xref: /openbmc/linux/drivers/of/base.c (revision 6d99a79c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
82 int of_n_addr_cells(struct device_node *np)
83 {
84 	u32 cells;
85 
86 	do {
87 		if (np->parent)
88 			np = np->parent;
89 		if (!of_property_read_u32(np, "#address-cells", &cells))
90 			return cells;
91 	} while (np->parent);
92 	/* No #address-cells property for the root node */
93 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
94 }
95 EXPORT_SYMBOL(of_n_addr_cells);
96 
97 int of_n_size_cells(struct device_node *np)
98 {
99 	u32 cells;
100 
101 	do {
102 		if (np->parent)
103 			np = np->parent;
104 		if (!of_property_read_u32(np, "#size-cells", &cells))
105 			return cells;
106 	} while (np->parent);
107 	/* No #size-cells property for the root node */
108 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
109 }
110 EXPORT_SYMBOL(of_n_size_cells);
111 
112 #ifdef CONFIG_NUMA
113 int __weak of_node_to_nid(struct device_node *np)
114 {
115 	return NUMA_NO_NODE;
116 }
117 #endif
118 
119 static struct device_node **phandle_cache;
120 static u32 phandle_cache_mask;
121 
122 /*
123  * Assumptions behind phandle_cache implementation:
124  *   - phandle property values are in a contiguous range of 1..n
125  *
126  * If the assumptions do not hold, then
127  *   - the phandle lookup overhead reduction provided by the cache
128  *     will likely be less
129  */
130 void of_populate_phandle_cache(void)
131 {
132 	unsigned long flags;
133 	u32 cache_entries;
134 	struct device_node *np;
135 	u32 phandles = 0;
136 
137 	raw_spin_lock_irqsave(&devtree_lock, flags);
138 
139 	kfree(phandle_cache);
140 	phandle_cache = NULL;
141 
142 	for_each_of_allnodes(np)
143 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
144 			phandles++;
145 
146 	if (!phandles)
147 		goto out;
148 
149 	cache_entries = roundup_pow_of_two(phandles);
150 	phandle_cache_mask = cache_entries - 1;
151 
152 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
153 				GFP_ATOMIC);
154 	if (!phandle_cache)
155 		goto out;
156 
157 	for_each_of_allnodes(np)
158 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
159 			phandle_cache[np->phandle & phandle_cache_mask] = np;
160 
161 out:
162 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
163 }
164 
165 int of_free_phandle_cache(void)
166 {
167 	unsigned long flags;
168 
169 	raw_spin_lock_irqsave(&devtree_lock, flags);
170 
171 	kfree(phandle_cache);
172 	phandle_cache = NULL;
173 
174 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
175 
176 	return 0;
177 }
178 #if !defined(CONFIG_MODULES)
179 late_initcall_sync(of_free_phandle_cache);
180 #endif
181 
182 void __init of_core_init(void)
183 {
184 	struct device_node *np;
185 
186 	of_populate_phandle_cache();
187 
188 	/* Create the kset, and register existing nodes */
189 	mutex_lock(&of_mutex);
190 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
191 	if (!of_kset) {
192 		mutex_unlock(&of_mutex);
193 		pr_err("failed to register existing nodes\n");
194 		return;
195 	}
196 	for_each_of_allnodes(np)
197 		__of_attach_node_sysfs(np);
198 	mutex_unlock(&of_mutex);
199 
200 	/* Symlink in /proc as required by userspace ABI */
201 	if (of_root)
202 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
203 }
204 
205 static struct property *__of_find_property(const struct device_node *np,
206 					   const char *name, int *lenp)
207 {
208 	struct property *pp;
209 
210 	if (!np)
211 		return NULL;
212 
213 	for (pp = np->properties; pp; pp = pp->next) {
214 		if (of_prop_cmp(pp->name, name) == 0) {
215 			if (lenp)
216 				*lenp = pp->length;
217 			break;
218 		}
219 	}
220 
221 	return pp;
222 }
223 
224 struct property *of_find_property(const struct device_node *np,
225 				  const char *name,
226 				  int *lenp)
227 {
228 	struct property *pp;
229 	unsigned long flags;
230 
231 	raw_spin_lock_irqsave(&devtree_lock, flags);
232 	pp = __of_find_property(np, name, lenp);
233 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
234 
235 	return pp;
236 }
237 EXPORT_SYMBOL(of_find_property);
238 
239 struct device_node *__of_find_all_nodes(struct device_node *prev)
240 {
241 	struct device_node *np;
242 	if (!prev) {
243 		np = of_root;
244 	} else if (prev->child) {
245 		np = prev->child;
246 	} else {
247 		/* Walk back up looking for a sibling, or the end of the structure */
248 		np = prev;
249 		while (np->parent && !np->sibling)
250 			np = np->parent;
251 		np = np->sibling; /* Might be null at the end of the tree */
252 	}
253 	return np;
254 }
255 
256 /**
257  * of_find_all_nodes - Get next node in global list
258  * @prev:	Previous node or NULL to start iteration
259  *		of_node_put() will be called on it
260  *
261  * Returns a node pointer with refcount incremented, use
262  * of_node_put() on it when done.
263  */
264 struct device_node *of_find_all_nodes(struct device_node *prev)
265 {
266 	struct device_node *np;
267 	unsigned long flags;
268 
269 	raw_spin_lock_irqsave(&devtree_lock, flags);
270 	np = __of_find_all_nodes(prev);
271 	of_node_get(np);
272 	of_node_put(prev);
273 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
274 	return np;
275 }
276 EXPORT_SYMBOL(of_find_all_nodes);
277 
278 /*
279  * Find a property with a given name for a given node
280  * and return the value.
281  */
282 const void *__of_get_property(const struct device_node *np,
283 			      const char *name, int *lenp)
284 {
285 	struct property *pp = __of_find_property(np, name, lenp);
286 
287 	return pp ? pp->value : NULL;
288 }
289 
290 /*
291  * Find a property with a given name for a given node
292  * and return the value.
293  */
294 const void *of_get_property(const struct device_node *np, const char *name,
295 			    int *lenp)
296 {
297 	struct property *pp = of_find_property(np, name, lenp);
298 
299 	return pp ? pp->value : NULL;
300 }
301 EXPORT_SYMBOL(of_get_property);
302 
303 /*
304  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
305  *
306  * @cpu: logical cpu index of a core/thread
307  * @phys_id: physical identifier of a core/thread
308  *
309  * CPU logical to physical index mapping is architecture specific.
310  * However this __weak function provides a default match of physical
311  * id to logical cpu index. phys_id provided here is usually values read
312  * from the device tree which must match the hardware internal registers.
313  *
314  * Returns true if the physical identifier and the logical cpu index
315  * correspond to the same core/thread, false otherwise.
316  */
317 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
318 {
319 	return (u32)phys_id == cpu;
320 }
321 
322 /**
323  * Checks if the given "prop_name" property holds the physical id of the
324  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
325  * NULL, local thread number within the core is returned in it.
326  */
327 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
328 			const char *prop_name, int cpu, unsigned int *thread)
329 {
330 	const __be32 *cell;
331 	int ac, prop_len, tid;
332 	u64 hwid;
333 
334 	ac = of_n_addr_cells(cpun);
335 	cell = of_get_property(cpun, prop_name, &prop_len);
336 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
337 		return true;
338 	if (!cell || !ac)
339 		return false;
340 	prop_len /= sizeof(*cell) * ac;
341 	for (tid = 0; tid < prop_len; tid++) {
342 		hwid = of_read_number(cell, ac);
343 		if (arch_match_cpu_phys_id(cpu, hwid)) {
344 			if (thread)
345 				*thread = tid;
346 			return true;
347 		}
348 		cell += ac;
349 	}
350 	return false;
351 }
352 
353 /*
354  * arch_find_n_match_cpu_physical_id - See if the given device node is
355  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
356  * else false.  If 'thread' is non-NULL, the local thread number within the
357  * core is returned in it.
358  */
359 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
360 					      int cpu, unsigned int *thread)
361 {
362 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
363 	 * for thread ids on PowerPC. If it doesn't exist fallback to
364 	 * standard "reg" property.
365 	 */
366 	if (IS_ENABLED(CONFIG_PPC) &&
367 	    __of_find_n_match_cpu_property(cpun,
368 					   "ibm,ppc-interrupt-server#s",
369 					   cpu, thread))
370 		return true;
371 
372 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
373 }
374 
375 /**
376  * of_get_cpu_node - Get device node associated with the given logical CPU
377  *
378  * @cpu: CPU number(logical index) for which device node is required
379  * @thread: if not NULL, local thread number within the physical core is
380  *          returned
381  *
382  * The main purpose of this function is to retrieve the device node for the
383  * given logical CPU index. It should be used to initialize the of_node in
384  * cpu device. Once of_node in cpu device is populated, all the further
385  * references can use that instead.
386  *
387  * CPU logical to physical index mapping is architecture specific and is built
388  * before booting secondary cores. This function uses arch_match_cpu_phys_id
389  * which can be overridden by architecture specific implementation.
390  *
391  * Returns a node pointer for the logical cpu with refcount incremented, use
392  * of_node_put() on it when done. Returns NULL if not found.
393  */
394 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
395 {
396 	struct device_node *cpun;
397 
398 	for_each_of_cpu_node(cpun) {
399 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
400 			return cpun;
401 	}
402 	return NULL;
403 }
404 EXPORT_SYMBOL(of_get_cpu_node);
405 
406 /**
407  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
408  *
409  * @cpu_node: Pointer to the device_node for CPU.
410  *
411  * Returns the logical CPU number of the given CPU device_node.
412  * Returns -ENODEV if the CPU is not found.
413  */
414 int of_cpu_node_to_id(struct device_node *cpu_node)
415 {
416 	int cpu;
417 	bool found = false;
418 	struct device_node *np;
419 
420 	for_each_possible_cpu(cpu) {
421 		np = of_cpu_device_node_get(cpu);
422 		found = (cpu_node == np);
423 		of_node_put(np);
424 		if (found)
425 			return cpu;
426 	}
427 
428 	return -ENODEV;
429 }
430 EXPORT_SYMBOL(of_cpu_node_to_id);
431 
432 /**
433  * __of_device_is_compatible() - Check if the node matches given constraints
434  * @device: pointer to node
435  * @compat: required compatible string, NULL or "" for any match
436  * @type: required device_type value, NULL or "" for any match
437  * @name: required node name, NULL or "" for any match
438  *
439  * Checks if the given @compat, @type and @name strings match the
440  * properties of the given @device. A constraints can be skipped by
441  * passing NULL or an empty string as the constraint.
442  *
443  * Returns 0 for no match, and a positive integer on match. The return
444  * value is a relative score with larger values indicating better
445  * matches. The score is weighted for the most specific compatible value
446  * to get the highest score. Matching type is next, followed by matching
447  * name. Practically speaking, this results in the following priority
448  * order for matches:
449  *
450  * 1. specific compatible && type && name
451  * 2. specific compatible && type
452  * 3. specific compatible && name
453  * 4. specific compatible
454  * 5. general compatible && type && name
455  * 6. general compatible && type
456  * 7. general compatible && name
457  * 8. general compatible
458  * 9. type && name
459  * 10. type
460  * 11. name
461  */
462 static int __of_device_is_compatible(const struct device_node *device,
463 				     const char *compat, const char *type, const char *name)
464 {
465 	struct property *prop;
466 	const char *cp;
467 	int index = 0, score = 0;
468 
469 	/* Compatible match has highest priority */
470 	if (compat && compat[0]) {
471 		prop = __of_find_property(device, "compatible", NULL);
472 		for (cp = of_prop_next_string(prop, NULL); cp;
473 		     cp = of_prop_next_string(prop, cp), index++) {
474 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
475 				score = INT_MAX/2 - (index << 2);
476 				break;
477 			}
478 		}
479 		if (!score)
480 			return 0;
481 	}
482 
483 	/* Matching type is better than matching name */
484 	if (type && type[0]) {
485 		if (!device->type || of_node_cmp(type, device->type))
486 			return 0;
487 		score += 2;
488 	}
489 
490 	/* Matching name is a bit better than not */
491 	if (name && name[0]) {
492 		if (!device->name || of_node_cmp(name, device->name))
493 			return 0;
494 		score++;
495 	}
496 
497 	return score;
498 }
499 
500 /** Checks if the given "compat" string matches one of the strings in
501  * the device's "compatible" property
502  */
503 int of_device_is_compatible(const struct device_node *device,
504 		const char *compat)
505 {
506 	unsigned long flags;
507 	int res;
508 
509 	raw_spin_lock_irqsave(&devtree_lock, flags);
510 	res = __of_device_is_compatible(device, compat, NULL, NULL);
511 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
512 	return res;
513 }
514 EXPORT_SYMBOL(of_device_is_compatible);
515 
516 /** Checks if the device is compatible with any of the entries in
517  *  a NULL terminated array of strings. Returns the best match
518  *  score or 0.
519  */
520 int of_device_compatible_match(struct device_node *device,
521 			       const char *const *compat)
522 {
523 	unsigned int tmp, score = 0;
524 
525 	if (!compat)
526 		return 0;
527 
528 	while (*compat) {
529 		tmp = of_device_is_compatible(device, *compat);
530 		if (tmp > score)
531 			score = tmp;
532 		compat++;
533 	}
534 
535 	return score;
536 }
537 
538 /**
539  * of_machine_is_compatible - Test root of device tree for a given compatible value
540  * @compat: compatible string to look for in root node's compatible property.
541  *
542  * Returns a positive integer if the root node has the given value in its
543  * compatible property.
544  */
545 int of_machine_is_compatible(const char *compat)
546 {
547 	struct device_node *root;
548 	int rc = 0;
549 
550 	root = of_find_node_by_path("/");
551 	if (root) {
552 		rc = of_device_is_compatible(root, compat);
553 		of_node_put(root);
554 	}
555 	return rc;
556 }
557 EXPORT_SYMBOL(of_machine_is_compatible);
558 
559 /**
560  *  __of_device_is_available - check if a device is available for use
561  *
562  *  @device: Node to check for availability, with locks already held
563  *
564  *  Returns true if the status property is absent or set to "okay" or "ok",
565  *  false otherwise
566  */
567 static bool __of_device_is_available(const struct device_node *device)
568 {
569 	const char *status;
570 	int statlen;
571 
572 	if (!device)
573 		return false;
574 
575 	status = __of_get_property(device, "status", &statlen);
576 	if (status == NULL)
577 		return true;
578 
579 	if (statlen > 0) {
580 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
581 			return true;
582 	}
583 
584 	return false;
585 }
586 
587 /**
588  *  of_device_is_available - check if a device is available for use
589  *
590  *  @device: Node to check for availability
591  *
592  *  Returns true if the status property is absent or set to "okay" or "ok",
593  *  false otherwise
594  */
595 bool of_device_is_available(const struct device_node *device)
596 {
597 	unsigned long flags;
598 	bool res;
599 
600 	raw_spin_lock_irqsave(&devtree_lock, flags);
601 	res = __of_device_is_available(device);
602 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
603 	return res;
604 
605 }
606 EXPORT_SYMBOL(of_device_is_available);
607 
608 /**
609  *  of_device_is_big_endian - check if a device has BE registers
610  *
611  *  @device: Node to check for endianness
612  *
613  *  Returns true if the device has a "big-endian" property, or if the kernel
614  *  was compiled for BE *and* the device has a "native-endian" property.
615  *  Returns false otherwise.
616  *
617  *  Callers would nominally use ioread32be/iowrite32be if
618  *  of_device_is_big_endian() == true, or readl/writel otherwise.
619  */
620 bool of_device_is_big_endian(const struct device_node *device)
621 {
622 	if (of_property_read_bool(device, "big-endian"))
623 		return true;
624 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
625 	    of_property_read_bool(device, "native-endian"))
626 		return true;
627 	return false;
628 }
629 EXPORT_SYMBOL(of_device_is_big_endian);
630 
631 /**
632  *	of_get_parent - Get a node's parent if any
633  *	@node:	Node to get parent
634  *
635  *	Returns a node pointer with refcount incremented, use
636  *	of_node_put() on it when done.
637  */
638 struct device_node *of_get_parent(const struct device_node *node)
639 {
640 	struct device_node *np;
641 	unsigned long flags;
642 
643 	if (!node)
644 		return NULL;
645 
646 	raw_spin_lock_irqsave(&devtree_lock, flags);
647 	np = of_node_get(node->parent);
648 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
649 	return np;
650 }
651 EXPORT_SYMBOL(of_get_parent);
652 
653 /**
654  *	of_get_next_parent - Iterate to a node's parent
655  *	@node:	Node to get parent of
656  *
657  *	This is like of_get_parent() except that it drops the
658  *	refcount on the passed node, making it suitable for iterating
659  *	through a node's parents.
660  *
661  *	Returns a node pointer with refcount incremented, use
662  *	of_node_put() on it when done.
663  */
664 struct device_node *of_get_next_parent(struct device_node *node)
665 {
666 	struct device_node *parent;
667 	unsigned long flags;
668 
669 	if (!node)
670 		return NULL;
671 
672 	raw_spin_lock_irqsave(&devtree_lock, flags);
673 	parent = of_node_get(node->parent);
674 	of_node_put(node);
675 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
676 	return parent;
677 }
678 EXPORT_SYMBOL(of_get_next_parent);
679 
680 static struct device_node *__of_get_next_child(const struct device_node *node,
681 						struct device_node *prev)
682 {
683 	struct device_node *next;
684 
685 	if (!node)
686 		return NULL;
687 
688 	next = prev ? prev->sibling : node->child;
689 	for (; next; next = next->sibling)
690 		if (of_node_get(next))
691 			break;
692 	of_node_put(prev);
693 	return next;
694 }
695 #define __for_each_child_of_node(parent, child) \
696 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
697 	     child = __of_get_next_child(parent, child))
698 
699 /**
700  *	of_get_next_child - Iterate a node childs
701  *	@node:	parent node
702  *	@prev:	previous child of the parent node, or NULL to get first
703  *
704  *	Returns a node pointer with refcount incremented, use of_node_put() on
705  *	it when done. Returns NULL when prev is the last child. Decrements the
706  *	refcount of prev.
707  */
708 struct device_node *of_get_next_child(const struct device_node *node,
709 	struct device_node *prev)
710 {
711 	struct device_node *next;
712 	unsigned long flags;
713 
714 	raw_spin_lock_irqsave(&devtree_lock, flags);
715 	next = __of_get_next_child(node, prev);
716 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
717 	return next;
718 }
719 EXPORT_SYMBOL(of_get_next_child);
720 
721 /**
722  *	of_get_next_available_child - Find the next available child node
723  *	@node:	parent node
724  *	@prev:	previous child of the parent node, or NULL to get first
725  *
726  *      This function is like of_get_next_child(), except that it
727  *      automatically skips any disabled nodes (i.e. status = "disabled").
728  */
729 struct device_node *of_get_next_available_child(const struct device_node *node,
730 	struct device_node *prev)
731 {
732 	struct device_node *next;
733 	unsigned long flags;
734 
735 	if (!node)
736 		return NULL;
737 
738 	raw_spin_lock_irqsave(&devtree_lock, flags);
739 	next = prev ? prev->sibling : node->child;
740 	for (; next; next = next->sibling) {
741 		if (!__of_device_is_available(next))
742 			continue;
743 		if (of_node_get(next))
744 			break;
745 	}
746 	of_node_put(prev);
747 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
748 	return next;
749 }
750 EXPORT_SYMBOL(of_get_next_available_child);
751 
752 /**
753  *	of_get_next_cpu_node - Iterate on cpu nodes
754  *	@prev:	previous child of the /cpus node, or NULL to get first
755  *
756  *	Returns a cpu node pointer with refcount incremented, use of_node_put()
757  *	on it when done. Returns NULL when prev is the last child. Decrements
758  *	the refcount of prev.
759  */
760 struct device_node *of_get_next_cpu_node(struct device_node *prev)
761 {
762 	struct device_node *next = NULL;
763 	unsigned long flags;
764 	struct device_node *node;
765 
766 	if (!prev)
767 		node = of_find_node_by_path("/cpus");
768 
769 	raw_spin_lock_irqsave(&devtree_lock, flags);
770 	if (prev)
771 		next = prev->sibling;
772 	else if (node) {
773 		next = node->child;
774 		of_node_put(node);
775 	}
776 	for (; next; next = next->sibling) {
777 		if (!(of_node_name_eq(next, "cpu") ||
778 		      (next->type && !of_node_cmp(next->type, "cpu"))))
779 			continue;
780 		if (of_node_get(next))
781 			break;
782 	}
783 	of_node_put(prev);
784 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
785 	return next;
786 }
787 EXPORT_SYMBOL(of_get_next_cpu_node);
788 
789 /**
790  * of_get_compatible_child - Find compatible child node
791  * @parent:	parent node
792  * @compatible:	compatible string
793  *
794  * Lookup child node whose compatible property contains the given compatible
795  * string.
796  *
797  * Returns a node pointer with refcount incremented, use of_node_put() on it
798  * when done; or NULL if not found.
799  */
800 struct device_node *of_get_compatible_child(const struct device_node *parent,
801 				const char *compatible)
802 {
803 	struct device_node *child;
804 
805 	for_each_child_of_node(parent, child) {
806 		if (of_device_is_compatible(child, compatible))
807 			break;
808 	}
809 
810 	return child;
811 }
812 EXPORT_SYMBOL(of_get_compatible_child);
813 
814 /**
815  *	of_get_child_by_name - Find the child node by name for a given parent
816  *	@node:	parent node
817  *	@name:	child name to look for.
818  *
819  *      This function looks for child node for given matching name
820  *
821  *	Returns a node pointer if found, with refcount incremented, use
822  *	of_node_put() on it when done.
823  *	Returns NULL if node is not found.
824  */
825 struct device_node *of_get_child_by_name(const struct device_node *node,
826 				const char *name)
827 {
828 	struct device_node *child;
829 
830 	for_each_child_of_node(node, child)
831 		if (child->name && (of_node_cmp(child->name, name) == 0))
832 			break;
833 	return child;
834 }
835 EXPORT_SYMBOL(of_get_child_by_name);
836 
837 struct device_node *__of_find_node_by_path(struct device_node *parent,
838 						const char *path)
839 {
840 	struct device_node *child;
841 	int len;
842 
843 	len = strcspn(path, "/:");
844 	if (!len)
845 		return NULL;
846 
847 	__for_each_child_of_node(parent, child) {
848 		const char *name = kbasename(child->full_name);
849 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
850 			return child;
851 	}
852 	return NULL;
853 }
854 
855 struct device_node *__of_find_node_by_full_path(struct device_node *node,
856 						const char *path)
857 {
858 	const char *separator = strchr(path, ':');
859 
860 	while (node && *path == '/') {
861 		struct device_node *tmp = node;
862 
863 		path++; /* Increment past '/' delimiter */
864 		node = __of_find_node_by_path(node, path);
865 		of_node_put(tmp);
866 		path = strchrnul(path, '/');
867 		if (separator && separator < path)
868 			break;
869 	}
870 	return node;
871 }
872 
873 /**
874  *	of_find_node_opts_by_path - Find a node matching a full OF path
875  *	@path: Either the full path to match, or if the path does not
876  *	       start with '/', the name of a property of the /aliases
877  *	       node (an alias).  In the case of an alias, the node
878  *	       matching the alias' value will be returned.
879  *	@opts: Address of a pointer into which to store the start of
880  *	       an options string appended to the end of the path with
881  *	       a ':' separator.
882  *
883  *	Valid paths:
884  *		/foo/bar	Full path
885  *		foo		Valid alias
886  *		foo/bar		Valid alias + relative path
887  *
888  *	Returns a node pointer with refcount incremented, use
889  *	of_node_put() on it when done.
890  */
891 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
892 {
893 	struct device_node *np = NULL;
894 	struct property *pp;
895 	unsigned long flags;
896 	const char *separator = strchr(path, ':');
897 
898 	if (opts)
899 		*opts = separator ? separator + 1 : NULL;
900 
901 	if (strcmp(path, "/") == 0)
902 		return of_node_get(of_root);
903 
904 	/* The path could begin with an alias */
905 	if (*path != '/') {
906 		int len;
907 		const char *p = separator;
908 
909 		if (!p)
910 			p = strchrnul(path, '/');
911 		len = p - path;
912 
913 		/* of_aliases must not be NULL */
914 		if (!of_aliases)
915 			return NULL;
916 
917 		for_each_property_of_node(of_aliases, pp) {
918 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
919 				np = of_find_node_by_path(pp->value);
920 				break;
921 			}
922 		}
923 		if (!np)
924 			return NULL;
925 		path = p;
926 	}
927 
928 	/* Step down the tree matching path components */
929 	raw_spin_lock_irqsave(&devtree_lock, flags);
930 	if (!np)
931 		np = of_node_get(of_root);
932 	np = __of_find_node_by_full_path(np, path);
933 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
934 	return np;
935 }
936 EXPORT_SYMBOL(of_find_node_opts_by_path);
937 
938 /**
939  *	of_find_node_by_name - Find a node by its "name" property
940  *	@from:	The node to start searching from or NULL; the node
941  *		you pass will not be searched, only the next one
942  *		will. Typically, you pass what the previous call
943  *		returned. of_node_put() will be called on @from.
944  *	@name:	The name string to match against
945  *
946  *	Returns a node pointer with refcount incremented, use
947  *	of_node_put() on it when done.
948  */
949 struct device_node *of_find_node_by_name(struct device_node *from,
950 	const char *name)
951 {
952 	struct device_node *np;
953 	unsigned long flags;
954 
955 	raw_spin_lock_irqsave(&devtree_lock, flags);
956 	for_each_of_allnodes_from(from, np)
957 		if (np->name && (of_node_cmp(np->name, name) == 0)
958 		    && of_node_get(np))
959 			break;
960 	of_node_put(from);
961 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
962 	return np;
963 }
964 EXPORT_SYMBOL(of_find_node_by_name);
965 
966 /**
967  *	of_find_node_by_type - Find a node by its "device_type" property
968  *	@from:	The node to start searching from, or NULL to start searching
969  *		the entire device tree. The node you pass will not be
970  *		searched, only the next one will; typically, you pass
971  *		what the previous call returned. of_node_put() will be
972  *		called on from for you.
973  *	@type:	The type string to match against
974  *
975  *	Returns a node pointer with refcount incremented, use
976  *	of_node_put() on it when done.
977  */
978 struct device_node *of_find_node_by_type(struct device_node *from,
979 	const char *type)
980 {
981 	struct device_node *np;
982 	unsigned long flags;
983 
984 	raw_spin_lock_irqsave(&devtree_lock, flags);
985 	for_each_of_allnodes_from(from, np)
986 		if (np->type && (of_node_cmp(np->type, type) == 0)
987 		    && of_node_get(np))
988 			break;
989 	of_node_put(from);
990 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
991 	return np;
992 }
993 EXPORT_SYMBOL(of_find_node_by_type);
994 
995 /**
996  *	of_find_compatible_node - Find a node based on type and one of the
997  *                                tokens in its "compatible" property
998  *	@from:		The node to start searching from or NULL, the node
999  *			you pass will not be searched, only the next one
1000  *			will; typically, you pass what the previous call
1001  *			returned. of_node_put() will be called on it
1002  *	@type:		The type string to match "device_type" or NULL to ignore
1003  *	@compatible:	The string to match to one of the tokens in the device
1004  *			"compatible" list.
1005  *
1006  *	Returns a node pointer with refcount incremented, use
1007  *	of_node_put() on it when done.
1008  */
1009 struct device_node *of_find_compatible_node(struct device_node *from,
1010 	const char *type, const char *compatible)
1011 {
1012 	struct device_node *np;
1013 	unsigned long flags;
1014 
1015 	raw_spin_lock_irqsave(&devtree_lock, flags);
1016 	for_each_of_allnodes_from(from, np)
1017 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1018 		    of_node_get(np))
1019 			break;
1020 	of_node_put(from);
1021 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1022 	return np;
1023 }
1024 EXPORT_SYMBOL(of_find_compatible_node);
1025 
1026 /**
1027  *	of_find_node_with_property - Find a node which has a property with
1028  *                                   the given name.
1029  *	@from:		The node to start searching from or NULL, the node
1030  *			you pass will not be searched, only the next one
1031  *			will; typically, you pass what the previous call
1032  *			returned. of_node_put() will be called on it
1033  *	@prop_name:	The name of the property to look for.
1034  *
1035  *	Returns a node pointer with refcount incremented, use
1036  *	of_node_put() on it when done.
1037  */
1038 struct device_node *of_find_node_with_property(struct device_node *from,
1039 	const char *prop_name)
1040 {
1041 	struct device_node *np;
1042 	struct property *pp;
1043 	unsigned long flags;
1044 
1045 	raw_spin_lock_irqsave(&devtree_lock, flags);
1046 	for_each_of_allnodes_from(from, np) {
1047 		for (pp = np->properties; pp; pp = pp->next) {
1048 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1049 				of_node_get(np);
1050 				goto out;
1051 			}
1052 		}
1053 	}
1054 out:
1055 	of_node_put(from);
1056 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1057 	return np;
1058 }
1059 EXPORT_SYMBOL(of_find_node_with_property);
1060 
1061 static
1062 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1063 					   const struct device_node *node)
1064 {
1065 	const struct of_device_id *best_match = NULL;
1066 	int score, best_score = 0;
1067 
1068 	if (!matches)
1069 		return NULL;
1070 
1071 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1072 		score = __of_device_is_compatible(node, matches->compatible,
1073 						  matches->type, matches->name);
1074 		if (score > best_score) {
1075 			best_match = matches;
1076 			best_score = score;
1077 		}
1078 	}
1079 
1080 	return best_match;
1081 }
1082 
1083 /**
1084  * of_match_node - Tell if a device_node has a matching of_match structure
1085  *	@matches:	array of of device match structures to search in
1086  *	@node:		the of device structure to match against
1087  *
1088  *	Low level utility function used by device matching.
1089  */
1090 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1091 					 const struct device_node *node)
1092 {
1093 	const struct of_device_id *match;
1094 	unsigned long flags;
1095 
1096 	raw_spin_lock_irqsave(&devtree_lock, flags);
1097 	match = __of_match_node(matches, node);
1098 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1099 	return match;
1100 }
1101 EXPORT_SYMBOL(of_match_node);
1102 
1103 /**
1104  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1105  *					  match table.
1106  *	@from:		The node to start searching from or NULL, the node
1107  *			you pass will not be searched, only the next one
1108  *			will; typically, you pass what the previous call
1109  *			returned. of_node_put() will be called on it
1110  *	@matches:	array of of device match structures to search in
1111  *	@match		Updated to point at the matches entry which matched
1112  *
1113  *	Returns a node pointer with refcount incremented, use
1114  *	of_node_put() on it when done.
1115  */
1116 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1117 					const struct of_device_id *matches,
1118 					const struct of_device_id **match)
1119 {
1120 	struct device_node *np;
1121 	const struct of_device_id *m;
1122 	unsigned long flags;
1123 
1124 	if (match)
1125 		*match = NULL;
1126 
1127 	raw_spin_lock_irqsave(&devtree_lock, flags);
1128 	for_each_of_allnodes_from(from, np) {
1129 		m = __of_match_node(matches, np);
1130 		if (m && of_node_get(np)) {
1131 			if (match)
1132 				*match = m;
1133 			break;
1134 		}
1135 	}
1136 	of_node_put(from);
1137 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1138 	return np;
1139 }
1140 EXPORT_SYMBOL(of_find_matching_node_and_match);
1141 
1142 /**
1143  * of_modalias_node - Lookup appropriate modalias for a device node
1144  * @node:	pointer to a device tree node
1145  * @modalias:	Pointer to buffer that modalias value will be copied into
1146  * @len:	Length of modalias value
1147  *
1148  * Based on the value of the compatible property, this routine will attempt
1149  * to choose an appropriate modalias value for a particular device tree node.
1150  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1151  * from the first entry in the compatible list property.
1152  *
1153  * This routine returns 0 on success, <0 on failure.
1154  */
1155 int of_modalias_node(struct device_node *node, char *modalias, int len)
1156 {
1157 	const char *compatible, *p;
1158 	int cplen;
1159 
1160 	compatible = of_get_property(node, "compatible", &cplen);
1161 	if (!compatible || strlen(compatible) > cplen)
1162 		return -ENODEV;
1163 	p = strchr(compatible, ',');
1164 	strlcpy(modalias, p ? p + 1 : compatible, len);
1165 	return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(of_modalias_node);
1168 
1169 /**
1170  * of_find_node_by_phandle - Find a node given a phandle
1171  * @handle:	phandle of the node to find
1172  *
1173  * Returns a node pointer with refcount incremented, use
1174  * of_node_put() on it when done.
1175  */
1176 struct device_node *of_find_node_by_phandle(phandle handle)
1177 {
1178 	struct device_node *np = NULL;
1179 	unsigned long flags;
1180 	phandle masked_handle;
1181 
1182 	if (!handle)
1183 		return NULL;
1184 
1185 	raw_spin_lock_irqsave(&devtree_lock, flags);
1186 
1187 	masked_handle = handle & phandle_cache_mask;
1188 
1189 	if (phandle_cache) {
1190 		if (phandle_cache[masked_handle] &&
1191 		    handle == phandle_cache[masked_handle]->phandle)
1192 			np = phandle_cache[masked_handle];
1193 	}
1194 
1195 	if (!np) {
1196 		for_each_of_allnodes(np)
1197 			if (np->phandle == handle) {
1198 				if (phandle_cache)
1199 					phandle_cache[masked_handle] = np;
1200 				break;
1201 			}
1202 	}
1203 
1204 	of_node_get(np);
1205 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1206 	return np;
1207 }
1208 EXPORT_SYMBOL(of_find_node_by_phandle);
1209 
1210 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1211 {
1212 	int i;
1213 	printk("%s %pOF", msg, args->np);
1214 	for (i = 0; i < args->args_count; i++) {
1215 		const char delim = i ? ',' : ':';
1216 
1217 		pr_cont("%c%08x", delim, args->args[i]);
1218 	}
1219 	pr_cont("\n");
1220 }
1221 
1222 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1223 		const struct device_node *np,
1224 		const char *list_name,
1225 		const char *cells_name,
1226 		int cell_count)
1227 {
1228 	const __be32 *list;
1229 	int size;
1230 
1231 	memset(it, 0, sizeof(*it));
1232 
1233 	list = of_get_property(np, list_name, &size);
1234 	if (!list)
1235 		return -ENOENT;
1236 
1237 	it->cells_name = cells_name;
1238 	it->cell_count = cell_count;
1239 	it->parent = np;
1240 	it->list_end = list + size / sizeof(*list);
1241 	it->phandle_end = list;
1242 	it->cur = list;
1243 
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1247 
1248 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1249 {
1250 	uint32_t count = 0;
1251 
1252 	if (it->node) {
1253 		of_node_put(it->node);
1254 		it->node = NULL;
1255 	}
1256 
1257 	if (!it->cur || it->phandle_end >= it->list_end)
1258 		return -ENOENT;
1259 
1260 	it->cur = it->phandle_end;
1261 
1262 	/* If phandle is 0, then it is an empty entry with no arguments. */
1263 	it->phandle = be32_to_cpup(it->cur++);
1264 
1265 	if (it->phandle) {
1266 
1267 		/*
1268 		 * Find the provider node and parse the #*-cells property to
1269 		 * determine the argument length.
1270 		 */
1271 		it->node = of_find_node_by_phandle(it->phandle);
1272 
1273 		if (it->cells_name) {
1274 			if (!it->node) {
1275 				pr_err("%pOF: could not find phandle\n",
1276 				       it->parent);
1277 				goto err;
1278 			}
1279 
1280 			if (of_property_read_u32(it->node, it->cells_name,
1281 						 &count)) {
1282 				pr_err("%pOF: could not get %s for %pOF\n",
1283 				       it->parent,
1284 				       it->cells_name,
1285 				       it->node);
1286 				goto err;
1287 			}
1288 		} else {
1289 			count = it->cell_count;
1290 		}
1291 
1292 		/*
1293 		 * Make sure that the arguments actually fit in the remaining
1294 		 * property data length
1295 		 */
1296 		if (it->cur + count > it->list_end) {
1297 			pr_err("%pOF: arguments longer than property\n",
1298 			       it->parent);
1299 			goto err;
1300 		}
1301 	}
1302 
1303 	it->phandle_end = it->cur + count;
1304 	it->cur_count = count;
1305 
1306 	return 0;
1307 
1308 err:
1309 	if (it->node) {
1310 		of_node_put(it->node);
1311 		it->node = NULL;
1312 	}
1313 
1314 	return -EINVAL;
1315 }
1316 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1317 
1318 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1319 			     uint32_t *args,
1320 			     int size)
1321 {
1322 	int i, count;
1323 
1324 	count = it->cur_count;
1325 
1326 	if (WARN_ON(size < count))
1327 		count = size;
1328 
1329 	for (i = 0; i < count; i++)
1330 		args[i] = be32_to_cpup(it->cur++);
1331 
1332 	return count;
1333 }
1334 
1335 static int __of_parse_phandle_with_args(const struct device_node *np,
1336 					const char *list_name,
1337 					const char *cells_name,
1338 					int cell_count, int index,
1339 					struct of_phandle_args *out_args)
1340 {
1341 	struct of_phandle_iterator it;
1342 	int rc, cur_index = 0;
1343 
1344 	/* Loop over the phandles until all the requested entry is found */
1345 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1346 		/*
1347 		 * All of the error cases bail out of the loop, so at
1348 		 * this point, the parsing is successful. If the requested
1349 		 * index matches, then fill the out_args structure and return,
1350 		 * or return -ENOENT for an empty entry.
1351 		 */
1352 		rc = -ENOENT;
1353 		if (cur_index == index) {
1354 			if (!it.phandle)
1355 				goto err;
1356 
1357 			if (out_args) {
1358 				int c;
1359 
1360 				c = of_phandle_iterator_args(&it,
1361 							     out_args->args,
1362 							     MAX_PHANDLE_ARGS);
1363 				out_args->np = it.node;
1364 				out_args->args_count = c;
1365 			} else {
1366 				of_node_put(it.node);
1367 			}
1368 
1369 			/* Found it! return success */
1370 			return 0;
1371 		}
1372 
1373 		cur_index++;
1374 	}
1375 
1376 	/*
1377 	 * Unlock node before returning result; will be one of:
1378 	 * -ENOENT : index is for empty phandle
1379 	 * -EINVAL : parsing error on data
1380 	 */
1381 
1382  err:
1383 	of_node_put(it.node);
1384 	return rc;
1385 }
1386 
1387 /**
1388  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1389  * @np: Pointer to device node holding phandle property
1390  * @phandle_name: Name of property holding a phandle value
1391  * @index: For properties holding a table of phandles, this is the index into
1392  *         the table
1393  *
1394  * Returns the device_node pointer with refcount incremented.  Use
1395  * of_node_put() on it when done.
1396  */
1397 struct device_node *of_parse_phandle(const struct device_node *np,
1398 				     const char *phandle_name, int index)
1399 {
1400 	struct of_phandle_args args;
1401 
1402 	if (index < 0)
1403 		return NULL;
1404 
1405 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1406 					 index, &args))
1407 		return NULL;
1408 
1409 	return args.np;
1410 }
1411 EXPORT_SYMBOL(of_parse_phandle);
1412 
1413 /**
1414  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1415  * @np:		pointer to a device tree node containing a list
1416  * @list_name:	property name that contains a list
1417  * @cells_name:	property name that specifies phandles' arguments count
1418  * @index:	index of a phandle to parse out
1419  * @out_args:	optional pointer to output arguments structure (will be filled)
1420  *
1421  * This function is useful to parse lists of phandles and their arguments.
1422  * Returns 0 on success and fills out_args, on error returns appropriate
1423  * errno value.
1424  *
1425  * Caller is responsible to call of_node_put() on the returned out_args->np
1426  * pointer.
1427  *
1428  * Example:
1429  *
1430  * phandle1: node1 {
1431  *	#list-cells = <2>;
1432  * }
1433  *
1434  * phandle2: node2 {
1435  *	#list-cells = <1>;
1436  * }
1437  *
1438  * node3 {
1439  *	list = <&phandle1 1 2 &phandle2 3>;
1440  * }
1441  *
1442  * To get a device_node of the `node2' node you may call this:
1443  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1444  */
1445 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1446 				const char *cells_name, int index,
1447 				struct of_phandle_args *out_args)
1448 {
1449 	if (index < 0)
1450 		return -EINVAL;
1451 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1452 					    index, out_args);
1453 }
1454 EXPORT_SYMBOL(of_parse_phandle_with_args);
1455 
1456 /**
1457  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1458  * @np:		pointer to a device tree node containing a list
1459  * @list_name:	property name that contains a list
1460  * @stem_name:	stem of property names that specify phandles' arguments count
1461  * @index:	index of a phandle to parse out
1462  * @out_args:	optional pointer to output arguments structure (will be filled)
1463  *
1464  * This function is useful to parse lists of phandles and their arguments.
1465  * Returns 0 on success and fills out_args, on error returns appropriate errno
1466  * value. The difference between this function and of_parse_phandle_with_args()
1467  * is that this API remaps a phandle if the node the phandle points to has
1468  * a <@stem_name>-map property.
1469  *
1470  * Caller is responsible to call of_node_put() on the returned out_args->np
1471  * pointer.
1472  *
1473  * Example:
1474  *
1475  * phandle1: node1 {
1476  *	#list-cells = <2>;
1477  * }
1478  *
1479  * phandle2: node2 {
1480  *	#list-cells = <1>;
1481  * }
1482  *
1483  * phandle3: node3 {
1484  * 	#list-cells = <1>;
1485  * 	list-map = <0 &phandle2 3>,
1486  * 		   <1 &phandle2 2>,
1487  * 		   <2 &phandle1 5 1>;
1488  *	list-map-mask = <0x3>;
1489  * };
1490  *
1491  * node4 {
1492  *	list = <&phandle1 1 2 &phandle3 0>;
1493  * }
1494  *
1495  * To get a device_node of the `node2' node you may call this:
1496  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1497  */
1498 int of_parse_phandle_with_args_map(const struct device_node *np,
1499 				   const char *list_name,
1500 				   const char *stem_name,
1501 				   int index, struct of_phandle_args *out_args)
1502 {
1503 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1504 	char *pass_name = NULL;
1505 	struct device_node *cur, *new = NULL;
1506 	const __be32 *map, *mask, *pass;
1507 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1508 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1509 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1510 	const __be32 *match_array = initial_match_array;
1511 	int i, ret, map_len, match;
1512 	u32 list_size, new_size;
1513 
1514 	if (index < 0)
1515 		return -EINVAL;
1516 
1517 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1518 	if (!cells_name)
1519 		return -ENOMEM;
1520 
1521 	ret = -ENOMEM;
1522 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1523 	if (!map_name)
1524 		goto free;
1525 
1526 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1527 	if (!mask_name)
1528 		goto free;
1529 
1530 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1531 	if (!pass_name)
1532 		goto free;
1533 
1534 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1535 					   out_args);
1536 	if (ret)
1537 		goto free;
1538 
1539 	/* Get the #<list>-cells property */
1540 	cur = out_args->np;
1541 	ret = of_property_read_u32(cur, cells_name, &list_size);
1542 	if (ret < 0)
1543 		goto put;
1544 
1545 	/* Precalculate the match array - this simplifies match loop */
1546 	for (i = 0; i < list_size; i++)
1547 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1548 
1549 	ret = -EINVAL;
1550 	while (cur) {
1551 		/* Get the <list>-map property */
1552 		map = of_get_property(cur, map_name, &map_len);
1553 		if (!map) {
1554 			ret = 0;
1555 			goto free;
1556 		}
1557 		map_len /= sizeof(u32);
1558 
1559 		/* Get the <list>-map-mask property (optional) */
1560 		mask = of_get_property(cur, mask_name, NULL);
1561 		if (!mask)
1562 			mask = dummy_mask;
1563 		/* Iterate through <list>-map property */
1564 		match = 0;
1565 		while (map_len > (list_size + 1) && !match) {
1566 			/* Compare specifiers */
1567 			match = 1;
1568 			for (i = 0; i < list_size; i++, map_len--)
1569 				match &= !((match_array[i] ^ *map++) & mask[i]);
1570 
1571 			of_node_put(new);
1572 			new = of_find_node_by_phandle(be32_to_cpup(map));
1573 			map++;
1574 			map_len--;
1575 
1576 			/* Check if not found */
1577 			if (!new)
1578 				goto put;
1579 
1580 			if (!of_device_is_available(new))
1581 				match = 0;
1582 
1583 			ret = of_property_read_u32(new, cells_name, &new_size);
1584 			if (ret)
1585 				goto put;
1586 
1587 			/* Check for malformed properties */
1588 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1589 				goto put;
1590 			if (map_len < new_size)
1591 				goto put;
1592 
1593 			/* Move forward by new node's #<list>-cells amount */
1594 			map += new_size;
1595 			map_len -= new_size;
1596 		}
1597 		if (!match)
1598 			goto put;
1599 
1600 		/* Get the <list>-map-pass-thru property (optional) */
1601 		pass = of_get_property(cur, pass_name, NULL);
1602 		if (!pass)
1603 			pass = dummy_pass;
1604 
1605 		/*
1606 		 * Successfully parsed a <list>-map translation; copy new
1607 		 * specifier into the out_args structure, keeping the
1608 		 * bits specified in <list>-map-pass-thru.
1609 		 */
1610 		match_array = map - new_size;
1611 		for (i = 0; i < new_size; i++) {
1612 			__be32 val = *(map - new_size + i);
1613 
1614 			if (i < list_size) {
1615 				val &= ~pass[i];
1616 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1617 			}
1618 
1619 			out_args->args[i] = be32_to_cpu(val);
1620 		}
1621 		out_args->args_count = list_size = new_size;
1622 		/* Iterate again with new provider */
1623 		out_args->np = new;
1624 		of_node_put(cur);
1625 		cur = new;
1626 	}
1627 put:
1628 	of_node_put(cur);
1629 	of_node_put(new);
1630 free:
1631 	kfree(mask_name);
1632 	kfree(map_name);
1633 	kfree(cells_name);
1634 	kfree(pass_name);
1635 
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1639 
1640 /**
1641  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1642  * @np:		pointer to a device tree node containing a list
1643  * @list_name:	property name that contains a list
1644  * @cell_count: number of argument cells following the phandle
1645  * @index:	index of a phandle to parse out
1646  * @out_args:	optional pointer to output arguments structure (will be filled)
1647  *
1648  * This function is useful to parse lists of phandles and their arguments.
1649  * Returns 0 on success and fills out_args, on error returns appropriate
1650  * errno value.
1651  *
1652  * Caller is responsible to call of_node_put() on the returned out_args->np
1653  * pointer.
1654  *
1655  * Example:
1656  *
1657  * phandle1: node1 {
1658  * }
1659  *
1660  * phandle2: node2 {
1661  * }
1662  *
1663  * node3 {
1664  *	list = <&phandle1 0 2 &phandle2 2 3>;
1665  * }
1666  *
1667  * To get a device_node of the `node2' node you may call this:
1668  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1669  */
1670 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1671 				const char *list_name, int cell_count,
1672 				int index, struct of_phandle_args *out_args)
1673 {
1674 	if (index < 0)
1675 		return -EINVAL;
1676 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1677 					   index, out_args);
1678 }
1679 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1680 
1681 /**
1682  * of_count_phandle_with_args() - Find the number of phandles references in a property
1683  * @np:		pointer to a device tree node containing a list
1684  * @list_name:	property name that contains a list
1685  * @cells_name:	property name that specifies phandles' arguments count
1686  *
1687  * Returns the number of phandle + argument tuples within a property. It
1688  * is a typical pattern to encode a list of phandle and variable
1689  * arguments into a single property. The number of arguments is encoded
1690  * by a property in the phandle-target node. For example, a gpios
1691  * property would contain a list of GPIO specifies consisting of a
1692  * phandle and 1 or more arguments. The number of arguments are
1693  * determined by the #gpio-cells property in the node pointed to by the
1694  * phandle.
1695  */
1696 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1697 				const char *cells_name)
1698 {
1699 	struct of_phandle_iterator it;
1700 	int rc, cur_index = 0;
1701 
1702 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1703 	if (rc)
1704 		return rc;
1705 
1706 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1707 		cur_index += 1;
1708 
1709 	if (rc != -ENOENT)
1710 		return rc;
1711 
1712 	return cur_index;
1713 }
1714 EXPORT_SYMBOL(of_count_phandle_with_args);
1715 
1716 /**
1717  * __of_add_property - Add a property to a node without lock operations
1718  */
1719 int __of_add_property(struct device_node *np, struct property *prop)
1720 {
1721 	struct property **next;
1722 
1723 	prop->next = NULL;
1724 	next = &np->properties;
1725 	while (*next) {
1726 		if (strcmp(prop->name, (*next)->name) == 0)
1727 			/* duplicate ! don't insert it */
1728 			return -EEXIST;
1729 
1730 		next = &(*next)->next;
1731 	}
1732 	*next = prop;
1733 
1734 	return 0;
1735 }
1736 
1737 /**
1738  * of_add_property - Add a property to a node
1739  */
1740 int of_add_property(struct device_node *np, struct property *prop)
1741 {
1742 	unsigned long flags;
1743 	int rc;
1744 
1745 	mutex_lock(&of_mutex);
1746 
1747 	raw_spin_lock_irqsave(&devtree_lock, flags);
1748 	rc = __of_add_property(np, prop);
1749 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1750 
1751 	if (!rc)
1752 		__of_add_property_sysfs(np, prop);
1753 
1754 	mutex_unlock(&of_mutex);
1755 
1756 	if (!rc)
1757 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1758 
1759 	return rc;
1760 }
1761 
1762 int __of_remove_property(struct device_node *np, struct property *prop)
1763 {
1764 	struct property **next;
1765 
1766 	for (next = &np->properties; *next; next = &(*next)->next) {
1767 		if (*next == prop)
1768 			break;
1769 	}
1770 	if (*next == NULL)
1771 		return -ENODEV;
1772 
1773 	/* found the node */
1774 	*next = prop->next;
1775 	prop->next = np->deadprops;
1776 	np->deadprops = prop;
1777 
1778 	return 0;
1779 }
1780 
1781 /**
1782  * of_remove_property - Remove a property from a node.
1783  *
1784  * Note that we don't actually remove it, since we have given out
1785  * who-knows-how-many pointers to the data using get-property.
1786  * Instead we just move the property to the "dead properties"
1787  * list, so it won't be found any more.
1788  */
1789 int of_remove_property(struct device_node *np, struct property *prop)
1790 {
1791 	unsigned long flags;
1792 	int rc;
1793 
1794 	if (!prop)
1795 		return -ENODEV;
1796 
1797 	mutex_lock(&of_mutex);
1798 
1799 	raw_spin_lock_irqsave(&devtree_lock, flags);
1800 	rc = __of_remove_property(np, prop);
1801 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1802 
1803 	if (!rc)
1804 		__of_remove_property_sysfs(np, prop);
1805 
1806 	mutex_unlock(&of_mutex);
1807 
1808 	if (!rc)
1809 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1810 
1811 	return rc;
1812 }
1813 
1814 int __of_update_property(struct device_node *np, struct property *newprop,
1815 		struct property **oldpropp)
1816 {
1817 	struct property **next, *oldprop;
1818 
1819 	for (next = &np->properties; *next; next = &(*next)->next) {
1820 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1821 			break;
1822 	}
1823 	*oldpropp = oldprop = *next;
1824 
1825 	if (oldprop) {
1826 		/* replace the node */
1827 		newprop->next = oldprop->next;
1828 		*next = newprop;
1829 		oldprop->next = np->deadprops;
1830 		np->deadprops = oldprop;
1831 	} else {
1832 		/* new node */
1833 		newprop->next = NULL;
1834 		*next = newprop;
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 /*
1841  * of_update_property - Update a property in a node, if the property does
1842  * not exist, add it.
1843  *
1844  * Note that we don't actually remove it, since we have given out
1845  * who-knows-how-many pointers to the data using get-property.
1846  * Instead we just move the property to the "dead properties" list,
1847  * and add the new property to the property list
1848  */
1849 int of_update_property(struct device_node *np, struct property *newprop)
1850 {
1851 	struct property *oldprop;
1852 	unsigned long flags;
1853 	int rc;
1854 
1855 	if (!newprop->name)
1856 		return -EINVAL;
1857 
1858 	mutex_lock(&of_mutex);
1859 
1860 	raw_spin_lock_irqsave(&devtree_lock, flags);
1861 	rc = __of_update_property(np, newprop, &oldprop);
1862 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1863 
1864 	if (!rc)
1865 		__of_update_property_sysfs(np, newprop, oldprop);
1866 
1867 	mutex_unlock(&of_mutex);
1868 
1869 	if (!rc)
1870 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1871 
1872 	return rc;
1873 }
1874 
1875 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1876 			 int id, const char *stem, int stem_len)
1877 {
1878 	ap->np = np;
1879 	ap->id = id;
1880 	strncpy(ap->stem, stem, stem_len);
1881 	ap->stem[stem_len] = 0;
1882 	list_add_tail(&ap->link, &aliases_lookup);
1883 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1884 		 ap->alias, ap->stem, ap->id, np);
1885 }
1886 
1887 /**
1888  * of_alias_scan - Scan all properties of the 'aliases' node
1889  *
1890  * The function scans all the properties of the 'aliases' node and populates
1891  * the global lookup table with the properties.  It returns the
1892  * number of alias properties found, or an error code in case of failure.
1893  *
1894  * @dt_alloc:	An allocator that provides a virtual address to memory
1895  *		for storing the resulting tree
1896  */
1897 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1898 {
1899 	struct property *pp;
1900 
1901 	of_aliases = of_find_node_by_path("/aliases");
1902 	of_chosen = of_find_node_by_path("/chosen");
1903 	if (of_chosen == NULL)
1904 		of_chosen = of_find_node_by_path("/chosen@0");
1905 
1906 	if (of_chosen) {
1907 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1908 		const char *name = NULL;
1909 
1910 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1911 			of_property_read_string(of_chosen, "linux,stdout-path",
1912 						&name);
1913 		if (IS_ENABLED(CONFIG_PPC) && !name)
1914 			of_property_read_string(of_aliases, "stdout", &name);
1915 		if (name)
1916 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1917 	}
1918 
1919 	if (!of_aliases)
1920 		return;
1921 
1922 	for_each_property_of_node(of_aliases, pp) {
1923 		const char *start = pp->name;
1924 		const char *end = start + strlen(start);
1925 		struct device_node *np;
1926 		struct alias_prop *ap;
1927 		int id, len;
1928 
1929 		/* Skip those we do not want to proceed */
1930 		if (!strcmp(pp->name, "name") ||
1931 		    !strcmp(pp->name, "phandle") ||
1932 		    !strcmp(pp->name, "linux,phandle"))
1933 			continue;
1934 
1935 		np = of_find_node_by_path(pp->value);
1936 		if (!np)
1937 			continue;
1938 
1939 		/* walk the alias backwards to extract the id and work out
1940 		 * the 'stem' string */
1941 		while (isdigit(*(end-1)) && end > start)
1942 			end--;
1943 		len = end - start;
1944 
1945 		if (kstrtoint(end, 10, &id) < 0)
1946 			continue;
1947 
1948 		/* Allocate an alias_prop with enough space for the stem */
1949 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1950 		if (!ap)
1951 			continue;
1952 		memset(ap, 0, sizeof(*ap) + len + 1);
1953 		ap->alias = start;
1954 		of_alias_add(ap, np, id, start, len);
1955 	}
1956 }
1957 
1958 /**
1959  * of_alias_get_id - Get alias id for the given device_node
1960  * @np:		Pointer to the given device_node
1961  * @stem:	Alias stem of the given device_node
1962  *
1963  * The function travels the lookup table to get the alias id for the given
1964  * device_node and alias stem.  It returns the alias id if found.
1965  */
1966 int of_alias_get_id(struct device_node *np, const char *stem)
1967 {
1968 	struct alias_prop *app;
1969 	int id = -ENODEV;
1970 
1971 	mutex_lock(&of_mutex);
1972 	list_for_each_entry(app, &aliases_lookup, link) {
1973 		if (strcmp(app->stem, stem) != 0)
1974 			continue;
1975 
1976 		if (np == app->np) {
1977 			id = app->id;
1978 			break;
1979 		}
1980 	}
1981 	mutex_unlock(&of_mutex);
1982 
1983 	return id;
1984 }
1985 EXPORT_SYMBOL_GPL(of_alias_get_id);
1986 
1987 /**
1988  * of_alias_get_alias_list - Get alias list for the given device driver
1989  * @matches:	Array of OF device match structures to search in
1990  * @stem:	Alias stem of the given device_node
1991  * @bitmap:	Bitmap field pointer
1992  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
1993  *
1994  * The function travels the lookup table to record alias ids for the given
1995  * device match structures and alias stem.
1996  *
1997  * Return:	0 or -ENOSYS when !CONFIG_OF or
1998  *		-EOVERFLOW if alias ID is greater then allocated nbits
1999  */
2000 int of_alias_get_alias_list(const struct of_device_id *matches,
2001 			     const char *stem, unsigned long *bitmap,
2002 			     unsigned int nbits)
2003 {
2004 	struct alias_prop *app;
2005 	int ret = 0;
2006 
2007 	/* Zero bitmap field to make sure that all the time it is clean */
2008 	bitmap_zero(bitmap, nbits);
2009 
2010 	mutex_lock(&of_mutex);
2011 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2012 	list_for_each_entry(app, &aliases_lookup, link) {
2013 		pr_debug("%s: stem: %s, id: %d\n",
2014 			 __func__, app->stem, app->id);
2015 
2016 		if (strcmp(app->stem, stem) != 0) {
2017 			pr_debug("%s: stem comparison didn't pass %s\n",
2018 				 __func__, app->stem);
2019 			continue;
2020 		}
2021 
2022 		if (of_match_node(matches, app->np)) {
2023 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2024 
2025 			if (app->id >= nbits) {
2026 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2027 					__func__, app->id, nbits);
2028 				ret = -EOVERFLOW;
2029 			} else {
2030 				set_bit(app->id, bitmap);
2031 			}
2032 		}
2033 	}
2034 	mutex_unlock(&of_mutex);
2035 
2036 	return ret;
2037 }
2038 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2039 
2040 /**
2041  * of_alias_get_highest_id - Get highest alias id for the given stem
2042  * @stem:	Alias stem to be examined
2043  *
2044  * The function travels the lookup table to get the highest alias id for the
2045  * given alias stem.  It returns the alias id if found.
2046  */
2047 int of_alias_get_highest_id(const char *stem)
2048 {
2049 	struct alias_prop *app;
2050 	int id = -ENODEV;
2051 
2052 	mutex_lock(&of_mutex);
2053 	list_for_each_entry(app, &aliases_lookup, link) {
2054 		if (strcmp(app->stem, stem) != 0)
2055 			continue;
2056 
2057 		if (app->id > id)
2058 			id = app->id;
2059 	}
2060 	mutex_unlock(&of_mutex);
2061 
2062 	return id;
2063 }
2064 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2065 
2066 /**
2067  * of_console_check() - Test and setup console for DT setup
2068  * @dn - Pointer to device node
2069  * @name - Name to use for preferred console without index. ex. "ttyS"
2070  * @index - Index to use for preferred console.
2071  *
2072  * Check if the given device node matches the stdout-path property in the
2073  * /chosen node. If it does then register it as the preferred console and return
2074  * TRUE. Otherwise return FALSE.
2075  */
2076 bool of_console_check(struct device_node *dn, char *name, int index)
2077 {
2078 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2079 		return false;
2080 
2081 	/*
2082 	 * XXX: cast `options' to char pointer to suppress complication
2083 	 * warnings: printk, UART and console drivers expect char pointer.
2084 	 */
2085 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2086 }
2087 EXPORT_SYMBOL_GPL(of_console_check);
2088 
2089 /**
2090  *	of_find_next_cache_node - Find a node's subsidiary cache
2091  *	@np:	node of type "cpu" or "cache"
2092  *
2093  *	Returns a node pointer with refcount incremented, use
2094  *	of_node_put() on it when done.  Caller should hold a reference
2095  *	to np.
2096  */
2097 struct device_node *of_find_next_cache_node(const struct device_node *np)
2098 {
2099 	struct device_node *child, *cache_node;
2100 
2101 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2102 	if (!cache_node)
2103 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2104 
2105 	if (cache_node)
2106 		return cache_node;
2107 
2108 	/* OF on pmac has nodes instead of properties named "l2-cache"
2109 	 * beneath CPU nodes.
2110 	 */
2111 	if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
2112 		for_each_child_of_node(np, child)
2113 			if (!strcmp(child->type, "cache"))
2114 				return child;
2115 
2116 	return NULL;
2117 }
2118 
2119 /**
2120  * of_find_last_cache_level - Find the level at which the last cache is
2121  * 		present for the given logical cpu
2122  *
2123  * @cpu: cpu number(logical index) for which the last cache level is needed
2124  *
2125  * Returns the the level at which the last cache is present. It is exactly
2126  * same as  the total number of cache levels for the given logical cpu.
2127  */
2128 int of_find_last_cache_level(unsigned int cpu)
2129 {
2130 	u32 cache_level = 0;
2131 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2132 
2133 	while (np) {
2134 		prev = np;
2135 		of_node_put(np);
2136 		np = of_find_next_cache_node(np);
2137 	}
2138 
2139 	of_property_read_u32(prev, "cache-level", &cache_level);
2140 
2141 	return cache_level;
2142 }
2143 
2144 /**
2145  * of_map_rid - Translate a requester ID through a downstream mapping.
2146  * @np: root complex device node.
2147  * @rid: device requester ID to map.
2148  * @map_name: property name of the map to use.
2149  * @map_mask_name: optional property name of the mask to use.
2150  * @target: optional pointer to a target device node.
2151  * @id_out: optional pointer to receive the translated ID.
2152  *
2153  * Given a device requester ID, look up the appropriate implementation-defined
2154  * platform ID and/or the target device which receives transactions on that
2155  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2156  * @id_out may be NULL if only the other is required. If @target points to
2157  * a non-NULL device node pointer, only entries targeting that node will be
2158  * matched; if it points to a NULL value, it will receive the device node of
2159  * the first matching target phandle, with a reference held.
2160  *
2161  * Return: 0 on success or a standard error code on failure.
2162  */
2163 int of_map_rid(struct device_node *np, u32 rid,
2164 	       const char *map_name, const char *map_mask_name,
2165 	       struct device_node **target, u32 *id_out)
2166 {
2167 	u32 map_mask, masked_rid;
2168 	int map_len;
2169 	const __be32 *map = NULL;
2170 
2171 	if (!np || !map_name || (!target && !id_out))
2172 		return -EINVAL;
2173 
2174 	map = of_get_property(np, map_name, &map_len);
2175 	if (!map) {
2176 		if (target)
2177 			return -ENODEV;
2178 		/* Otherwise, no map implies no translation */
2179 		*id_out = rid;
2180 		return 0;
2181 	}
2182 
2183 	if (!map_len || map_len % (4 * sizeof(*map))) {
2184 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2185 			map_name, map_len);
2186 		return -EINVAL;
2187 	}
2188 
2189 	/* The default is to select all bits. */
2190 	map_mask = 0xffffffff;
2191 
2192 	/*
2193 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2194 	 * If of_property_read_u32() fails, the default is used.
2195 	 */
2196 	if (map_mask_name)
2197 		of_property_read_u32(np, map_mask_name, &map_mask);
2198 
2199 	masked_rid = map_mask & rid;
2200 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2201 		struct device_node *phandle_node;
2202 		u32 rid_base = be32_to_cpup(map + 0);
2203 		u32 phandle = be32_to_cpup(map + 1);
2204 		u32 out_base = be32_to_cpup(map + 2);
2205 		u32 rid_len = be32_to_cpup(map + 3);
2206 
2207 		if (rid_base & ~map_mask) {
2208 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2209 				np, map_name, map_name,
2210 				map_mask, rid_base);
2211 			return -EFAULT;
2212 		}
2213 
2214 		if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2215 			continue;
2216 
2217 		phandle_node = of_find_node_by_phandle(phandle);
2218 		if (!phandle_node)
2219 			return -ENODEV;
2220 
2221 		if (target) {
2222 			if (*target)
2223 				of_node_put(phandle_node);
2224 			else
2225 				*target = phandle_node;
2226 
2227 			if (*target != phandle_node)
2228 				continue;
2229 		}
2230 
2231 		if (id_out)
2232 			*id_out = masked_rid - rid_base + out_base;
2233 
2234 		pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2235 			np, map_name, map_mask, rid_base, out_base,
2236 			rid_len, rid, masked_rid - rid_base + out_base);
2237 		return 0;
2238 	}
2239 
2240 	pr_err("%pOF: Invalid %s translation - no match for rid 0x%x on %pOF\n",
2241 		np, map_name, rid, target && *target ? *target : NULL);
2242 	return -EFAULT;
2243 }
2244 EXPORT_SYMBOL_GPL(of_map_rid);
2245