1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 EXPORT_SYMBOL(of_chosen); 40 struct device_node *of_aliases; 41 struct device_node *of_stdout; 42 static const char *of_stdout_options; 43 44 struct kset *of_kset; 45 46 /* 47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 48 * This mutex must be held whenever modifications are being made to the 49 * device tree. The of_{attach,detach}_node() and 50 * of_{add,remove,update}_property() helpers make sure this happens. 51 */ 52 DEFINE_MUTEX(of_mutex); 53 54 /* use when traversing tree through the child, sibling, 55 * or parent members of struct device_node. 56 */ 57 DEFINE_RAW_SPINLOCK(devtree_lock); 58 59 bool of_node_name_eq(const struct device_node *np, const char *name) 60 { 61 const char *node_name; 62 size_t len; 63 64 if (!np) 65 return false; 66 67 node_name = kbasename(np->full_name); 68 len = strchrnul(node_name, '@') - node_name; 69 70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 71 } 72 EXPORT_SYMBOL(of_node_name_eq); 73 74 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 75 { 76 if (!np) 77 return false; 78 79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 80 } 81 EXPORT_SYMBOL(of_node_name_prefix); 82 83 static bool __of_node_is_type(const struct device_node *np, const char *type) 84 { 85 const char *match = __of_get_property(np, "device_type", NULL); 86 87 return np && match && type && !strcmp(match, type); 88 } 89 90 int of_bus_n_addr_cells(struct device_node *np) 91 { 92 u32 cells; 93 94 for (; np; np = np->parent) 95 if (!of_property_read_u32(np, "#address-cells", &cells)) 96 return cells; 97 98 /* No #address-cells property for the root node */ 99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 100 } 101 102 int of_n_addr_cells(struct device_node *np) 103 { 104 if (np->parent) 105 np = np->parent; 106 107 return of_bus_n_addr_cells(np); 108 } 109 EXPORT_SYMBOL(of_n_addr_cells); 110 111 int of_bus_n_size_cells(struct device_node *np) 112 { 113 u32 cells; 114 115 for (; np; np = np->parent) 116 if (!of_property_read_u32(np, "#size-cells", &cells)) 117 return cells; 118 119 /* No #size-cells property for the root node */ 120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 121 } 122 123 int of_n_size_cells(struct device_node *np) 124 { 125 if (np->parent) 126 np = np->parent; 127 128 return of_bus_n_size_cells(np); 129 } 130 EXPORT_SYMBOL(of_n_size_cells); 131 132 #ifdef CONFIG_NUMA 133 int __weak of_node_to_nid(struct device_node *np) 134 { 135 return NUMA_NO_NODE; 136 } 137 #endif 138 139 #define OF_PHANDLE_CACHE_BITS 7 140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 141 142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 143 144 static u32 of_phandle_cache_hash(phandle handle) 145 { 146 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 147 } 148 149 /* 150 * Caller must hold devtree_lock. 151 */ 152 void __of_phandle_cache_inv_entry(phandle handle) 153 { 154 u32 handle_hash; 155 struct device_node *np; 156 157 if (!handle) 158 return; 159 160 handle_hash = of_phandle_cache_hash(handle); 161 162 np = phandle_cache[handle_hash]; 163 if (np && handle == np->phandle) 164 phandle_cache[handle_hash] = NULL; 165 } 166 167 void __init of_core_init(void) 168 { 169 struct device_node *np; 170 171 172 /* Create the kset, and register existing nodes */ 173 mutex_lock(&of_mutex); 174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 175 if (!of_kset) { 176 mutex_unlock(&of_mutex); 177 pr_err("failed to register existing nodes\n"); 178 return; 179 } 180 for_each_of_allnodes(np) { 181 __of_attach_node_sysfs(np); 182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 184 } 185 mutex_unlock(&of_mutex); 186 187 /* Symlink in /proc as required by userspace ABI */ 188 if (of_root) 189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 190 } 191 192 static struct property *__of_find_property(const struct device_node *np, 193 const char *name, int *lenp) 194 { 195 struct property *pp; 196 197 if (!np) 198 return NULL; 199 200 for (pp = np->properties; pp; pp = pp->next) { 201 if (of_prop_cmp(pp->name, name) == 0) { 202 if (lenp) 203 *lenp = pp->length; 204 break; 205 } 206 } 207 208 return pp; 209 } 210 211 struct property *of_find_property(const struct device_node *np, 212 const char *name, 213 int *lenp) 214 { 215 struct property *pp; 216 unsigned long flags; 217 218 raw_spin_lock_irqsave(&devtree_lock, flags); 219 pp = __of_find_property(np, name, lenp); 220 raw_spin_unlock_irqrestore(&devtree_lock, flags); 221 222 return pp; 223 } 224 EXPORT_SYMBOL(of_find_property); 225 226 struct device_node *__of_find_all_nodes(struct device_node *prev) 227 { 228 struct device_node *np; 229 if (!prev) { 230 np = of_root; 231 } else if (prev->child) { 232 np = prev->child; 233 } else { 234 /* Walk back up looking for a sibling, or the end of the structure */ 235 np = prev; 236 while (np->parent && !np->sibling) 237 np = np->parent; 238 np = np->sibling; /* Might be null at the end of the tree */ 239 } 240 return np; 241 } 242 243 /** 244 * of_find_all_nodes - Get next node in global list 245 * @prev: Previous node or NULL to start iteration 246 * of_node_put() will be called on it 247 * 248 * Return: A node pointer with refcount incremented, use 249 * of_node_put() on it when done. 250 */ 251 struct device_node *of_find_all_nodes(struct device_node *prev) 252 { 253 struct device_node *np; 254 unsigned long flags; 255 256 raw_spin_lock_irqsave(&devtree_lock, flags); 257 np = __of_find_all_nodes(prev); 258 of_node_get(np); 259 of_node_put(prev); 260 raw_spin_unlock_irqrestore(&devtree_lock, flags); 261 return np; 262 } 263 EXPORT_SYMBOL(of_find_all_nodes); 264 265 /* 266 * Find a property with a given name for a given node 267 * and return the value. 268 */ 269 const void *__of_get_property(const struct device_node *np, 270 const char *name, int *lenp) 271 { 272 struct property *pp = __of_find_property(np, name, lenp); 273 274 return pp ? pp->value : NULL; 275 } 276 277 /* 278 * Find a property with a given name for a given node 279 * and return the value. 280 */ 281 const void *of_get_property(const struct device_node *np, const char *name, 282 int *lenp) 283 { 284 struct property *pp = of_find_property(np, name, lenp); 285 286 return pp ? pp->value : NULL; 287 } 288 EXPORT_SYMBOL(of_get_property); 289 290 /** 291 * of_get_cpu_hwid - Get the hardware ID from a CPU device node 292 * 293 * @cpun: CPU number(logical index) for which device node is required 294 * @thread: The local thread number to get the hardware ID for. 295 * 296 * Return: The hardware ID for the CPU node or ~0ULL if not found. 297 */ 298 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread) 299 { 300 const __be32 *cell; 301 int ac, len; 302 303 ac = of_n_addr_cells(cpun); 304 cell = of_get_property(cpun, "reg", &len); 305 if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len)) 306 return ~0ULL; 307 308 cell += ac * thread; 309 return of_read_number(cell, ac); 310 } 311 312 /* 313 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 314 * 315 * @cpu: logical cpu index of a core/thread 316 * @phys_id: physical identifier of a core/thread 317 * 318 * CPU logical to physical index mapping is architecture specific. 319 * However this __weak function provides a default match of physical 320 * id to logical cpu index. phys_id provided here is usually values read 321 * from the device tree which must match the hardware internal registers. 322 * 323 * Returns true if the physical identifier and the logical cpu index 324 * correspond to the same core/thread, false otherwise. 325 */ 326 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 327 { 328 return (u32)phys_id == cpu; 329 } 330 331 /* 332 * Checks if the given "prop_name" property holds the physical id of the 333 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 334 * NULL, local thread number within the core is returned in it. 335 */ 336 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 337 const char *prop_name, int cpu, unsigned int *thread) 338 { 339 const __be32 *cell; 340 int ac, prop_len, tid; 341 u64 hwid; 342 343 ac = of_n_addr_cells(cpun); 344 cell = of_get_property(cpun, prop_name, &prop_len); 345 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 346 return true; 347 if (!cell || !ac) 348 return false; 349 prop_len /= sizeof(*cell) * ac; 350 for (tid = 0; tid < prop_len; tid++) { 351 hwid = of_read_number(cell, ac); 352 if (arch_match_cpu_phys_id(cpu, hwid)) { 353 if (thread) 354 *thread = tid; 355 return true; 356 } 357 cell += ac; 358 } 359 return false; 360 } 361 362 /* 363 * arch_find_n_match_cpu_physical_id - See if the given device node is 364 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 365 * else false. If 'thread' is non-NULL, the local thread number within the 366 * core is returned in it. 367 */ 368 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 369 int cpu, unsigned int *thread) 370 { 371 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 372 * for thread ids on PowerPC. If it doesn't exist fallback to 373 * standard "reg" property. 374 */ 375 if (IS_ENABLED(CONFIG_PPC) && 376 __of_find_n_match_cpu_property(cpun, 377 "ibm,ppc-interrupt-server#s", 378 cpu, thread)) 379 return true; 380 381 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 382 } 383 384 /** 385 * of_get_cpu_node - Get device node associated with the given logical CPU 386 * 387 * @cpu: CPU number(logical index) for which device node is required 388 * @thread: if not NULL, local thread number within the physical core is 389 * returned 390 * 391 * The main purpose of this function is to retrieve the device node for the 392 * given logical CPU index. It should be used to initialize the of_node in 393 * cpu device. Once of_node in cpu device is populated, all the further 394 * references can use that instead. 395 * 396 * CPU logical to physical index mapping is architecture specific and is built 397 * before booting secondary cores. This function uses arch_match_cpu_phys_id 398 * which can be overridden by architecture specific implementation. 399 * 400 * Return: A node pointer for the logical cpu with refcount incremented, use 401 * of_node_put() on it when done. Returns NULL if not found. 402 */ 403 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 404 { 405 struct device_node *cpun; 406 407 for_each_of_cpu_node(cpun) { 408 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 409 return cpun; 410 } 411 return NULL; 412 } 413 EXPORT_SYMBOL(of_get_cpu_node); 414 415 /** 416 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 417 * 418 * @cpu_node: Pointer to the device_node for CPU. 419 * 420 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the 421 * CPU is not found. 422 */ 423 int of_cpu_node_to_id(struct device_node *cpu_node) 424 { 425 int cpu; 426 bool found = false; 427 struct device_node *np; 428 429 for_each_possible_cpu(cpu) { 430 np = of_cpu_device_node_get(cpu); 431 found = (cpu_node == np); 432 of_node_put(np); 433 if (found) 434 return cpu; 435 } 436 437 return -ENODEV; 438 } 439 EXPORT_SYMBOL(of_cpu_node_to_id); 440 441 /** 442 * of_get_cpu_state_node - Get CPU's idle state node at the given index 443 * 444 * @cpu_node: The device node for the CPU 445 * @index: The index in the list of the idle states 446 * 447 * Two generic methods can be used to describe a CPU's idle states, either via 448 * a flattened description through the "cpu-idle-states" binding or via the 449 * hierarchical layout, using the "power-domains" and the "domain-idle-states" 450 * bindings. This function check for both and returns the idle state node for 451 * the requested index. 452 * 453 * Return: An idle state node if found at @index. The refcount is incremented 454 * for it, so call of_node_put() on it when done. Returns NULL if not found. 455 */ 456 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, 457 int index) 458 { 459 struct of_phandle_args args; 460 int err; 461 462 err = of_parse_phandle_with_args(cpu_node, "power-domains", 463 "#power-domain-cells", 0, &args); 464 if (!err) { 465 struct device_node *state_node = 466 of_parse_phandle(args.np, "domain-idle-states", index); 467 468 of_node_put(args.np); 469 if (state_node) 470 return state_node; 471 } 472 473 return of_parse_phandle(cpu_node, "cpu-idle-states", index); 474 } 475 EXPORT_SYMBOL(of_get_cpu_state_node); 476 477 /** 478 * __of_device_is_compatible() - Check if the node matches given constraints 479 * @device: pointer to node 480 * @compat: required compatible string, NULL or "" for any match 481 * @type: required device_type value, NULL or "" for any match 482 * @name: required node name, NULL or "" for any match 483 * 484 * Checks if the given @compat, @type and @name strings match the 485 * properties of the given @device. A constraints can be skipped by 486 * passing NULL or an empty string as the constraint. 487 * 488 * Returns 0 for no match, and a positive integer on match. The return 489 * value is a relative score with larger values indicating better 490 * matches. The score is weighted for the most specific compatible value 491 * to get the highest score. Matching type is next, followed by matching 492 * name. Practically speaking, this results in the following priority 493 * order for matches: 494 * 495 * 1. specific compatible && type && name 496 * 2. specific compatible && type 497 * 3. specific compatible && name 498 * 4. specific compatible 499 * 5. general compatible && type && name 500 * 6. general compatible && type 501 * 7. general compatible && name 502 * 8. general compatible 503 * 9. type && name 504 * 10. type 505 * 11. name 506 */ 507 static int __of_device_is_compatible(const struct device_node *device, 508 const char *compat, const char *type, const char *name) 509 { 510 struct property *prop; 511 const char *cp; 512 int index = 0, score = 0; 513 514 /* Compatible match has highest priority */ 515 if (compat && compat[0]) { 516 prop = __of_find_property(device, "compatible", NULL); 517 for (cp = of_prop_next_string(prop, NULL); cp; 518 cp = of_prop_next_string(prop, cp), index++) { 519 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 520 score = INT_MAX/2 - (index << 2); 521 break; 522 } 523 } 524 if (!score) 525 return 0; 526 } 527 528 /* Matching type is better than matching name */ 529 if (type && type[0]) { 530 if (!__of_node_is_type(device, type)) 531 return 0; 532 score += 2; 533 } 534 535 /* Matching name is a bit better than not */ 536 if (name && name[0]) { 537 if (!of_node_name_eq(device, name)) 538 return 0; 539 score++; 540 } 541 542 return score; 543 } 544 545 /** Checks if the given "compat" string matches one of the strings in 546 * the device's "compatible" property 547 */ 548 int of_device_is_compatible(const struct device_node *device, 549 const char *compat) 550 { 551 unsigned long flags; 552 int res; 553 554 raw_spin_lock_irqsave(&devtree_lock, flags); 555 res = __of_device_is_compatible(device, compat, NULL, NULL); 556 raw_spin_unlock_irqrestore(&devtree_lock, flags); 557 return res; 558 } 559 EXPORT_SYMBOL(of_device_is_compatible); 560 561 /** Checks if the device is compatible with any of the entries in 562 * a NULL terminated array of strings. Returns the best match 563 * score or 0. 564 */ 565 int of_device_compatible_match(struct device_node *device, 566 const char *const *compat) 567 { 568 unsigned int tmp, score = 0; 569 570 if (!compat) 571 return 0; 572 573 while (*compat) { 574 tmp = of_device_is_compatible(device, *compat); 575 if (tmp > score) 576 score = tmp; 577 compat++; 578 } 579 580 return score; 581 } 582 583 /** 584 * of_machine_is_compatible - Test root of device tree for a given compatible value 585 * @compat: compatible string to look for in root node's compatible property. 586 * 587 * Return: A positive integer if the root node has the given value in its 588 * compatible property. 589 */ 590 int of_machine_is_compatible(const char *compat) 591 { 592 struct device_node *root; 593 int rc = 0; 594 595 root = of_find_node_by_path("/"); 596 if (root) { 597 rc = of_device_is_compatible(root, compat); 598 of_node_put(root); 599 } 600 return rc; 601 } 602 EXPORT_SYMBOL(of_machine_is_compatible); 603 604 /** 605 * __of_device_is_available - check if a device is available for use 606 * 607 * @device: Node to check for availability, with locks already held 608 * 609 * Return: True if the status property is absent or set to "okay" or "ok", 610 * false otherwise 611 */ 612 static bool __of_device_is_available(const struct device_node *device) 613 { 614 const char *status; 615 int statlen; 616 617 if (!device) 618 return false; 619 620 status = __of_get_property(device, "status", &statlen); 621 if (status == NULL) 622 return true; 623 624 if (statlen > 0) { 625 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 626 return true; 627 } 628 629 return false; 630 } 631 632 /** 633 * of_device_is_available - check if a device is available for use 634 * 635 * @device: Node to check for availability 636 * 637 * Return: True if the status property is absent or set to "okay" or "ok", 638 * false otherwise 639 */ 640 bool of_device_is_available(const struct device_node *device) 641 { 642 unsigned long flags; 643 bool res; 644 645 raw_spin_lock_irqsave(&devtree_lock, flags); 646 res = __of_device_is_available(device); 647 raw_spin_unlock_irqrestore(&devtree_lock, flags); 648 return res; 649 650 } 651 EXPORT_SYMBOL(of_device_is_available); 652 653 /** 654 * of_device_is_big_endian - check if a device has BE registers 655 * 656 * @device: Node to check for endianness 657 * 658 * Return: True if the device has a "big-endian" property, or if the kernel 659 * was compiled for BE *and* the device has a "native-endian" property. 660 * Returns false otherwise. 661 * 662 * Callers would nominally use ioread32be/iowrite32be if 663 * of_device_is_big_endian() == true, or readl/writel otherwise. 664 */ 665 bool of_device_is_big_endian(const struct device_node *device) 666 { 667 if (of_property_read_bool(device, "big-endian")) 668 return true; 669 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 670 of_property_read_bool(device, "native-endian")) 671 return true; 672 return false; 673 } 674 EXPORT_SYMBOL(of_device_is_big_endian); 675 676 /** 677 * of_get_parent - Get a node's parent if any 678 * @node: Node to get parent 679 * 680 * Return: A node pointer with refcount incremented, use 681 * of_node_put() on it when done. 682 */ 683 struct device_node *of_get_parent(const struct device_node *node) 684 { 685 struct device_node *np; 686 unsigned long flags; 687 688 if (!node) 689 return NULL; 690 691 raw_spin_lock_irqsave(&devtree_lock, flags); 692 np = of_node_get(node->parent); 693 raw_spin_unlock_irqrestore(&devtree_lock, flags); 694 return np; 695 } 696 EXPORT_SYMBOL(of_get_parent); 697 698 /** 699 * of_get_next_parent - Iterate to a node's parent 700 * @node: Node to get parent of 701 * 702 * This is like of_get_parent() except that it drops the 703 * refcount on the passed node, making it suitable for iterating 704 * through a node's parents. 705 * 706 * Return: A node pointer with refcount incremented, use 707 * of_node_put() on it when done. 708 */ 709 struct device_node *of_get_next_parent(struct device_node *node) 710 { 711 struct device_node *parent; 712 unsigned long flags; 713 714 if (!node) 715 return NULL; 716 717 raw_spin_lock_irqsave(&devtree_lock, flags); 718 parent = of_node_get(node->parent); 719 of_node_put(node); 720 raw_spin_unlock_irqrestore(&devtree_lock, flags); 721 return parent; 722 } 723 EXPORT_SYMBOL(of_get_next_parent); 724 725 static struct device_node *__of_get_next_child(const struct device_node *node, 726 struct device_node *prev) 727 { 728 struct device_node *next; 729 730 if (!node) 731 return NULL; 732 733 next = prev ? prev->sibling : node->child; 734 of_node_get(next); 735 of_node_put(prev); 736 return next; 737 } 738 #define __for_each_child_of_node(parent, child) \ 739 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 740 child = __of_get_next_child(parent, child)) 741 742 /** 743 * of_get_next_child - Iterate a node childs 744 * @node: parent node 745 * @prev: previous child of the parent node, or NULL to get first 746 * 747 * Return: A node pointer with refcount incremented, use of_node_put() on 748 * it when done. Returns NULL when prev is the last child. Decrements the 749 * refcount of prev. 750 */ 751 struct device_node *of_get_next_child(const struct device_node *node, 752 struct device_node *prev) 753 { 754 struct device_node *next; 755 unsigned long flags; 756 757 raw_spin_lock_irqsave(&devtree_lock, flags); 758 next = __of_get_next_child(node, prev); 759 raw_spin_unlock_irqrestore(&devtree_lock, flags); 760 return next; 761 } 762 EXPORT_SYMBOL(of_get_next_child); 763 764 /** 765 * of_get_next_available_child - Find the next available child node 766 * @node: parent node 767 * @prev: previous child of the parent node, or NULL to get first 768 * 769 * This function is like of_get_next_child(), except that it 770 * automatically skips any disabled nodes (i.e. status = "disabled"). 771 */ 772 struct device_node *of_get_next_available_child(const struct device_node *node, 773 struct device_node *prev) 774 { 775 struct device_node *next; 776 unsigned long flags; 777 778 if (!node) 779 return NULL; 780 781 raw_spin_lock_irqsave(&devtree_lock, flags); 782 next = prev ? prev->sibling : node->child; 783 for (; next; next = next->sibling) { 784 if (!__of_device_is_available(next)) 785 continue; 786 if (of_node_get(next)) 787 break; 788 } 789 of_node_put(prev); 790 raw_spin_unlock_irqrestore(&devtree_lock, flags); 791 return next; 792 } 793 EXPORT_SYMBOL(of_get_next_available_child); 794 795 /** 796 * of_get_next_cpu_node - Iterate on cpu nodes 797 * @prev: previous child of the /cpus node, or NULL to get first 798 * 799 * Return: A cpu node pointer with refcount incremented, use of_node_put() 800 * on it when done. Returns NULL when prev is the last child. Decrements 801 * the refcount of prev. 802 */ 803 struct device_node *of_get_next_cpu_node(struct device_node *prev) 804 { 805 struct device_node *next = NULL; 806 unsigned long flags; 807 struct device_node *node; 808 809 if (!prev) 810 node = of_find_node_by_path("/cpus"); 811 812 raw_spin_lock_irqsave(&devtree_lock, flags); 813 if (prev) 814 next = prev->sibling; 815 else if (node) { 816 next = node->child; 817 of_node_put(node); 818 } 819 for (; next; next = next->sibling) { 820 if (!(of_node_name_eq(next, "cpu") || 821 __of_node_is_type(next, "cpu"))) 822 continue; 823 if (of_node_get(next)) 824 break; 825 } 826 of_node_put(prev); 827 raw_spin_unlock_irqrestore(&devtree_lock, flags); 828 return next; 829 } 830 EXPORT_SYMBOL(of_get_next_cpu_node); 831 832 /** 833 * of_get_compatible_child - Find compatible child node 834 * @parent: parent node 835 * @compatible: compatible string 836 * 837 * Lookup child node whose compatible property contains the given compatible 838 * string. 839 * 840 * Return: a node pointer with refcount incremented, use of_node_put() on it 841 * when done; or NULL if not found. 842 */ 843 struct device_node *of_get_compatible_child(const struct device_node *parent, 844 const char *compatible) 845 { 846 struct device_node *child; 847 848 for_each_child_of_node(parent, child) { 849 if (of_device_is_compatible(child, compatible)) 850 break; 851 } 852 853 return child; 854 } 855 EXPORT_SYMBOL(of_get_compatible_child); 856 857 /** 858 * of_get_child_by_name - Find the child node by name for a given parent 859 * @node: parent node 860 * @name: child name to look for. 861 * 862 * This function looks for child node for given matching name 863 * 864 * Return: A node pointer if found, with refcount incremented, use 865 * of_node_put() on it when done. 866 * Returns NULL if node is not found. 867 */ 868 struct device_node *of_get_child_by_name(const struct device_node *node, 869 const char *name) 870 { 871 struct device_node *child; 872 873 for_each_child_of_node(node, child) 874 if (of_node_name_eq(child, name)) 875 break; 876 return child; 877 } 878 EXPORT_SYMBOL(of_get_child_by_name); 879 880 struct device_node *__of_find_node_by_path(struct device_node *parent, 881 const char *path) 882 { 883 struct device_node *child; 884 int len; 885 886 len = strcspn(path, "/:"); 887 if (!len) 888 return NULL; 889 890 __for_each_child_of_node(parent, child) { 891 const char *name = kbasename(child->full_name); 892 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 893 return child; 894 } 895 return NULL; 896 } 897 898 struct device_node *__of_find_node_by_full_path(struct device_node *node, 899 const char *path) 900 { 901 const char *separator = strchr(path, ':'); 902 903 while (node && *path == '/') { 904 struct device_node *tmp = node; 905 906 path++; /* Increment past '/' delimiter */ 907 node = __of_find_node_by_path(node, path); 908 of_node_put(tmp); 909 path = strchrnul(path, '/'); 910 if (separator && separator < path) 911 break; 912 } 913 return node; 914 } 915 916 /** 917 * of_find_node_opts_by_path - Find a node matching a full OF path 918 * @path: Either the full path to match, or if the path does not 919 * start with '/', the name of a property of the /aliases 920 * node (an alias). In the case of an alias, the node 921 * matching the alias' value will be returned. 922 * @opts: Address of a pointer into which to store the start of 923 * an options string appended to the end of the path with 924 * a ':' separator. 925 * 926 * Valid paths: 927 * * /foo/bar Full path 928 * * foo Valid alias 929 * * foo/bar Valid alias + relative path 930 * 931 * Return: A node pointer with refcount incremented, use 932 * of_node_put() on it when done. 933 */ 934 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 935 { 936 struct device_node *np = NULL; 937 struct property *pp; 938 unsigned long flags; 939 const char *separator = strchr(path, ':'); 940 941 if (opts) 942 *opts = separator ? separator + 1 : NULL; 943 944 if (strcmp(path, "/") == 0) 945 return of_node_get(of_root); 946 947 /* The path could begin with an alias */ 948 if (*path != '/') { 949 int len; 950 const char *p = separator; 951 952 if (!p) 953 p = strchrnul(path, '/'); 954 len = p - path; 955 956 /* of_aliases must not be NULL */ 957 if (!of_aliases) 958 return NULL; 959 960 for_each_property_of_node(of_aliases, pp) { 961 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 962 np = of_find_node_by_path(pp->value); 963 break; 964 } 965 } 966 if (!np) 967 return NULL; 968 path = p; 969 } 970 971 /* Step down the tree matching path components */ 972 raw_spin_lock_irqsave(&devtree_lock, flags); 973 if (!np) 974 np = of_node_get(of_root); 975 np = __of_find_node_by_full_path(np, path); 976 raw_spin_unlock_irqrestore(&devtree_lock, flags); 977 return np; 978 } 979 EXPORT_SYMBOL(of_find_node_opts_by_path); 980 981 /** 982 * of_find_node_by_name - Find a node by its "name" property 983 * @from: The node to start searching from or NULL; the node 984 * you pass will not be searched, only the next one 985 * will. Typically, you pass what the previous call 986 * returned. of_node_put() will be called on @from. 987 * @name: The name string to match against 988 * 989 * Return: A node pointer with refcount incremented, use 990 * of_node_put() on it when done. 991 */ 992 struct device_node *of_find_node_by_name(struct device_node *from, 993 const char *name) 994 { 995 struct device_node *np; 996 unsigned long flags; 997 998 raw_spin_lock_irqsave(&devtree_lock, flags); 999 for_each_of_allnodes_from(from, np) 1000 if (of_node_name_eq(np, name) && of_node_get(np)) 1001 break; 1002 of_node_put(from); 1003 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1004 return np; 1005 } 1006 EXPORT_SYMBOL(of_find_node_by_name); 1007 1008 /** 1009 * of_find_node_by_type - Find a node by its "device_type" property 1010 * @from: The node to start searching from, or NULL to start searching 1011 * the entire device tree. The node you pass will not be 1012 * searched, only the next one will; typically, you pass 1013 * what the previous call returned. of_node_put() will be 1014 * called on from for you. 1015 * @type: The type string to match against 1016 * 1017 * Return: A node pointer with refcount incremented, use 1018 * of_node_put() on it when done. 1019 */ 1020 struct device_node *of_find_node_by_type(struct device_node *from, 1021 const char *type) 1022 { 1023 struct device_node *np; 1024 unsigned long flags; 1025 1026 raw_spin_lock_irqsave(&devtree_lock, flags); 1027 for_each_of_allnodes_from(from, np) 1028 if (__of_node_is_type(np, type) && of_node_get(np)) 1029 break; 1030 of_node_put(from); 1031 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1032 return np; 1033 } 1034 EXPORT_SYMBOL(of_find_node_by_type); 1035 1036 /** 1037 * of_find_compatible_node - Find a node based on type and one of the 1038 * tokens in its "compatible" property 1039 * @from: The node to start searching from or NULL, the node 1040 * you pass will not be searched, only the next one 1041 * will; typically, you pass what the previous call 1042 * returned. of_node_put() will be called on it 1043 * @type: The type string to match "device_type" or NULL to ignore 1044 * @compatible: The string to match to one of the tokens in the device 1045 * "compatible" list. 1046 * 1047 * Return: A node pointer with refcount incremented, use 1048 * of_node_put() on it when done. 1049 */ 1050 struct device_node *of_find_compatible_node(struct device_node *from, 1051 const char *type, const char *compatible) 1052 { 1053 struct device_node *np; 1054 unsigned long flags; 1055 1056 raw_spin_lock_irqsave(&devtree_lock, flags); 1057 for_each_of_allnodes_from(from, np) 1058 if (__of_device_is_compatible(np, compatible, type, NULL) && 1059 of_node_get(np)) 1060 break; 1061 of_node_put(from); 1062 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1063 return np; 1064 } 1065 EXPORT_SYMBOL(of_find_compatible_node); 1066 1067 /** 1068 * of_find_node_with_property - Find a node which has a property with 1069 * the given name. 1070 * @from: The node to start searching from or NULL, the node 1071 * you pass will not be searched, only the next one 1072 * will; typically, you pass what the previous call 1073 * returned. of_node_put() will be called on it 1074 * @prop_name: The name of the property to look for. 1075 * 1076 * Return: A node pointer with refcount incremented, use 1077 * of_node_put() on it when done. 1078 */ 1079 struct device_node *of_find_node_with_property(struct device_node *from, 1080 const char *prop_name) 1081 { 1082 struct device_node *np; 1083 struct property *pp; 1084 unsigned long flags; 1085 1086 raw_spin_lock_irqsave(&devtree_lock, flags); 1087 for_each_of_allnodes_from(from, np) { 1088 for (pp = np->properties; pp; pp = pp->next) { 1089 if (of_prop_cmp(pp->name, prop_name) == 0) { 1090 of_node_get(np); 1091 goto out; 1092 } 1093 } 1094 } 1095 out: 1096 of_node_put(from); 1097 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1098 return np; 1099 } 1100 EXPORT_SYMBOL(of_find_node_with_property); 1101 1102 static 1103 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1104 const struct device_node *node) 1105 { 1106 const struct of_device_id *best_match = NULL; 1107 int score, best_score = 0; 1108 1109 if (!matches) 1110 return NULL; 1111 1112 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1113 score = __of_device_is_compatible(node, matches->compatible, 1114 matches->type, matches->name); 1115 if (score > best_score) { 1116 best_match = matches; 1117 best_score = score; 1118 } 1119 } 1120 1121 return best_match; 1122 } 1123 1124 /** 1125 * of_match_node - Tell if a device_node has a matching of_match structure 1126 * @matches: array of of device match structures to search in 1127 * @node: the of device structure to match against 1128 * 1129 * Low level utility function used by device matching. 1130 */ 1131 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1132 const struct device_node *node) 1133 { 1134 const struct of_device_id *match; 1135 unsigned long flags; 1136 1137 raw_spin_lock_irqsave(&devtree_lock, flags); 1138 match = __of_match_node(matches, node); 1139 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1140 return match; 1141 } 1142 EXPORT_SYMBOL(of_match_node); 1143 1144 /** 1145 * of_find_matching_node_and_match - Find a node based on an of_device_id 1146 * match table. 1147 * @from: The node to start searching from or NULL, the node 1148 * you pass will not be searched, only the next one 1149 * will; typically, you pass what the previous call 1150 * returned. of_node_put() will be called on it 1151 * @matches: array of of device match structures to search in 1152 * @match: Updated to point at the matches entry which matched 1153 * 1154 * Return: A node pointer with refcount incremented, use 1155 * of_node_put() on it when done. 1156 */ 1157 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1158 const struct of_device_id *matches, 1159 const struct of_device_id **match) 1160 { 1161 struct device_node *np; 1162 const struct of_device_id *m; 1163 unsigned long flags; 1164 1165 if (match) 1166 *match = NULL; 1167 1168 raw_spin_lock_irqsave(&devtree_lock, flags); 1169 for_each_of_allnodes_from(from, np) { 1170 m = __of_match_node(matches, np); 1171 if (m && of_node_get(np)) { 1172 if (match) 1173 *match = m; 1174 break; 1175 } 1176 } 1177 of_node_put(from); 1178 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1179 return np; 1180 } 1181 EXPORT_SYMBOL(of_find_matching_node_and_match); 1182 1183 /** 1184 * of_modalias_node - Lookup appropriate modalias for a device node 1185 * @node: pointer to a device tree node 1186 * @modalias: Pointer to buffer that modalias value will be copied into 1187 * @len: Length of modalias value 1188 * 1189 * Based on the value of the compatible property, this routine will attempt 1190 * to choose an appropriate modalias value for a particular device tree node. 1191 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1192 * from the first entry in the compatible list property. 1193 * 1194 * Return: This routine returns 0 on success, <0 on failure. 1195 */ 1196 int of_modalias_node(struct device_node *node, char *modalias, int len) 1197 { 1198 const char *compatible, *p; 1199 int cplen; 1200 1201 compatible = of_get_property(node, "compatible", &cplen); 1202 if (!compatible || strlen(compatible) > cplen) 1203 return -ENODEV; 1204 p = strchr(compatible, ','); 1205 strlcpy(modalias, p ? p + 1 : compatible, len); 1206 return 0; 1207 } 1208 EXPORT_SYMBOL_GPL(of_modalias_node); 1209 1210 /** 1211 * of_find_node_by_phandle - Find a node given a phandle 1212 * @handle: phandle of the node to find 1213 * 1214 * Return: A node pointer with refcount incremented, use 1215 * of_node_put() on it when done. 1216 */ 1217 struct device_node *of_find_node_by_phandle(phandle handle) 1218 { 1219 struct device_node *np = NULL; 1220 unsigned long flags; 1221 u32 handle_hash; 1222 1223 if (!handle) 1224 return NULL; 1225 1226 handle_hash = of_phandle_cache_hash(handle); 1227 1228 raw_spin_lock_irqsave(&devtree_lock, flags); 1229 1230 if (phandle_cache[handle_hash] && 1231 handle == phandle_cache[handle_hash]->phandle) 1232 np = phandle_cache[handle_hash]; 1233 1234 if (!np) { 1235 for_each_of_allnodes(np) 1236 if (np->phandle == handle && 1237 !of_node_check_flag(np, OF_DETACHED)) { 1238 phandle_cache[handle_hash] = np; 1239 break; 1240 } 1241 } 1242 1243 of_node_get(np); 1244 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1245 return np; 1246 } 1247 EXPORT_SYMBOL(of_find_node_by_phandle); 1248 1249 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1250 { 1251 int i; 1252 printk("%s %pOF", msg, args->np); 1253 for (i = 0; i < args->args_count; i++) { 1254 const char delim = i ? ',' : ':'; 1255 1256 pr_cont("%c%08x", delim, args->args[i]); 1257 } 1258 pr_cont("\n"); 1259 } 1260 1261 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1262 const struct device_node *np, 1263 const char *list_name, 1264 const char *cells_name, 1265 int cell_count) 1266 { 1267 const __be32 *list; 1268 int size; 1269 1270 memset(it, 0, sizeof(*it)); 1271 1272 /* 1273 * one of cell_count or cells_name must be provided to determine the 1274 * argument length. 1275 */ 1276 if (cell_count < 0 && !cells_name) 1277 return -EINVAL; 1278 1279 list = of_get_property(np, list_name, &size); 1280 if (!list) 1281 return -ENOENT; 1282 1283 it->cells_name = cells_name; 1284 it->cell_count = cell_count; 1285 it->parent = np; 1286 it->list_end = list + size / sizeof(*list); 1287 it->phandle_end = list; 1288 it->cur = list; 1289 1290 return 0; 1291 } 1292 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1293 1294 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1295 { 1296 uint32_t count = 0; 1297 1298 if (it->node) { 1299 of_node_put(it->node); 1300 it->node = NULL; 1301 } 1302 1303 if (!it->cur || it->phandle_end >= it->list_end) 1304 return -ENOENT; 1305 1306 it->cur = it->phandle_end; 1307 1308 /* If phandle is 0, then it is an empty entry with no arguments. */ 1309 it->phandle = be32_to_cpup(it->cur++); 1310 1311 if (it->phandle) { 1312 1313 /* 1314 * Find the provider node and parse the #*-cells property to 1315 * determine the argument length. 1316 */ 1317 it->node = of_find_node_by_phandle(it->phandle); 1318 1319 if (it->cells_name) { 1320 if (!it->node) { 1321 pr_err("%pOF: could not find phandle %d\n", 1322 it->parent, it->phandle); 1323 goto err; 1324 } 1325 1326 if (of_property_read_u32(it->node, it->cells_name, 1327 &count)) { 1328 /* 1329 * If both cell_count and cells_name is given, 1330 * fall back to cell_count in absence 1331 * of the cells_name property 1332 */ 1333 if (it->cell_count >= 0) { 1334 count = it->cell_count; 1335 } else { 1336 pr_err("%pOF: could not get %s for %pOF\n", 1337 it->parent, 1338 it->cells_name, 1339 it->node); 1340 goto err; 1341 } 1342 } 1343 } else { 1344 count = it->cell_count; 1345 } 1346 1347 /* 1348 * Make sure that the arguments actually fit in the remaining 1349 * property data length 1350 */ 1351 if (it->cur + count > it->list_end) { 1352 pr_err("%pOF: %s = %d found %d\n", 1353 it->parent, it->cells_name, 1354 count, it->cell_count); 1355 goto err; 1356 } 1357 } 1358 1359 it->phandle_end = it->cur + count; 1360 it->cur_count = count; 1361 1362 return 0; 1363 1364 err: 1365 if (it->node) { 1366 of_node_put(it->node); 1367 it->node = NULL; 1368 } 1369 1370 return -EINVAL; 1371 } 1372 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1373 1374 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1375 uint32_t *args, 1376 int size) 1377 { 1378 int i, count; 1379 1380 count = it->cur_count; 1381 1382 if (WARN_ON(size < count)) 1383 count = size; 1384 1385 for (i = 0; i < count; i++) 1386 args[i] = be32_to_cpup(it->cur++); 1387 1388 return count; 1389 } 1390 1391 static int __of_parse_phandle_with_args(const struct device_node *np, 1392 const char *list_name, 1393 const char *cells_name, 1394 int cell_count, int index, 1395 struct of_phandle_args *out_args) 1396 { 1397 struct of_phandle_iterator it; 1398 int rc, cur_index = 0; 1399 1400 /* Loop over the phandles until all the requested entry is found */ 1401 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1402 /* 1403 * All of the error cases bail out of the loop, so at 1404 * this point, the parsing is successful. If the requested 1405 * index matches, then fill the out_args structure and return, 1406 * or return -ENOENT for an empty entry. 1407 */ 1408 rc = -ENOENT; 1409 if (cur_index == index) { 1410 if (!it.phandle) 1411 goto err; 1412 1413 if (out_args) { 1414 int c; 1415 1416 c = of_phandle_iterator_args(&it, 1417 out_args->args, 1418 MAX_PHANDLE_ARGS); 1419 out_args->np = it.node; 1420 out_args->args_count = c; 1421 } else { 1422 of_node_put(it.node); 1423 } 1424 1425 /* Found it! return success */ 1426 return 0; 1427 } 1428 1429 cur_index++; 1430 } 1431 1432 /* 1433 * Unlock node before returning result; will be one of: 1434 * -ENOENT : index is for empty phandle 1435 * -EINVAL : parsing error on data 1436 */ 1437 1438 err: 1439 of_node_put(it.node); 1440 return rc; 1441 } 1442 1443 /** 1444 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1445 * @np: Pointer to device node holding phandle property 1446 * @phandle_name: Name of property holding a phandle value 1447 * @index: For properties holding a table of phandles, this is the index into 1448 * the table 1449 * 1450 * Return: The device_node pointer with refcount incremented. Use 1451 * of_node_put() on it when done. 1452 */ 1453 struct device_node *of_parse_phandle(const struct device_node *np, 1454 const char *phandle_name, int index) 1455 { 1456 struct of_phandle_args args; 1457 1458 if (index < 0) 1459 return NULL; 1460 1461 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1462 index, &args)) 1463 return NULL; 1464 1465 return args.np; 1466 } 1467 EXPORT_SYMBOL(of_parse_phandle); 1468 1469 /** 1470 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1471 * @np: pointer to a device tree node containing a list 1472 * @list_name: property name that contains a list 1473 * @cells_name: property name that specifies phandles' arguments count 1474 * @index: index of a phandle to parse out 1475 * @out_args: optional pointer to output arguments structure (will be filled) 1476 * 1477 * This function is useful to parse lists of phandles and their arguments. 1478 * Returns 0 on success and fills out_args, on error returns appropriate 1479 * errno value. 1480 * 1481 * Caller is responsible to call of_node_put() on the returned out_args->np 1482 * pointer. 1483 * 1484 * Example:: 1485 * 1486 * phandle1: node1 { 1487 * #list-cells = <2>; 1488 * }; 1489 * 1490 * phandle2: node2 { 1491 * #list-cells = <1>; 1492 * }; 1493 * 1494 * node3 { 1495 * list = <&phandle1 1 2 &phandle2 3>; 1496 * }; 1497 * 1498 * To get a device_node of the ``node2`` node you may call this: 1499 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1500 */ 1501 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1502 const char *cells_name, int index, 1503 struct of_phandle_args *out_args) 1504 { 1505 int cell_count = -1; 1506 1507 if (index < 0) 1508 return -EINVAL; 1509 1510 /* If cells_name is NULL we assume a cell count of 0 */ 1511 if (!cells_name) 1512 cell_count = 0; 1513 1514 return __of_parse_phandle_with_args(np, list_name, cells_name, 1515 cell_count, index, out_args); 1516 } 1517 EXPORT_SYMBOL(of_parse_phandle_with_args); 1518 1519 /** 1520 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1521 * @np: pointer to a device tree node containing a list 1522 * @list_name: property name that contains a list 1523 * @stem_name: stem of property names that specify phandles' arguments count 1524 * @index: index of a phandle to parse out 1525 * @out_args: optional pointer to output arguments structure (will be filled) 1526 * 1527 * This function is useful to parse lists of phandles and their arguments. 1528 * Returns 0 on success and fills out_args, on error returns appropriate errno 1529 * value. The difference between this function and of_parse_phandle_with_args() 1530 * is that this API remaps a phandle if the node the phandle points to has 1531 * a <@stem_name>-map property. 1532 * 1533 * Caller is responsible to call of_node_put() on the returned out_args->np 1534 * pointer. 1535 * 1536 * Example:: 1537 * 1538 * phandle1: node1 { 1539 * #list-cells = <2>; 1540 * }; 1541 * 1542 * phandle2: node2 { 1543 * #list-cells = <1>; 1544 * }; 1545 * 1546 * phandle3: node3 { 1547 * #list-cells = <1>; 1548 * list-map = <0 &phandle2 3>, 1549 * <1 &phandle2 2>, 1550 * <2 &phandle1 5 1>; 1551 * list-map-mask = <0x3>; 1552 * }; 1553 * 1554 * node4 { 1555 * list = <&phandle1 1 2 &phandle3 0>; 1556 * }; 1557 * 1558 * To get a device_node of the ``node2`` node you may call this: 1559 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1560 */ 1561 int of_parse_phandle_with_args_map(const struct device_node *np, 1562 const char *list_name, 1563 const char *stem_name, 1564 int index, struct of_phandle_args *out_args) 1565 { 1566 char *cells_name, *map_name = NULL, *mask_name = NULL; 1567 char *pass_name = NULL; 1568 struct device_node *cur, *new = NULL; 1569 const __be32 *map, *mask, *pass; 1570 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1571 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1572 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1573 const __be32 *match_array = initial_match_array; 1574 int i, ret, map_len, match; 1575 u32 list_size, new_size; 1576 1577 if (index < 0) 1578 return -EINVAL; 1579 1580 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1581 if (!cells_name) 1582 return -ENOMEM; 1583 1584 ret = -ENOMEM; 1585 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1586 if (!map_name) 1587 goto free; 1588 1589 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1590 if (!mask_name) 1591 goto free; 1592 1593 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1594 if (!pass_name) 1595 goto free; 1596 1597 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1598 out_args); 1599 if (ret) 1600 goto free; 1601 1602 /* Get the #<list>-cells property */ 1603 cur = out_args->np; 1604 ret = of_property_read_u32(cur, cells_name, &list_size); 1605 if (ret < 0) 1606 goto put; 1607 1608 /* Precalculate the match array - this simplifies match loop */ 1609 for (i = 0; i < list_size; i++) 1610 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1611 1612 ret = -EINVAL; 1613 while (cur) { 1614 /* Get the <list>-map property */ 1615 map = of_get_property(cur, map_name, &map_len); 1616 if (!map) { 1617 ret = 0; 1618 goto free; 1619 } 1620 map_len /= sizeof(u32); 1621 1622 /* Get the <list>-map-mask property (optional) */ 1623 mask = of_get_property(cur, mask_name, NULL); 1624 if (!mask) 1625 mask = dummy_mask; 1626 /* Iterate through <list>-map property */ 1627 match = 0; 1628 while (map_len > (list_size + 1) && !match) { 1629 /* Compare specifiers */ 1630 match = 1; 1631 for (i = 0; i < list_size; i++, map_len--) 1632 match &= !((match_array[i] ^ *map++) & mask[i]); 1633 1634 of_node_put(new); 1635 new = of_find_node_by_phandle(be32_to_cpup(map)); 1636 map++; 1637 map_len--; 1638 1639 /* Check if not found */ 1640 if (!new) 1641 goto put; 1642 1643 if (!of_device_is_available(new)) 1644 match = 0; 1645 1646 ret = of_property_read_u32(new, cells_name, &new_size); 1647 if (ret) 1648 goto put; 1649 1650 /* Check for malformed properties */ 1651 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1652 goto put; 1653 if (map_len < new_size) 1654 goto put; 1655 1656 /* Move forward by new node's #<list>-cells amount */ 1657 map += new_size; 1658 map_len -= new_size; 1659 } 1660 if (!match) 1661 goto put; 1662 1663 /* Get the <list>-map-pass-thru property (optional) */ 1664 pass = of_get_property(cur, pass_name, NULL); 1665 if (!pass) 1666 pass = dummy_pass; 1667 1668 /* 1669 * Successfully parsed a <list>-map translation; copy new 1670 * specifier into the out_args structure, keeping the 1671 * bits specified in <list>-map-pass-thru. 1672 */ 1673 match_array = map - new_size; 1674 for (i = 0; i < new_size; i++) { 1675 __be32 val = *(map - new_size + i); 1676 1677 if (i < list_size) { 1678 val &= ~pass[i]; 1679 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1680 } 1681 1682 out_args->args[i] = be32_to_cpu(val); 1683 } 1684 out_args->args_count = list_size = new_size; 1685 /* Iterate again with new provider */ 1686 out_args->np = new; 1687 of_node_put(cur); 1688 cur = new; 1689 } 1690 put: 1691 of_node_put(cur); 1692 of_node_put(new); 1693 free: 1694 kfree(mask_name); 1695 kfree(map_name); 1696 kfree(cells_name); 1697 kfree(pass_name); 1698 1699 return ret; 1700 } 1701 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1702 1703 /** 1704 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1705 * @np: pointer to a device tree node containing a list 1706 * @list_name: property name that contains a list 1707 * @cell_count: number of argument cells following the phandle 1708 * @index: index of a phandle to parse out 1709 * @out_args: optional pointer to output arguments structure (will be filled) 1710 * 1711 * This function is useful to parse lists of phandles and their arguments. 1712 * Returns 0 on success and fills out_args, on error returns appropriate 1713 * errno value. 1714 * 1715 * Caller is responsible to call of_node_put() on the returned out_args->np 1716 * pointer. 1717 * 1718 * Example:: 1719 * 1720 * phandle1: node1 { 1721 * }; 1722 * 1723 * phandle2: node2 { 1724 * }; 1725 * 1726 * node3 { 1727 * list = <&phandle1 0 2 &phandle2 2 3>; 1728 * }; 1729 * 1730 * To get a device_node of the ``node2`` node you may call this: 1731 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1732 */ 1733 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1734 const char *list_name, int cell_count, 1735 int index, struct of_phandle_args *out_args) 1736 { 1737 if (index < 0) 1738 return -EINVAL; 1739 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1740 index, out_args); 1741 } 1742 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1743 1744 /** 1745 * of_count_phandle_with_args() - Find the number of phandles references in a property 1746 * @np: pointer to a device tree node containing a list 1747 * @list_name: property name that contains a list 1748 * @cells_name: property name that specifies phandles' arguments count 1749 * 1750 * Return: The number of phandle + argument tuples within a property. It 1751 * is a typical pattern to encode a list of phandle and variable 1752 * arguments into a single property. The number of arguments is encoded 1753 * by a property in the phandle-target node. For example, a gpios 1754 * property would contain a list of GPIO specifies consisting of a 1755 * phandle and 1 or more arguments. The number of arguments are 1756 * determined by the #gpio-cells property in the node pointed to by the 1757 * phandle. 1758 */ 1759 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1760 const char *cells_name) 1761 { 1762 struct of_phandle_iterator it; 1763 int rc, cur_index = 0; 1764 1765 /* 1766 * If cells_name is NULL we assume a cell count of 0. This makes 1767 * counting the phandles trivial as each 32bit word in the list is a 1768 * phandle and no arguments are to consider. So we don't iterate through 1769 * the list but just use the length to determine the phandle count. 1770 */ 1771 if (!cells_name) { 1772 const __be32 *list; 1773 int size; 1774 1775 list = of_get_property(np, list_name, &size); 1776 if (!list) 1777 return -ENOENT; 1778 1779 return size / sizeof(*list); 1780 } 1781 1782 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1783 if (rc) 1784 return rc; 1785 1786 while ((rc = of_phandle_iterator_next(&it)) == 0) 1787 cur_index += 1; 1788 1789 if (rc != -ENOENT) 1790 return rc; 1791 1792 return cur_index; 1793 } 1794 EXPORT_SYMBOL(of_count_phandle_with_args); 1795 1796 /** 1797 * __of_add_property - Add a property to a node without lock operations 1798 * @np: Caller's Device Node 1799 * @prop: Property to add 1800 */ 1801 int __of_add_property(struct device_node *np, struct property *prop) 1802 { 1803 struct property **next; 1804 1805 prop->next = NULL; 1806 next = &np->properties; 1807 while (*next) { 1808 if (strcmp(prop->name, (*next)->name) == 0) 1809 /* duplicate ! don't insert it */ 1810 return -EEXIST; 1811 1812 next = &(*next)->next; 1813 } 1814 *next = prop; 1815 1816 return 0; 1817 } 1818 1819 /** 1820 * of_add_property - Add a property to a node 1821 * @np: Caller's Device Node 1822 * @prop: Property to add 1823 */ 1824 int of_add_property(struct device_node *np, struct property *prop) 1825 { 1826 unsigned long flags; 1827 int rc; 1828 1829 mutex_lock(&of_mutex); 1830 1831 raw_spin_lock_irqsave(&devtree_lock, flags); 1832 rc = __of_add_property(np, prop); 1833 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1834 1835 if (!rc) 1836 __of_add_property_sysfs(np, prop); 1837 1838 mutex_unlock(&of_mutex); 1839 1840 if (!rc) 1841 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1842 1843 return rc; 1844 } 1845 EXPORT_SYMBOL_GPL(of_add_property); 1846 1847 int __of_remove_property(struct device_node *np, struct property *prop) 1848 { 1849 struct property **next; 1850 1851 for (next = &np->properties; *next; next = &(*next)->next) { 1852 if (*next == prop) 1853 break; 1854 } 1855 if (*next == NULL) 1856 return -ENODEV; 1857 1858 /* found the node */ 1859 *next = prop->next; 1860 prop->next = np->deadprops; 1861 np->deadprops = prop; 1862 1863 return 0; 1864 } 1865 1866 /** 1867 * of_remove_property - Remove a property from a node. 1868 * @np: Caller's Device Node 1869 * @prop: Property to remove 1870 * 1871 * Note that we don't actually remove it, since we have given out 1872 * who-knows-how-many pointers to the data using get-property. 1873 * Instead we just move the property to the "dead properties" 1874 * list, so it won't be found any more. 1875 */ 1876 int of_remove_property(struct device_node *np, struct property *prop) 1877 { 1878 unsigned long flags; 1879 int rc; 1880 1881 if (!prop) 1882 return -ENODEV; 1883 1884 mutex_lock(&of_mutex); 1885 1886 raw_spin_lock_irqsave(&devtree_lock, flags); 1887 rc = __of_remove_property(np, prop); 1888 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1889 1890 if (!rc) 1891 __of_remove_property_sysfs(np, prop); 1892 1893 mutex_unlock(&of_mutex); 1894 1895 if (!rc) 1896 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1897 1898 return rc; 1899 } 1900 EXPORT_SYMBOL_GPL(of_remove_property); 1901 1902 int __of_update_property(struct device_node *np, struct property *newprop, 1903 struct property **oldpropp) 1904 { 1905 struct property **next, *oldprop; 1906 1907 for (next = &np->properties; *next; next = &(*next)->next) { 1908 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1909 break; 1910 } 1911 *oldpropp = oldprop = *next; 1912 1913 if (oldprop) { 1914 /* replace the node */ 1915 newprop->next = oldprop->next; 1916 *next = newprop; 1917 oldprop->next = np->deadprops; 1918 np->deadprops = oldprop; 1919 } else { 1920 /* new node */ 1921 newprop->next = NULL; 1922 *next = newprop; 1923 } 1924 1925 return 0; 1926 } 1927 1928 /* 1929 * of_update_property - Update a property in a node, if the property does 1930 * not exist, add it. 1931 * 1932 * Note that we don't actually remove it, since we have given out 1933 * who-knows-how-many pointers to the data using get-property. 1934 * Instead we just move the property to the "dead properties" list, 1935 * and add the new property to the property list 1936 */ 1937 int of_update_property(struct device_node *np, struct property *newprop) 1938 { 1939 struct property *oldprop; 1940 unsigned long flags; 1941 int rc; 1942 1943 if (!newprop->name) 1944 return -EINVAL; 1945 1946 mutex_lock(&of_mutex); 1947 1948 raw_spin_lock_irqsave(&devtree_lock, flags); 1949 rc = __of_update_property(np, newprop, &oldprop); 1950 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1951 1952 if (!rc) 1953 __of_update_property_sysfs(np, newprop, oldprop); 1954 1955 mutex_unlock(&of_mutex); 1956 1957 if (!rc) 1958 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1959 1960 return rc; 1961 } 1962 1963 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1964 int id, const char *stem, int stem_len) 1965 { 1966 ap->np = np; 1967 ap->id = id; 1968 strncpy(ap->stem, stem, stem_len); 1969 ap->stem[stem_len] = 0; 1970 list_add_tail(&ap->link, &aliases_lookup); 1971 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1972 ap->alias, ap->stem, ap->id, np); 1973 } 1974 1975 /** 1976 * of_alias_scan - Scan all properties of the 'aliases' node 1977 * @dt_alloc: An allocator that provides a virtual address to memory 1978 * for storing the resulting tree 1979 * 1980 * The function scans all the properties of the 'aliases' node and populates 1981 * the global lookup table with the properties. It returns the 1982 * number of alias properties found, or an error code in case of failure. 1983 */ 1984 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1985 { 1986 struct property *pp; 1987 1988 of_aliases = of_find_node_by_path("/aliases"); 1989 of_chosen = of_find_node_by_path("/chosen"); 1990 if (of_chosen == NULL) 1991 of_chosen = of_find_node_by_path("/chosen@0"); 1992 1993 if (of_chosen) { 1994 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1995 const char *name = NULL; 1996 1997 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1998 of_property_read_string(of_chosen, "linux,stdout-path", 1999 &name); 2000 if (IS_ENABLED(CONFIG_PPC) && !name) 2001 of_property_read_string(of_aliases, "stdout", &name); 2002 if (name) 2003 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2004 } 2005 2006 if (!of_aliases) 2007 return; 2008 2009 for_each_property_of_node(of_aliases, pp) { 2010 const char *start = pp->name; 2011 const char *end = start + strlen(start); 2012 struct device_node *np; 2013 struct alias_prop *ap; 2014 int id, len; 2015 2016 /* Skip those we do not want to proceed */ 2017 if (!strcmp(pp->name, "name") || 2018 !strcmp(pp->name, "phandle") || 2019 !strcmp(pp->name, "linux,phandle")) 2020 continue; 2021 2022 np = of_find_node_by_path(pp->value); 2023 if (!np) 2024 continue; 2025 2026 /* walk the alias backwards to extract the id and work out 2027 * the 'stem' string */ 2028 while (isdigit(*(end-1)) && end > start) 2029 end--; 2030 len = end - start; 2031 2032 if (kstrtoint(end, 10, &id) < 0) 2033 continue; 2034 2035 /* Allocate an alias_prop with enough space for the stem */ 2036 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2037 if (!ap) 2038 continue; 2039 memset(ap, 0, sizeof(*ap) + len + 1); 2040 ap->alias = start; 2041 of_alias_add(ap, np, id, start, len); 2042 } 2043 } 2044 2045 /** 2046 * of_alias_get_id - Get alias id for the given device_node 2047 * @np: Pointer to the given device_node 2048 * @stem: Alias stem of the given device_node 2049 * 2050 * The function travels the lookup table to get the alias id for the given 2051 * device_node and alias stem. 2052 * 2053 * Return: The alias id if found. 2054 */ 2055 int of_alias_get_id(struct device_node *np, const char *stem) 2056 { 2057 struct alias_prop *app; 2058 int id = -ENODEV; 2059 2060 mutex_lock(&of_mutex); 2061 list_for_each_entry(app, &aliases_lookup, link) { 2062 if (strcmp(app->stem, stem) != 0) 2063 continue; 2064 2065 if (np == app->np) { 2066 id = app->id; 2067 break; 2068 } 2069 } 2070 mutex_unlock(&of_mutex); 2071 2072 return id; 2073 } 2074 EXPORT_SYMBOL_GPL(of_alias_get_id); 2075 2076 /** 2077 * of_alias_get_alias_list - Get alias list for the given device driver 2078 * @matches: Array of OF device match structures to search in 2079 * @stem: Alias stem of the given device_node 2080 * @bitmap: Bitmap field pointer 2081 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2082 * 2083 * The function travels the lookup table to record alias ids for the given 2084 * device match structures and alias stem. 2085 * 2086 * Return: 0 or -ENOSYS when !CONFIG_OF or 2087 * -EOVERFLOW if alias ID is greater then allocated nbits 2088 */ 2089 int of_alias_get_alias_list(const struct of_device_id *matches, 2090 const char *stem, unsigned long *bitmap, 2091 unsigned int nbits) 2092 { 2093 struct alias_prop *app; 2094 int ret = 0; 2095 2096 /* Zero bitmap field to make sure that all the time it is clean */ 2097 bitmap_zero(bitmap, nbits); 2098 2099 mutex_lock(&of_mutex); 2100 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2101 list_for_each_entry(app, &aliases_lookup, link) { 2102 pr_debug("%s: stem: %s, id: %d\n", 2103 __func__, app->stem, app->id); 2104 2105 if (strcmp(app->stem, stem) != 0) { 2106 pr_debug("%s: stem comparison didn't pass %s\n", 2107 __func__, app->stem); 2108 continue; 2109 } 2110 2111 if (of_match_node(matches, app->np)) { 2112 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2113 2114 if (app->id >= nbits) { 2115 pr_warn("%s: ID %d >= than bitmap field %d\n", 2116 __func__, app->id, nbits); 2117 ret = -EOVERFLOW; 2118 } else { 2119 set_bit(app->id, bitmap); 2120 } 2121 } 2122 } 2123 mutex_unlock(&of_mutex); 2124 2125 return ret; 2126 } 2127 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2128 2129 /** 2130 * of_alias_get_highest_id - Get highest alias id for the given stem 2131 * @stem: Alias stem to be examined 2132 * 2133 * The function travels the lookup table to get the highest alias id for the 2134 * given alias stem. It returns the alias id if found. 2135 */ 2136 int of_alias_get_highest_id(const char *stem) 2137 { 2138 struct alias_prop *app; 2139 int id = -ENODEV; 2140 2141 mutex_lock(&of_mutex); 2142 list_for_each_entry(app, &aliases_lookup, link) { 2143 if (strcmp(app->stem, stem) != 0) 2144 continue; 2145 2146 if (app->id > id) 2147 id = app->id; 2148 } 2149 mutex_unlock(&of_mutex); 2150 2151 return id; 2152 } 2153 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2154 2155 /** 2156 * of_console_check() - Test and setup console for DT setup 2157 * @dn: Pointer to device node 2158 * @name: Name to use for preferred console without index. ex. "ttyS" 2159 * @index: Index to use for preferred console. 2160 * 2161 * Check if the given device node matches the stdout-path property in the 2162 * /chosen node. If it does then register it as the preferred console. 2163 * 2164 * Return: TRUE if console successfully setup. Otherwise return FALSE. 2165 */ 2166 bool of_console_check(struct device_node *dn, char *name, int index) 2167 { 2168 if (!dn || dn != of_stdout || console_set_on_cmdline) 2169 return false; 2170 2171 /* 2172 * XXX: cast `options' to char pointer to suppress complication 2173 * warnings: printk, UART and console drivers expect char pointer. 2174 */ 2175 return !add_preferred_console(name, index, (char *)of_stdout_options); 2176 } 2177 EXPORT_SYMBOL_GPL(of_console_check); 2178 2179 /** 2180 * of_find_next_cache_node - Find a node's subsidiary cache 2181 * @np: node of type "cpu" or "cache" 2182 * 2183 * Return: A node pointer with refcount incremented, use 2184 * of_node_put() on it when done. Caller should hold a reference 2185 * to np. 2186 */ 2187 struct device_node *of_find_next_cache_node(const struct device_node *np) 2188 { 2189 struct device_node *child, *cache_node; 2190 2191 cache_node = of_parse_phandle(np, "l2-cache", 0); 2192 if (!cache_node) 2193 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2194 2195 if (cache_node) 2196 return cache_node; 2197 2198 /* OF on pmac has nodes instead of properties named "l2-cache" 2199 * beneath CPU nodes. 2200 */ 2201 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2202 for_each_child_of_node(np, child) 2203 if (of_node_is_type(child, "cache")) 2204 return child; 2205 2206 return NULL; 2207 } 2208 2209 /** 2210 * of_find_last_cache_level - Find the level at which the last cache is 2211 * present for the given logical cpu 2212 * 2213 * @cpu: cpu number(logical index) for which the last cache level is needed 2214 * 2215 * Return: The the level at which the last cache is present. It is exactly 2216 * same as the total number of cache levels for the given logical cpu. 2217 */ 2218 int of_find_last_cache_level(unsigned int cpu) 2219 { 2220 u32 cache_level = 0; 2221 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2222 2223 while (np) { 2224 prev = np; 2225 of_node_put(np); 2226 np = of_find_next_cache_node(np); 2227 } 2228 2229 of_property_read_u32(prev, "cache-level", &cache_level); 2230 2231 return cache_level; 2232 } 2233 2234 /** 2235 * of_map_id - Translate an ID through a downstream mapping. 2236 * @np: root complex device node. 2237 * @id: device ID to map. 2238 * @map_name: property name of the map to use. 2239 * @map_mask_name: optional property name of the mask to use. 2240 * @target: optional pointer to a target device node. 2241 * @id_out: optional pointer to receive the translated ID. 2242 * 2243 * Given a device ID, look up the appropriate implementation-defined 2244 * platform ID and/or the target device which receives transactions on that 2245 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2246 * @id_out may be NULL if only the other is required. If @target points to 2247 * a non-NULL device node pointer, only entries targeting that node will be 2248 * matched; if it points to a NULL value, it will receive the device node of 2249 * the first matching target phandle, with a reference held. 2250 * 2251 * Return: 0 on success or a standard error code on failure. 2252 */ 2253 int of_map_id(struct device_node *np, u32 id, 2254 const char *map_name, const char *map_mask_name, 2255 struct device_node **target, u32 *id_out) 2256 { 2257 u32 map_mask, masked_id; 2258 int map_len; 2259 const __be32 *map = NULL; 2260 2261 if (!np || !map_name || (!target && !id_out)) 2262 return -EINVAL; 2263 2264 map = of_get_property(np, map_name, &map_len); 2265 if (!map) { 2266 if (target) 2267 return -ENODEV; 2268 /* Otherwise, no map implies no translation */ 2269 *id_out = id; 2270 return 0; 2271 } 2272 2273 if (!map_len || map_len % (4 * sizeof(*map))) { 2274 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2275 map_name, map_len); 2276 return -EINVAL; 2277 } 2278 2279 /* The default is to select all bits. */ 2280 map_mask = 0xffffffff; 2281 2282 /* 2283 * Can be overridden by "{iommu,msi}-map-mask" property. 2284 * If of_property_read_u32() fails, the default is used. 2285 */ 2286 if (map_mask_name) 2287 of_property_read_u32(np, map_mask_name, &map_mask); 2288 2289 masked_id = map_mask & id; 2290 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2291 struct device_node *phandle_node; 2292 u32 id_base = be32_to_cpup(map + 0); 2293 u32 phandle = be32_to_cpup(map + 1); 2294 u32 out_base = be32_to_cpup(map + 2); 2295 u32 id_len = be32_to_cpup(map + 3); 2296 2297 if (id_base & ~map_mask) { 2298 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2299 np, map_name, map_name, 2300 map_mask, id_base); 2301 return -EFAULT; 2302 } 2303 2304 if (masked_id < id_base || masked_id >= id_base + id_len) 2305 continue; 2306 2307 phandle_node = of_find_node_by_phandle(phandle); 2308 if (!phandle_node) 2309 return -ENODEV; 2310 2311 if (target) { 2312 if (*target) 2313 of_node_put(phandle_node); 2314 else 2315 *target = phandle_node; 2316 2317 if (*target != phandle_node) 2318 continue; 2319 } 2320 2321 if (id_out) 2322 *id_out = masked_id - id_base + out_base; 2323 2324 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2325 np, map_name, map_mask, id_base, out_base, 2326 id_len, id, masked_id - id_base + out_base); 2327 return 0; 2328 } 2329 2330 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2331 id, target && *target ? *target : NULL); 2332 2333 /* Bypasses translation */ 2334 if (id_out) 2335 *id_out = id; 2336 return 0; 2337 } 2338 EXPORT_SYMBOL_GPL(of_map_id); 2339