xref: /openbmc/linux/drivers/of/base.c (revision 6774def6)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_allnodes;
36 EXPORT_SYMBOL(of_allnodes);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 
41 struct kset *of_kset;
42 
43 /*
44  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
45  * This mutex must be held whenever modifications are being made to the
46  * device tree. The of_{attach,detach}_node() and
47  * of_{add,remove,update}_property() helpers make sure this happens.
48  */
49 DEFINE_MUTEX(of_mutex);
50 
51 /* use when traversing tree through the allnext, child, sibling,
52  * or parent members of struct device_node.
53  */
54 DEFINE_RAW_SPINLOCK(devtree_lock);
55 
56 int of_n_addr_cells(struct device_node *np)
57 {
58 	const __be32 *ip;
59 
60 	do {
61 		if (np->parent)
62 			np = np->parent;
63 		ip = of_get_property(np, "#address-cells", NULL);
64 		if (ip)
65 			return be32_to_cpup(ip);
66 	} while (np->parent);
67 	/* No #address-cells property for the root node */
68 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69 }
70 EXPORT_SYMBOL(of_n_addr_cells);
71 
72 int of_n_size_cells(struct device_node *np)
73 {
74 	const __be32 *ip;
75 
76 	do {
77 		if (np->parent)
78 			np = np->parent;
79 		ip = of_get_property(np, "#size-cells", NULL);
80 		if (ip)
81 			return be32_to_cpup(ip);
82 	} while (np->parent);
83 	/* No #size-cells property for the root node */
84 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
85 }
86 EXPORT_SYMBOL(of_n_size_cells);
87 
88 #ifdef CONFIG_NUMA
89 int __weak of_node_to_nid(struct device_node *np)
90 {
91 	return numa_node_id();
92 }
93 #endif
94 
95 #ifndef CONFIG_OF_DYNAMIC
96 static void of_node_release(struct kobject *kobj)
97 {
98 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
99 }
100 #endif /* CONFIG_OF_DYNAMIC */
101 
102 struct kobj_type of_node_ktype = {
103 	.release = of_node_release,
104 };
105 
106 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
107 				struct bin_attribute *bin_attr, char *buf,
108 				loff_t offset, size_t count)
109 {
110 	struct property *pp = container_of(bin_attr, struct property, attr);
111 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
112 }
113 
114 static const char *safe_name(struct kobject *kobj, const char *orig_name)
115 {
116 	const char *name = orig_name;
117 	struct kernfs_node *kn;
118 	int i = 0;
119 
120 	/* don't be a hero. After 16 tries give up */
121 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
122 		sysfs_put(kn);
123 		if (name != orig_name)
124 			kfree(name);
125 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
126 	}
127 
128 	if (name != orig_name)
129 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
130 			kobject_name(kobj), name);
131 	return name;
132 }
133 
134 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
135 {
136 	int rc;
137 
138 	/* Important: Don't leak passwords */
139 	bool secure = strncmp(pp->name, "security-", 9) == 0;
140 
141 	if (!IS_ENABLED(CONFIG_SYSFS))
142 		return 0;
143 
144 	if (!of_kset || !of_node_is_attached(np))
145 		return 0;
146 
147 	sysfs_bin_attr_init(&pp->attr);
148 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
149 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
150 	pp->attr.size = secure ? 0 : pp->length;
151 	pp->attr.read = of_node_property_read;
152 
153 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
154 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
155 	return rc;
156 }
157 
158 int __of_attach_node_sysfs(struct device_node *np)
159 {
160 	const char *name;
161 	struct property *pp;
162 	int rc;
163 
164 	if (!IS_ENABLED(CONFIG_SYSFS))
165 		return 0;
166 
167 	if (!of_kset)
168 		return 0;
169 
170 	np->kobj.kset = of_kset;
171 	if (!np->parent) {
172 		/* Nodes without parents are new top level trees */
173 		rc = kobject_add(&np->kobj, NULL, "%s",
174 				 safe_name(&of_kset->kobj, "base"));
175 	} else {
176 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
177 		if (!name || !name[0])
178 			return -EINVAL;
179 
180 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
181 	}
182 	if (rc)
183 		return rc;
184 
185 	for_each_property_of_node(np, pp)
186 		__of_add_property_sysfs(np, pp);
187 
188 	return 0;
189 }
190 
191 static int __init of_init(void)
192 {
193 	struct device_node *np;
194 
195 	/* Create the kset, and register existing nodes */
196 	mutex_lock(&of_mutex);
197 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
198 	if (!of_kset) {
199 		mutex_unlock(&of_mutex);
200 		return -ENOMEM;
201 	}
202 	for_each_of_allnodes(np)
203 		__of_attach_node_sysfs(np);
204 	mutex_unlock(&of_mutex);
205 
206 	/* Symlink in /proc as required by userspace ABI */
207 	if (of_allnodes)
208 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
209 
210 	return 0;
211 }
212 core_initcall(of_init);
213 
214 static struct property *__of_find_property(const struct device_node *np,
215 					   const char *name, int *lenp)
216 {
217 	struct property *pp;
218 
219 	if (!np)
220 		return NULL;
221 
222 	for (pp = np->properties; pp; pp = pp->next) {
223 		if (of_prop_cmp(pp->name, name) == 0) {
224 			if (lenp)
225 				*lenp = pp->length;
226 			break;
227 		}
228 	}
229 
230 	return pp;
231 }
232 
233 struct property *of_find_property(const struct device_node *np,
234 				  const char *name,
235 				  int *lenp)
236 {
237 	struct property *pp;
238 	unsigned long flags;
239 
240 	raw_spin_lock_irqsave(&devtree_lock, flags);
241 	pp = __of_find_property(np, name, lenp);
242 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
243 
244 	return pp;
245 }
246 EXPORT_SYMBOL(of_find_property);
247 
248 /**
249  * of_find_all_nodes - Get next node in global list
250  * @prev:	Previous node or NULL to start iteration
251  *		of_node_put() will be called on it
252  *
253  * Returns a node pointer with refcount incremented, use
254  * of_node_put() on it when done.
255  */
256 struct device_node *of_find_all_nodes(struct device_node *prev)
257 {
258 	struct device_node *np;
259 	unsigned long flags;
260 
261 	raw_spin_lock_irqsave(&devtree_lock, flags);
262 	np = prev ? prev->allnext : of_allnodes;
263 	for (; np != NULL; np = np->allnext)
264 		if (of_node_get(np))
265 			break;
266 	of_node_put(prev);
267 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
268 	return np;
269 }
270 EXPORT_SYMBOL(of_find_all_nodes);
271 
272 /*
273  * Find a property with a given name for a given node
274  * and return the value.
275  */
276 const void *__of_get_property(const struct device_node *np,
277 			      const char *name, int *lenp)
278 {
279 	struct property *pp = __of_find_property(np, name, lenp);
280 
281 	return pp ? pp->value : NULL;
282 }
283 
284 /*
285  * Find a property with a given name for a given node
286  * and return the value.
287  */
288 const void *of_get_property(const struct device_node *np, const char *name,
289 			    int *lenp)
290 {
291 	struct property *pp = of_find_property(np, name, lenp);
292 
293 	return pp ? pp->value : NULL;
294 }
295 EXPORT_SYMBOL(of_get_property);
296 
297 /*
298  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
299  *
300  * @cpu: logical cpu index of a core/thread
301  * @phys_id: physical identifier of a core/thread
302  *
303  * CPU logical to physical index mapping is architecture specific.
304  * However this __weak function provides a default match of physical
305  * id to logical cpu index. phys_id provided here is usually values read
306  * from the device tree which must match the hardware internal registers.
307  *
308  * Returns true if the physical identifier and the logical cpu index
309  * correspond to the same core/thread, false otherwise.
310  */
311 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
312 {
313 	return (u32)phys_id == cpu;
314 }
315 
316 /**
317  * Checks if the given "prop_name" property holds the physical id of the
318  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
319  * NULL, local thread number within the core is returned in it.
320  */
321 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
322 			const char *prop_name, int cpu, unsigned int *thread)
323 {
324 	const __be32 *cell;
325 	int ac, prop_len, tid;
326 	u64 hwid;
327 
328 	ac = of_n_addr_cells(cpun);
329 	cell = of_get_property(cpun, prop_name, &prop_len);
330 	if (!cell || !ac)
331 		return false;
332 	prop_len /= sizeof(*cell) * ac;
333 	for (tid = 0; tid < prop_len; tid++) {
334 		hwid = of_read_number(cell, ac);
335 		if (arch_match_cpu_phys_id(cpu, hwid)) {
336 			if (thread)
337 				*thread = tid;
338 			return true;
339 		}
340 		cell += ac;
341 	}
342 	return false;
343 }
344 
345 /*
346  * arch_find_n_match_cpu_physical_id - See if the given device node is
347  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
348  * else false.  If 'thread' is non-NULL, the local thread number within the
349  * core is returned in it.
350  */
351 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
352 					      int cpu, unsigned int *thread)
353 {
354 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
355 	 * for thread ids on PowerPC. If it doesn't exist fallback to
356 	 * standard "reg" property.
357 	 */
358 	if (IS_ENABLED(CONFIG_PPC) &&
359 	    __of_find_n_match_cpu_property(cpun,
360 					   "ibm,ppc-interrupt-server#s",
361 					   cpu, thread))
362 		return true;
363 
364 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
365 		return true;
366 
367 	return false;
368 }
369 
370 /**
371  * of_get_cpu_node - Get device node associated with the given logical CPU
372  *
373  * @cpu: CPU number(logical index) for which device node is required
374  * @thread: if not NULL, local thread number within the physical core is
375  *          returned
376  *
377  * The main purpose of this function is to retrieve the device node for the
378  * given logical CPU index. It should be used to initialize the of_node in
379  * cpu device. Once of_node in cpu device is populated, all the further
380  * references can use that instead.
381  *
382  * CPU logical to physical index mapping is architecture specific and is built
383  * before booting secondary cores. This function uses arch_match_cpu_phys_id
384  * which can be overridden by architecture specific implementation.
385  *
386  * Returns a node pointer for the logical cpu if found, else NULL.
387  */
388 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
389 {
390 	struct device_node *cpun;
391 
392 	for_each_node_by_type(cpun, "cpu") {
393 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
394 			return cpun;
395 	}
396 	return NULL;
397 }
398 EXPORT_SYMBOL(of_get_cpu_node);
399 
400 /**
401  * __of_device_is_compatible() - Check if the node matches given constraints
402  * @device: pointer to node
403  * @compat: required compatible string, NULL or "" for any match
404  * @type: required device_type value, NULL or "" for any match
405  * @name: required node name, NULL or "" for any match
406  *
407  * Checks if the given @compat, @type and @name strings match the
408  * properties of the given @device. A constraints can be skipped by
409  * passing NULL or an empty string as the constraint.
410  *
411  * Returns 0 for no match, and a positive integer on match. The return
412  * value is a relative score with larger values indicating better
413  * matches. The score is weighted for the most specific compatible value
414  * to get the highest score. Matching type is next, followed by matching
415  * name. Practically speaking, this results in the following priority
416  * order for matches:
417  *
418  * 1. specific compatible && type && name
419  * 2. specific compatible && type
420  * 3. specific compatible && name
421  * 4. specific compatible
422  * 5. general compatible && type && name
423  * 6. general compatible && type
424  * 7. general compatible && name
425  * 8. general compatible
426  * 9. type && name
427  * 10. type
428  * 11. name
429  */
430 static int __of_device_is_compatible(const struct device_node *device,
431 				     const char *compat, const char *type, const char *name)
432 {
433 	struct property *prop;
434 	const char *cp;
435 	int index = 0, score = 0;
436 
437 	/* Compatible match has highest priority */
438 	if (compat && compat[0]) {
439 		prop = __of_find_property(device, "compatible", NULL);
440 		for (cp = of_prop_next_string(prop, NULL); cp;
441 		     cp = of_prop_next_string(prop, cp), index++) {
442 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
443 				score = INT_MAX/2 - (index << 2);
444 				break;
445 			}
446 		}
447 		if (!score)
448 			return 0;
449 	}
450 
451 	/* Matching type is better than matching name */
452 	if (type && type[0]) {
453 		if (!device->type || of_node_cmp(type, device->type))
454 			return 0;
455 		score += 2;
456 	}
457 
458 	/* Matching name is a bit better than not */
459 	if (name && name[0]) {
460 		if (!device->name || of_node_cmp(name, device->name))
461 			return 0;
462 		score++;
463 	}
464 
465 	return score;
466 }
467 
468 /** Checks if the given "compat" string matches one of the strings in
469  * the device's "compatible" property
470  */
471 int of_device_is_compatible(const struct device_node *device,
472 		const char *compat)
473 {
474 	unsigned long flags;
475 	int res;
476 
477 	raw_spin_lock_irqsave(&devtree_lock, flags);
478 	res = __of_device_is_compatible(device, compat, NULL, NULL);
479 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
480 	return res;
481 }
482 EXPORT_SYMBOL(of_device_is_compatible);
483 
484 /**
485  * of_machine_is_compatible - Test root of device tree for a given compatible value
486  * @compat: compatible string to look for in root node's compatible property.
487  *
488  * Returns true if the root node has the given value in its
489  * compatible property.
490  */
491 int of_machine_is_compatible(const char *compat)
492 {
493 	struct device_node *root;
494 	int rc = 0;
495 
496 	root = of_find_node_by_path("/");
497 	if (root) {
498 		rc = of_device_is_compatible(root, compat);
499 		of_node_put(root);
500 	}
501 	return rc;
502 }
503 EXPORT_SYMBOL(of_machine_is_compatible);
504 
505 /**
506  *  __of_device_is_available - check if a device is available for use
507  *
508  *  @device: Node to check for availability, with locks already held
509  *
510  *  Returns 1 if the status property is absent or set to "okay" or "ok",
511  *  0 otherwise
512  */
513 static int __of_device_is_available(const struct device_node *device)
514 {
515 	const char *status;
516 	int statlen;
517 
518 	if (!device)
519 		return 0;
520 
521 	status = __of_get_property(device, "status", &statlen);
522 	if (status == NULL)
523 		return 1;
524 
525 	if (statlen > 0) {
526 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
527 			return 1;
528 	}
529 
530 	return 0;
531 }
532 
533 /**
534  *  of_device_is_available - check if a device is available for use
535  *
536  *  @device: Node to check for availability
537  *
538  *  Returns 1 if the status property is absent or set to "okay" or "ok",
539  *  0 otherwise
540  */
541 int of_device_is_available(const struct device_node *device)
542 {
543 	unsigned long flags;
544 	int res;
545 
546 	raw_spin_lock_irqsave(&devtree_lock, flags);
547 	res = __of_device_is_available(device);
548 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
549 	return res;
550 
551 }
552 EXPORT_SYMBOL(of_device_is_available);
553 
554 /**
555  *	of_get_parent - Get a node's parent if any
556  *	@node:	Node to get parent
557  *
558  *	Returns a node pointer with refcount incremented, use
559  *	of_node_put() on it when done.
560  */
561 struct device_node *of_get_parent(const struct device_node *node)
562 {
563 	struct device_node *np;
564 	unsigned long flags;
565 
566 	if (!node)
567 		return NULL;
568 
569 	raw_spin_lock_irqsave(&devtree_lock, flags);
570 	np = of_node_get(node->parent);
571 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
572 	return np;
573 }
574 EXPORT_SYMBOL(of_get_parent);
575 
576 /**
577  *	of_get_next_parent - Iterate to a node's parent
578  *	@node:	Node to get parent of
579  *
580  * 	This is like of_get_parent() except that it drops the
581  * 	refcount on the passed node, making it suitable for iterating
582  * 	through a node's parents.
583  *
584  *	Returns a node pointer with refcount incremented, use
585  *	of_node_put() on it when done.
586  */
587 struct device_node *of_get_next_parent(struct device_node *node)
588 {
589 	struct device_node *parent;
590 	unsigned long flags;
591 
592 	if (!node)
593 		return NULL;
594 
595 	raw_spin_lock_irqsave(&devtree_lock, flags);
596 	parent = of_node_get(node->parent);
597 	of_node_put(node);
598 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
599 	return parent;
600 }
601 EXPORT_SYMBOL(of_get_next_parent);
602 
603 static struct device_node *__of_get_next_child(const struct device_node *node,
604 						struct device_node *prev)
605 {
606 	struct device_node *next;
607 
608 	if (!node)
609 		return NULL;
610 
611 	next = prev ? prev->sibling : node->child;
612 	for (; next; next = next->sibling)
613 		if (of_node_get(next))
614 			break;
615 	of_node_put(prev);
616 	return next;
617 }
618 #define __for_each_child_of_node(parent, child) \
619 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
620 	     child = __of_get_next_child(parent, child))
621 
622 /**
623  *	of_get_next_child - Iterate a node childs
624  *	@node:	parent node
625  *	@prev:	previous child of the parent node, or NULL to get first
626  *
627  *	Returns a node pointer with refcount incremented, use
628  *	of_node_put() on it when done.
629  */
630 struct device_node *of_get_next_child(const struct device_node *node,
631 	struct device_node *prev)
632 {
633 	struct device_node *next;
634 	unsigned long flags;
635 
636 	raw_spin_lock_irqsave(&devtree_lock, flags);
637 	next = __of_get_next_child(node, prev);
638 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 	return next;
640 }
641 EXPORT_SYMBOL(of_get_next_child);
642 
643 /**
644  *	of_get_next_available_child - Find the next available child node
645  *	@node:	parent node
646  *	@prev:	previous child of the parent node, or NULL to get first
647  *
648  *      This function is like of_get_next_child(), except that it
649  *      automatically skips any disabled nodes (i.e. status = "disabled").
650  */
651 struct device_node *of_get_next_available_child(const struct device_node *node,
652 	struct device_node *prev)
653 {
654 	struct device_node *next;
655 	unsigned long flags;
656 
657 	if (!node)
658 		return NULL;
659 
660 	raw_spin_lock_irqsave(&devtree_lock, flags);
661 	next = prev ? prev->sibling : node->child;
662 	for (; next; next = next->sibling) {
663 		if (!__of_device_is_available(next))
664 			continue;
665 		if (of_node_get(next))
666 			break;
667 	}
668 	of_node_put(prev);
669 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
670 	return next;
671 }
672 EXPORT_SYMBOL(of_get_next_available_child);
673 
674 /**
675  *	of_get_child_by_name - Find the child node by name for a given parent
676  *	@node:	parent node
677  *	@name:	child name to look for.
678  *
679  *      This function looks for child node for given matching name
680  *
681  *	Returns a node pointer if found, with refcount incremented, use
682  *	of_node_put() on it when done.
683  *	Returns NULL if node is not found.
684  */
685 struct device_node *of_get_child_by_name(const struct device_node *node,
686 				const char *name)
687 {
688 	struct device_node *child;
689 
690 	for_each_child_of_node(node, child)
691 		if (child->name && (of_node_cmp(child->name, name) == 0))
692 			break;
693 	return child;
694 }
695 EXPORT_SYMBOL(of_get_child_by_name);
696 
697 static struct device_node *__of_find_node_by_path(struct device_node *parent,
698 						const char *path)
699 {
700 	struct device_node *child;
701 	int len = strchrnul(path, '/') - path;
702 
703 	if (!len)
704 		return NULL;
705 
706 	__for_each_child_of_node(parent, child) {
707 		const char *name = strrchr(child->full_name, '/');
708 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
709 			continue;
710 		name++;
711 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
712 			return child;
713 	}
714 	return NULL;
715 }
716 
717 /**
718  *	of_find_node_by_path - Find a node matching a full OF path
719  *	@path: Either the full path to match, or if the path does not
720  *	       start with '/', the name of a property of the /aliases
721  *	       node (an alias).  In the case of an alias, the node
722  *	       matching the alias' value will be returned.
723  *
724  *	Valid paths:
725  *		/foo/bar	Full path
726  *		foo		Valid alias
727  *		foo/bar		Valid alias + relative path
728  *
729  *	Returns a node pointer with refcount incremented, use
730  *	of_node_put() on it when done.
731  */
732 struct device_node *of_find_node_by_path(const char *path)
733 {
734 	struct device_node *np = NULL;
735 	struct property *pp;
736 	unsigned long flags;
737 
738 	if (strcmp(path, "/") == 0)
739 		return of_node_get(of_allnodes);
740 
741 	/* The path could begin with an alias */
742 	if (*path != '/') {
743 		char *p = strchrnul(path, '/');
744 		int len = p - path;
745 
746 		/* of_aliases must not be NULL */
747 		if (!of_aliases)
748 			return NULL;
749 
750 		for_each_property_of_node(of_aliases, pp) {
751 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
752 				np = of_find_node_by_path(pp->value);
753 				break;
754 			}
755 		}
756 		if (!np)
757 			return NULL;
758 		path = p;
759 	}
760 
761 	/* Step down the tree matching path components */
762 	raw_spin_lock_irqsave(&devtree_lock, flags);
763 	if (!np)
764 		np = of_node_get(of_allnodes);
765 	while (np && *path == '/') {
766 		path++; /* Increment past '/' delimiter */
767 		np = __of_find_node_by_path(np, path);
768 		path = strchrnul(path, '/');
769 	}
770 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 	return np;
772 }
773 EXPORT_SYMBOL(of_find_node_by_path);
774 
775 /**
776  *	of_find_node_by_name - Find a node by its "name" property
777  *	@from:	The node to start searching from or NULL, the node
778  *		you pass will not be searched, only the next one
779  *		will; typically, you pass what the previous call
780  *		returned. of_node_put() will be called on it
781  *	@name:	The name string to match against
782  *
783  *	Returns a node pointer with refcount incremented, use
784  *	of_node_put() on it when done.
785  */
786 struct device_node *of_find_node_by_name(struct device_node *from,
787 	const char *name)
788 {
789 	struct device_node *np;
790 	unsigned long flags;
791 
792 	raw_spin_lock_irqsave(&devtree_lock, flags);
793 	np = from ? from->allnext : of_allnodes;
794 	for (; np; np = np->allnext)
795 		if (np->name && (of_node_cmp(np->name, name) == 0)
796 		    && of_node_get(np))
797 			break;
798 	of_node_put(from);
799 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
800 	return np;
801 }
802 EXPORT_SYMBOL(of_find_node_by_name);
803 
804 /**
805  *	of_find_node_by_type - Find a node by its "device_type" property
806  *	@from:	The node to start searching from, or NULL to start searching
807  *		the entire device tree. The node you pass will not be
808  *		searched, only the next one will; typically, you pass
809  *		what the previous call returned. of_node_put() will be
810  *		called on from for you.
811  *	@type:	The type string to match against
812  *
813  *	Returns a node pointer with refcount incremented, use
814  *	of_node_put() on it when done.
815  */
816 struct device_node *of_find_node_by_type(struct device_node *from,
817 	const char *type)
818 {
819 	struct device_node *np;
820 	unsigned long flags;
821 
822 	raw_spin_lock_irqsave(&devtree_lock, flags);
823 	np = from ? from->allnext : of_allnodes;
824 	for (; np; np = np->allnext)
825 		if (np->type && (of_node_cmp(np->type, type) == 0)
826 		    && of_node_get(np))
827 			break;
828 	of_node_put(from);
829 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
830 	return np;
831 }
832 EXPORT_SYMBOL(of_find_node_by_type);
833 
834 /**
835  *	of_find_compatible_node - Find a node based on type and one of the
836  *                                tokens in its "compatible" property
837  *	@from:		The node to start searching from or NULL, the node
838  *			you pass will not be searched, only the next one
839  *			will; typically, you pass what the previous call
840  *			returned. of_node_put() will be called on it
841  *	@type:		The type string to match "device_type" or NULL to ignore
842  *	@compatible:	The string to match to one of the tokens in the device
843  *			"compatible" list.
844  *
845  *	Returns a node pointer with refcount incremented, use
846  *	of_node_put() on it when done.
847  */
848 struct device_node *of_find_compatible_node(struct device_node *from,
849 	const char *type, const char *compatible)
850 {
851 	struct device_node *np;
852 	unsigned long flags;
853 
854 	raw_spin_lock_irqsave(&devtree_lock, flags);
855 	np = from ? from->allnext : of_allnodes;
856 	for (; np; np = np->allnext) {
857 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
858 		    of_node_get(np))
859 			break;
860 	}
861 	of_node_put(from);
862 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
863 	return np;
864 }
865 EXPORT_SYMBOL(of_find_compatible_node);
866 
867 /**
868  *	of_find_node_with_property - Find a node which has a property with
869  *                                   the given name.
870  *	@from:		The node to start searching from or NULL, the node
871  *			you pass will not be searched, only the next one
872  *			will; typically, you pass what the previous call
873  *			returned. of_node_put() will be called on it
874  *	@prop_name:	The name of the property to look for.
875  *
876  *	Returns a node pointer with refcount incremented, use
877  *	of_node_put() on it when done.
878  */
879 struct device_node *of_find_node_with_property(struct device_node *from,
880 	const char *prop_name)
881 {
882 	struct device_node *np;
883 	struct property *pp;
884 	unsigned long flags;
885 
886 	raw_spin_lock_irqsave(&devtree_lock, flags);
887 	np = from ? from->allnext : of_allnodes;
888 	for (; np; np = np->allnext) {
889 		for (pp = np->properties; pp; pp = pp->next) {
890 			if (of_prop_cmp(pp->name, prop_name) == 0) {
891 				of_node_get(np);
892 				goto out;
893 			}
894 		}
895 	}
896 out:
897 	of_node_put(from);
898 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
899 	return np;
900 }
901 EXPORT_SYMBOL(of_find_node_with_property);
902 
903 static
904 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
905 					   const struct device_node *node)
906 {
907 	const struct of_device_id *best_match = NULL;
908 	int score, best_score = 0;
909 
910 	if (!matches)
911 		return NULL;
912 
913 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
914 		score = __of_device_is_compatible(node, matches->compatible,
915 						  matches->type, matches->name);
916 		if (score > best_score) {
917 			best_match = matches;
918 			best_score = score;
919 		}
920 	}
921 
922 	return best_match;
923 }
924 
925 /**
926  * of_match_node - Tell if an device_node has a matching of_match structure
927  *	@matches:	array of of device match structures to search in
928  *	@node:		the of device structure to match against
929  *
930  *	Low level utility function used by device matching.
931  */
932 const struct of_device_id *of_match_node(const struct of_device_id *matches,
933 					 const struct device_node *node)
934 {
935 	const struct of_device_id *match;
936 	unsigned long flags;
937 
938 	raw_spin_lock_irqsave(&devtree_lock, flags);
939 	match = __of_match_node(matches, node);
940 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
941 	return match;
942 }
943 EXPORT_SYMBOL(of_match_node);
944 
945 /**
946  *	of_find_matching_node_and_match - Find a node based on an of_device_id
947  *					  match table.
948  *	@from:		The node to start searching from or NULL, the node
949  *			you pass will not be searched, only the next one
950  *			will; typically, you pass what the previous call
951  *			returned. of_node_put() will be called on it
952  *	@matches:	array of of device match structures to search in
953  *	@match		Updated to point at the matches entry which matched
954  *
955  *	Returns a node pointer with refcount incremented, use
956  *	of_node_put() on it when done.
957  */
958 struct device_node *of_find_matching_node_and_match(struct device_node *from,
959 					const struct of_device_id *matches,
960 					const struct of_device_id **match)
961 {
962 	struct device_node *np;
963 	const struct of_device_id *m;
964 	unsigned long flags;
965 
966 	if (match)
967 		*match = NULL;
968 
969 	raw_spin_lock_irqsave(&devtree_lock, flags);
970 	np = from ? from->allnext : of_allnodes;
971 	for (; np; np = np->allnext) {
972 		m = __of_match_node(matches, np);
973 		if (m && of_node_get(np)) {
974 			if (match)
975 				*match = m;
976 			break;
977 		}
978 	}
979 	of_node_put(from);
980 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
981 	return np;
982 }
983 EXPORT_SYMBOL(of_find_matching_node_and_match);
984 
985 /**
986  * of_modalias_node - Lookup appropriate modalias for a device node
987  * @node:	pointer to a device tree node
988  * @modalias:	Pointer to buffer that modalias value will be copied into
989  * @len:	Length of modalias value
990  *
991  * Based on the value of the compatible property, this routine will attempt
992  * to choose an appropriate modalias value for a particular device tree node.
993  * It does this by stripping the manufacturer prefix (as delimited by a ',')
994  * from the first entry in the compatible list property.
995  *
996  * This routine returns 0 on success, <0 on failure.
997  */
998 int of_modalias_node(struct device_node *node, char *modalias, int len)
999 {
1000 	const char *compatible, *p;
1001 	int cplen;
1002 
1003 	compatible = of_get_property(node, "compatible", &cplen);
1004 	if (!compatible || strlen(compatible) > cplen)
1005 		return -ENODEV;
1006 	p = strchr(compatible, ',');
1007 	strlcpy(modalias, p ? p + 1 : compatible, len);
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(of_modalias_node);
1011 
1012 /**
1013  * of_find_node_by_phandle - Find a node given a phandle
1014  * @handle:	phandle of the node to find
1015  *
1016  * Returns a node pointer with refcount incremented, use
1017  * of_node_put() on it when done.
1018  */
1019 struct device_node *of_find_node_by_phandle(phandle handle)
1020 {
1021 	struct device_node *np;
1022 	unsigned long flags;
1023 
1024 	if (!handle)
1025 		return NULL;
1026 
1027 	raw_spin_lock_irqsave(&devtree_lock, flags);
1028 	for (np = of_allnodes; np; np = np->allnext)
1029 		if (np->phandle == handle)
1030 			break;
1031 	of_node_get(np);
1032 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1033 	return np;
1034 }
1035 EXPORT_SYMBOL(of_find_node_by_phandle);
1036 
1037 /**
1038  * of_property_count_elems_of_size - Count the number of elements in a property
1039  *
1040  * @np:		device node from which the property value is to be read.
1041  * @propname:	name of the property to be searched.
1042  * @elem_size:	size of the individual element
1043  *
1044  * Search for a property in a device node and count the number of elements of
1045  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1046  * property does not exist or its length does not match a multiple of elem_size
1047  * and -ENODATA if the property does not have a value.
1048  */
1049 int of_property_count_elems_of_size(const struct device_node *np,
1050 				const char *propname, int elem_size)
1051 {
1052 	struct property *prop = of_find_property(np, propname, NULL);
1053 
1054 	if (!prop)
1055 		return -EINVAL;
1056 	if (!prop->value)
1057 		return -ENODATA;
1058 
1059 	if (prop->length % elem_size != 0) {
1060 		pr_err("size of %s in node %s is not a multiple of %d\n",
1061 		       propname, np->full_name, elem_size);
1062 		return -EINVAL;
1063 	}
1064 
1065 	return prop->length / elem_size;
1066 }
1067 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1068 
1069 /**
1070  * of_find_property_value_of_size
1071  *
1072  * @np:		device node from which the property value is to be read.
1073  * @propname:	name of the property to be searched.
1074  * @len:	requested length of property value
1075  *
1076  * Search for a property in a device node and valid the requested size.
1077  * Returns the property value on success, -EINVAL if the property does not
1078  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1079  * property data isn't large enough.
1080  *
1081  */
1082 static void *of_find_property_value_of_size(const struct device_node *np,
1083 			const char *propname, u32 len)
1084 {
1085 	struct property *prop = of_find_property(np, propname, NULL);
1086 
1087 	if (!prop)
1088 		return ERR_PTR(-EINVAL);
1089 	if (!prop->value)
1090 		return ERR_PTR(-ENODATA);
1091 	if (len > prop->length)
1092 		return ERR_PTR(-EOVERFLOW);
1093 
1094 	return prop->value;
1095 }
1096 
1097 /**
1098  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1099  *
1100  * @np:		device node from which the property value is to be read.
1101  * @propname:	name of the property to be searched.
1102  * @index:	index of the u32 in the list of values
1103  * @out_value:	pointer to return value, modified only if no error.
1104  *
1105  * Search for a property in a device node and read nth 32-bit value from
1106  * it. Returns 0 on success, -EINVAL if the property does not exist,
1107  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1108  * property data isn't large enough.
1109  *
1110  * The out_value is modified only if a valid u32 value can be decoded.
1111  */
1112 int of_property_read_u32_index(const struct device_node *np,
1113 				       const char *propname,
1114 				       u32 index, u32 *out_value)
1115 {
1116 	const u32 *val = of_find_property_value_of_size(np, propname,
1117 					((index + 1) * sizeof(*out_value)));
1118 
1119 	if (IS_ERR(val))
1120 		return PTR_ERR(val);
1121 
1122 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1126 
1127 /**
1128  * of_property_read_u8_array - Find and read an array of u8 from a property.
1129  *
1130  * @np:		device node from which the property value is to be read.
1131  * @propname:	name of the property to be searched.
1132  * @out_values:	pointer to return value, modified only if return value is 0.
1133  * @sz:		number of array elements to read
1134  *
1135  * Search for a property in a device node and read 8-bit value(s) from
1136  * it. Returns 0 on success, -EINVAL if the property does not exist,
1137  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1138  * property data isn't large enough.
1139  *
1140  * dts entry of array should be like:
1141  *	property = /bits/ 8 <0x50 0x60 0x70>;
1142  *
1143  * The out_values is modified only if a valid u8 value can be decoded.
1144  */
1145 int of_property_read_u8_array(const struct device_node *np,
1146 			const char *propname, u8 *out_values, size_t sz)
1147 {
1148 	const u8 *val = of_find_property_value_of_size(np, propname,
1149 						(sz * sizeof(*out_values)));
1150 
1151 	if (IS_ERR(val))
1152 		return PTR_ERR(val);
1153 
1154 	while (sz--)
1155 		*out_values++ = *val++;
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1159 
1160 /**
1161  * of_property_read_u16_array - Find and read an array of u16 from a property.
1162  *
1163  * @np:		device node from which the property value is to be read.
1164  * @propname:	name of the property to be searched.
1165  * @out_values:	pointer to return value, modified only if return value is 0.
1166  * @sz:		number of array elements to read
1167  *
1168  * Search for a property in a device node and read 16-bit value(s) from
1169  * it. Returns 0 on success, -EINVAL if the property does not exist,
1170  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1171  * property data isn't large enough.
1172  *
1173  * dts entry of array should be like:
1174  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1175  *
1176  * The out_values is modified only if a valid u16 value can be decoded.
1177  */
1178 int of_property_read_u16_array(const struct device_node *np,
1179 			const char *propname, u16 *out_values, size_t sz)
1180 {
1181 	const __be16 *val = of_find_property_value_of_size(np, propname,
1182 						(sz * sizeof(*out_values)));
1183 
1184 	if (IS_ERR(val))
1185 		return PTR_ERR(val);
1186 
1187 	while (sz--)
1188 		*out_values++ = be16_to_cpup(val++);
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1192 
1193 /**
1194  * of_property_read_u32_array - Find and read an array of 32 bit integers
1195  * from a property.
1196  *
1197  * @np:		device node from which the property value is to be read.
1198  * @propname:	name of the property to be searched.
1199  * @out_values:	pointer to return value, modified only if return value is 0.
1200  * @sz:		number of array elements to read
1201  *
1202  * Search for a property in a device node and read 32-bit value(s) from
1203  * it. Returns 0 on success, -EINVAL if the property does not exist,
1204  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1205  * property data isn't large enough.
1206  *
1207  * The out_values is modified only if a valid u32 value can be decoded.
1208  */
1209 int of_property_read_u32_array(const struct device_node *np,
1210 			       const char *propname, u32 *out_values,
1211 			       size_t sz)
1212 {
1213 	const __be32 *val = of_find_property_value_of_size(np, propname,
1214 						(sz * sizeof(*out_values)));
1215 
1216 	if (IS_ERR(val))
1217 		return PTR_ERR(val);
1218 
1219 	while (sz--)
1220 		*out_values++ = be32_to_cpup(val++);
1221 	return 0;
1222 }
1223 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1224 
1225 /**
1226  * of_property_read_u64 - Find and read a 64 bit integer from a property
1227  * @np:		device node from which the property value is to be read.
1228  * @propname:	name of the property to be searched.
1229  * @out_value:	pointer to return value, modified only if return value is 0.
1230  *
1231  * Search for a property in a device node and read a 64-bit value from
1232  * it. Returns 0 on success, -EINVAL if the property does not exist,
1233  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1234  * property data isn't large enough.
1235  *
1236  * The out_value is modified only if a valid u64 value can be decoded.
1237  */
1238 int of_property_read_u64(const struct device_node *np, const char *propname,
1239 			 u64 *out_value)
1240 {
1241 	const __be32 *val = of_find_property_value_of_size(np, propname,
1242 						sizeof(*out_value));
1243 
1244 	if (IS_ERR(val))
1245 		return PTR_ERR(val);
1246 
1247 	*out_value = of_read_number(val, 2);
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(of_property_read_u64);
1251 
1252 /**
1253  * of_property_read_string - Find and read a string from a property
1254  * @np:		device node from which the property value is to be read.
1255  * @propname:	name of the property to be searched.
1256  * @out_string:	pointer to null terminated return string, modified only if
1257  *		return value is 0.
1258  *
1259  * Search for a property in a device tree node and retrieve a null
1260  * terminated string value (pointer to data, not a copy). Returns 0 on
1261  * success, -EINVAL if the property does not exist, -ENODATA if property
1262  * does not have a value, and -EILSEQ if the string is not null-terminated
1263  * within the length of the property data.
1264  *
1265  * The out_string pointer is modified only if a valid string can be decoded.
1266  */
1267 int of_property_read_string(struct device_node *np, const char *propname,
1268 				const char **out_string)
1269 {
1270 	struct property *prop = of_find_property(np, propname, NULL);
1271 	if (!prop)
1272 		return -EINVAL;
1273 	if (!prop->value)
1274 		return -ENODATA;
1275 	if (strnlen(prop->value, prop->length) >= prop->length)
1276 		return -EILSEQ;
1277 	*out_string = prop->value;
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(of_property_read_string);
1281 
1282 /**
1283  * of_property_match_string() - Find string in a list and return index
1284  * @np: pointer to node containing string list property
1285  * @propname: string list property name
1286  * @string: pointer to string to search for in string list
1287  *
1288  * This function searches a string list property and returns the index
1289  * of a specific string value.
1290  */
1291 int of_property_match_string(struct device_node *np, const char *propname,
1292 			     const char *string)
1293 {
1294 	struct property *prop = of_find_property(np, propname, NULL);
1295 	size_t l;
1296 	int i;
1297 	const char *p, *end;
1298 
1299 	if (!prop)
1300 		return -EINVAL;
1301 	if (!prop->value)
1302 		return -ENODATA;
1303 
1304 	p = prop->value;
1305 	end = p + prop->length;
1306 
1307 	for (i = 0; p < end; i++, p += l) {
1308 		l = strnlen(p, end - p) + 1;
1309 		if (p + l > end)
1310 			return -EILSEQ;
1311 		pr_debug("comparing %s with %s\n", string, p);
1312 		if (strcmp(string, p) == 0)
1313 			return i; /* Found it; return index */
1314 	}
1315 	return -ENODATA;
1316 }
1317 EXPORT_SYMBOL_GPL(of_property_match_string);
1318 
1319 /**
1320  * of_property_read_string_util() - Utility helper for parsing string properties
1321  * @np:		device node from which the property value is to be read.
1322  * @propname:	name of the property to be searched.
1323  * @out_strs:	output array of string pointers.
1324  * @sz:		number of array elements to read.
1325  * @skip:	Number of strings to skip over at beginning of list.
1326  *
1327  * Don't call this function directly. It is a utility helper for the
1328  * of_property_read_string*() family of functions.
1329  */
1330 int of_property_read_string_helper(struct device_node *np, const char *propname,
1331 				   const char **out_strs, size_t sz, int skip)
1332 {
1333 	struct property *prop = of_find_property(np, propname, NULL);
1334 	int l = 0, i = 0;
1335 	const char *p, *end;
1336 
1337 	if (!prop)
1338 		return -EINVAL;
1339 	if (!prop->value)
1340 		return -ENODATA;
1341 	p = prop->value;
1342 	end = p + prop->length;
1343 
1344 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1345 		l = strnlen(p, end - p) + 1;
1346 		if (p + l > end)
1347 			return -EILSEQ;
1348 		if (out_strs && i >= skip)
1349 			*out_strs++ = p;
1350 	}
1351 	i -= skip;
1352 	return i <= 0 ? -ENODATA : i;
1353 }
1354 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1355 
1356 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1357 {
1358 	int i;
1359 	printk("%s %s", msg, of_node_full_name(args->np));
1360 	for (i = 0; i < args->args_count; i++)
1361 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1362 	printk("\n");
1363 }
1364 
1365 static int __of_parse_phandle_with_args(const struct device_node *np,
1366 					const char *list_name,
1367 					const char *cells_name,
1368 					int cell_count, int index,
1369 					struct of_phandle_args *out_args)
1370 {
1371 	const __be32 *list, *list_end;
1372 	int rc = 0, size, cur_index = 0;
1373 	uint32_t count = 0;
1374 	struct device_node *node = NULL;
1375 	phandle phandle;
1376 
1377 	/* Retrieve the phandle list property */
1378 	list = of_get_property(np, list_name, &size);
1379 	if (!list)
1380 		return -ENOENT;
1381 	list_end = list + size / sizeof(*list);
1382 
1383 	/* Loop over the phandles until all the requested entry is found */
1384 	while (list < list_end) {
1385 		rc = -EINVAL;
1386 		count = 0;
1387 
1388 		/*
1389 		 * If phandle is 0, then it is an empty entry with no
1390 		 * arguments.  Skip forward to the next entry.
1391 		 */
1392 		phandle = be32_to_cpup(list++);
1393 		if (phandle) {
1394 			/*
1395 			 * Find the provider node and parse the #*-cells
1396 			 * property to determine the argument length.
1397 			 *
1398 			 * This is not needed if the cell count is hard-coded
1399 			 * (i.e. cells_name not set, but cell_count is set),
1400 			 * except when we're going to return the found node
1401 			 * below.
1402 			 */
1403 			if (cells_name || cur_index == index) {
1404 				node = of_find_node_by_phandle(phandle);
1405 				if (!node) {
1406 					pr_err("%s: could not find phandle\n",
1407 						np->full_name);
1408 					goto err;
1409 				}
1410 			}
1411 
1412 			if (cells_name) {
1413 				if (of_property_read_u32(node, cells_name,
1414 							 &count)) {
1415 					pr_err("%s: could not get %s for %s\n",
1416 						np->full_name, cells_name,
1417 						node->full_name);
1418 					goto err;
1419 				}
1420 			} else {
1421 				count = cell_count;
1422 			}
1423 
1424 			/*
1425 			 * Make sure that the arguments actually fit in the
1426 			 * remaining property data length
1427 			 */
1428 			if (list + count > list_end) {
1429 				pr_err("%s: arguments longer than property\n",
1430 					 np->full_name);
1431 				goto err;
1432 			}
1433 		}
1434 
1435 		/*
1436 		 * All of the error cases above bail out of the loop, so at
1437 		 * this point, the parsing is successful. If the requested
1438 		 * index matches, then fill the out_args structure and return,
1439 		 * or return -ENOENT for an empty entry.
1440 		 */
1441 		rc = -ENOENT;
1442 		if (cur_index == index) {
1443 			if (!phandle)
1444 				goto err;
1445 
1446 			if (out_args) {
1447 				int i;
1448 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1449 					count = MAX_PHANDLE_ARGS;
1450 				out_args->np = node;
1451 				out_args->args_count = count;
1452 				for (i = 0; i < count; i++)
1453 					out_args->args[i] = be32_to_cpup(list++);
1454 			} else {
1455 				of_node_put(node);
1456 			}
1457 
1458 			/* Found it! return success */
1459 			return 0;
1460 		}
1461 
1462 		of_node_put(node);
1463 		node = NULL;
1464 		list += count;
1465 		cur_index++;
1466 	}
1467 
1468 	/*
1469 	 * Unlock node before returning result; will be one of:
1470 	 * -ENOENT : index is for empty phandle
1471 	 * -EINVAL : parsing error on data
1472 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1473 	 */
1474 	rc = index < 0 ? cur_index : -ENOENT;
1475  err:
1476 	if (node)
1477 		of_node_put(node);
1478 	return rc;
1479 }
1480 
1481 /**
1482  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1483  * @np: Pointer to device node holding phandle property
1484  * @phandle_name: Name of property holding a phandle value
1485  * @index: For properties holding a table of phandles, this is the index into
1486  *         the table
1487  *
1488  * Returns the device_node pointer with refcount incremented.  Use
1489  * of_node_put() on it when done.
1490  */
1491 struct device_node *of_parse_phandle(const struct device_node *np,
1492 				     const char *phandle_name, int index)
1493 {
1494 	struct of_phandle_args args;
1495 
1496 	if (index < 0)
1497 		return NULL;
1498 
1499 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1500 					 index, &args))
1501 		return NULL;
1502 
1503 	return args.np;
1504 }
1505 EXPORT_SYMBOL(of_parse_phandle);
1506 
1507 /**
1508  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1509  * @np:		pointer to a device tree node containing a list
1510  * @list_name:	property name that contains a list
1511  * @cells_name:	property name that specifies phandles' arguments count
1512  * @index:	index of a phandle to parse out
1513  * @out_args:	optional pointer to output arguments structure (will be filled)
1514  *
1515  * This function is useful to parse lists of phandles and their arguments.
1516  * Returns 0 on success and fills out_args, on error returns appropriate
1517  * errno value.
1518  *
1519  * Caller is responsible to call of_node_put() on the returned out_args->node
1520  * pointer.
1521  *
1522  * Example:
1523  *
1524  * phandle1: node1 {
1525  * 	#list-cells = <2>;
1526  * }
1527  *
1528  * phandle2: node2 {
1529  * 	#list-cells = <1>;
1530  * }
1531  *
1532  * node3 {
1533  * 	list = <&phandle1 1 2 &phandle2 3>;
1534  * }
1535  *
1536  * To get a device_node of the `node2' node you may call this:
1537  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1538  */
1539 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1540 				const char *cells_name, int index,
1541 				struct of_phandle_args *out_args)
1542 {
1543 	if (index < 0)
1544 		return -EINVAL;
1545 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1546 					    index, out_args);
1547 }
1548 EXPORT_SYMBOL(of_parse_phandle_with_args);
1549 
1550 /**
1551  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1552  * @np:		pointer to a device tree node containing a list
1553  * @list_name:	property name that contains a list
1554  * @cell_count: number of argument cells following the phandle
1555  * @index:	index of a phandle to parse out
1556  * @out_args:	optional pointer to output arguments structure (will be filled)
1557  *
1558  * This function is useful to parse lists of phandles and their arguments.
1559  * Returns 0 on success and fills out_args, on error returns appropriate
1560  * errno value.
1561  *
1562  * Caller is responsible to call of_node_put() on the returned out_args->node
1563  * pointer.
1564  *
1565  * Example:
1566  *
1567  * phandle1: node1 {
1568  * }
1569  *
1570  * phandle2: node2 {
1571  * }
1572  *
1573  * node3 {
1574  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1575  * }
1576  *
1577  * To get a device_node of the `node2' node you may call this:
1578  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1579  */
1580 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1581 				const char *list_name, int cell_count,
1582 				int index, struct of_phandle_args *out_args)
1583 {
1584 	if (index < 0)
1585 		return -EINVAL;
1586 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1587 					   index, out_args);
1588 }
1589 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1590 
1591 /**
1592  * of_count_phandle_with_args() - Find the number of phandles references in a property
1593  * @np:		pointer to a device tree node containing a list
1594  * @list_name:	property name that contains a list
1595  * @cells_name:	property name that specifies phandles' arguments count
1596  *
1597  * Returns the number of phandle + argument tuples within a property. It
1598  * is a typical pattern to encode a list of phandle and variable
1599  * arguments into a single property. The number of arguments is encoded
1600  * by a property in the phandle-target node. For example, a gpios
1601  * property would contain a list of GPIO specifies consisting of a
1602  * phandle and 1 or more arguments. The number of arguments are
1603  * determined by the #gpio-cells property in the node pointed to by the
1604  * phandle.
1605  */
1606 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1607 				const char *cells_name)
1608 {
1609 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1610 					    NULL);
1611 }
1612 EXPORT_SYMBOL(of_count_phandle_with_args);
1613 
1614 /**
1615  * __of_add_property - Add a property to a node without lock operations
1616  */
1617 int __of_add_property(struct device_node *np, struct property *prop)
1618 {
1619 	struct property **next;
1620 
1621 	prop->next = NULL;
1622 	next = &np->properties;
1623 	while (*next) {
1624 		if (strcmp(prop->name, (*next)->name) == 0)
1625 			/* duplicate ! don't insert it */
1626 			return -EEXIST;
1627 
1628 		next = &(*next)->next;
1629 	}
1630 	*next = prop;
1631 
1632 	return 0;
1633 }
1634 
1635 /**
1636  * of_add_property - Add a property to a node
1637  */
1638 int of_add_property(struct device_node *np, struct property *prop)
1639 {
1640 	unsigned long flags;
1641 	int rc;
1642 
1643 	mutex_lock(&of_mutex);
1644 
1645 	raw_spin_lock_irqsave(&devtree_lock, flags);
1646 	rc = __of_add_property(np, prop);
1647 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1648 
1649 	if (!rc)
1650 		__of_add_property_sysfs(np, prop);
1651 
1652 	mutex_unlock(&of_mutex);
1653 
1654 	if (!rc)
1655 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1656 
1657 	return rc;
1658 }
1659 
1660 int __of_remove_property(struct device_node *np, struct property *prop)
1661 {
1662 	struct property **next;
1663 
1664 	for (next = &np->properties; *next; next = &(*next)->next) {
1665 		if (*next == prop)
1666 			break;
1667 	}
1668 	if (*next == NULL)
1669 		return -ENODEV;
1670 
1671 	/* found the node */
1672 	*next = prop->next;
1673 	prop->next = np->deadprops;
1674 	np->deadprops = prop;
1675 
1676 	return 0;
1677 }
1678 
1679 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1680 {
1681 	if (!IS_ENABLED(CONFIG_SYSFS))
1682 		return;
1683 
1684 	/* at early boot, bail here and defer setup to of_init() */
1685 	if (of_kset && of_node_is_attached(np))
1686 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1687 }
1688 
1689 /**
1690  * of_remove_property - Remove a property from a node.
1691  *
1692  * Note that we don't actually remove it, since we have given out
1693  * who-knows-how-many pointers to the data using get-property.
1694  * Instead we just move the property to the "dead properties"
1695  * list, so it won't be found any more.
1696  */
1697 int of_remove_property(struct device_node *np, struct property *prop)
1698 {
1699 	unsigned long flags;
1700 	int rc;
1701 
1702 	mutex_lock(&of_mutex);
1703 
1704 	raw_spin_lock_irqsave(&devtree_lock, flags);
1705 	rc = __of_remove_property(np, prop);
1706 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1707 
1708 	if (!rc)
1709 		__of_remove_property_sysfs(np, prop);
1710 
1711 	mutex_unlock(&of_mutex);
1712 
1713 	if (!rc)
1714 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1715 
1716 	return rc;
1717 }
1718 
1719 int __of_update_property(struct device_node *np, struct property *newprop,
1720 		struct property **oldpropp)
1721 {
1722 	struct property **next, *oldprop;
1723 
1724 	for (next = &np->properties; *next; next = &(*next)->next) {
1725 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1726 			break;
1727 	}
1728 	*oldpropp = oldprop = *next;
1729 
1730 	if (oldprop) {
1731 		/* replace the node */
1732 		newprop->next = oldprop->next;
1733 		*next = newprop;
1734 		oldprop->next = np->deadprops;
1735 		np->deadprops = oldprop;
1736 	} else {
1737 		/* new node */
1738 		newprop->next = NULL;
1739 		*next = newprop;
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1746 		struct property *oldprop)
1747 {
1748 	if (!IS_ENABLED(CONFIG_SYSFS))
1749 		return;
1750 
1751 	/* At early boot, bail out and defer setup to of_init() */
1752 	if (!of_kset)
1753 		return;
1754 
1755 	if (oldprop)
1756 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1757 	__of_add_property_sysfs(np, newprop);
1758 }
1759 
1760 /*
1761  * of_update_property - Update a property in a node, if the property does
1762  * not exist, add it.
1763  *
1764  * Note that we don't actually remove it, since we have given out
1765  * who-knows-how-many pointers to the data using get-property.
1766  * Instead we just move the property to the "dead properties" list,
1767  * and add the new property to the property list
1768  */
1769 int of_update_property(struct device_node *np, struct property *newprop)
1770 {
1771 	struct property *oldprop;
1772 	unsigned long flags;
1773 	int rc;
1774 
1775 	if (!newprop->name)
1776 		return -EINVAL;
1777 
1778 	mutex_lock(&of_mutex);
1779 
1780 	raw_spin_lock_irqsave(&devtree_lock, flags);
1781 	rc = __of_update_property(np, newprop, &oldprop);
1782 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1783 
1784 	if (!rc)
1785 		__of_update_property_sysfs(np, newprop, oldprop);
1786 
1787 	mutex_unlock(&of_mutex);
1788 
1789 	if (!rc)
1790 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1791 
1792 	return rc;
1793 }
1794 
1795 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1796 			 int id, const char *stem, int stem_len)
1797 {
1798 	ap->np = np;
1799 	ap->id = id;
1800 	strncpy(ap->stem, stem, stem_len);
1801 	ap->stem[stem_len] = 0;
1802 	list_add_tail(&ap->link, &aliases_lookup);
1803 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1804 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1805 }
1806 
1807 /**
1808  * of_alias_scan - Scan all properties of 'aliases' node
1809  *
1810  * The function scans all the properties of 'aliases' node and populate
1811  * the the global lookup table with the properties.  It returns the
1812  * number of alias_prop found, or error code in error case.
1813  *
1814  * @dt_alloc:	An allocator that provides a virtual address to memory
1815  *		for the resulting tree
1816  */
1817 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1818 {
1819 	struct property *pp;
1820 
1821 	of_aliases = of_find_node_by_path("/aliases");
1822 	of_chosen = of_find_node_by_path("/chosen");
1823 	if (of_chosen == NULL)
1824 		of_chosen = of_find_node_by_path("/chosen@0");
1825 
1826 	if (of_chosen) {
1827 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1828 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1829 		if (!name)
1830 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1831 		if (IS_ENABLED(CONFIG_PPC) && !name)
1832 			name = of_get_property(of_aliases, "stdout", NULL);
1833 		if (name)
1834 			of_stdout = of_find_node_by_path(name);
1835 	}
1836 
1837 	if (!of_aliases)
1838 		return;
1839 
1840 	for_each_property_of_node(of_aliases, pp) {
1841 		const char *start = pp->name;
1842 		const char *end = start + strlen(start);
1843 		struct device_node *np;
1844 		struct alias_prop *ap;
1845 		int id, len;
1846 
1847 		/* Skip those we do not want to proceed */
1848 		if (!strcmp(pp->name, "name") ||
1849 		    !strcmp(pp->name, "phandle") ||
1850 		    !strcmp(pp->name, "linux,phandle"))
1851 			continue;
1852 
1853 		np = of_find_node_by_path(pp->value);
1854 		if (!np)
1855 			continue;
1856 
1857 		/* walk the alias backwards to extract the id and work out
1858 		 * the 'stem' string */
1859 		while (isdigit(*(end-1)) && end > start)
1860 			end--;
1861 		len = end - start;
1862 
1863 		if (kstrtoint(end, 10, &id) < 0)
1864 			continue;
1865 
1866 		/* Allocate an alias_prop with enough space for the stem */
1867 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1868 		if (!ap)
1869 			continue;
1870 		memset(ap, 0, sizeof(*ap) + len + 1);
1871 		ap->alias = start;
1872 		of_alias_add(ap, np, id, start, len);
1873 	}
1874 }
1875 
1876 /**
1877  * of_alias_get_id - Get alias id for the given device_node
1878  * @np:		Pointer to the given device_node
1879  * @stem:	Alias stem of the given device_node
1880  *
1881  * The function travels the lookup table to get the alias id for the given
1882  * device_node and alias stem.  It returns the alias id if found.
1883  */
1884 int of_alias_get_id(struct device_node *np, const char *stem)
1885 {
1886 	struct alias_prop *app;
1887 	int id = -ENODEV;
1888 
1889 	mutex_lock(&of_mutex);
1890 	list_for_each_entry(app, &aliases_lookup, link) {
1891 		if (strcmp(app->stem, stem) != 0)
1892 			continue;
1893 
1894 		if (np == app->np) {
1895 			id = app->id;
1896 			break;
1897 		}
1898 	}
1899 	mutex_unlock(&of_mutex);
1900 
1901 	return id;
1902 }
1903 EXPORT_SYMBOL_GPL(of_alias_get_id);
1904 
1905 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1906 			       u32 *pu)
1907 {
1908 	const void *curv = cur;
1909 
1910 	if (!prop)
1911 		return NULL;
1912 
1913 	if (!cur) {
1914 		curv = prop->value;
1915 		goto out_val;
1916 	}
1917 
1918 	curv += sizeof(*cur);
1919 	if (curv >= prop->value + prop->length)
1920 		return NULL;
1921 
1922 out_val:
1923 	*pu = be32_to_cpup(curv);
1924 	return curv;
1925 }
1926 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1927 
1928 const char *of_prop_next_string(struct property *prop, const char *cur)
1929 {
1930 	const void *curv = cur;
1931 
1932 	if (!prop)
1933 		return NULL;
1934 
1935 	if (!cur)
1936 		return prop->value;
1937 
1938 	curv += strlen(cur) + 1;
1939 	if (curv >= prop->value + prop->length)
1940 		return NULL;
1941 
1942 	return curv;
1943 }
1944 EXPORT_SYMBOL_GPL(of_prop_next_string);
1945 
1946 /**
1947  * of_console_check() - Test and setup console for DT setup
1948  * @dn - Pointer to device node
1949  * @name - Name to use for preferred console without index. ex. "ttyS"
1950  * @index - Index to use for preferred console.
1951  *
1952  * Check if the given device node matches the stdout-path property in the
1953  * /chosen node. If it does then register it as the preferred console and return
1954  * TRUE. Otherwise return FALSE.
1955  */
1956 bool of_console_check(struct device_node *dn, char *name, int index)
1957 {
1958 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1959 		return false;
1960 	return !add_preferred_console(name, index, NULL);
1961 }
1962 EXPORT_SYMBOL_GPL(of_console_check);
1963 
1964 /**
1965  *	of_find_next_cache_node - Find a node's subsidiary cache
1966  *	@np:	node of type "cpu" or "cache"
1967  *
1968  *	Returns a node pointer with refcount incremented, use
1969  *	of_node_put() on it when done.  Caller should hold a reference
1970  *	to np.
1971  */
1972 struct device_node *of_find_next_cache_node(const struct device_node *np)
1973 {
1974 	struct device_node *child;
1975 	const phandle *handle;
1976 
1977 	handle = of_get_property(np, "l2-cache", NULL);
1978 	if (!handle)
1979 		handle = of_get_property(np, "next-level-cache", NULL);
1980 
1981 	if (handle)
1982 		return of_find_node_by_phandle(be32_to_cpup(handle));
1983 
1984 	/* OF on pmac has nodes instead of properties named "l2-cache"
1985 	 * beneath CPU nodes.
1986 	 */
1987 	if (!strcmp(np->type, "cpu"))
1988 		for_each_child_of_node(np, child)
1989 			if (!strcmp(child->type, "cache"))
1990 				return child;
1991 
1992 	return NULL;
1993 }
1994 
1995 /**
1996  * of_graph_parse_endpoint() - parse common endpoint node properties
1997  * @node: pointer to endpoint device_node
1998  * @endpoint: pointer to the OF endpoint data structure
1999  *
2000  * The caller should hold a reference to @node.
2001  */
2002 int of_graph_parse_endpoint(const struct device_node *node,
2003 			    struct of_endpoint *endpoint)
2004 {
2005 	struct device_node *port_node = of_get_parent(node);
2006 
2007 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2008 		  __func__, node->full_name);
2009 
2010 	memset(endpoint, 0, sizeof(*endpoint));
2011 
2012 	endpoint->local_node = node;
2013 	/*
2014 	 * It doesn't matter whether the two calls below succeed.
2015 	 * If they don't then the default value 0 is used.
2016 	 */
2017 	of_property_read_u32(port_node, "reg", &endpoint->port);
2018 	of_property_read_u32(node, "reg", &endpoint->id);
2019 
2020 	of_node_put(port_node);
2021 
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL(of_graph_parse_endpoint);
2025 
2026 /**
2027  * of_graph_get_next_endpoint() - get next endpoint node
2028  * @parent: pointer to the parent device node
2029  * @prev: previous endpoint node, or NULL to get first
2030  *
2031  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2032  * of the passed @prev node is not decremented, the caller have to use
2033  * of_node_put() on it when done.
2034  */
2035 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2036 					struct device_node *prev)
2037 {
2038 	struct device_node *endpoint;
2039 	struct device_node *port;
2040 
2041 	if (!parent)
2042 		return NULL;
2043 
2044 	/*
2045 	 * Start by locating the port node. If no previous endpoint is specified
2046 	 * search for the first port node, otherwise get the previous endpoint
2047 	 * parent port node.
2048 	 */
2049 	if (!prev) {
2050 		struct device_node *node;
2051 
2052 		node = of_get_child_by_name(parent, "ports");
2053 		if (node)
2054 			parent = node;
2055 
2056 		port = of_get_child_by_name(parent, "port");
2057 		of_node_put(node);
2058 
2059 		if (!port) {
2060 			pr_err("%s(): no port node found in %s\n",
2061 			       __func__, parent->full_name);
2062 			return NULL;
2063 		}
2064 	} else {
2065 		port = of_get_parent(prev);
2066 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2067 			      __func__, prev->full_name))
2068 			return NULL;
2069 
2070 		/*
2071 		 * Avoid dropping prev node refcount to 0 when getting the next
2072 		 * child below.
2073 		 */
2074 		of_node_get(prev);
2075 	}
2076 
2077 	while (1) {
2078 		/*
2079 		 * Now that we have a port node, get the next endpoint by
2080 		 * getting the next child. If the previous endpoint is NULL this
2081 		 * will return the first child.
2082 		 */
2083 		endpoint = of_get_next_child(port, prev);
2084 		if (endpoint) {
2085 			of_node_put(port);
2086 			return endpoint;
2087 		}
2088 
2089 		/* No more endpoints under this port, try the next one. */
2090 		prev = NULL;
2091 
2092 		do {
2093 			port = of_get_next_child(parent, port);
2094 			if (!port)
2095 				return NULL;
2096 		} while (of_node_cmp(port->name, "port"));
2097 	}
2098 }
2099 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2100 
2101 /**
2102  * of_graph_get_remote_port_parent() - get remote port's parent node
2103  * @node: pointer to a local endpoint device_node
2104  *
2105  * Return: Remote device node associated with remote endpoint node linked
2106  *	   to @node. Use of_node_put() on it when done.
2107  */
2108 struct device_node *of_graph_get_remote_port_parent(
2109 			       const struct device_node *node)
2110 {
2111 	struct device_node *np;
2112 	unsigned int depth;
2113 
2114 	/* Get remote endpoint node. */
2115 	np = of_parse_phandle(node, "remote-endpoint", 0);
2116 
2117 	/* Walk 3 levels up only if there is 'ports' node. */
2118 	for (depth = 3; depth && np; depth--) {
2119 		np = of_get_next_parent(np);
2120 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2121 			break;
2122 	}
2123 	return np;
2124 }
2125 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2126 
2127 /**
2128  * of_graph_get_remote_port() - get remote port node
2129  * @node: pointer to a local endpoint device_node
2130  *
2131  * Return: Remote port node associated with remote endpoint node linked
2132  *	   to @node. Use of_node_put() on it when done.
2133  */
2134 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2135 {
2136 	struct device_node *np;
2137 
2138 	/* Get remote endpoint node. */
2139 	np = of_parse_phandle(node, "remote-endpoint", 0);
2140 	if (!np)
2141 		return NULL;
2142 	return of_get_next_parent(np);
2143 }
2144 EXPORT_SYMBOL(of_graph_get_remote_port);
2145