1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70 } 71 EXPORT_SYMBOL(of_n_addr_cells); 72 73 int of_n_size_cells(struct device_node *np) 74 { 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86 } 87 EXPORT_SYMBOL(of_n_size_cells); 88 89 #ifdef CONFIG_NUMA 90 int __weak of_node_to_nid(struct device_node *np) 91 { 92 return numa_node_id(); 93 } 94 #endif 95 96 #ifndef CONFIG_OF_DYNAMIC 97 static void of_node_release(struct kobject *kobj) 98 { 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100 } 101 #endif /* CONFIG_OF_DYNAMIC */ 102 103 struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105 }; 106 107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110 { 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113 } 114 115 static const char *safe_name(struct kobject *kobj, const char *orig_name) 116 { 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133 } 134 135 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136 { 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157 } 158 159 int __of_attach_node_sysfs(struct device_node *np) 160 { 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190 } 191 192 static int __init of_init(void) 193 { 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 return -ENOMEM; 202 } 203 for_each_of_allnodes(np) 204 __of_attach_node_sysfs(np); 205 mutex_unlock(&of_mutex); 206 207 /* Symlink in /proc as required by userspace ABI */ 208 if (of_root) 209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 210 211 return 0; 212 } 213 core_initcall(of_init); 214 215 static struct property *__of_find_property(const struct device_node *np, 216 const char *name, int *lenp) 217 { 218 struct property *pp; 219 220 if (!np) 221 return NULL; 222 223 for (pp = np->properties; pp; pp = pp->next) { 224 if (of_prop_cmp(pp->name, name) == 0) { 225 if (lenp) 226 *lenp = pp->length; 227 break; 228 } 229 } 230 231 return pp; 232 } 233 234 struct property *of_find_property(const struct device_node *np, 235 const char *name, 236 int *lenp) 237 { 238 struct property *pp; 239 unsigned long flags; 240 241 raw_spin_lock_irqsave(&devtree_lock, flags); 242 pp = __of_find_property(np, name, lenp); 243 raw_spin_unlock_irqrestore(&devtree_lock, flags); 244 245 return pp; 246 } 247 EXPORT_SYMBOL(of_find_property); 248 249 struct device_node *__of_find_all_nodes(struct device_node *prev) 250 { 251 struct device_node *np; 252 if (!prev) { 253 np = of_root; 254 } else if (prev->child) { 255 np = prev->child; 256 } else { 257 /* Walk back up looking for a sibling, or the end of the structure */ 258 np = prev; 259 while (np->parent && !np->sibling) 260 np = np->parent; 261 np = np->sibling; /* Might be null at the end of the tree */ 262 } 263 return np; 264 } 265 266 /** 267 * of_find_all_nodes - Get next node in global list 268 * @prev: Previous node or NULL to start iteration 269 * of_node_put() will be called on it 270 * 271 * Returns a node pointer with refcount incremented, use 272 * of_node_put() on it when done. 273 */ 274 struct device_node *of_find_all_nodes(struct device_node *prev) 275 { 276 struct device_node *np; 277 unsigned long flags; 278 279 raw_spin_lock_irqsave(&devtree_lock, flags); 280 np = __of_find_all_nodes(prev); 281 of_node_get(np); 282 of_node_put(prev); 283 raw_spin_unlock_irqrestore(&devtree_lock, flags); 284 return np; 285 } 286 EXPORT_SYMBOL(of_find_all_nodes); 287 288 /* 289 * Find a property with a given name for a given node 290 * and return the value. 291 */ 292 const void *__of_get_property(const struct device_node *np, 293 const char *name, int *lenp) 294 { 295 struct property *pp = __of_find_property(np, name, lenp); 296 297 return pp ? pp->value : NULL; 298 } 299 300 /* 301 * Find a property with a given name for a given node 302 * and return the value. 303 */ 304 const void *of_get_property(const struct device_node *np, const char *name, 305 int *lenp) 306 { 307 struct property *pp = of_find_property(np, name, lenp); 308 309 return pp ? pp->value : NULL; 310 } 311 EXPORT_SYMBOL(of_get_property); 312 313 /* 314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 315 * 316 * @cpu: logical cpu index of a core/thread 317 * @phys_id: physical identifier of a core/thread 318 * 319 * CPU logical to physical index mapping is architecture specific. 320 * However this __weak function provides a default match of physical 321 * id to logical cpu index. phys_id provided here is usually values read 322 * from the device tree which must match the hardware internal registers. 323 * 324 * Returns true if the physical identifier and the logical cpu index 325 * correspond to the same core/thread, false otherwise. 326 */ 327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 328 { 329 return (u32)phys_id == cpu; 330 } 331 332 /** 333 * Checks if the given "prop_name" property holds the physical id of the 334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 335 * NULL, local thread number within the core is returned in it. 336 */ 337 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 338 const char *prop_name, int cpu, unsigned int *thread) 339 { 340 const __be32 *cell; 341 int ac, prop_len, tid; 342 u64 hwid; 343 344 ac = of_n_addr_cells(cpun); 345 cell = of_get_property(cpun, prop_name, &prop_len); 346 if (!cell || !ac) 347 return false; 348 prop_len /= sizeof(*cell) * ac; 349 for (tid = 0; tid < prop_len; tid++) { 350 hwid = of_read_number(cell, ac); 351 if (arch_match_cpu_phys_id(cpu, hwid)) { 352 if (thread) 353 *thread = tid; 354 return true; 355 } 356 cell += ac; 357 } 358 return false; 359 } 360 361 /* 362 * arch_find_n_match_cpu_physical_id - See if the given device node is 363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 364 * else false. If 'thread' is non-NULL, the local thread number within the 365 * core is returned in it. 366 */ 367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 368 int cpu, unsigned int *thread) 369 { 370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 371 * for thread ids on PowerPC. If it doesn't exist fallback to 372 * standard "reg" property. 373 */ 374 if (IS_ENABLED(CONFIG_PPC) && 375 __of_find_n_match_cpu_property(cpun, 376 "ibm,ppc-interrupt-server#s", 377 cpu, thread)) 378 return true; 379 380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 381 return true; 382 383 return false; 384 } 385 386 /** 387 * of_get_cpu_node - Get device node associated with the given logical CPU 388 * 389 * @cpu: CPU number(logical index) for which device node is required 390 * @thread: if not NULL, local thread number within the physical core is 391 * returned 392 * 393 * The main purpose of this function is to retrieve the device node for the 394 * given logical CPU index. It should be used to initialize the of_node in 395 * cpu device. Once of_node in cpu device is populated, all the further 396 * references can use that instead. 397 * 398 * CPU logical to physical index mapping is architecture specific and is built 399 * before booting secondary cores. This function uses arch_match_cpu_phys_id 400 * which can be overridden by architecture specific implementation. 401 * 402 * Returns a node pointer for the logical cpu if found, else NULL. 403 */ 404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 405 { 406 struct device_node *cpun; 407 408 for_each_node_by_type(cpun, "cpu") { 409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 410 return cpun; 411 } 412 return NULL; 413 } 414 EXPORT_SYMBOL(of_get_cpu_node); 415 416 /** 417 * __of_device_is_compatible() - Check if the node matches given constraints 418 * @device: pointer to node 419 * @compat: required compatible string, NULL or "" for any match 420 * @type: required device_type value, NULL or "" for any match 421 * @name: required node name, NULL or "" for any match 422 * 423 * Checks if the given @compat, @type and @name strings match the 424 * properties of the given @device. A constraints can be skipped by 425 * passing NULL or an empty string as the constraint. 426 * 427 * Returns 0 for no match, and a positive integer on match. The return 428 * value is a relative score with larger values indicating better 429 * matches. The score is weighted for the most specific compatible value 430 * to get the highest score. Matching type is next, followed by matching 431 * name. Practically speaking, this results in the following priority 432 * order for matches: 433 * 434 * 1. specific compatible && type && name 435 * 2. specific compatible && type 436 * 3. specific compatible && name 437 * 4. specific compatible 438 * 5. general compatible && type && name 439 * 6. general compatible && type 440 * 7. general compatible && name 441 * 8. general compatible 442 * 9. type && name 443 * 10. type 444 * 11. name 445 */ 446 static int __of_device_is_compatible(const struct device_node *device, 447 const char *compat, const char *type, const char *name) 448 { 449 struct property *prop; 450 const char *cp; 451 int index = 0, score = 0; 452 453 /* Compatible match has highest priority */ 454 if (compat && compat[0]) { 455 prop = __of_find_property(device, "compatible", NULL); 456 for (cp = of_prop_next_string(prop, NULL); cp; 457 cp = of_prop_next_string(prop, cp), index++) { 458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 459 score = INT_MAX/2 - (index << 2); 460 break; 461 } 462 } 463 if (!score) 464 return 0; 465 } 466 467 /* Matching type is better than matching name */ 468 if (type && type[0]) { 469 if (!device->type || of_node_cmp(type, device->type)) 470 return 0; 471 score += 2; 472 } 473 474 /* Matching name is a bit better than not */ 475 if (name && name[0]) { 476 if (!device->name || of_node_cmp(name, device->name)) 477 return 0; 478 score++; 479 } 480 481 return score; 482 } 483 484 /** Checks if the given "compat" string matches one of the strings in 485 * the device's "compatible" property 486 */ 487 int of_device_is_compatible(const struct device_node *device, 488 const char *compat) 489 { 490 unsigned long flags; 491 int res; 492 493 raw_spin_lock_irqsave(&devtree_lock, flags); 494 res = __of_device_is_compatible(device, compat, NULL, NULL); 495 raw_spin_unlock_irqrestore(&devtree_lock, flags); 496 return res; 497 } 498 EXPORT_SYMBOL(of_device_is_compatible); 499 500 /** 501 * of_machine_is_compatible - Test root of device tree for a given compatible value 502 * @compat: compatible string to look for in root node's compatible property. 503 * 504 * Returns a positive integer if the root node has the given value in its 505 * compatible property. 506 */ 507 int of_machine_is_compatible(const char *compat) 508 { 509 struct device_node *root; 510 int rc = 0; 511 512 root = of_find_node_by_path("/"); 513 if (root) { 514 rc = of_device_is_compatible(root, compat); 515 of_node_put(root); 516 } 517 return rc; 518 } 519 EXPORT_SYMBOL(of_machine_is_compatible); 520 521 /** 522 * __of_device_is_available - check if a device is available for use 523 * 524 * @device: Node to check for availability, with locks already held 525 * 526 * Returns true if the status property is absent or set to "okay" or "ok", 527 * false otherwise 528 */ 529 static bool __of_device_is_available(const struct device_node *device) 530 { 531 const char *status; 532 int statlen; 533 534 if (!device) 535 return false; 536 537 status = __of_get_property(device, "status", &statlen); 538 if (status == NULL) 539 return true; 540 541 if (statlen > 0) { 542 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 543 return true; 544 } 545 546 return false; 547 } 548 549 /** 550 * of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 bool of_device_is_available(const struct device_node *device) 558 { 559 unsigned long flags; 560 bool res; 561 562 raw_spin_lock_irqsave(&devtree_lock, flags); 563 res = __of_device_is_available(device); 564 raw_spin_unlock_irqrestore(&devtree_lock, flags); 565 return res; 566 567 } 568 EXPORT_SYMBOL(of_device_is_available); 569 570 /** 571 * of_device_is_big_endian - check if a device has BE registers 572 * 573 * @device: Node to check for endianness 574 * 575 * Returns true if the device has a "big-endian" property, or if the kernel 576 * was compiled for BE *and* the device has a "native-endian" property. 577 * Returns false otherwise. 578 * 579 * Callers would nominally use ioread32be/iowrite32be if 580 * of_device_is_big_endian() == true, or readl/writel otherwise. 581 */ 582 bool of_device_is_big_endian(const struct device_node *device) 583 { 584 if (of_property_read_bool(device, "big-endian")) 585 return true; 586 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 587 of_property_read_bool(device, "native-endian")) 588 return true; 589 return false; 590 } 591 EXPORT_SYMBOL(of_device_is_big_endian); 592 593 /** 594 * of_get_parent - Get a node's parent if any 595 * @node: Node to get parent 596 * 597 * Returns a node pointer with refcount incremented, use 598 * of_node_put() on it when done. 599 */ 600 struct device_node *of_get_parent(const struct device_node *node) 601 { 602 struct device_node *np; 603 unsigned long flags; 604 605 if (!node) 606 return NULL; 607 608 raw_spin_lock_irqsave(&devtree_lock, flags); 609 np = of_node_get(node->parent); 610 raw_spin_unlock_irqrestore(&devtree_lock, flags); 611 return np; 612 } 613 EXPORT_SYMBOL(of_get_parent); 614 615 /** 616 * of_get_next_parent - Iterate to a node's parent 617 * @node: Node to get parent of 618 * 619 * This is like of_get_parent() except that it drops the 620 * refcount on the passed node, making it suitable for iterating 621 * through a node's parents. 622 * 623 * Returns a node pointer with refcount incremented, use 624 * of_node_put() on it when done. 625 */ 626 struct device_node *of_get_next_parent(struct device_node *node) 627 { 628 struct device_node *parent; 629 unsigned long flags; 630 631 if (!node) 632 return NULL; 633 634 raw_spin_lock_irqsave(&devtree_lock, flags); 635 parent = of_node_get(node->parent); 636 of_node_put(node); 637 raw_spin_unlock_irqrestore(&devtree_lock, flags); 638 return parent; 639 } 640 EXPORT_SYMBOL(of_get_next_parent); 641 642 static struct device_node *__of_get_next_child(const struct device_node *node, 643 struct device_node *prev) 644 { 645 struct device_node *next; 646 647 if (!node) 648 return NULL; 649 650 next = prev ? prev->sibling : node->child; 651 for (; next; next = next->sibling) 652 if (of_node_get(next)) 653 break; 654 of_node_put(prev); 655 return next; 656 } 657 #define __for_each_child_of_node(parent, child) \ 658 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 659 child = __of_get_next_child(parent, child)) 660 661 /** 662 * of_get_next_child - Iterate a node childs 663 * @node: parent node 664 * @prev: previous child of the parent node, or NULL to get first 665 * 666 * Returns a node pointer with refcount incremented, use of_node_put() on 667 * it when done. Returns NULL when prev is the last child. Decrements the 668 * refcount of prev. 669 */ 670 struct device_node *of_get_next_child(const struct device_node *node, 671 struct device_node *prev) 672 { 673 struct device_node *next; 674 unsigned long flags; 675 676 raw_spin_lock_irqsave(&devtree_lock, flags); 677 next = __of_get_next_child(node, prev); 678 raw_spin_unlock_irqrestore(&devtree_lock, flags); 679 return next; 680 } 681 EXPORT_SYMBOL(of_get_next_child); 682 683 /** 684 * of_get_next_available_child - Find the next available child node 685 * @node: parent node 686 * @prev: previous child of the parent node, or NULL to get first 687 * 688 * This function is like of_get_next_child(), except that it 689 * automatically skips any disabled nodes (i.e. status = "disabled"). 690 */ 691 struct device_node *of_get_next_available_child(const struct device_node *node, 692 struct device_node *prev) 693 { 694 struct device_node *next; 695 unsigned long flags; 696 697 if (!node) 698 return NULL; 699 700 raw_spin_lock_irqsave(&devtree_lock, flags); 701 next = prev ? prev->sibling : node->child; 702 for (; next; next = next->sibling) { 703 if (!__of_device_is_available(next)) 704 continue; 705 if (of_node_get(next)) 706 break; 707 } 708 of_node_put(prev); 709 raw_spin_unlock_irqrestore(&devtree_lock, flags); 710 return next; 711 } 712 EXPORT_SYMBOL(of_get_next_available_child); 713 714 /** 715 * of_get_child_by_name - Find the child node by name for a given parent 716 * @node: parent node 717 * @name: child name to look for. 718 * 719 * This function looks for child node for given matching name 720 * 721 * Returns a node pointer if found, with refcount incremented, use 722 * of_node_put() on it when done. 723 * Returns NULL if node is not found. 724 */ 725 struct device_node *of_get_child_by_name(const struct device_node *node, 726 const char *name) 727 { 728 struct device_node *child; 729 730 for_each_child_of_node(node, child) 731 if (child->name && (of_node_cmp(child->name, name) == 0)) 732 break; 733 return child; 734 } 735 EXPORT_SYMBOL(of_get_child_by_name); 736 737 static struct device_node *__of_find_node_by_path(struct device_node *parent, 738 const char *path) 739 { 740 struct device_node *child; 741 int len; 742 743 len = strcspn(path, "/:"); 744 if (!len) 745 return NULL; 746 747 __for_each_child_of_node(parent, child) { 748 const char *name = strrchr(child->full_name, '/'); 749 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 750 continue; 751 name++; 752 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 753 return child; 754 } 755 return NULL; 756 } 757 758 /** 759 * of_find_node_opts_by_path - Find a node matching a full OF path 760 * @path: Either the full path to match, or if the path does not 761 * start with '/', the name of a property of the /aliases 762 * node (an alias). In the case of an alias, the node 763 * matching the alias' value will be returned. 764 * @opts: Address of a pointer into which to store the start of 765 * an options string appended to the end of the path with 766 * a ':' separator. 767 * 768 * Valid paths: 769 * /foo/bar Full path 770 * foo Valid alias 771 * foo/bar Valid alias + relative path 772 * 773 * Returns a node pointer with refcount incremented, use 774 * of_node_put() on it when done. 775 */ 776 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 777 { 778 struct device_node *np = NULL; 779 struct property *pp; 780 unsigned long flags; 781 const char *separator = strchr(path, ':'); 782 783 if (opts) 784 *opts = separator ? separator + 1 : NULL; 785 786 if (strcmp(path, "/") == 0) 787 return of_node_get(of_root); 788 789 /* The path could begin with an alias */ 790 if (*path != '/') { 791 int len; 792 const char *p = separator; 793 794 if (!p) 795 p = strchrnul(path, '/'); 796 len = p - path; 797 798 /* of_aliases must not be NULL */ 799 if (!of_aliases) 800 return NULL; 801 802 for_each_property_of_node(of_aliases, pp) { 803 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 804 np = of_find_node_by_path(pp->value); 805 break; 806 } 807 } 808 if (!np) 809 return NULL; 810 path = p; 811 } 812 813 /* Step down the tree matching path components */ 814 raw_spin_lock_irqsave(&devtree_lock, flags); 815 if (!np) 816 np = of_node_get(of_root); 817 while (np && *path == '/') { 818 path++; /* Increment past '/' delimiter */ 819 np = __of_find_node_by_path(np, path); 820 path = strchrnul(path, '/'); 821 if (separator && separator < path) 822 break; 823 } 824 raw_spin_unlock_irqrestore(&devtree_lock, flags); 825 return np; 826 } 827 EXPORT_SYMBOL(of_find_node_opts_by_path); 828 829 /** 830 * of_find_node_by_name - Find a node by its "name" property 831 * @from: The node to start searching from or NULL, the node 832 * you pass will not be searched, only the next one 833 * will; typically, you pass what the previous call 834 * returned. of_node_put() will be called on it 835 * @name: The name string to match against 836 * 837 * Returns a node pointer with refcount incremented, use 838 * of_node_put() on it when done. 839 */ 840 struct device_node *of_find_node_by_name(struct device_node *from, 841 const char *name) 842 { 843 struct device_node *np; 844 unsigned long flags; 845 846 raw_spin_lock_irqsave(&devtree_lock, flags); 847 for_each_of_allnodes_from(from, np) 848 if (np->name && (of_node_cmp(np->name, name) == 0) 849 && of_node_get(np)) 850 break; 851 of_node_put(from); 852 raw_spin_unlock_irqrestore(&devtree_lock, flags); 853 return np; 854 } 855 EXPORT_SYMBOL(of_find_node_by_name); 856 857 /** 858 * of_find_node_by_type - Find a node by its "device_type" property 859 * @from: The node to start searching from, or NULL to start searching 860 * the entire device tree. The node you pass will not be 861 * searched, only the next one will; typically, you pass 862 * what the previous call returned. of_node_put() will be 863 * called on from for you. 864 * @type: The type string to match against 865 * 866 * Returns a node pointer with refcount incremented, use 867 * of_node_put() on it when done. 868 */ 869 struct device_node *of_find_node_by_type(struct device_node *from, 870 const char *type) 871 { 872 struct device_node *np; 873 unsigned long flags; 874 875 raw_spin_lock_irqsave(&devtree_lock, flags); 876 for_each_of_allnodes_from(from, np) 877 if (np->type && (of_node_cmp(np->type, type) == 0) 878 && of_node_get(np)) 879 break; 880 of_node_put(from); 881 raw_spin_unlock_irqrestore(&devtree_lock, flags); 882 return np; 883 } 884 EXPORT_SYMBOL(of_find_node_by_type); 885 886 /** 887 * of_find_compatible_node - Find a node based on type and one of the 888 * tokens in its "compatible" property 889 * @from: The node to start searching from or NULL, the node 890 * you pass will not be searched, only the next one 891 * will; typically, you pass what the previous call 892 * returned. of_node_put() will be called on it 893 * @type: The type string to match "device_type" or NULL to ignore 894 * @compatible: The string to match to one of the tokens in the device 895 * "compatible" list. 896 * 897 * Returns a node pointer with refcount incremented, use 898 * of_node_put() on it when done. 899 */ 900 struct device_node *of_find_compatible_node(struct device_node *from, 901 const char *type, const char *compatible) 902 { 903 struct device_node *np; 904 unsigned long flags; 905 906 raw_spin_lock_irqsave(&devtree_lock, flags); 907 for_each_of_allnodes_from(from, np) 908 if (__of_device_is_compatible(np, compatible, type, NULL) && 909 of_node_get(np)) 910 break; 911 of_node_put(from); 912 raw_spin_unlock_irqrestore(&devtree_lock, flags); 913 return np; 914 } 915 EXPORT_SYMBOL(of_find_compatible_node); 916 917 /** 918 * of_find_node_with_property - Find a node which has a property with 919 * the given name. 920 * @from: The node to start searching from or NULL, the node 921 * you pass will not be searched, only the next one 922 * will; typically, you pass what the previous call 923 * returned. of_node_put() will be called on it 924 * @prop_name: The name of the property to look for. 925 * 926 * Returns a node pointer with refcount incremented, use 927 * of_node_put() on it when done. 928 */ 929 struct device_node *of_find_node_with_property(struct device_node *from, 930 const char *prop_name) 931 { 932 struct device_node *np; 933 struct property *pp; 934 unsigned long flags; 935 936 raw_spin_lock_irqsave(&devtree_lock, flags); 937 for_each_of_allnodes_from(from, np) { 938 for (pp = np->properties; pp; pp = pp->next) { 939 if (of_prop_cmp(pp->name, prop_name) == 0) { 940 of_node_get(np); 941 goto out; 942 } 943 } 944 } 945 out: 946 of_node_put(from); 947 raw_spin_unlock_irqrestore(&devtree_lock, flags); 948 return np; 949 } 950 EXPORT_SYMBOL(of_find_node_with_property); 951 952 static 953 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 954 const struct device_node *node) 955 { 956 const struct of_device_id *best_match = NULL; 957 int score, best_score = 0; 958 959 if (!matches) 960 return NULL; 961 962 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 963 score = __of_device_is_compatible(node, matches->compatible, 964 matches->type, matches->name); 965 if (score > best_score) { 966 best_match = matches; 967 best_score = score; 968 } 969 } 970 971 return best_match; 972 } 973 974 /** 975 * of_match_node - Tell if a device_node has a matching of_match structure 976 * @matches: array of of device match structures to search in 977 * @node: the of device structure to match against 978 * 979 * Low level utility function used by device matching. 980 */ 981 const struct of_device_id *of_match_node(const struct of_device_id *matches, 982 const struct device_node *node) 983 { 984 const struct of_device_id *match; 985 unsigned long flags; 986 987 raw_spin_lock_irqsave(&devtree_lock, flags); 988 match = __of_match_node(matches, node); 989 raw_spin_unlock_irqrestore(&devtree_lock, flags); 990 return match; 991 } 992 EXPORT_SYMBOL(of_match_node); 993 994 /** 995 * of_find_matching_node_and_match - Find a node based on an of_device_id 996 * match table. 997 * @from: The node to start searching from or NULL, the node 998 * you pass will not be searched, only the next one 999 * will; typically, you pass what the previous call 1000 * returned. of_node_put() will be called on it 1001 * @matches: array of of device match structures to search in 1002 * @match Updated to point at the matches entry which matched 1003 * 1004 * Returns a node pointer with refcount incremented, use 1005 * of_node_put() on it when done. 1006 */ 1007 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1008 const struct of_device_id *matches, 1009 const struct of_device_id **match) 1010 { 1011 struct device_node *np; 1012 const struct of_device_id *m; 1013 unsigned long flags; 1014 1015 if (match) 1016 *match = NULL; 1017 1018 raw_spin_lock_irqsave(&devtree_lock, flags); 1019 for_each_of_allnodes_from(from, np) { 1020 m = __of_match_node(matches, np); 1021 if (m && of_node_get(np)) { 1022 if (match) 1023 *match = m; 1024 break; 1025 } 1026 } 1027 of_node_put(from); 1028 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1029 return np; 1030 } 1031 EXPORT_SYMBOL(of_find_matching_node_and_match); 1032 1033 /** 1034 * of_modalias_node - Lookup appropriate modalias for a device node 1035 * @node: pointer to a device tree node 1036 * @modalias: Pointer to buffer that modalias value will be copied into 1037 * @len: Length of modalias value 1038 * 1039 * Based on the value of the compatible property, this routine will attempt 1040 * to choose an appropriate modalias value for a particular device tree node. 1041 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1042 * from the first entry in the compatible list property. 1043 * 1044 * This routine returns 0 on success, <0 on failure. 1045 */ 1046 int of_modalias_node(struct device_node *node, char *modalias, int len) 1047 { 1048 const char *compatible, *p; 1049 int cplen; 1050 1051 compatible = of_get_property(node, "compatible", &cplen); 1052 if (!compatible || strlen(compatible) > cplen) 1053 return -ENODEV; 1054 p = strchr(compatible, ','); 1055 strlcpy(modalias, p ? p + 1 : compatible, len); 1056 return 0; 1057 } 1058 EXPORT_SYMBOL_GPL(of_modalias_node); 1059 1060 /** 1061 * of_find_node_by_phandle - Find a node given a phandle 1062 * @handle: phandle of the node to find 1063 * 1064 * Returns a node pointer with refcount incremented, use 1065 * of_node_put() on it when done. 1066 */ 1067 struct device_node *of_find_node_by_phandle(phandle handle) 1068 { 1069 struct device_node *np; 1070 unsigned long flags; 1071 1072 if (!handle) 1073 return NULL; 1074 1075 raw_spin_lock_irqsave(&devtree_lock, flags); 1076 for_each_of_allnodes(np) 1077 if (np->phandle == handle) 1078 break; 1079 of_node_get(np); 1080 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1081 return np; 1082 } 1083 EXPORT_SYMBOL(of_find_node_by_phandle); 1084 1085 /** 1086 * of_property_count_elems_of_size - Count the number of elements in a property 1087 * 1088 * @np: device node from which the property value is to be read. 1089 * @propname: name of the property to be searched. 1090 * @elem_size: size of the individual element 1091 * 1092 * Search for a property in a device node and count the number of elements of 1093 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1094 * property does not exist or its length does not match a multiple of elem_size 1095 * and -ENODATA if the property does not have a value. 1096 */ 1097 int of_property_count_elems_of_size(const struct device_node *np, 1098 const char *propname, int elem_size) 1099 { 1100 struct property *prop = of_find_property(np, propname, NULL); 1101 1102 if (!prop) 1103 return -EINVAL; 1104 if (!prop->value) 1105 return -ENODATA; 1106 1107 if (prop->length % elem_size != 0) { 1108 pr_err("size of %s in node %s is not a multiple of %d\n", 1109 propname, np->full_name, elem_size); 1110 return -EINVAL; 1111 } 1112 1113 return prop->length / elem_size; 1114 } 1115 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1116 1117 /** 1118 * of_find_property_value_of_size 1119 * 1120 * @np: device node from which the property value is to be read. 1121 * @propname: name of the property to be searched. 1122 * @len: requested length of property value 1123 * 1124 * Search for a property in a device node and valid the requested size. 1125 * Returns the property value on success, -EINVAL if the property does not 1126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1127 * property data isn't large enough. 1128 * 1129 */ 1130 static void *of_find_property_value_of_size(const struct device_node *np, 1131 const char *propname, u32 len) 1132 { 1133 struct property *prop = of_find_property(np, propname, NULL); 1134 1135 if (!prop) 1136 return ERR_PTR(-EINVAL); 1137 if (!prop->value) 1138 return ERR_PTR(-ENODATA); 1139 if (len > prop->length) 1140 return ERR_PTR(-EOVERFLOW); 1141 1142 return prop->value; 1143 } 1144 1145 /** 1146 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1147 * 1148 * @np: device node from which the property value is to be read. 1149 * @propname: name of the property to be searched. 1150 * @index: index of the u32 in the list of values 1151 * @out_value: pointer to return value, modified only if no error. 1152 * 1153 * Search for a property in a device node and read nth 32-bit value from 1154 * it. Returns 0 on success, -EINVAL if the property does not exist, 1155 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1156 * property data isn't large enough. 1157 * 1158 * The out_value is modified only if a valid u32 value can be decoded. 1159 */ 1160 int of_property_read_u32_index(const struct device_node *np, 1161 const char *propname, 1162 u32 index, u32 *out_value) 1163 { 1164 const u32 *val = of_find_property_value_of_size(np, propname, 1165 ((index + 1) * sizeof(*out_value))); 1166 1167 if (IS_ERR(val)) 1168 return PTR_ERR(val); 1169 1170 *out_value = be32_to_cpup(((__be32 *)val) + index); 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1174 1175 /** 1176 * of_property_read_u8_array - Find and read an array of u8 from a property. 1177 * 1178 * @np: device node from which the property value is to be read. 1179 * @propname: name of the property to be searched. 1180 * @out_values: pointer to return value, modified only if return value is 0. 1181 * @sz: number of array elements to read 1182 * 1183 * Search for a property in a device node and read 8-bit value(s) from 1184 * it. Returns 0 on success, -EINVAL if the property does not exist, 1185 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1186 * property data isn't large enough. 1187 * 1188 * dts entry of array should be like: 1189 * property = /bits/ 8 <0x50 0x60 0x70>; 1190 * 1191 * The out_values is modified only if a valid u8 value can be decoded. 1192 */ 1193 int of_property_read_u8_array(const struct device_node *np, 1194 const char *propname, u8 *out_values, size_t sz) 1195 { 1196 const u8 *val = of_find_property_value_of_size(np, propname, 1197 (sz * sizeof(*out_values))); 1198 1199 if (IS_ERR(val)) 1200 return PTR_ERR(val); 1201 1202 while (sz--) 1203 *out_values++ = *val++; 1204 return 0; 1205 } 1206 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1207 1208 /** 1209 * of_property_read_u16_array - Find and read an array of u16 from a property. 1210 * 1211 * @np: device node from which the property value is to be read. 1212 * @propname: name of the property to be searched. 1213 * @out_values: pointer to return value, modified only if return value is 0. 1214 * @sz: number of array elements to read 1215 * 1216 * Search for a property in a device node and read 16-bit value(s) from 1217 * it. Returns 0 on success, -EINVAL if the property does not exist, 1218 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1219 * property data isn't large enough. 1220 * 1221 * dts entry of array should be like: 1222 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1223 * 1224 * The out_values is modified only if a valid u16 value can be decoded. 1225 */ 1226 int of_property_read_u16_array(const struct device_node *np, 1227 const char *propname, u16 *out_values, size_t sz) 1228 { 1229 const __be16 *val = of_find_property_value_of_size(np, propname, 1230 (sz * sizeof(*out_values))); 1231 1232 if (IS_ERR(val)) 1233 return PTR_ERR(val); 1234 1235 while (sz--) 1236 *out_values++ = be16_to_cpup(val++); 1237 return 0; 1238 } 1239 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1240 1241 /** 1242 * of_property_read_u32_array - Find and read an array of 32 bit integers 1243 * from a property. 1244 * 1245 * @np: device node from which the property value is to be read. 1246 * @propname: name of the property to be searched. 1247 * @out_values: pointer to return value, modified only if return value is 0. 1248 * @sz: number of array elements to read 1249 * 1250 * Search for a property in a device node and read 32-bit value(s) from 1251 * it. Returns 0 on success, -EINVAL if the property does not exist, 1252 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1253 * property data isn't large enough. 1254 * 1255 * The out_values is modified only if a valid u32 value can be decoded. 1256 */ 1257 int of_property_read_u32_array(const struct device_node *np, 1258 const char *propname, u32 *out_values, 1259 size_t sz) 1260 { 1261 const __be32 *val = of_find_property_value_of_size(np, propname, 1262 (sz * sizeof(*out_values))); 1263 1264 if (IS_ERR(val)) 1265 return PTR_ERR(val); 1266 1267 while (sz--) 1268 *out_values++ = be32_to_cpup(val++); 1269 return 0; 1270 } 1271 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1272 1273 /** 1274 * of_property_read_u64 - Find and read a 64 bit integer from a property 1275 * @np: device node from which the property value is to be read. 1276 * @propname: name of the property to be searched. 1277 * @out_value: pointer to return value, modified only if return value is 0. 1278 * 1279 * Search for a property in a device node and read a 64-bit value from 1280 * it. Returns 0 on success, -EINVAL if the property does not exist, 1281 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1282 * property data isn't large enough. 1283 * 1284 * The out_value is modified only if a valid u64 value can be decoded. 1285 */ 1286 int of_property_read_u64(const struct device_node *np, const char *propname, 1287 u64 *out_value) 1288 { 1289 const __be32 *val = of_find_property_value_of_size(np, propname, 1290 sizeof(*out_value)); 1291 1292 if (IS_ERR(val)) 1293 return PTR_ERR(val); 1294 1295 *out_value = of_read_number(val, 2); 1296 return 0; 1297 } 1298 EXPORT_SYMBOL_GPL(of_property_read_u64); 1299 1300 /** 1301 * of_property_read_u64_array - Find and read an array of 64 bit integers 1302 * from a property. 1303 * 1304 * @np: device node from which the property value is to be read. 1305 * @propname: name of the property to be searched. 1306 * @out_values: pointer to return value, modified only if return value is 0. 1307 * @sz: number of array elements to read 1308 * 1309 * Search for a property in a device node and read 64-bit value(s) from 1310 * it. Returns 0 on success, -EINVAL if the property does not exist, 1311 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1312 * property data isn't large enough. 1313 * 1314 * The out_values is modified only if a valid u64 value can be decoded. 1315 */ 1316 int of_property_read_u64_array(const struct device_node *np, 1317 const char *propname, u64 *out_values, 1318 size_t sz) 1319 { 1320 const __be32 *val = of_find_property_value_of_size(np, propname, 1321 (sz * sizeof(*out_values))); 1322 1323 if (IS_ERR(val)) 1324 return PTR_ERR(val); 1325 1326 while (sz--) { 1327 *out_values++ = of_read_number(val, 2); 1328 val += 2; 1329 } 1330 return 0; 1331 } 1332 EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1333 1334 /** 1335 * of_property_read_string - Find and read a string from a property 1336 * @np: device node from which the property value is to be read. 1337 * @propname: name of the property to be searched. 1338 * @out_string: pointer to null terminated return string, modified only if 1339 * return value is 0. 1340 * 1341 * Search for a property in a device tree node and retrieve a null 1342 * terminated string value (pointer to data, not a copy). Returns 0 on 1343 * success, -EINVAL if the property does not exist, -ENODATA if property 1344 * does not have a value, and -EILSEQ if the string is not null-terminated 1345 * within the length of the property data. 1346 * 1347 * The out_string pointer is modified only if a valid string can be decoded. 1348 */ 1349 int of_property_read_string(struct device_node *np, const char *propname, 1350 const char **out_string) 1351 { 1352 struct property *prop = of_find_property(np, propname, NULL); 1353 if (!prop) 1354 return -EINVAL; 1355 if (!prop->value) 1356 return -ENODATA; 1357 if (strnlen(prop->value, prop->length) >= prop->length) 1358 return -EILSEQ; 1359 *out_string = prop->value; 1360 return 0; 1361 } 1362 EXPORT_SYMBOL_GPL(of_property_read_string); 1363 1364 /** 1365 * of_property_match_string() - Find string in a list and return index 1366 * @np: pointer to node containing string list property 1367 * @propname: string list property name 1368 * @string: pointer to string to search for in string list 1369 * 1370 * This function searches a string list property and returns the index 1371 * of a specific string value. 1372 */ 1373 int of_property_match_string(struct device_node *np, const char *propname, 1374 const char *string) 1375 { 1376 struct property *prop = of_find_property(np, propname, NULL); 1377 size_t l; 1378 int i; 1379 const char *p, *end; 1380 1381 if (!prop) 1382 return -EINVAL; 1383 if (!prop->value) 1384 return -ENODATA; 1385 1386 p = prop->value; 1387 end = p + prop->length; 1388 1389 for (i = 0; p < end; i++, p += l) { 1390 l = strnlen(p, end - p) + 1; 1391 if (p + l > end) 1392 return -EILSEQ; 1393 pr_debug("comparing %s with %s\n", string, p); 1394 if (strcmp(string, p) == 0) 1395 return i; /* Found it; return index */ 1396 } 1397 return -ENODATA; 1398 } 1399 EXPORT_SYMBOL_GPL(of_property_match_string); 1400 1401 /** 1402 * of_property_read_string_helper() - Utility helper for parsing string properties 1403 * @np: device node from which the property value is to be read. 1404 * @propname: name of the property to be searched. 1405 * @out_strs: output array of string pointers. 1406 * @sz: number of array elements to read. 1407 * @skip: Number of strings to skip over at beginning of list. 1408 * 1409 * Don't call this function directly. It is a utility helper for the 1410 * of_property_read_string*() family of functions. 1411 */ 1412 int of_property_read_string_helper(struct device_node *np, const char *propname, 1413 const char **out_strs, size_t sz, int skip) 1414 { 1415 struct property *prop = of_find_property(np, propname, NULL); 1416 int l = 0, i = 0; 1417 const char *p, *end; 1418 1419 if (!prop) 1420 return -EINVAL; 1421 if (!prop->value) 1422 return -ENODATA; 1423 p = prop->value; 1424 end = p + prop->length; 1425 1426 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1427 l = strnlen(p, end - p) + 1; 1428 if (p + l > end) 1429 return -EILSEQ; 1430 if (out_strs && i >= skip) 1431 *out_strs++ = p; 1432 } 1433 i -= skip; 1434 return i <= 0 ? -ENODATA : i; 1435 } 1436 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1437 1438 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1439 { 1440 int i; 1441 printk("%s %s", msg, of_node_full_name(args->np)); 1442 for (i = 0; i < args->args_count; i++) 1443 printk(i ? ",%08x" : ":%08x", args->args[i]); 1444 printk("\n"); 1445 } 1446 1447 static int __of_parse_phandle_with_args(const struct device_node *np, 1448 const char *list_name, 1449 const char *cells_name, 1450 int cell_count, int index, 1451 struct of_phandle_args *out_args) 1452 { 1453 const __be32 *list, *list_end; 1454 int rc = 0, size, cur_index = 0; 1455 uint32_t count = 0; 1456 struct device_node *node = NULL; 1457 phandle phandle; 1458 1459 /* Retrieve the phandle list property */ 1460 list = of_get_property(np, list_name, &size); 1461 if (!list) 1462 return -ENOENT; 1463 list_end = list + size / sizeof(*list); 1464 1465 /* Loop over the phandles until all the requested entry is found */ 1466 while (list < list_end) { 1467 rc = -EINVAL; 1468 count = 0; 1469 1470 /* 1471 * If phandle is 0, then it is an empty entry with no 1472 * arguments. Skip forward to the next entry. 1473 */ 1474 phandle = be32_to_cpup(list++); 1475 if (phandle) { 1476 /* 1477 * Find the provider node and parse the #*-cells 1478 * property to determine the argument length. 1479 * 1480 * This is not needed if the cell count is hard-coded 1481 * (i.e. cells_name not set, but cell_count is set), 1482 * except when we're going to return the found node 1483 * below. 1484 */ 1485 if (cells_name || cur_index == index) { 1486 node = of_find_node_by_phandle(phandle); 1487 if (!node) { 1488 pr_err("%s: could not find phandle\n", 1489 np->full_name); 1490 goto err; 1491 } 1492 } 1493 1494 if (cells_name) { 1495 if (of_property_read_u32(node, cells_name, 1496 &count)) { 1497 pr_err("%s: could not get %s for %s\n", 1498 np->full_name, cells_name, 1499 node->full_name); 1500 goto err; 1501 } 1502 } else { 1503 count = cell_count; 1504 } 1505 1506 /* 1507 * Make sure that the arguments actually fit in the 1508 * remaining property data length 1509 */ 1510 if (list + count > list_end) { 1511 pr_err("%s: arguments longer than property\n", 1512 np->full_name); 1513 goto err; 1514 } 1515 } 1516 1517 /* 1518 * All of the error cases above bail out of the loop, so at 1519 * this point, the parsing is successful. If the requested 1520 * index matches, then fill the out_args structure and return, 1521 * or return -ENOENT for an empty entry. 1522 */ 1523 rc = -ENOENT; 1524 if (cur_index == index) { 1525 if (!phandle) 1526 goto err; 1527 1528 if (out_args) { 1529 int i; 1530 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1531 count = MAX_PHANDLE_ARGS; 1532 out_args->np = node; 1533 out_args->args_count = count; 1534 for (i = 0; i < count; i++) 1535 out_args->args[i] = be32_to_cpup(list++); 1536 } else { 1537 of_node_put(node); 1538 } 1539 1540 /* Found it! return success */ 1541 return 0; 1542 } 1543 1544 of_node_put(node); 1545 node = NULL; 1546 list += count; 1547 cur_index++; 1548 } 1549 1550 /* 1551 * Unlock node before returning result; will be one of: 1552 * -ENOENT : index is for empty phandle 1553 * -EINVAL : parsing error on data 1554 * [1..n] : Number of phandle (count mode; when index = -1) 1555 */ 1556 rc = index < 0 ? cur_index : -ENOENT; 1557 err: 1558 if (node) 1559 of_node_put(node); 1560 return rc; 1561 } 1562 1563 /** 1564 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1565 * @np: Pointer to device node holding phandle property 1566 * @phandle_name: Name of property holding a phandle value 1567 * @index: For properties holding a table of phandles, this is the index into 1568 * the table 1569 * 1570 * Returns the device_node pointer with refcount incremented. Use 1571 * of_node_put() on it when done. 1572 */ 1573 struct device_node *of_parse_phandle(const struct device_node *np, 1574 const char *phandle_name, int index) 1575 { 1576 struct of_phandle_args args; 1577 1578 if (index < 0) 1579 return NULL; 1580 1581 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1582 index, &args)) 1583 return NULL; 1584 1585 return args.np; 1586 } 1587 EXPORT_SYMBOL(of_parse_phandle); 1588 1589 /** 1590 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1591 * @np: pointer to a device tree node containing a list 1592 * @list_name: property name that contains a list 1593 * @cells_name: property name that specifies phandles' arguments count 1594 * @index: index of a phandle to parse out 1595 * @out_args: optional pointer to output arguments structure (will be filled) 1596 * 1597 * This function is useful to parse lists of phandles and their arguments. 1598 * Returns 0 on success and fills out_args, on error returns appropriate 1599 * errno value. 1600 * 1601 * Caller is responsible to call of_node_put() on the returned out_args->np 1602 * pointer. 1603 * 1604 * Example: 1605 * 1606 * phandle1: node1 { 1607 * #list-cells = <2>; 1608 * } 1609 * 1610 * phandle2: node2 { 1611 * #list-cells = <1>; 1612 * } 1613 * 1614 * node3 { 1615 * list = <&phandle1 1 2 &phandle2 3>; 1616 * } 1617 * 1618 * To get a device_node of the `node2' node you may call this: 1619 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1620 */ 1621 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1622 const char *cells_name, int index, 1623 struct of_phandle_args *out_args) 1624 { 1625 if (index < 0) 1626 return -EINVAL; 1627 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1628 index, out_args); 1629 } 1630 EXPORT_SYMBOL(of_parse_phandle_with_args); 1631 1632 /** 1633 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1634 * @np: pointer to a device tree node containing a list 1635 * @list_name: property name that contains a list 1636 * @cell_count: number of argument cells following the phandle 1637 * @index: index of a phandle to parse out 1638 * @out_args: optional pointer to output arguments structure (will be filled) 1639 * 1640 * This function is useful to parse lists of phandles and their arguments. 1641 * Returns 0 on success and fills out_args, on error returns appropriate 1642 * errno value. 1643 * 1644 * Caller is responsible to call of_node_put() on the returned out_args->np 1645 * pointer. 1646 * 1647 * Example: 1648 * 1649 * phandle1: node1 { 1650 * } 1651 * 1652 * phandle2: node2 { 1653 * } 1654 * 1655 * node3 { 1656 * list = <&phandle1 0 2 &phandle2 2 3>; 1657 * } 1658 * 1659 * To get a device_node of the `node2' node you may call this: 1660 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1661 */ 1662 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1663 const char *list_name, int cell_count, 1664 int index, struct of_phandle_args *out_args) 1665 { 1666 if (index < 0) 1667 return -EINVAL; 1668 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1669 index, out_args); 1670 } 1671 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1672 1673 /** 1674 * of_count_phandle_with_args() - Find the number of phandles references in a property 1675 * @np: pointer to a device tree node containing a list 1676 * @list_name: property name that contains a list 1677 * @cells_name: property name that specifies phandles' arguments count 1678 * 1679 * Returns the number of phandle + argument tuples within a property. It 1680 * is a typical pattern to encode a list of phandle and variable 1681 * arguments into a single property. The number of arguments is encoded 1682 * by a property in the phandle-target node. For example, a gpios 1683 * property would contain a list of GPIO specifies consisting of a 1684 * phandle and 1 or more arguments. The number of arguments are 1685 * determined by the #gpio-cells property in the node pointed to by the 1686 * phandle. 1687 */ 1688 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1689 const char *cells_name) 1690 { 1691 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1692 NULL); 1693 } 1694 EXPORT_SYMBOL(of_count_phandle_with_args); 1695 1696 /** 1697 * __of_add_property - Add a property to a node without lock operations 1698 */ 1699 int __of_add_property(struct device_node *np, struct property *prop) 1700 { 1701 struct property **next; 1702 1703 prop->next = NULL; 1704 next = &np->properties; 1705 while (*next) { 1706 if (strcmp(prop->name, (*next)->name) == 0) 1707 /* duplicate ! don't insert it */ 1708 return -EEXIST; 1709 1710 next = &(*next)->next; 1711 } 1712 *next = prop; 1713 1714 return 0; 1715 } 1716 1717 /** 1718 * of_add_property - Add a property to a node 1719 */ 1720 int of_add_property(struct device_node *np, struct property *prop) 1721 { 1722 unsigned long flags; 1723 int rc; 1724 1725 mutex_lock(&of_mutex); 1726 1727 raw_spin_lock_irqsave(&devtree_lock, flags); 1728 rc = __of_add_property(np, prop); 1729 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1730 1731 if (!rc) 1732 __of_add_property_sysfs(np, prop); 1733 1734 mutex_unlock(&of_mutex); 1735 1736 if (!rc) 1737 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1738 1739 return rc; 1740 } 1741 1742 int __of_remove_property(struct device_node *np, struct property *prop) 1743 { 1744 struct property **next; 1745 1746 for (next = &np->properties; *next; next = &(*next)->next) { 1747 if (*next == prop) 1748 break; 1749 } 1750 if (*next == NULL) 1751 return -ENODEV; 1752 1753 /* found the node */ 1754 *next = prop->next; 1755 prop->next = np->deadprops; 1756 np->deadprops = prop; 1757 1758 return 0; 1759 } 1760 1761 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1762 { 1763 if (!IS_ENABLED(CONFIG_SYSFS)) 1764 return; 1765 1766 /* at early boot, bail here and defer setup to of_init() */ 1767 if (of_kset && of_node_is_attached(np)) 1768 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1769 } 1770 1771 /** 1772 * of_remove_property - Remove a property from a node. 1773 * 1774 * Note that we don't actually remove it, since we have given out 1775 * who-knows-how-many pointers to the data using get-property. 1776 * Instead we just move the property to the "dead properties" 1777 * list, so it won't be found any more. 1778 */ 1779 int of_remove_property(struct device_node *np, struct property *prop) 1780 { 1781 unsigned long flags; 1782 int rc; 1783 1784 mutex_lock(&of_mutex); 1785 1786 raw_spin_lock_irqsave(&devtree_lock, flags); 1787 rc = __of_remove_property(np, prop); 1788 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1789 1790 if (!rc) 1791 __of_remove_property_sysfs(np, prop); 1792 1793 mutex_unlock(&of_mutex); 1794 1795 if (!rc) 1796 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1797 1798 return rc; 1799 } 1800 1801 int __of_update_property(struct device_node *np, struct property *newprop, 1802 struct property **oldpropp) 1803 { 1804 struct property **next, *oldprop; 1805 1806 for (next = &np->properties; *next; next = &(*next)->next) { 1807 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1808 break; 1809 } 1810 *oldpropp = oldprop = *next; 1811 1812 if (oldprop) { 1813 /* replace the node */ 1814 newprop->next = oldprop->next; 1815 *next = newprop; 1816 oldprop->next = np->deadprops; 1817 np->deadprops = oldprop; 1818 } else { 1819 /* new node */ 1820 newprop->next = NULL; 1821 *next = newprop; 1822 } 1823 1824 return 0; 1825 } 1826 1827 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1828 struct property *oldprop) 1829 { 1830 if (!IS_ENABLED(CONFIG_SYSFS)) 1831 return; 1832 1833 /* At early boot, bail out and defer setup to of_init() */ 1834 if (!of_kset) 1835 return; 1836 1837 if (oldprop) 1838 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1839 __of_add_property_sysfs(np, newprop); 1840 } 1841 1842 /* 1843 * of_update_property - Update a property in a node, if the property does 1844 * not exist, add it. 1845 * 1846 * Note that we don't actually remove it, since we have given out 1847 * who-knows-how-many pointers to the data using get-property. 1848 * Instead we just move the property to the "dead properties" list, 1849 * and add the new property to the property list 1850 */ 1851 int of_update_property(struct device_node *np, struct property *newprop) 1852 { 1853 struct property *oldprop; 1854 unsigned long flags; 1855 int rc; 1856 1857 if (!newprop->name) 1858 return -EINVAL; 1859 1860 mutex_lock(&of_mutex); 1861 1862 raw_spin_lock_irqsave(&devtree_lock, flags); 1863 rc = __of_update_property(np, newprop, &oldprop); 1864 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1865 1866 if (!rc) 1867 __of_update_property_sysfs(np, newprop, oldprop); 1868 1869 mutex_unlock(&of_mutex); 1870 1871 if (!rc) 1872 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1873 1874 return rc; 1875 } 1876 1877 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1878 int id, const char *stem, int stem_len) 1879 { 1880 ap->np = np; 1881 ap->id = id; 1882 strncpy(ap->stem, stem, stem_len); 1883 ap->stem[stem_len] = 0; 1884 list_add_tail(&ap->link, &aliases_lookup); 1885 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1886 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1887 } 1888 1889 /** 1890 * of_alias_scan - Scan all properties of the 'aliases' node 1891 * 1892 * The function scans all the properties of the 'aliases' node and populates 1893 * the global lookup table with the properties. It returns the 1894 * number of alias properties found, or an error code in case of failure. 1895 * 1896 * @dt_alloc: An allocator that provides a virtual address to memory 1897 * for storing the resulting tree 1898 */ 1899 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1900 { 1901 struct property *pp; 1902 1903 of_aliases = of_find_node_by_path("/aliases"); 1904 of_chosen = of_find_node_by_path("/chosen"); 1905 if (of_chosen == NULL) 1906 of_chosen = of_find_node_by_path("/chosen@0"); 1907 1908 if (of_chosen) { 1909 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1910 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1911 if (!name) 1912 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1913 if (IS_ENABLED(CONFIG_PPC) && !name) 1914 name = of_get_property(of_aliases, "stdout", NULL); 1915 if (name) 1916 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1917 } 1918 1919 if (!of_aliases) 1920 return; 1921 1922 for_each_property_of_node(of_aliases, pp) { 1923 const char *start = pp->name; 1924 const char *end = start + strlen(start); 1925 struct device_node *np; 1926 struct alias_prop *ap; 1927 int id, len; 1928 1929 /* Skip those we do not want to proceed */ 1930 if (!strcmp(pp->name, "name") || 1931 !strcmp(pp->name, "phandle") || 1932 !strcmp(pp->name, "linux,phandle")) 1933 continue; 1934 1935 np = of_find_node_by_path(pp->value); 1936 if (!np) 1937 continue; 1938 1939 /* walk the alias backwards to extract the id and work out 1940 * the 'stem' string */ 1941 while (isdigit(*(end-1)) && end > start) 1942 end--; 1943 len = end - start; 1944 1945 if (kstrtoint(end, 10, &id) < 0) 1946 continue; 1947 1948 /* Allocate an alias_prop with enough space for the stem */ 1949 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1950 if (!ap) 1951 continue; 1952 memset(ap, 0, sizeof(*ap) + len + 1); 1953 ap->alias = start; 1954 of_alias_add(ap, np, id, start, len); 1955 } 1956 } 1957 1958 /** 1959 * of_alias_get_id - Get alias id for the given device_node 1960 * @np: Pointer to the given device_node 1961 * @stem: Alias stem of the given device_node 1962 * 1963 * The function travels the lookup table to get the alias id for the given 1964 * device_node and alias stem. It returns the alias id if found. 1965 */ 1966 int of_alias_get_id(struct device_node *np, const char *stem) 1967 { 1968 struct alias_prop *app; 1969 int id = -ENODEV; 1970 1971 mutex_lock(&of_mutex); 1972 list_for_each_entry(app, &aliases_lookup, link) { 1973 if (strcmp(app->stem, stem) != 0) 1974 continue; 1975 1976 if (np == app->np) { 1977 id = app->id; 1978 break; 1979 } 1980 } 1981 mutex_unlock(&of_mutex); 1982 1983 return id; 1984 } 1985 EXPORT_SYMBOL_GPL(of_alias_get_id); 1986 1987 /** 1988 * of_alias_get_highest_id - Get highest alias id for the given stem 1989 * @stem: Alias stem to be examined 1990 * 1991 * The function travels the lookup table to get the highest alias id for the 1992 * given alias stem. It returns the alias id if found. 1993 */ 1994 int of_alias_get_highest_id(const char *stem) 1995 { 1996 struct alias_prop *app; 1997 int id = -ENODEV; 1998 1999 mutex_lock(&of_mutex); 2000 list_for_each_entry(app, &aliases_lookup, link) { 2001 if (strcmp(app->stem, stem) != 0) 2002 continue; 2003 2004 if (app->id > id) 2005 id = app->id; 2006 } 2007 mutex_unlock(&of_mutex); 2008 2009 return id; 2010 } 2011 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2012 2013 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2014 u32 *pu) 2015 { 2016 const void *curv = cur; 2017 2018 if (!prop) 2019 return NULL; 2020 2021 if (!cur) { 2022 curv = prop->value; 2023 goto out_val; 2024 } 2025 2026 curv += sizeof(*cur); 2027 if (curv >= prop->value + prop->length) 2028 return NULL; 2029 2030 out_val: 2031 *pu = be32_to_cpup(curv); 2032 return curv; 2033 } 2034 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2035 2036 const char *of_prop_next_string(struct property *prop, const char *cur) 2037 { 2038 const void *curv = cur; 2039 2040 if (!prop) 2041 return NULL; 2042 2043 if (!cur) 2044 return prop->value; 2045 2046 curv += strlen(cur) + 1; 2047 if (curv >= prop->value + prop->length) 2048 return NULL; 2049 2050 return curv; 2051 } 2052 EXPORT_SYMBOL_GPL(of_prop_next_string); 2053 2054 /** 2055 * of_console_check() - Test and setup console for DT setup 2056 * @dn - Pointer to device node 2057 * @name - Name to use for preferred console without index. ex. "ttyS" 2058 * @index - Index to use for preferred console. 2059 * 2060 * Check if the given device node matches the stdout-path property in the 2061 * /chosen node. If it does then register it as the preferred console and return 2062 * TRUE. Otherwise return FALSE. 2063 */ 2064 bool of_console_check(struct device_node *dn, char *name, int index) 2065 { 2066 if (!dn || dn != of_stdout || console_set_on_cmdline) 2067 return false; 2068 return !add_preferred_console(name, index, 2069 kstrdup(of_stdout_options, GFP_KERNEL)); 2070 } 2071 EXPORT_SYMBOL_GPL(of_console_check); 2072 2073 /** 2074 * of_find_next_cache_node - Find a node's subsidiary cache 2075 * @np: node of type "cpu" or "cache" 2076 * 2077 * Returns a node pointer with refcount incremented, use 2078 * of_node_put() on it when done. Caller should hold a reference 2079 * to np. 2080 */ 2081 struct device_node *of_find_next_cache_node(const struct device_node *np) 2082 { 2083 struct device_node *child; 2084 const phandle *handle; 2085 2086 handle = of_get_property(np, "l2-cache", NULL); 2087 if (!handle) 2088 handle = of_get_property(np, "next-level-cache", NULL); 2089 2090 if (handle) 2091 return of_find_node_by_phandle(be32_to_cpup(handle)); 2092 2093 /* OF on pmac has nodes instead of properties named "l2-cache" 2094 * beneath CPU nodes. 2095 */ 2096 if (!strcmp(np->type, "cpu")) 2097 for_each_child_of_node(np, child) 2098 if (!strcmp(child->type, "cache")) 2099 return child; 2100 2101 return NULL; 2102 } 2103 2104 /** 2105 * of_graph_parse_endpoint() - parse common endpoint node properties 2106 * @node: pointer to endpoint device_node 2107 * @endpoint: pointer to the OF endpoint data structure 2108 * 2109 * The caller should hold a reference to @node. 2110 */ 2111 int of_graph_parse_endpoint(const struct device_node *node, 2112 struct of_endpoint *endpoint) 2113 { 2114 struct device_node *port_node = of_get_parent(node); 2115 2116 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2117 __func__, node->full_name); 2118 2119 memset(endpoint, 0, sizeof(*endpoint)); 2120 2121 endpoint->local_node = node; 2122 /* 2123 * It doesn't matter whether the two calls below succeed. 2124 * If they don't then the default value 0 is used. 2125 */ 2126 of_property_read_u32(port_node, "reg", &endpoint->port); 2127 of_property_read_u32(node, "reg", &endpoint->id); 2128 2129 of_node_put(port_node); 2130 2131 return 0; 2132 } 2133 EXPORT_SYMBOL(of_graph_parse_endpoint); 2134 2135 /** 2136 * of_graph_get_port_by_id() - get the port matching a given id 2137 * @parent: pointer to the parent device node 2138 * @id: id of the port 2139 * 2140 * Return: A 'port' node pointer with refcount incremented. The caller 2141 * has to use of_node_put() on it when done. 2142 */ 2143 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2144 { 2145 struct device_node *node, *port; 2146 2147 node = of_get_child_by_name(parent, "ports"); 2148 if (node) 2149 parent = node; 2150 2151 for_each_child_of_node(parent, port) { 2152 u32 port_id = 0; 2153 2154 if (of_node_cmp(port->name, "port") != 0) 2155 continue; 2156 of_property_read_u32(port, "reg", &port_id); 2157 if (id == port_id) 2158 break; 2159 } 2160 2161 of_node_put(node); 2162 2163 return port; 2164 } 2165 EXPORT_SYMBOL(of_graph_get_port_by_id); 2166 2167 /** 2168 * of_graph_get_next_endpoint() - get next endpoint node 2169 * @parent: pointer to the parent device node 2170 * @prev: previous endpoint node, or NULL to get first 2171 * 2172 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2173 * of the passed @prev node is decremented. 2174 */ 2175 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2176 struct device_node *prev) 2177 { 2178 struct device_node *endpoint; 2179 struct device_node *port; 2180 2181 if (!parent) 2182 return NULL; 2183 2184 /* 2185 * Start by locating the port node. If no previous endpoint is specified 2186 * search for the first port node, otherwise get the previous endpoint 2187 * parent port node. 2188 */ 2189 if (!prev) { 2190 struct device_node *node; 2191 2192 node = of_get_child_by_name(parent, "ports"); 2193 if (node) 2194 parent = node; 2195 2196 port = of_get_child_by_name(parent, "port"); 2197 of_node_put(node); 2198 2199 if (!port) { 2200 pr_err("%s(): no port node found in %s\n", 2201 __func__, parent->full_name); 2202 return NULL; 2203 } 2204 } else { 2205 port = of_get_parent(prev); 2206 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2207 __func__, prev->full_name)) 2208 return NULL; 2209 } 2210 2211 while (1) { 2212 /* 2213 * Now that we have a port node, get the next endpoint by 2214 * getting the next child. If the previous endpoint is NULL this 2215 * will return the first child. 2216 */ 2217 endpoint = of_get_next_child(port, prev); 2218 if (endpoint) { 2219 of_node_put(port); 2220 return endpoint; 2221 } 2222 2223 /* No more endpoints under this port, try the next one. */ 2224 prev = NULL; 2225 2226 do { 2227 port = of_get_next_child(parent, port); 2228 if (!port) 2229 return NULL; 2230 } while (of_node_cmp(port->name, "port")); 2231 } 2232 } 2233 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2234 2235 /** 2236 * of_graph_get_remote_port_parent() - get remote port's parent node 2237 * @node: pointer to a local endpoint device_node 2238 * 2239 * Return: Remote device node associated with remote endpoint node linked 2240 * to @node. Use of_node_put() on it when done. 2241 */ 2242 struct device_node *of_graph_get_remote_port_parent( 2243 const struct device_node *node) 2244 { 2245 struct device_node *np; 2246 unsigned int depth; 2247 2248 /* Get remote endpoint node. */ 2249 np = of_parse_phandle(node, "remote-endpoint", 0); 2250 2251 /* Walk 3 levels up only if there is 'ports' node. */ 2252 for (depth = 3; depth && np; depth--) { 2253 np = of_get_next_parent(np); 2254 if (depth == 2 && of_node_cmp(np->name, "ports")) 2255 break; 2256 } 2257 return np; 2258 } 2259 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2260 2261 /** 2262 * of_graph_get_remote_port() - get remote port node 2263 * @node: pointer to a local endpoint device_node 2264 * 2265 * Return: Remote port node associated with remote endpoint node linked 2266 * to @node. Use of_node_put() on it when done. 2267 */ 2268 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2269 { 2270 struct device_node *np; 2271 2272 /* Get remote endpoint node. */ 2273 np = of_parse_phandle(node, "remote-endpoint", 0); 2274 if (!np) 2275 return NULL; 2276 return of_get_next_parent(np); 2277 } 2278 EXPORT_SYMBOL(of_graph_get_remote_port); 2279