np)
228 		return NULL;
229 
230 	for (pp = np->properties; pp; pp = pp->next) {
231 		if (of_prop_cmp(pp->name, name) == 0) {
232 			if (lenp)
233 				*lenp = pp->length;
234 			break;
235 		}
236 	}
237 
238 	return pp;
239 }
240 
241 struct property *of_find_property(const struct device_node *np,
242 				  const char *name,
243 				  int *lenp)
244 {
245 	struct property *pp;
246 	unsigned long flags;
247 
248 	raw_spin_lock_irqsave(&devtree_lock, flags);
249 	pp = __of_find_property(np, name, lenp);
250 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
251 
252 	return pp;
253 }
254 EXPORT_SYMBOL(of_find_property);
255 
256 struct device_node *__of_find_all_nodes(struct device_node *prev)
257 {
258 	struct device_node *np;
259 	if (!prev) {
260 		np = of_root;
261 	} else if (prev->child) {
262 		np = prev->child;
263 	} else {
264 		/* Walk back up looking for a sibling, or the end of the structure */
265 		np = prev;
266 		while (np->parent && !np->sibling)
267 			np = np->parent;
268 		np = np->sibling; /* Might be null at the end of the tree */
269 	}
270 	return np;
271 }
272 
273 /**
274  * of_find_all_nodes - Get next node in global list
275  * @prev:	Previous node or NULL to start iteration
276  *		of_node_put() will be called on it
277  *
278  * Returns a node pointer with refcount incremented, use
279  * of_node_put() on it when done.
280  */
281 struct device_node *of_find_all_nodes(struct device_node *prev)
282 {
283 	struct device_node *np;
284 	unsigned long flags;
285 
286 	raw_spin_lock_irqsave(&devtree_lock, flags);
287 	np = __of_find_all_nodes(prev);
288 	of_node_get(np);
289 	of_node_put(prev);
290 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
291 	return np;
292 }
293 EXPORT_SYMBOL(of_find_all_nodes);
294 
295 /*
296  * Find a property with a given name for a given node
297  * and return the value.
298  */
299 const void *__of_get_property(const struct device_node *np,
300 			      const char *name, int *lenp)
301 {
302 	struct property *pp = __of_find_property(np, name, lenp);
303 
304 	return pp ? pp->value : NULL;
305 }
306 
307 /*
308  * Find a property with a given name for a given node
309  * and return the value.
310  */
311 const void *of_get_property(const struct device_node *np, const char *name,
312 			    int *lenp)
313 {
314 	struct property *pp = of_find_property(np, name, lenp);
315 
316 	return pp ? pp->value : NULL;
317 }
318 EXPORT_SYMBOL(of_get_property);
319 
320 /*
321  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
322  *
323  * @cpu: logical cpu index of a core/thread
324  * @phys_id: physical identifier of a core/thread
325  *
326  * CPU logical to physical index mapping is architecture specific.
327  * However this __weak function provides a default match of physical
328  * id to logical cpu index. phys_id provided here is usually values read
329  * from the device tree which must match the hardware internal registers.
330  *
331  * Returns true if the physical identifier and the logical cpu index
332  * correspond to the same core/thread, false otherwise.
333  */
334 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
335 {
336 	return (u32)phys_id == cpu;
337 }
338 
339 /**
340  * Checks if the given "prop_name" property holds the physical id of the
341  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
342  * NULL, local thread number within the core is returned in it.
343  */
344 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
345 			const char *prop_name, int cpu, unsigned int *thread)
346 {
347 	const __be32 *cell;
348 	int ac, prop_len, tid;
349 	u64 hwid;
350 
351 	ac = of_n_addr_cells(cpun);
352 	cell = of_get_property(cpun, prop_name, &prop_len);
353 	if (!cell || !ac)
354 		return false;
355 	prop_len /= sizeof(*cell) * ac;
356 	for (tid = 0; tid < prop_len; tid++) {
357 		hwid = of_read_number(cell, ac);
358 		if (arch_match_cpu_phys_id(cpu, hwid)) {
359 			if (thread)
360 				*thread = tid;
361 			return true;
362 		}
363 		cell += ac;
364 	}
365 	return false;
366 }
367 
368 /*
369  * arch_find_n_match_cpu_physical_id - See if the given device node is
370  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
371  * else false.  If 'thread' is non-NULL, the local thread number within the
372  * core is returned in it.
373  */
374 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
375 					      int cpu, unsigned int *thread)
376 {
377 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
378 	 * for thread ids on PowerPC. If it doesn't exist fallback to
379 	 * standard "reg" property.
380 	 */
381 	if (IS_ENABLED(CONFIG_PPC) &&
382 	    __of_find_n_match_cpu_property(cpun,
383 					   "ibm,ppc-interrupt-server#s",
384 					   cpu, thread))
385 		return true;
386 
387 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
388 }
389 
390 /**
391  * of_get_cpu_node - Get device node associated with the given logical CPU
392  *
393  * @cpu: CPU number(logical index) for which device node is required
394  * @thread: if not NULL, local thread number within the physical core is
395  *          returned
396  *
397  * The main purpose of this function is to retrieve the device node for the
398  * given logical CPU index. It should be used to initialize the of_node in
399  * cpu device. Once of_node in cpu device is populated, all the further
400  * references can use that instead.
401  *
402  * CPU logical to physical index mapping is architecture specific and is built
403  * before booting secondary cores. This function uses arch_match_cpu_phys_id
404  * which can be overridden by architecture specific implementation.
405  *
406  * Returns a node pointer for the logical cpu with refcount incremented, use
407  * of_node_put() on it when done. Returns NULL if not found.
408  */
409 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
410 {
411 	struct device_node *cpun;
412 
413 	for_each_node_by_type(cpun, "cpu") {
414 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
415 			return cpun;
416 	}
417 	return NULL;
418 }
419 EXPORT_SYMBOL(of_get_cpu_node);
420 
421 /**
422  * __of_device_is_compatible() - Check if the node matches given constraints
423  * @device: pointer to node
424  * @compat: required compatible string, NULL or "" for any match
425  * @type: required device_type value, NULL or "" for any match
426  * @name: required node name, NULL or "" for any match
427  *
428  * Checks if the given @compat, @type and @name strings match the
429  * properties of the given @device. A constraints can be skipped by
430  * passing NULL or an empty string as the constraint.
431  *
432  * Returns 0 for no match, and a positive integer on match. The return
433  * value is a relative score with larger values indicating better
434  * matches. The score is weighted for the most specific compatible value
435  * to get the highest score. Matching type is next, followed by matching
436  * name. Practically speaking, this results in the following priority
437  * order for matches:
438  *
439  * 1. specific compatible && type && name
440  * 2. specific compatible && type
441  * 3. specific compatible && name
442  * 4. specific compatible
443  * 5. general compatible && type && name
444  * 6. general compatible && type
445  * 7. general compatible && name
446  * 8. general compatible
447  * 9. type && name
448  * 10. type
449  * 11. name
450  */
451 static int __of_device_is_compatible(const struct device_node *device,
452 				     const char *compat, const char *type, const char *name)
453 {
454 	struct property *prop;
455 	const char *cp;
456 	int index = 0, score = 0;
457 
458 	/* Compatible match has highest priority */
459 	if (compat && compat[0]) {
460 		prop = __of_find_property(device, "compatible", NULL);
461 		for (cp = of_prop_next_string(prop, NULL); cp;
462 		     cp = of_prop_next_string(prop, cp), index++) {
463 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
464 				score = INT_MAX/2 - (index << 2);
465 				break;
466 			}
467 		}
468 		if (!score)
469 			return 0;
470 	}
471 
472 	/* Matching type is better than matching name */
473 	if (type && type[0]) {
474 		if (!device->type || of_node_cmp(type, device->type))
475 			return 0;
476 		score += 2;
477 	}
478 
479 	/* Matching name is a bit better than not */
480 	if (name && name[0]) {
481 		if (!device->name || of_node_cmp(name, device->name))
482 			return 0;
483 		score++;
484 	}
485 
486 	return score;
487 }
488 
489 /** Checks if the given "compat" string matches one of the strings in
490  * the device's "compatible" property
491  */
492 int of_device_is_compatible(const struct device_node *device,
493 		const char *compat)
494 {
495 	unsigned long flags;
496 	int res;
497 
498 	raw_spin_lock_irqsave(&devtree_lock, flags);
499 	res = __of_device_is_compatible(device, compat, NULL, NULL);
500 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
501 	return res;
502 }
503 EXPORT_SYMBOL(of_device_is_compatible);
504 
505 /**
506  * of_machine_is_compatible - Test root of device tree for a given compatible value
507  * @compat: compatible string to look for in root node's compatible property.
508  *
509  * Returns a positive integer if the root node has the given value in its
510  * compatible property.
511  */
512 int of_machine_is_compatible(const char *compat)
513 {
514 	struct device_node *root;
515 	int rc = 0;
516 
517 	root = of_find_node_by_path("/");
518 	if (root) {
519 		rc = of_device_is_compatible(root, compat);
520 		of_node_put(root);
521 	}
522 	return rc;
523 }
524 EXPORT_SYMBOL(of_machine_is_compatible);
525 
526 /**
527  *  __of_device_is_available - check if a device is available for use
528  *
529  *  @device: Node to check for availability, with locks already held
530  *
531  *  Returns true if the status property is absent or set to "okay" or "ok",
532  *  false otherwise
533  */
534 static bool __of_device_is_available(const struct device_node *device)
535 {
536 	const char *status;
537 	int statlen;
538 
539 	if (!device)
540 		return false;
541 
542 	status = __of_get_property(device, "status", &statlen);
543 	if (status == NULL)
544 		return true;
545 
546 	if (statlen > 0) {
547 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
548 			return true;
549 	}
550 
551 	return false;
552 }
553 
554 /**
555  *  of_device_is_available - check if a device is available for use
556  *
557  *  @device: Node to check for availability
558  *
559  *  Returns true if the status property is absent or set to "okay" or "ok",
560  *  false otherwise
561  */
562 bool of_device_is_available(const struct device_node *device)
563 {
564 	unsigned long flags;
565 	bool res;
566 
567 	raw_spin_lock_irqsave(&devtree_lock, flags);
568 	res = __of_device_is_available(device);
569 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
570 	return res;
571 
572 }
573 EXPORT_SYMBOL(of_device_is_available);
574 
575 /**
576  *  of_device_is_big_endian - check if a device has BE registers
577  *
578  *  @device: Node to check for endianness
579  *
580  *  Returns true if the device has a "big-endian" property, or if the kernel
581  *  was compiled for BE *and* the device has a "native-endian" property.
582  *  Returns false otherwise.
583  *
584  *  Callers would nominally use ioread32be/iowrite32be if
585  *  of_device_is_big_endian() == true, or readl/writel otherwise.
586  */
587 bool of_device_is_big_endian(const struct device_node *device)
588 {
589 	if (of_property_read_bool(device, "big-endian"))
590 		return true;
591 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
592 	    of_property_read_bool(device, "native-endian"))
593 		return true;
594 	return false;
595 }
596 EXPORT_SYMBOL(of_device_is_big_endian);
597 
598 /**
599  *	of_get_parent - Get a node's parent if any
600  *	@node:	Node to get parent
601  *
602  *	Returns a node pointer with refcount incremented, use
603  *	of_node_put() on it when done.
604  */
605 struct device_node *of_get_parent(const struct device_node *node)
606 {
607 	struct device_node *np;
608 	unsigned long flags;
609 
610 	if (!node)
611 		return NULL;
612 
613 	raw_spin_lock_irqsave(&devtree_lock, flags);
614 	np = of_node_get(node->parent);
615 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
616 	return np;
617 }
618 EXPORT_SYMBOL(of_get_parent);
619 
620 /**
621  *	of_get_next_parent - Iterate to a node's parent
622  *	@node:	Node to get parent of
623  *
624  *	This is like of_get_parent() except that it drops the
625  *	refcount on the passed node, making it suitable for iterating
626  *	through a node's parents.
627  *
628  *	Returns a node pointer with refcount incremented, use
629  *	of_node_put() on it when done.
630  */
631 struct device_node *of_get_next_parent(struct device_node *node)
632 {
633 	struct device_node *parent;
634 	unsigned long flags;
635 
636 	if (!node)
637 		return NULL;
638 
639 	raw_spin_lock_irqsave(&devtree_lock, flags);
640 	parent = of_node_get(node->parent);
641 	of_node_put(node);
642 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
643 	return parent;
644 }
645 EXPORT_SYMBOL(of_get_next_parent);
646 
647 static struct device_node *__of_get_next_child(const struct device_node *node,
648 						struct device_node *prev)
649 {
650 	struct device_node *next;
651 
652 	if (!node)
653 		return NULL;
654 
655 	next = prev ? prev->sibling : node->child;
656 	for (; next; next = next->sibling)
657 		if (of_node_get(next))
658 			break;
659 	of_node_put(prev);
660 	return next;
661 }
662 #define __for_each_child_of_node(parent, child) \
663 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
664 	     child = __of_get_next_child(parent, child))
665 
666 /**
667  *	of_get_next_child - Iterate a node childs
668  *	@node:	parent node
669  *	@prev:	previous child of the parent node, or NULL to get first
670  *
671  *	Returns a node pointer with refcount incremented, use of_node_put() on
672  *	it when done. Returns NULL when prev is the last child. Decrements the
673  *	refcount of prev.
674  */
675 struct device_node *of_get_next_child(const struct device_node *node,
676 	struct device_node *prev)
677 {
678 	struct device_node *next;
679 	unsigned long flags;
680 
681 	raw_spin_lock_irqsave(&devtree_lock, flags);
682 	next = __of_get_next_child(node, prev);
683 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
684 	return next;
685 }
686 EXPORT_SYMBOL(of_get_next_child);
687 
688 /**
689  *	of_get_next_available_child - Find the next available child node
690  *	@node:	parent node
691  *	@prev:	previous child of the parent node, or NULL to get first
692  *
693  *      This function is like of_get_next_child(), except that it
694  *      automatically skips any disabled nodes (i.e. status = "disabled").
695  */
696 struct device_node *of_get_next_available_child(const struct device_node *node,
697 	struct device_node *prev)
698 {
699 	struct device_node *next;
700 	unsigned long flags;
701 
702 	if (!node)
703 		return NULL;
704 
705 	raw_spin_lock_irqsave(&devtree_lock, flags);
706 	next = prev ? prev->sibling : node->child;
707 	for (; next; next = next->sibling) {
708 		if (!__of_device_is_available(next))
709 			continue;
710 		if (of_node_get(next))
711 			break;
712 	}
713 	of_node_put(prev);
714 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
715 	return next;
716 }
717 EXPORT_SYMBOL(of_get_next_available_child);
718 
719 /**
720  *	of_get_child_by_name - Find the child node by name for a given parent
721  *	@node:	parent node
722  *	@name:	child name to look for.
723  *
724  *      This function looks for child node for given matching name
725  *
726  *	Returns a node pointer if found, with refcount incremented, use
727  *	of_node_put() on it when done.
728  *	Returns NULL if node is not found.
729  */
730 struct device_node *of_get_child_by_name(const struct device_node *node,
731 				const char *name)
732 {
733 	struct device_node *child;
734 
735 	for_each_child_of_node(node, child)
736 		if (child->name && (of_node_cmp(child->name, name) == 0))
737 			break;
738 	return child;
739 }
740 EXPORT_SYMBOL(of_get_child_by_name);
741 
742 static struct device_node *__of_find_node_by_path(struct device_node *parent,
743 						const char *path)
744 {
745 	struct device_node *child;
746 	int len;
747 
748 	len = strcspn(path, "/:");
749 	if (!len)
750 		return NULL;
751 
752 	__for_each_child_of_node(parent, child) {
753 		const char *name = strrchr(child->full_name, '/');
754 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
755 			continue;
756 		name++;
757 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
758 			return child;
759 	}
760 	return NULL;
761 }
762 
763 /**
764  *	of_find_node_opts_by_path - Find a node matching a full OF path
765  *	@path: Either the full path to match, or if the path does not
766  *	       start with '/', the name of a property of the /aliases
767  *	       node (an alias).  In the case of an alias, the node
768  *	       matching the alias' value will be returned.
769  *	@opts: Address of a pointer into which to store the start of
770  *	       an options string appended to the end of the path with
771  *	       a ':' separator.
772  *
773  *	Valid paths:
774  *		/foo/bar	Full path
775  *		foo		Valid alias
776  *		foo/bar		Valid alias + relative path
777  *
778  *	Returns a node pointer with refcount incremented, use
779  *	of_node_put() on it when done.
780  */
781 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
782 {
783 	struct device_node *np = NULL;
784 	struct property *pp;
785 	unsigned long flags;
786 	const char *separator = strchr(path, ':');
787 
788 	if (opts)
789 		*opts = separator ? separator + 1 : NULL;
790 
791 	if (strcmp(path, "/") == 0)
792 		return of_node_get(of_root);
793 
794 	/* The path could begin with an alias */
795 	if (*path != '/') {
796 		int len;
797 		const char *p = separator;
798 
799 		if (!p)
800 			p = strchrnul(path, '/');
801 		len = p - path;
802 
803 		/* of_aliases must not be NULL */
804 		if (!of_aliases)
805 			return NULL;
806 
807 		for_each_property_of_node(of_aliases, pp) {
808 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
809 				np = of_find_node_by_path(pp->value);
810 				break;
811 			}
812 		}
813 		if (!np)
814 			return NULL;
815 		path = p;
816 	}
817 
818 	/* Step down the tree matching path components */
819 	raw_spin_lock_irqsave(&devtree_lock, flags);
820 	if (!np)
821 		np = of_node_get(of_root);
822 	while (np && *path == '/') {
823 		path++; /* Increment past '/' delimiter */
824 		np = __of_find_node_by_path(np, path);
825 		path = strchrnul(path, '/');
826 		if (separator && separator < path)
827 			break;
828 	}
829 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
830 	return np;
831 }
832 EXPORT_SYMBOL(of_find_node_opts_by_path);
833 
834 /**
835  *	of_find_node_by_name - Find a node by its "name" property
836  *	@from:	The node to start searching from or NULL, the node
837  *		you pass will not be searched, only the next one
838  *		will; typically, you pass what the previous call
839  *		returned. of_node_put() will be called on it
840  *	@name:	The name string to match against
841  *
842  *	Returns a node pointer with refcount incremented, use
843  *	of_node_put() on it when done.
844  */
845 struct device_node *of_find_node_by_name(struct device_node *from,
846 	const char *name)
847 {
848 	struct device_node *np;
849 	unsigned long flags;
850 
851 	raw_spin_lock_irqsave(&devtree_lock, flags);
852 	for_each_of_allnodes_from(from, np)
853 		if (np->name && (of_node_cmp(np->name, name) == 0)
854 		    && of_node_get(np))
855 			break;
856 	of_node_put(from);
857 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
858 	return np;
859 }
860 EXPORT_SYMBOL(of_find_node_by_name);
861 
862 /**
863  *	of_find_node_by_type - Find a node by its "device_type" property
864  *	@from:	The node to start searching from, or NULL to start searching
865  *		the entire device tree. The node you pass will not be
866  *		searched, only the next one will; typically, you pass
867  *		what the previous call returned. of_node_put() will be
868  *		called on from for you.
869  *	@type:	The type string to match against
870  *
871  *	Returns a node pointer with refcount incremented, use
872  *	of_node_put() on it when done.
873  */
874 struct device_node *of_find_node_by_type(struct device_node *from,
875 	const char *type)
876 {
877 	struct device_node *np;
878 	unsigned long flags;
879 
880 	raw_spin_lock_irqsave(&devtree_lock, flags);
881 	for_each_of_allnodes_from(from, np)
882 		if (np->type && (of_node_cmp(np->type, type) == 0)
883 		    && of_node_get(np))
884 			break;
885 	of_node_put(from);
886 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
887 	return np;
888 }
889 EXPORT_SYMBOL(of_find_node_by_type);
890 
891 /**
892  *	of_find_compatible_node - Find a node based on type and one of the
893  *                                tokens in its "compatible" property
894  *	@from:		The node to start searching from or NULL, the node
895  *			you pass will not be searched, only the next one
896  *			will; typically, you pass what the previous call
897  *			returned. of_node_put() will be called on it
898  *	@type:		The type string to match "device_type" or NULL to ignore
899  *	@compatible:	The string to match to one of the tokens in the device
900  *			"compatible" list.
901  *
902  *	Returns a node pointer with refcount incremented, use
903  *	of_node_put() on it when done.
904  */
905 struct device_node *of_find_compatible_node(struct device_node *from,
906 	const char *type, const char *compatible)
907 {
908 	struct device_node *np;
909 	unsigned long flags;
910 
911 	raw_spin_lock_irqsave(&devtree_lock, flags);
912 	for_each_of_allnodes_from(from, np)
913 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
914 		    of_node_get(np))
915 			break;
916 	of_node_put(from);
917 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
918 	return np;
919 }
920 EXPORT_SYMBOL(of_find_compatible_node);
921 
922 /**
923  *	of_find_node_with_property - Find a node which has a property with
924  *                                   the given name.
925  *	@from:		The node to start searching from or NULL, the node
926  *			you pass will not be searched, only the next one
927  *			will; typically, you pass what the previous call
928  *			returned. of_node_put() will be called on it
929  *	@prop_name:	The name of the property to look for.
930  *
931  *	Returns a node pointer with refcount incremented, use
932  *	of_node_put() on it when done.
933  */
934 struct device_node *of_find_node_with_property(struct device_node *from,
935 	const char *prop_name)
936 {
937 	struct device_node *np;
938 	struct property *pp;
939 	unsigned long flags;
940 
941 	raw_spin_lock_irqsave(&devtree_lock, flags);
942 	for_each_of_allnodes_from(from, np) {
943 		for (pp = np->properties; pp; pp = pp->next) {
944 			if (of_prop_cmp(pp->name, prop_name) == 0) {
945 				of_node_get(np);
946 				goto out;
947 			}
948 		}
949 	}
950 out:
951 	of_node_put(from);
952 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
953 	return np;
954 }
955 EXPORT_SYMBOL(of_find_node_with_property);
956 
957 static
958 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
959 					   const struct device_node *node)
960 {
961 	const struct of_device_id *best_match = NULL;
962 	int score, best_score = 0;
963 
964 	if (!matches)
965 		return NULL;
966 
967 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
968 		score = __of_device_is_compatible(node, matches->compatible,
969 						  matches->type, matches->name);
970 		if (score > best_score) {
971 			best_match = matches;
972 			best_score = score;
973 		}
974 	}
975 
976 	return best_match;
977 }
978 
979 /**
980  * of_match_node - Tell if a device_node has a matching of_match structure
981  *	@matches:	array of of device match structures to search in
982  *	@node:		the of device structure to match against
983  *
984  *	Low level utility function used by device matching.
985  */
986 const struct of_device_id *of_match_node(const struct of_device_id *matches,
987 					 const struct device_node *node)
988 {
989 	const struct of_device_id *match;
990 	unsigned long flags;
991 
992 	raw_spin_lock_irqsave(&devtree_lock, flags);
993 	match = __of_match_node(matches, node);
994 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
995 	return match;
996 }
997 EXPORT_SYMBOL(of_match_node);
998 
999 /**
1000  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1001  *					  match table.
1002  *	@from:		The node to start searching from or NULL, the node
1003  *			you pass will not be searched, only the next one
1004  *			will; typically, you pass what the previous call
1005  *			returned. of_node_put() will be called on it
1006  *	@matches:	array of of device match structures to search in
1007  *	@match		Updated to point at the matches entry which matched
1008  *
1009  *	Returns a node pointer with refcount incremented, use
1010  *	of_node_put() on it when done.
1011  */
1012 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1013 					const struct of_device_id *matches,
1014 					const struct of_device_id **match)
1015 {
1016 	struct device_node *np;
1017 	const struct of_device_id *m;
1018 	unsigned long flags;
1019 
1020 	if (match)
1021 		*match = NULL;
1022 
1023 	raw_spin_lock_irqsave(&devtree_lock, flags);
1024 	for_each_of_allnodes_from(from, np) {
1025 		m = __of_match_node(matches, np);
1026 		if (m && of_node_get(np)) {
1027 			if (match)
1028 				*match = m;
1029 			break;
1030 		}
1031 	}
1032 	of_node_put(from);
1033 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1034 	return np;
1035 }
1036 EXPORT_SYMBOL(of_find_matching_node_and_match);
1037 
1038 /**
1039  * of_modalias_node - Lookup appropriate modalias for a device node
1040  * @node:	pointer to a device tree node
1041  * @modalias:	Pointer to buffer that modalias value will be copied into
1042  * @len:	Length of modalias value
1043  *
1044  * Based on the value of the compatible property, this routine will attempt
1045  * to choose an appropriate modalias value for a particular device tree node.
1046  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1047  * from the first entry in the compatible list property.
1048  *
1049  * This routine returns 0 on success, <0 on failure.
1050  */
1051 int of_modalias_node(struct device_node *node, char *modalias, int len)
1052 {
1053 	const char *compatible, *p;
1054 	int cplen;
1055 
1056 	compatible = of_get_property(node, "compatible", &cplen);
1057 	if (!compatible || strlen(compatible) > cplen)
1058 		return -ENODEV;
1059 	p = strchr(compatible, ',');
1060 	strlcpy(modalias, p ? p + 1 : compatible, len);
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL_GPL(of_modalias_node);
1064 
1065 /**
1066  * of_find_node_by_phandle - Find a node given a phandle
1067  * @handle:	phandle of the node to find
1068  *
1069  * Returns a node pointer with refcount incremented, use
1070  * of_node_put() on it when done.
1071  */
1072 struct device_node *of_find_node_by_phandle(phandle handle)
1073 {
1074 	struct device_node *np;
1075 	unsigned long flags;
1076 
1077 	if (!handle)
1078 		return NULL;
1079 
1080 	raw_spin_lock_irqsave(&devtree_lock, flags);
1081 	for_each_of_allnodes(np)
1082 		if (np->phandle == handle)
1083 			break;
1084 	of_node_get(np);
1085 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1086 	return np;
1087 }
1088 EXPORT_SYMBOL(of_find_node_by_phandle);
1089 
1090 /**
1091  * of_property_count_elems_of_size - Count the number of elements in a property
1092  *
1093  * @np:		device node from which the property value is to be read.
1094  * @propname:	name of the property to be searched.
1095  * @elem_size:	size of the individual element
1096  *
1097  * Search for a property in a device node and count the number of elements of
1098  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1099  * property does not exist or its length does not match a multiple of elem_size
1100  * and -ENODATA if the property does not have a value.
1101  */
1102 int of_property_count_elems_of_size(const struct device_node *np,
1103 				const char *propname, int elem_size)
1104 {
1105 	struct property *prop = of_find_property(np, propname, NULL);
1106 
1107 	if (!prop)
1108 		return -EINVAL;
1109 	if (!prop->value)
1110 		return -ENODATA;
1111 
1112 	if (prop->length % elem_size != 0) {
1113 		pr_err("size of %s in node %s is not a multiple of %d\n",
1114 		       propname, np->full_name, elem_size);
1115 		return -EINVAL;
1116 	}
1117 
1118 	return prop->length / elem_size;
1119 }
1120 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1121 
1122 /**
1123  * of_find_property_value_of_size
1124  *
1125  * @np:		device node from which the property value is to be read.
1126  * @propname:	name of the property to be searched.
1127  * @len:	requested length of property value
1128  *
1129  * Search for a property in a device node and valid the requested size.
1130  * Returns the property value on success, -EINVAL if the property does not
1131  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1132  * property data isn't large enough.
1133  *
1134  */
1135 static void *of_find_property_value_of_size(const struct device_node *np,
1136 			const char *propname, u32 len)
1137 {
1138 	struct property *prop = of_find_property(np, propname, NULL);
1139 
1140 	if (!prop)
1141 		return ERR_PTR(-EINVAL);
1142 	if (!prop->value)
1143 		return ERR_PTR(-ENODATA);
1144 	if (len > prop->length)
1145 		return ERR_PTR(-EOVERFLOW);
1146 
1147 	return prop->value;
1148 }
1149 
1150 /**
1151  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1152  *
1153  * @np:		device node from which the property value is to be read.
1154  * @propname:	name of the property to be searched.
1155  * @index:	index of the u32 in the list of values
1156  * @out_value:	pointer to return value, modified only if no error.
1157  *
1158  * Search for a property in a device node and read nth 32-bit value from
1159  * it. Returns 0 on success, -EINVAL if the property does not exist,
1160  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1161  * property data isn't large enough.
1162  *
1163  * The out_value is modified only if a valid u32 value can be decoded.
1164  */
1165 int of_property_read_u32_index(const struct device_node *np,
1166 				       const char *propname,
1167 				       u32 index, u32 *out_value)
1168 {
1169 	const u32 *val = of_find_property_value_of_size(np, propname,
1170 					((index + 1) * sizeof(*out_value)));
1171 
1172 	if (IS_ERR(val))
1173 		return PTR_ERR(val);
1174 
1175 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1176 	return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1179 
1180 /**
1181  * of_property_read_u8_array - Find and read an array of u8 from a property.
1182  *
1183  * @np:		device node from which the property value is to be read.
1184  * @propname:	name of the property to be searched.
1185  * @out_values:	pointer to return value, modified only if return value is 0.
1186  * @sz:		number of array elements to read
1187  *
1188  * Search for a property in a device node and read 8-bit value(s) from
1189  * it. Returns 0 on success, -EINVAL if the property does not exist,
1190  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1191  * property data isn't large enough.
1192  *
1193  * dts entry of array should be like:
1194  *	property = /bits/ 8 <0x50 0x60 0x70>;
1195  *
1196  * The out_values is modified only if a valid u8 value can be decoded.
1197  */
1198 int of_property_read_u8_array(const struct device_node *np,
1199 			const char *propname, u8 *out_values, size_t sz)
1200 {
1201 	const u8 *val = of_find_property_value_of_size(np, propname,
1202 						(sz * sizeof(*out_values)));
1203 
1204 	if (IS_ERR(val))
1205 		return PTR_ERR(val);
1206 
1207 	while (sz--)
1208 		*out_values++ = *val++;
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1212 
1213 /**
1214  * of_property_read_u16_array - Find and read an array of u16 from a property.
1215  *
1216  * @np:		device node from which the property value is to be read.
1217  * @propname:	name of the property to be searched.
1218  * @out_values:	pointer to return value, modified only if return value is 0.
1219  * @sz:		number of array elements to read
1220  *
1221  * Search for a property in a device node and read 16-bit value(s) from
1222  * it. Returns 0 on success, -EINVAL if the property does not exist,
1223  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1224  * property data isn't large enough.
1225  *
1226  * dts entry of array should be like:
1227  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1228  *
1229  * The out_values is modified only if a valid u16 value can be decoded.
1230  */
1231 int of_property_read_u16_array(const struct device_node *np,
1232 			const char *propname, u16 *out_values, size_t sz)
1233 {
1234 	const __be16 *val = of_find_property_value_of_size(np, propname,
1235 						(sz * sizeof(*out_values)));
1236 
1237 	if (IS_ERR(val))
1238 		return PTR_ERR(val);
1239 
1240 	while (sz--)
1241 		*out_values++ = be16_to_cpup(val++);
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1245 
1246 /**
1247  * of_property_read_u32_array - Find and read an array of 32 bit integers
1248  * from a property.
1249  *
1250  * @np:		device node from which the property value is to be read.
1251  * @propname:	name of the property to be searched.
1252  * @out_values:	pointer to return value, modified only if return value is 0.
1253  * @sz:		number of array elements to read
1254  *
1255  * Search for a property in a device node and read 32-bit value(s) from
1256  * it. Returns 0 on success, -EINVAL if the property does not exist,
1257  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1258  * property data isn't large enough.
1259  *
1260  * The out_values is modified only if a valid u32 value can be decoded.
1261  */
1262 int of_property_read_u32_array(const struct device_node *np,
1263 			       const char *propname, u32 *out_values,
1264 			       size_t sz)
1265 {
1266 	const __be32 *val = of_find_property_value_of_size(np, propname,
1267 						(sz * sizeof(*out_values)));
1268 
1269 	if (IS_ERR(val))
1270 		return PTR_ERR(val);
1271 
1272 	while (sz--)
1273 		*out_values++ = be32_to_cpup(val++);
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1277 
1278 /**
1279  * of_property_read_u64 - Find and read a 64 bit integer from a property
1280  * @np:		device node from which the property value is to be read.
1281  * @propname:	name of the property to be searched.
1282  * @out_value:	pointer to return value, modified only if return value is 0.
1283  *
1284  * Search for a property in a device node and read a 64-bit value from
1285  * it. Returns 0 on success, -EINVAL if the property does not exist,
1286  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1287  * property data isn't large enough.
1288  *
1289  * The out_value is modified only if a valid u64 value can be decoded.
1290  */
1291 int of_property_read_u64(const struct device_node *np, const char *propname,
1292 			 u64 *out_value)
1293 {
1294 	const __be32 *val = of_find_property_value_of_size(np, propname,
1295 						sizeof(*out_value));
1296 
1297 	if (IS_ERR(val))
1298 		return PTR_ERR(val);
1299 
1300 	*out_value = of_read_number(val, 2);
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL_GPL(of_property_read_u64);
1304 
1305 /**
1306  * of_property_read_u64_array - Find and read an array of 64 bit integers
1307  * from a property.
1308  *
1309  * @np:		device node from which the property value is to be read.
1310  * @propname:	name of the property to be searched.
1311  * @out_values:	pointer to return value, modified only if return value is 0.
1312  * @sz:		number of array elements to read
1313  *
1314  * Search for a property in a device node and read 64-bit value(s) from
1315  * it. Returns 0 on success, -EINVAL if the property does not exist,
1316  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1317  * property data isn't large enough.
1318  *
1319  * The out_values is modified only if a valid u64 value can be decoded.
1320  */
1321 int of_property_read_u64_array(const struct device_node *np,
1322 			       const char *propname, u64 *out_values,
1323 			       size_t sz)
1324 {
1325 	const __be32 *val = of_find_property_value_of_size(np, propname,
1326 						(sz * sizeof(*out_values)));
1327 
1328 	if (IS_ERR(val))
1329 		return PTR_ERR(val);
1330 
1331 	while (sz--) {
1332 		*out_values++ = of_read_number(val, 2);
1333 		val += 2;
1334 	}
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1338 
1339 /**
1340  * of_property_read_string - Find and read a string from a property
1341  * @np:		device node from which the property value is to be read.
1342  * @propname:	name of the property to be searched.
1343  * @out_string:	pointer to null terminated return string, modified only if
1344  *		return value is 0.
1345  *
1346  * Search for a property in a device tree node and retrieve a null
1347  * terminated string value (pointer to data, not a copy). Returns 0 on
1348  * success, -EINVAL if the property does not exist, -ENODATA if property
1349  * does not have a value, and -EILSEQ if the string is not null-terminated
1350  * within the length of the property data.
1351  *
1352  * The out_string pointer is modified only if a valid string can be decoded.
1353  */
1354 int of_property_read_string(const struct device_node *np, const char *propname,
1355 				const char **out_string)
1356 {
1357 	const struct property *prop = of_find_property(np, propname, NULL);
1358 	if (!prop)
1359 		return -EINVAL;
1360 	if (!prop->value)
1361 		return -ENODATA;
1362 	if (strnlen(prop->value, prop->length) >= prop->length)
1363 		return -EILSEQ;
1364 	*out_string = prop->value;
1365 	return 0;
1366 }
1367 EXPORT_SYMBOL_GPL(of_property_read_string);
1368 
1369 /**
1370  * of_property_match_string() - Find string in a list and return index
1371  * @np: pointer to node containing string list property
1372  * @propname: string list property name
1373  * @string: pointer to string to search for in string list
1374  *
1375  * This function searches a string list property and returns the index
1376  * of a specific string value.
1377  */
1378 int of_property_match_string(const struct device_node *np, const char *propname,
1379 			     const char *string)
1380 {
1381 	const struct property *prop = of_find_property(np, propname, NULL);
1382 	size_t l;
1383 	int i;
1384 	const char *p, *end;
1385 
1386 	if (!prop)
1387 		return -EINVAL;
1388 	if (!prop->value)
1389 		return -ENODATA;
1390 
1391 	p = prop->value;
1392 	end = p + prop->length;
1393 
1394 	for (i = 0; p < end; i++, p += l) {
1395 		l = strnlen(p, end - p) + 1;
1396 		if (p + l > end)
1397 			return -EILSEQ;
1398 		pr_debug("comparing %s with %s\n", string, p);
1399 		if (strcmp(string, p) == 0)
1400 			return i; /* Found it; return index */
1401 	}
1402 	return -ENODATA;
1403 }
1404 EXPORT_SYMBOL_GPL(of_property_match_string);
1405 
1406 /**
1407  * of_property_read_string_helper() - Utility helper for parsing string properties
1408  * @np:		device node from which the property value is to be read.
1409  * @propname:	name of the property to be searched.
1410  * @out_strs:	output array of string pointers.
1411  * @sz:		number of array elements to read.
1412  * @skip:	Number of strings to skip over at beginning of list.
1413  *
1414  * Don't call this function directly. It is a utility helper for the
1415  * of_property_read_string*() family of functions.
1416  */
1417 int of_property_read_string_helper(const struct device_node *np,
1418 				   const char *propname, const char **out_strs,
1419 				   size_t sz, int skip)
1420 {
1421 	const struct property *prop = of_find_property(np, propname, NULL);
1422 	int l = 0, i = 0;
1423 	const char *p, *end;
1424 
1425 	if (!prop)
1426 		return -EINVAL;
1427 	if (!prop->value)
1428 		return -ENODATA;
1429 	p = prop->value;
1430 	end = p + prop->length;
1431 
1432 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1433 		l = strnlen(p, end - p) + 1;
1434 		if (p + l > end)
1435 			return -EILSEQ;
1436 		if (out_strs && i >= skip)
1437 			*out_strs++ = p;
1438 	}
1439 	i -= skip;
1440 	return i <= 0 ? -ENODATA : i;
1441 }
1442 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1443 
1444 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1445 {
1446 	int i;
1447 	printk("%s %s", msg, of_node_full_name(args->np));
1448 	for (i = 0; i < args->args_count; i++)
1449 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1450 	printk("\n");
1451 }
1452 
1453 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1454 		const struct device_node *np,
1455 		const char *list_name,
1456 		const char *cells_name,
1457 		int cell_count)
1458 {
1459 	const __be32 *list;
1460 	int size;
1461 
1462 	memset(it, 0, sizeof(*it));
1463 
1464 	list = of_get_property(np, list_name, &size);
1465 	if (!list)
1466 		return -ENOENT;
1467 
1468 	it->cells_name = cells_name;
1469 	it->cell_count = cell_count;
1470 	it->parent = np;
1471 	it->list_end = list + size / sizeof(*list);
1472 	it->phandle_end = list;
1473 	it->cur = list;
1474 
1475 	return 0;
1476 }
1477 
1478 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1479 {
1480 	uint32_t count = 0;
1481 
1482 	if (it->node) {
1483 		of_node_put(it->node);
1484 		it->node = NULL;
1485 	}
1486 
1487 	if (!it->cur || it->phandle_end >= it->list_end)
1488 		return -ENOENT;
1489 
1490 	it->cur = it->phandle_end;
1491 
1492 	/* If phandle is 0, then it is an empty entry with no arguments. */
1493 	it->phandle = be32_to_cpup(it->cur++);
1494 
1495 	if (it->phandle) {
1496 
1497 		/*
1498 		 * Find the provider node and parse the #*-cells property to
1499 		 * determine the argument length.
1500 		 */
1501 		it->node = of_find_node_by_phandle(it->phandle);
1502 
1503 		if (it->cells_name) {
1504 			if (!it->node) {
1505 				pr_err("%s: could not find phandle\n",
1506 				       it->parent->full_name);
1507 				goto err;
1508 			}
1509 
1510 			if (of_property_read_u32(it->node, it->cells_name,
1511 						 &count)) {
1512 				pr_err("%s: could not get %s for %s\n",
1513 				       it->parent->full_name,
1514 				       it->cells_name,
1515 				       it->node->full_name);
1516 				goto err;
1517 			}
1518 		} else {
1519 			count = it->cell_count;
1520 		}
1521 
1522 		/*
1523 		 * Make sure that the arguments actually fit in the remaining
1524 		 * property data length
1525 		 */
1526 		if (it->cur + count > it->list_end) {
1527 			pr_err("%s: arguments longer than property\n",
1528 			       it->parent->full_name);
1529 			goto err;
1530 		}
1531 	}
1532 
1533 	it->phandle_end = it->cur + count;
1534 	it->cur_count = count;
1535 
1536 	return 0;
1537 
1538 err:
1539 	if (it->node) {
1540 		of_node_put(it->node);
1541 		it->node = NULL;
1542 	}
1543 
1544 	return -EINVAL;
1545 }
1546 
1547 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1548 			     uint32_t *args,
1549 			     int size)
1550 {
1551 	int i, count;
1552 
1553 	count = it->cur_count;
1554 
1555 	if (WARN_ON(size < count))
1556 		count = size;
1557 
1558 	for (i = 0; i < count; i++)
1559 		args[i] = be32_to_cpup(it->cur++);
1560 
1561 	return count;
1562 }
1563 
1564 static int __of_parse_phandle_with_args(const struct device_node *np,
1565 					const char *list_name,
1566 					const char *cells_name,
1567 					int cell_count, int index,
1568 					struct of_phandle_args *out_args)
1569 {
1570 	struct of_phandle_iterator it;
1571 	int rc, cur_index = 0;
1572 
1573 	/* Loop over the phandles until all the requested entry is found */
1574 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1575 		/*
1576 		 * All of the error cases bail out of the loop, so at
1577 		 * this point, the parsing is successful. If the requested
1578 		 * index matches, then fill the out_args structure and return,
1579 		 * or return -ENOENT for an empty entry.
1580 		 */
1581 		rc = -ENOENT;
1582 		if (cur_index == index) {
1583 			if (!it.phandle)
1584 				goto err;
1585 
1586 			if (out_args) {
1587 				int c;
1588 
1589 				c = of_phandle_iterator_args(&it,
1590 							     out_args->args,
1591 							     MAX_PHANDLE_ARGS);
1592 				out_args->np = it.node;
1593 				out_args->args_count = c;
1594 			} else {
1595 				of_node_put(it.node);
1596 			}
1597 
1598 			/* Found it! return success */
1599 			return 0;
1600 		}
1601 
1602 		cur_index++;
1603 	}
1604 
1605 	/*
1606 	 * Unlock node before returning result; will be one of:
1607 	 * -ENOENT : index is for empty phandle
1608 	 * -EINVAL : parsing error on data
1609 	 */
1610 
1611  err:
1612 	if (it.node)
1613 		of_node_put(it.node);
1614 	return rc;
1615 }
1616 
1617 /**
1618  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1619  * @np: Pointer to device node holding phandle property
1620  * @phandle_name: Name of property holding a phandle value
1621  * @index: For properties holding a table of phandles, this is the index into
1622  *         the table
1623  *
1624  * Returns the device_node pointer with refcount incremented.  Use
1625  * of_node_put() on it when done.
1626  */
1627 struct device_node *of_parse_phandle(const struct device_node *np,
1628 				     const char *phandle_name, int index)
1629 {
1630 	struct of_phandle_args args;
1631 
1632 	if (index < 0)
1633 		return NULL;
1634 
1635 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1636 					 index, &args))
1637 		return NULL;
1638 
1639 	return args.np;
1640 }
1641 EXPORT_SYMBOL(of_parse_phandle);
1642 
1643 /**
1644  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1645  * @np:		pointer to a device tree node containing a list
1646  * @list_name:	property name that contains a list
1647  * @cells_name:	property name that specifies phandles' arguments count
1648  * @index:	index of a phandle to parse out
1649  * @out_args:	optional pointer to output arguments structure (will be filled)
1650  *
1651  * This function is useful to parse lists of phandles and their arguments.
1652  * Returns 0 on success and fills out_args, on error returns appropriate
1653  * errno value.
1654  *
1655  * Caller is responsible to call of_node_put() on the returned out_args->np
1656  * pointer.
1657  *
1658  * Example:
1659  *
1660  * phandle1: node1 {
1661  *	#list-cells = <2>;
1662  * }
1663  *
1664  * phandle2: node2 {
1665  *	#list-cells = <1>;
1666  * }
1667  *
1668  * node3 {
1669  *	list = <&phandle1 1 2 &phandle2 3>;
1670  * }
1671  *
1672  * To get a device_node of the `node2' node you may call this:
1673  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1674  */
1675 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1676 				const char *cells_name, int index,
1677 				struct of_phandle_args *out_args)
1678 {
1679 	if (index < 0)
1680 		return -EINVAL;
1681 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1682 					    index, out_args);
1683 }
1684 EXPORT_SYMBOL(of_parse_phandle_with_args);
1685 
1686 /**
1687  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1688  * @np:		pointer to a device tree node containing a list
1689  * @list_name:	property name that contains a list
1690  * @cell_count: number of argument cells following the phandle
1691  * @index:	index of a phandle to parse out
1692  * @out_args:	optional pointer to output arguments structure (will be filled)
1693  *
1694  * This function is useful to parse lists of phandles and their arguments.
1695  * Returns 0 on success and fills out_args, on error returns appropriate
1696  * errno value.
1697  *
1698  * Caller is responsible to call of_node_put() on the returned out_args->np
1699  * pointer.
1700  *
1701  * Example:
1702  *
1703  * phandle1: node1 {
1704  * }
1705  *
1706  * phandle2: node2 {
1707  * }
1708  *
1709  * node3 {
1710  *	list = <&phandle1 0 2 &phandle2 2 3>;
1711  * }
1712  *
1713  * To get a device_node of the `node2' node you may call this:
1714  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1715  */
1716 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1717 				const char *list_name, int cell_count,
1718 				int index, struct of_phandle_args *out_args)
1719 {
1720 	if (index < 0)
1721 		return -EINVAL;
1722 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1723 					   index, out_args);
1724 }
1725 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1726 
1727 /**
1728  * of_count_phandle_with_args() - Find the number of phandles references in a property
1729  * @np:		pointer to a device tree node containing a list
1730  * @list_name:	property name that contains a list
1731  * @cells_name:	property name that specifies phandles' arguments count
1732  *
1733  * Returns the number of phandle + argument tuples within a property. It
1734  * is a typical pattern to encode a list of phandle and variable
1735  * arguments into a single property. The number of arguments is encoded
1736  * by a property in the phandle-target node. For example, a gpios
1737  * property would contain a list of GPIO specifies consisting of a
1738  * phandle and 1 or more arguments. The number of arguments are
1739  * determined by the #gpio-cells property in the node pointed to by the
1740  * phandle.
1741  */
1742 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1743 				const char *cells_name)
1744 {
1745 	struct of_phandle_iterator it;
1746 	int rc, cur_index = 0;
1747 
1748 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1749 	if (rc)
1750 		return rc;
1751 
1752 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1753 		cur_index += 1;
1754 
1755 	if (rc != -ENOENT)
1756 		return rc;
1757 
1758 	return cur_index;
1759 }
1760 EXPORT_SYMBOL(of_count_phandle_with_args);
1761 
1762 /**
1763  * __of_add_property - Add a property to a node without lock operations
1764  */
1765 int __of_add_property(struct device_node *np, struct property *prop)
1766 {
1767 	struct property **next;
1768 
1769 	prop->next = NULL;
1770 	next = &np->properties;
1771 	while (*next) {
1772 		if (strcmp(prop->name, (*next)->name) == 0)
1773 			/* duplicate ! don't insert it */
1774 			return -EEXIST;
1775 
1776 		next = &(*next)->next;
1777 	}
1778 	*next = prop;
1779 
1780 	return 0;
1781 }
1782 
1783 /**
1784  * of_add_property - Add a property to a node
1785  */
1786 int of_add_property(struct device_node *np, struct property *prop)
1787 {
1788 	unsigned long flags;
1789 	int rc;
1790 
1791 	mutex_lock(&of_mutex);
1792 
1793 	raw_spin_lock_irqsave(&devtree_lock, flags);
1794 	rc = __of_add_property(np, prop);
1795 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1796 
1797 	if (!rc)
1798 		__of_add_property_sysfs(np, prop);
1799 
1800 	mutex_unlock(&of_mutex);
1801 
1802 	if (!rc)
1803 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1804 
1805 	return rc;
1806 }
1807 
1808 int __of_remove_property(struct device_node *np, struct property *prop)
1809 {
1810 	struct property **next;
1811 
1812 	for (next = &np->properties; *next; next = &(*next)->next) {
1813 		if (*next == prop)
1814 			break;
1815 	}
1816 	if (*next == NULL)
1817 		return -ENODEV;
1818 
1819 	/* found the node */
1820 	*next = prop->next;
1821 	prop->next = np->deadprops;
1822 	np->deadprops = prop;
1823 
1824 	return 0;
1825 }
1826 
1827 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1828 {
1829 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1830 	kfree(prop->attr.attr.name);
1831 }
1832 
1833 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1834 {
1835 	if (!IS_ENABLED(CONFIG_SYSFS))
1836 		return;
1837 
1838 	/* at early boot, bail here and defer setup to of_init() */
1839 	if (of_kset && of_node_is_attached(np))
1840 		__of_sysfs_remove_bin_file(np, prop);
1841 }
1842 
1843 /**
1844  * of_remove_property - Remove a property from a node.
1845  *
1846  * Note that we don't actually remove it, since we have given out
1847  * who-knows-how-many pointers to the data using get-property.
1848  * Instead we just move the property to the "dead properties"
1849  * list, so it won't be found any more.
1850  */
1851 int of_remove_property(struct device_node *np, struct property *prop)
1852 {
1853 	unsigned long flags;
1854 	int rc;
1855 
1856 	if (!prop)
1857 		return -ENODEV;
1858 
1859 	mutex_lock(&of_mutex);
1860 
1861 	raw_spin_lock_irqsave(&devtree_lock, flags);
1862 	rc = __of_remove_property(np, prop);
1863 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1864 
1865 	if (!rc)
1866 		__of_remove_property_sysfs(np, prop);
1867 
1868 	mutex_unlock(&of_mutex);
1869 
1870 	if (!rc)
1871 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1872 
1873 	return rc;
1874 }
1875 
1876 int __of_update_property(struct device_node *np, struct property *newprop,
1877 		struct property **oldpropp)
1878 {
1879 	struct property **next, *oldprop;
1880 
1881 	for (next = &np->properties; *next; next = &(*next)->next) {
1882 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1883 			break;
1884 	}
1885 	*oldpropp = oldprop = *next;
1886 
1887 	if (oldprop) {
1888 		/* replace the node */
1889 		newprop->next = oldprop->next;
1890 		*next = newprop;
1891 		oldprop->next = np->deadprops;
1892 		np->deadprops = oldprop;
1893 	} else {
1894 		/* new node */
1895 		newprop->next = NULL;
1896 		*next = newprop;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1903 		struct property *oldprop)
1904 {
1905 	if (!IS_ENABLED(CONFIG_SYSFS))
1906 		return;
1907 
1908 	/* At early boot, bail out and defer setup to of_init() */
1909 	if (!of_kset)
1910 		return;
1911 
1912 	if (oldprop)
1913 		__of_sysfs_remove_bin_file(np, oldprop);
1914 	__of_add_property_sysfs(np, newprop);
1915 }
1916 
1917 /*
1918  * of_update_property - Update a property in a node, if the property does
1919  * not exist, add it.
1920  *
1921  * Note that we don't actually remove it, since we have given out
1922  * who-knows-how-many pointers to the data using get-property.
1923  * Instead we just move the property to the "dead properties" list,
1924  * and add the new property to the property list
1925  */
1926 int of_update_property(struct device_node *np, struct property *newprop)
1927 {
1928 	struct property *oldprop;
1929 	unsigned long flags;
1930 	int rc;
1931 
1932 	if (!newprop->name)
1933 		return -EINVAL;
1934 
1935 	mutex_lock(&of_mutex);
1936 
1937 	raw_spin_lock_irqsave(&devtree_lock, flags);
1938 	rc = __of_update_property(np, newprop, &oldprop);
1939 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1940 
1941 	if (!rc)
1942 		__of_update_property_sysfs(np, newprop, oldprop);
1943 
1944 	mutex_unlock(&of_mutex);
1945 
1946 	if (!rc)
1947 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1948 
1949 	return rc;
1950 }
1951 
1952 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1953 			 int id, const char *stem, int stem_len)
1954 {
1955 	ap->np = np;
1956 	ap->id = id;
1957 	strncpy(ap->stem, stem, stem_len);
1958 	ap->stem[stem_len] = 0;
1959 	list_add_tail(&ap->link, &aliases_lookup);
1960 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1961 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1962 }
1963 
1964 /**
1965  * of_alias_scan - Scan all properties of the 'aliases' node
1966  *
1967  * The function scans all the properties of the 'aliases' node and populates
1968  * the global lookup table with the properties.  It returns the
1969  * number of alias properties found, or an error code in case of failure.
1970  *
1971  * @dt_alloc:	An allocator that provides a virtual address to memory
1972  *		for storing the resulting tree
1973  */
1974 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1975 {
1976 	struct property *pp;
1977 
1978 	of_aliases = of_find_node_by_path("/aliases");
1979 	of_chosen = of_find_node_by_path("/chosen");
1980 	if (of_chosen == NULL)
1981 		of_chosen = of_find_node_by_path("/chosen@0");
1982 
1983 	if (of_chosen) {
1984 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1985 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1986 		if (!name)
1987 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1988 		if (IS_ENABLED(CONFIG_PPC) && !name)
1989 			name = of_get_property(of_aliases, "stdout", NULL);
1990 		if (name)
1991 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1992 	}
1993 
1994 	if (!of_aliases)
1995 		return;
1996 
1997 	for_each_property_of_node(of_aliases, pp) {
1998 		const char *start = pp->name;
1999 		const char *end = start + strlen(start);
2000 		struct device_node *np;
2001 		struct alias_prop *ap;
2002 		int id, len;
2003 
2004 		/* Skip those we do not want to proceed */
2005 		if (!strcmp(pp->name, "name") ||
2006 		    !strcmp(pp->name, "phandle") ||
2007 		    !strcmp(pp->name, "linux,phandle"))
2008 			continue;
2009 
2010 		np = of_find_node_by_path(pp->value);
2011 		if (!np)
2012 			continue;
2013 
2014 		/* walk the alias backwards to extract the id and work out
2015 		 * the 'stem' string */
2016 		while (isdigit(*(end-1)) && end > start)
2017 			end--;
2018 		len = end - start;
2019 
2020 		if (kstrtoint(end, 10, &id) < 0)
2021 			continue;
2022 
2023 		/* Allocate an alias_prop with enough space for the stem */
2024 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2025 		if (!ap)
2026 			continue;
2027 		memset(ap, 0, sizeof(*ap) + len + 1);
2028 		ap->alias = start;
2029 		of_alias_add(ap, np, id, start, len);
2030 	}
2031 }
2032 
2033 /**
2034  * of_alias_get_id - Get alias id for the given device_node
2035  * @np:		Pointer to the given device_node
2036  * @stem:	Alias stem of the given device_node
2037  *
2038  * The function travels the lookup table to get the alias id for the given
2039  * device_node and alias stem.  It returns the alias id if found.
2040  */
2041 int of_alias_get_id(struct device_node *np, const char *stem)
2042 {
2043 	struct alias_prop *app;
2044 	int id = -ENODEV;
2045 
2046 	mutex_lock(&of_mutex);
2047 	list_for_each_entry(app, &aliases_lookup, link) {
2048 		if (strcmp(app->stem, stem) != 0)
2049 			continue;
2050 
2051 		if (np == app->np) {
2052 			id = app->id;
2053 			break;
2054 		}
2055 	}
2056 	mutex_unlock(&of_mutex);
2057 
2058 	return id;
2059 }
2060 EXPORT_SYMBOL_GPL(of_alias_get_id);
2061 
2062 /**
2063  * of_alias_get_highest_id - Get highest alias id for the given stem
2064  * @stem:	Alias stem to be examined
2065  *
2066  * The function travels the lookup table to get the highest alias id for the
2067  * given alias stem.  It returns the alias id if found.
2068  */
2069 int of_alias_get_highest_id(const char *stem)
2070 {
2071 	struct alias_prop *app;
2072 	int id = -ENODEV;
2073 
2074 	mutex_lock(&of_mutex);
2075 	list_for_each_entry(app, &aliases_lookup, link) {
2076 		if (strcmp(app->stem, stem) != 0)
2077 			continue;
2078 
2079 		if (app->id > id)
2080 			id = app->id;
2081 	}
2082 	mutex_unlock(&of_mutex);
2083 
2084 	return id;
2085 }
2086 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2087 
2088 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2089 			       u32 *pu)
2090 {
2091 	const void *curv = cur;
2092 
2093 	if (!prop)
2094 		return NULL;
2095 
2096 	if (!cur) {
2097 		curv = prop->value;
2098 		goto out_val;
2099 	}
2100 
2101 	curv += sizeof(*cur);
2102 	if (curv >= prop->value + prop->length)
2103 		return NULL;
2104 
2105 out_val:
2106 	*pu = be32_to_cpup(curv);
2107 	return curv;
2108 }
2109 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2110 
2111 const char *of_prop_next_string(struct property *prop, const char *cur)
2112 {
2113 	const void *curv = cur;
2114 
2115 	if (!prop)
2116 		return NULL;
2117 
2118 	if (!cur)
2119 		return prop->value;
2120 
2121 	curv += strlen(cur) + 1;
2122 	if (curv >= prop->value + prop->length)
2123 		return NULL;
2124 
2125 	return curv;
2126 }
2127 EXPORT_SYMBOL_GPL(of_prop_next_string);
2128 
2129 /**
2130  * of_console_check() - Test and setup console for DT setup
2131  * @dn - Pointer to device node
2132  * @name - Name to use for preferred console without index. ex. "ttyS"
2133  * @index - Index to use for preferred console.
2134  *
2135  * Check if the given device node matches the stdout-path property in the
2136  * /chosen node. If it does then register it as the preferred console and return
2137  * TRUE. Otherwise return FALSE.
2138  */
2139 bool of_console_check(struct device_node *dn, char *name, int index)
2140 {
2141 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2142 		return false;
2143 	return !add_preferred_console(name, index,
2144 				      kstrdup(of_stdout_options, GFP_KERNEL));
2145 }
2146 EXPORT_SYMBOL_GPL(of_console_check);
2147 
2148 /**
2149  *	of_find_next_cache_node - Find a node's subsidiary cache
2150  *	@np:	node of type "cpu" or "cache"
2151  *
2152  *	Returns a node pointer with refcount incremented, use
2153  *	of_node_put() on it when done.  Caller should hold a reference
2154  *	to np.
2155  */
2156 struct device_node *of_find_next_cache_node(const struct device_node *np)
2157 {
2158 	struct device_node *child;
2159 	const phandle *handle;
2160 
2161 	handle = of_get_property(np, "l2-cache", NULL);
2162 	if (!handle)
2163 		handle = of_get_property(np, "next-level-cache", NULL);
2164 
2165 	if (handle)
2166 		return of_find_node_by_phandle(be32_to_cpup(handle));
2167 
2168 	/* OF on pmac has nodes instead of properties named "l2-cache"
2169 	 * beneath CPU nodes.
2170 	 */
2171 	if (!strcmp(np->type, "cpu"))
2172 		for_each_child_of_node(np, child)
2173 			if (!strcmp(child->type, "cache"))
2174 				return child;
2175 
2176 	return NULL;
2177 }
2178 
2179 /**
2180  * of_graph_parse_endpoint() - parse common endpoint node properties
2181  * @node: pointer to endpoint device_node
2182  * @endpoint: pointer to the OF endpoint data structure
2183  *
2184  * The caller should hold a reference to @node.
2185  */
2186 int of_graph_parse_endpoint(const struct device_node *node,
2187 			    struct of_endpoint *endpoint)
2188 {
2189 	struct device_node *port_node = of_get_parent(node);
2190 
2191 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2192 		  __func__, node->full_name);
2193 
2194 	memset(endpoint, 0, sizeof(*endpoint));
2195 
2196 	endpoint->local_node = node;
2197 	/*
2198 	 * It doesn't matter whether the two calls below succeed.
2199 	 * If they don't then the default value 0 is used.
2200 	 */
2201 	of_property_read_u32(port_node, "reg", &endpoint->port);
2202 	of_property_read_u32(node, "reg", &endpoint->id);
2203 
2204 	of_node_put(port_node);
2205 
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL(of_graph_parse_endpoint);
2209 
2210 /**
2211  * of_graph_get_port_by_id() - get the port matching a given id
2212  * @parent: pointer to the parent device node
2213  * @id: id of the port
2214  *
2215  * Return: A 'port' node pointer with refcount incremented. The caller
2216  * has to use of_node_put() on it when done.
2217  */
2218 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2219 {
2220 	struct device_node *node, *port;
2221 
2222 	node = of_get_child_by_name(parent, "ports");
2223 	if (node)
2224 		parent = node;
2225 
2226 	for_each_child_of_node(parent, port) {
2227 		u32 port_id = 0;
2228 
2229 		if (of_node_cmp(port->name, "port") != 0)
2230 			continue;
2231 		of_property_read_u32(port, "reg", &port_id);
2232 		if (id == port_id)
2233 			break;
2234 	}
2235 
2236 	of_node_put(node);
2237 
2238 	return port;
2239 }
2240 EXPORT_SYMBOL(of_graph_get_port_by_id);
2241 
2242 /**
2243  * of_graph_get_next_endpoint() - get next endpoint node
2244  * @parent: pointer to the parent device node
2245  * @prev: previous endpoint node, or NULL to get first
2246  *
2247  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2248  * of the passed @prev node is decremented.
2249  */
2250 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2251 					struct device_node *prev)
2252 {
2253 	struct device_node *endpoint;
2254 	struct device_node *port;
2255 
2256 	if (!parent)
2257 		return NULL;
2258 
2259 	/*
2260 	 * Start by locating the port node. If no previous endpoint is specified
2261 	 * search for the first port node, otherwise get the previous endpoint
2262 	 * parent port node.
2263 	 */
2264 	if (!prev) {
2265 		struct device_node *node;
2266 
2267 		node = of_get_child_by_name(parent, "ports");
2268 		if (node)
2269 			parent = node;
2270 
2271 		port = of_get_child_by_name(parent, "port");
2272 		of_node_put(node);
2273 
2274 		if (!port) {
2275 			pr_err("graph: no port node found in %s\n",
2276 			       parent->full_name);
2277 			return NULL;
2278 		}
2279 	} else {
2280 		port = of_get_parent(prev);
2281 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2282 			      __func__, prev->full_name))
2283 			return NULL;
2284 	}
2285 
2286 	while (1) {
2287 		/*
2288 		 * Now that we have a port node, get the next endpoint by
2289 		 * getting the next child. If the previous endpoint is NULL this
2290 		 * will return the first child.
2291 		 */
2292 		endpoint = of_get_next_child(port, prev);
2293 		if (endpoint) {
2294 			of_node_put(port);
2295 			return endpoint;
2296 		}
2297 
2298 		/* No more endpoints under this port, try the next one. */
2299 		prev = NULL;
2300 
2301 		do {
2302 			port = of_get_next_child(parent, port);
2303 			if (!port)
2304 				return NULL;
2305 		} while (of_node_cmp(port->name, "port"));
2306 	}
2307 }
2308 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2309 
2310 /**
2311  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2312  * @parent: pointer to the parent device node
2313  * @port_reg: identifier (value of reg property) of the parent port node
2314  * @reg: identifier (value of reg property) of the endpoint node
2315  *
2316  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2317  * is the child of a port node identified by port_reg. reg and port_reg are
2318  * ignored when they are -1.
2319  */
2320 struct device_node *of_graph_get_endpoint_by_regs(
2321 	const struct device_node *parent, int port_reg, int reg)
2322 {
2323 	struct of_endpoint endpoint;
2324 	struct device_node *node, *prev_node = NULL;
2325 
2326 	while (1) {
2327 		node = of_graph_get_next_endpoint(parent, prev_node);
2328 		of_node_put(prev_node);
2329 		if (!node)
2330 			break;
2331 
2332 		of_graph_parse_endpoint(node, &endpoint);
2333 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2334 			((reg == -1) || (endpoint.id == reg)))
2335 			return node;
2336 
2337 		prev_node = node;
2338 	}
2339 
2340 	return NULL;
2341 }
2342 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2343 
2344 /**
2345  * of_graph_get_remote_port_parent() - get remote port's parent node
2346  * @node: pointer to a local endpoint device_node
2347  *
2348  * Return: Remote device node associated with remote endpoint node linked
2349  *	   to @node. Use of_node_put() on it when done.
2350  */
2351 struct device_node *of_graph_get_remote_port_parent(
2352 			       const struct device_node *node)
2353 {
2354 	struct device_node *np;
2355 	unsigned int depth;
2356 
2357 	/* Get remote endpoint node. */
2358 	np = of_parse_phandle(node, "remote-endpoint", 0);
2359 
2360 	/* Walk 3 levels up only if there is 'ports' node. */
2361 	for (depth = 3; depth && np; depth--) {
2362 		np = of_get_next_parent(np);
2363 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2364 			break;
2365 	}
2366 	return np;
2367 }
2368 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2369 
2370 /**
2371  * of_graph_get_remote_port() - get remote port node
2372  * @node: pointer to a local endpoint device_node
2373  *
2374  * Return: Remote port node associated with remote endpoint node linked
2375  *	   to @node. Use of_node_put() on it when done.
2376  */
2377 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2378 {
2379 	struct device_node *np;
2380 
2381 	/* Get remote endpoint node. */
2382 	np = of_parse_phandle(node, "remote-endpoint", 0);
2383 	if (!np)
2384 		return NULL;
2385 	return of_get_next_parent(np);
2386 }
2387 EXPORT_SYMBOL(of_graph_get_remote_port);
2388