1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 EXPORT_SYMBOL(of_chosen); 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 171 /* Create the kset, and register existing nodes */ 172 mutex_lock(&of_mutex); 173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 174 if (!of_kset) { 175 mutex_unlock(&of_mutex); 176 pr_err("failed to register existing nodes\n"); 177 return; 178 } 179 for_each_of_allnodes(np) { 180 __of_attach_node_sysfs(np); 181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 183 } 184 mutex_unlock(&of_mutex); 185 186 /* Symlink in /proc as required by userspace ABI */ 187 if (of_root) 188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 189 } 190 191 static struct property *__of_find_property(const struct device_node *np, 192 const char *name, int *lenp) 193 { 194 struct property *pp; 195 196 if (!np) 197 return NULL; 198 199 for (pp = np->properties; pp; pp = pp->next) { 200 if (of_prop_cmp(pp->name, name) == 0) { 201 if (lenp) 202 *lenp = pp->length; 203 break; 204 } 205 } 206 207 return pp; 208 } 209 210 struct property *of_find_property(const struct device_node *np, 211 const char *name, 212 int *lenp) 213 { 214 struct property *pp; 215 unsigned long flags; 216 217 raw_spin_lock_irqsave(&devtree_lock, flags); 218 pp = __of_find_property(np, name, lenp); 219 raw_spin_unlock_irqrestore(&devtree_lock, flags); 220 221 return pp; 222 } 223 EXPORT_SYMBOL(of_find_property); 224 225 struct device_node *__of_find_all_nodes(struct device_node *prev) 226 { 227 struct device_node *np; 228 if (!prev) { 229 np = of_root; 230 } else if (prev->child) { 231 np = prev->child; 232 } else { 233 /* Walk back up looking for a sibling, or the end of the structure */ 234 np = prev; 235 while (np->parent && !np->sibling) 236 np = np->parent; 237 np = np->sibling; /* Might be null at the end of the tree */ 238 } 239 return np; 240 } 241 242 /** 243 * of_find_all_nodes - Get next node in global list 244 * @prev: Previous node or NULL to start iteration 245 * of_node_put() will be called on it 246 * 247 * Return: A node pointer with refcount incremented, use 248 * of_node_put() on it when done. 249 */ 250 struct device_node *of_find_all_nodes(struct device_node *prev) 251 { 252 struct device_node *np; 253 unsigned long flags; 254 255 raw_spin_lock_irqsave(&devtree_lock, flags); 256 np = __of_find_all_nodes(prev); 257 of_node_get(np); 258 of_node_put(prev); 259 raw_spin_unlock_irqrestore(&devtree_lock, flags); 260 return np; 261 } 262 EXPORT_SYMBOL(of_find_all_nodes); 263 264 /* 265 * Find a property with a given name for a given node 266 * and return the value. 267 */ 268 const void *__of_get_property(const struct device_node *np, 269 const char *name, int *lenp) 270 { 271 struct property *pp = __of_find_property(np, name, lenp); 272 273 return pp ? pp->value : NULL; 274 } 275 276 /* 277 * Find a property with a given name for a given node 278 * and return the value. 279 */ 280 const void *of_get_property(const struct device_node *np, const char *name, 281 int *lenp) 282 { 283 struct property *pp = of_find_property(np, name, lenp); 284 285 return pp ? pp->value : NULL; 286 } 287 EXPORT_SYMBOL(of_get_property); 288 289 /** 290 * __of_device_is_compatible() - Check if the node matches given constraints 291 * @device: pointer to node 292 * @compat: required compatible string, NULL or "" for any match 293 * @type: required device_type value, NULL or "" for any match 294 * @name: required node name, NULL or "" for any match 295 * 296 * Checks if the given @compat, @type and @name strings match the 297 * properties of the given @device. A constraints can be skipped by 298 * passing NULL or an empty string as the constraint. 299 * 300 * Returns 0 for no match, and a positive integer on match. The return 301 * value is a relative score with larger values indicating better 302 * matches. The score is weighted for the most specific compatible value 303 * to get the highest score. Matching type is next, followed by matching 304 * name. Practically speaking, this results in the following priority 305 * order for matches: 306 * 307 * 1. specific compatible && type && name 308 * 2. specific compatible && type 309 * 3. specific compatible && name 310 * 4. specific compatible 311 * 5. general compatible && type && name 312 * 6. general compatible && type 313 * 7. general compatible && name 314 * 8. general compatible 315 * 9. type && name 316 * 10. type 317 * 11. name 318 */ 319 static int __of_device_is_compatible(const struct device_node *device, 320 const char *compat, const char *type, const char *name) 321 { 322 struct property *prop; 323 const char *cp; 324 int index = 0, score = 0; 325 326 /* Compatible match has highest priority */ 327 if (compat && compat[0]) { 328 prop = __of_find_property(device, "compatible", NULL); 329 for (cp = of_prop_next_string(prop, NULL); cp; 330 cp = of_prop_next_string(prop, cp), index++) { 331 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 332 score = INT_MAX/2 - (index << 2); 333 break; 334 } 335 } 336 if (!score) 337 return 0; 338 } 339 340 /* Matching type is better than matching name */ 341 if (type && type[0]) { 342 if (!__of_node_is_type(device, type)) 343 return 0; 344 score += 2; 345 } 346 347 /* Matching name is a bit better than not */ 348 if (name && name[0]) { 349 if (!of_node_name_eq(device, name)) 350 return 0; 351 score++; 352 } 353 354 return score; 355 } 356 357 /** Checks if the given "compat" string matches one of the strings in 358 * the device's "compatible" property 359 */ 360 int of_device_is_compatible(const struct device_node *device, 361 const char *compat) 362 { 363 unsigned long flags; 364 int res; 365 366 raw_spin_lock_irqsave(&devtree_lock, flags); 367 res = __of_device_is_compatible(device, compat, NULL, NULL); 368 raw_spin_unlock_irqrestore(&devtree_lock, flags); 369 return res; 370 } 371 EXPORT_SYMBOL(of_device_is_compatible); 372 373 /** Checks if the device is compatible with any of the entries in 374 * a NULL terminated array of strings. Returns the best match 375 * score or 0. 376 */ 377 int of_device_compatible_match(const struct device_node *device, 378 const char *const *compat) 379 { 380 unsigned int tmp, score = 0; 381 382 if (!compat) 383 return 0; 384 385 while (*compat) { 386 tmp = of_device_is_compatible(device, *compat); 387 if (tmp > score) 388 score = tmp; 389 compat++; 390 } 391 392 return score; 393 } 394 EXPORT_SYMBOL_GPL(of_device_compatible_match); 395 396 /** 397 * of_machine_is_compatible - Test root of device tree for a given compatible value 398 * @compat: compatible string to look for in root node's compatible property. 399 * 400 * Return: A positive integer if the root node has the given value in its 401 * compatible property. 402 */ 403 int of_machine_is_compatible(const char *compat) 404 { 405 struct device_node *root; 406 int rc = 0; 407 408 root = of_find_node_by_path("/"); 409 if (root) { 410 rc = of_device_is_compatible(root, compat); 411 of_node_put(root); 412 } 413 return rc; 414 } 415 EXPORT_SYMBOL(of_machine_is_compatible); 416 417 /** 418 * __of_device_is_available - check if a device is available for use 419 * 420 * @device: Node to check for availability, with locks already held 421 * 422 * Return: True if the status property is absent or set to "okay" or "ok", 423 * false otherwise 424 */ 425 static bool __of_device_is_available(const struct device_node *device) 426 { 427 const char *status; 428 int statlen; 429 430 if (!device) 431 return false; 432 433 status = __of_get_property(device, "status", &statlen); 434 if (status == NULL) 435 return true; 436 437 if (statlen > 0) { 438 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 439 return true; 440 } 441 442 return false; 443 } 444 445 /** 446 * of_device_is_available - check if a device is available for use 447 * 448 * @device: Node to check for availability 449 * 450 * Return: True if the status property is absent or set to "okay" or "ok", 451 * false otherwise 452 */ 453 bool of_device_is_available(const struct device_node *device) 454 { 455 unsigned long flags; 456 bool res; 457 458 raw_spin_lock_irqsave(&devtree_lock, flags); 459 res = __of_device_is_available(device); 460 raw_spin_unlock_irqrestore(&devtree_lock, flags); 461 return res; 462 463 } 464 EXPORT_SYMBOL(of_device_is_available); 465 466 /** 467 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 468 * 469 * @device: Node to check status for, with locks already held 470 * 471 * Return: True if the status property is set to "fail" or "fail-..." (for any 472 * error code suffix), false otherwise 473 */ 474 static bool __of_device_is_fail(const struct device_node *device) 475 { 476 const char *status; 477 478 if (!device) 479 return false; 480 481 status = __of_get_property(device, "status", NULL); 482 if (status == NULL) 483 return false; 484 485 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5); 486 } 487 488 /** 489 * of_device_is_big_endian - check if a device has BE registers 490 * 491 * @device: Node to check for endianness 492 * 493 * Return: True if the device has a "big-endian" property, or if the kernel 494 * was compiled for BE *and* the device has a "native-endian" property. 495 * Returns false otherwise. 496 * 497 * Callers would nominally use ioread32be/iowrite32be if 498 * of_device_is_big_endian() == true, or readl/writel otherwise. 499 */ 500 bool of_device_is_big_endian(const struct device_node *device) 501 { 502 if (of_property_read_bool(device, "big-endian")) 503 return true; 504 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 505 of_property_read_bool(device, "native-endian")) 506 return true; 507 return false; 508 } 509 EXPORT_SYMBOL(of_device_is_big_endian); 510 511 /** 512 * of_get_parent - Get a node's parent if any 513 * @node: Node to get parent 514 * 515 * Return: A node pointer with refcount incremented, use 516 * of_node_put() on it when done. 517 */ 518 struct device_node *of_get_parent(const struct device_node *node) 519 { 520 struct device_node *np; 521 unsigned long flags; 522 523 if (!node) 524 return NULL; 525 526 raw_spin_lock_irqsave(&devtree_lock, flags); 527 np = of_node_get(node->parent); 528 raw_spin_unlock_irqrestore(&devtree_lock, flags); 529 return np; 530 } 531 EXPORT_SYMBOL(of_get_parent); 532 533 /** 534 * of_get_next_parent - Iterate to a node's parent 535 * @node: Node to get parent of 536 * 537 * This is like of_get_parent() except that it drops the 538 * refcount on the passed node, making it suitable for iterating 539 * through a node's parents. 540 * 541 * Return: A node pointer with refcount incremented, use 542 * of_node_put() on it when done. 543 */ 544 struct device_node *of_get_next_parent(struct device_node *node) 545 { 546 struct device_node *parent; 547 unsigned long flags; 548 549 if (!node) 550 return NULL; 551 552 raw_spin_lock_irqsave(&devtree_lock, flags); 553 parent = of_node_get(node->parent); 554 of_node_put(node); 555 raw_spin_unlock_irqrestore(&devtree_lock, flags); 556 return parent; 557 } 558 EXPORT_SYMBOL(of_get_next_parent); 559 560 static struct device_node *__of_get_next_child(const struct device_node *node, 561 struct device_node *prev) 562 { 563 struct device_node *next; 564 565 if (!node) 566 return NULL; 567 568 next = prev ? prev->sibling : node->child; 569 of_node_get(next); 570 of_node_put(prev); 571 return next; 572 } 573 #define __for_each_child_of_node(parent, child) \ 574 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 575 child = __of_get_next_child(parent, child)) 576 577 /** 578 * of_get_next_child - Iterate a node childs 579 * @node: parent node 580 * @prev: previous child of the parent node, or NULL to get first 581 * 582 * Return: A node pointer with refcount incremented, use of_node_put() on 583 * it when done. Returns NULL when prev is the last child. Decrements the 584 * refcount of prev. 585 */ 586 struct device_node *of_get_next_child(const struct device_node *node, 587 struct device_node *prev) 588 { 589 struct device_node *next; 590 unsigned long flags; 591 592 raw_spin_lock_irqsave(&devtree_lock, flags); 593 next = __of_get_next_child(node, prev); 594 raw_spin_unlock_irqrestore(&devtree_lock, flags); 595 return next; 596 } 597 EXPORT_SYMBOL(of_get_next_child); 598 599 /** 600 * of_get_next_available_child - Find the next available child node 601 * @node: parent node 602 * @prev: previous child of the parent node, or NULL to get first 603 * 604 * This function is like of_get_next_child(), except that it 605 * automatically skips any disabled nodes (i.e. status = "disabled"). 606 */ 607 struct device_node *of_get_next_available_child(const struct device_node *node, 608 struct device_node *prev) 609 { 610 struct device_node *next; 611 unsigned long flags; 612 613 if (!node) 614 return NULL; 615 616 raw_spin_lock_irqsave(&devtree_lock, flags); 617 next = prev ? prev->sibling : node->child; 618 for (; next; next = next->sibling) { 619 if (!__of_device_is_available(next)) 620 continue; 621 if (of_node_get(next)) 622 break; 623 } 624 of_node_put(prev); 625 raw_spin_unlock_irqrestore(&devtree_lock, flags); 626 return next; 627 } 628 EXPORT_SYMBOL(of_get_next_available_child); 629 630 /** 631 * of_get_next_cpu_node - Iterate on cpu nodes 632 * @prev: previous child of the /cpus node, or NULL to get first 633 * 634 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 635 * will be skipped. 636 * 637 * Return: A cpu node pointer with refcount incremented, use of_node_put() 638 * on it when done. Returns NULL when prev is the last child. Decrements 639 * the refcount of prev. 640 */ 641 struct device_node *of_get_next_cpu_node(struct device_node *prev) 642 { 643 struct device_node *next = NULL; 644 unsigned long flags; 645 struct device_node *node; 646 647 if (!prev) 648 node = of_find_node_by_path("/cpus"); 649 650 raw_spin_lock_irqsave(&devtree_lock, flags); 651 if (prev) 652 next = prev->sibling; 653 else if (node) { 654 next = node->child; 655 of_node_put(node); 656 } 657 for (; next; next = next->sibling) { 658 if (__of_device_is_fail(next)) 659 continue; 660 if (!(of_node_name_eq(next, "cpu") || 661 __of_node_is_type(next, "cpu"))) 662 continue; 663 if (of_node_get(next)) 664 break; 665 } 666 of_node_put(prev); 667 raw_spin_unlock_irqrestore(&devtree_lock, flags); 668 return next; 669 } 670 EXPORT_SYMBOL(of_get_next_cpu_node); 671 672 /** 673 * of_get_compatible_child - Find compatible child node 674 * @parent: parent node 675 * @compatible: compatible string 676 * 677 * Lookup child node whose compatible property contains the given compatible 678 * string. 679 * 680 * Return: a node pointer with refcount incremented, use of_node_put() on it 681 * when done; or NULL if not found. 682 */ 683 struct device_node *of_get_compatible_child(const struct device_node *parent, 684 const char *compatible) 685 { 686 struct device_node *child; 687 688 for_each_child_of_node(parent, child) { 689 if (of_device_is_compatible(child, compatible)) 690 break; 691 } 692 693 return child; 694 } 695 EXPORT_SYMBOL(of_get_compatible_child); 696 697 /** 698 * of_get_child_by_name - Find the child node by name for a given parent 699 * @node: parent node 700 * @name: child name to look for. 701 * 702 * This function looks for child node for given matching name 703 * 704 * Return: A node pointer if found, with refcount incremented, use 705 * of_node_put() on it when done. 706 * Returns NULL if node is not found. 707 */ 708 struct device_node *of_get_child_by_name(const struct device_node *node, 709 const char *name) 710 { 711 struct device_node *child; 712 713 for_each_child_of_node(node, child) 714 if (of_node_name_eq(child, name)) 715 break; 716 return child; 717 } 718 EXPORT_SYMBOL(of_get_child_by_name); 719 720 struct device_node *__of_find_node_by_path(struct device_node *parent, 721 const char *path) 722 { 723 struct device_node *child; 724 int len; 725 726 len = strcspn(path, "/:"); 727 if (!len) 728 return NULL; 729 730 __for_each_child_of_node(parent, child) { 731 const char *name = kbasename(child->full_name); 732 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 733 return child; 734 } 735 return NULL; 736 } 737 738 struct device_node *__of_find_node_by_full_path(struct device_node *node, 739 const char *path) 740 { 741 const char *separator = strchr(path, ':'); 742 743 while (node && *path == '/') { 744 struct device_node *tmp = node; 745 746 path++; /* Increment past '/' delimiter */ 747 node = __of_find_node_by_path(node, path); 748 of_node_put(tmp); 749 path = strchrnul(path, '/'); 750 if (separator && separator < path) 751 break; 752 } 753 return node; 754 } 755 756 /** 757 * of_find_node_opts_by_path - Find a node matching a full OF path 758 * @path: Either the full path to match, or if the path does not 759 * start with '/', the name of a property of the /aliases 760 * node (an alias). In the case of an alias, the node 761 * matching the alias' value will be returned. 762 * @opts: Address of a pointer into which to store the start of 763 * an options string appended to the end of the path with 764 * a ':' separator. 765 * 766 * Valid paths: 767 * * /foo/bar Full path 768 * * foo Valid alias 769 * * foo/bar Valid alias + relative path 770 * 771 * Return: A node pointer with refcount incremented, use 772 * of_node_put() on it when done. 773 */ 774 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 775 { 776 struct device_node *np = NULL; 777 struct property *pp; 778 unsigned long flags; 779 const char *separator = strchr(path, ':'); 780 781 if (opts) 782 *opts = separator ? separator + 1 : NULL; 783 784 if (strcmp(path, "/") == 0) 785 return of_node_get(of_root); 786 787 /* The path could begin with an alias */ 788 if (*path != '/') { 789 int len; 790 const char *p = separator; 791 792 if (!p) 793 p = strchrnul(path, '/'); 794 len = p - path; 795 796 /* of_aliases must not be NULL */ 797 if (!of_aliases) 798 return NULL; 799 800 for_each_property_of_node(of_aliases, pp) { 801 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 802 np = of_find_node_by_path(pp->value); 803 break; 804 } 805 } 806 if (!np) 807 return NULL; 808 path = p; 809 } 810 811 /* Step down the tree matching path components */ 812 raw_spin_lock_irqsave(&devtree_lock, flags); 813 if (!np) 814 np = of_node_get(of_root); 815 np = __of_find_node_by_full_path(np, path); 816 raw_spin_unlock_irqrestore(&devtree_lock, flags); 817 return np; 818 } 819 EXPORT_SYMBOL(of_find_node_opts_by_path); 820 821 /** 822 * of_find_node_by_name - Find a node by its "name" property 823 * @from: The node to start searching from or NULL; the node 824 * you pass will not be searched, only the next one 825 * will. Typically, you pass what the previous call 826 * returned. of_node_put() will be called on @from. 827 * @name: The name string to match against 828 * 829 * Return: A node pointer with refcount incremented, use 830 * of_node_put() on it when done. 831 */ 832 struct device_node *of_find_node_by_name(struct device_node *from, 833 const char *name) 834 { 835 struct device_node *np; 836 unsigned long flags; 837 838 raw_spin_lock_irqsave(&devtree_lock, flags); 839 for_each_of_allnodes_from(from, np) 840 if (of_node_name_eq(np, name) && of_node_get(np)) 841 break; 842 of_node_put(from); 843 raw_spin_unlock_irqrestore(&devtree_lock, flags); 844 return np; 845 } 846 EXPORT_SYMBOL(of_find_node_by_name); 847 848 /** 849 * of_find_node_by_type - Find a node by its "device_type" property 850 * @from: The node to start searching from, or NULL to start searching 851 * the entire device tree. The node you pass will not be 852 * searched, only the next one will; typically, you pass 853 * what the previous call returned. of_node_put() will be 854 * called on from for you. 855 * @type: The type string to match against 856 * 857 * Return: A node pointer with refcount incremented, use 858 * of_node_put() on it when done. 859 */ 860 struct device_node *of_find_node_by_type(struct device_node *from, 861 const char *type) 862 { 863 struct device_node *np; 864 unsigned long flags; 865 866 raw_spin_lock_irqsave(&devtree_lock, flags); 867 for_each_of_allnodes_from(from, np) 868 if (__of_node_is_type(np, type) && of_node_get(np)) 869 break; 870 of_node_put(from); 871 raw_spin_unlock_irqrestore(&devtree_lock, flags); 872 return np; 873 } 874 EXPORT_SYMBOL(of_find_node_by_type); 875 876 /** 877 * of_find_compatible_node - Find a node based on type and one of the 878 * tokens in its "compatible" property 879 * @from: The node to start searching from or NULL, the node 880 * you pass will not be searched, only the next one 881 * will; typically, you pass what the previous call 882 * returned. of_node_put() will be called on it 883 * @type: The type string to match "device_type" or NULL to ignore 884 * @compatible: The string to match to one of the tokens in the device 885 * "compatible" list. 886 * 887 * Return: A node pointer with refcount incremented, use 888 * of_node_put() on it when done. 889 */ 890 struct device_node *of_find_compatible_node(struct device_node *from, 891 const char *type, const char *compatible) 892 { 893 struct device_node *np; 894 unsigned long flags; 895 896 raw_spin_lock_irqsave(&devtree_lock, flags); 897 for_each_of_allnodes_from(from, np) 898 if (__of_device_is_compatible(np, compatible, type, NULL) && 899 of_node_get(np)) 900 break; 901 of_node_put(from); 902 raw_spin_unlock_irqrestore(&devtree_lock, flags); 903 return np; 904 } 905 EXPORT_SYMBOL(of_find_compatible_node); 906 907 /** 908 * of_find_node_with_property - Find a node which has a property with 909 * the given name. 910 * @from: The node to start searching from or NULL, the node 911 * you pass will not be searched, only the next one 912 * will; typically, you pass what the previous call 913 * returned. of_node_put() will be called on it 914 * @prop_name: The name of the property to look for. 915 * 916 * Return: A node pointer with refcount incremented, use 917 * of_node_put() on it when done. 918 */ 919 struct device_node *of_find_node_with_property(struct device_node *from, 920 const char *prop_name) 921 { 922 struct device_node *np; 923 struct property *pp; 924 unsigned long flags; 925 926 raw_spin_lock_irqsave(&devtree_lock, flags); 927 for_each_of_allnodes_from(from, np) { 928 for (pp = np->properties; pp; pp = pp->next) { 929 if (of_prop_cmp(pp->name, prop_name) == 0) { 930 of_node_get(np); 931 goto out; 932 } 933 } 934 } 935 out: 936 of_node_put(from); 937 raw_spin_unlock_irqrestore(&devtree_lock, flags); 938 return np; 939 } 940 EXPORT_SYMBOL(of_find_node_with_property); 941 942 static 943 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 944 const struct device_node *node) 945 { 946 const struct of_device_id *best_match = NULL; 947 int score, best_score = 0; 948 949 if (!matches) 950 return NULL; 951 952 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 953 score = __of_device_is_compatible(node, matches->compatible, 954 matches->type, matches->name); 955 if (score > best_score) { 956 best_match = matches; 957 best_score = score; 958 } 959 } 960 961 return best_match; 962 } 963 964 /** 965 * of_match_node - Tell if a device_node has a matching of_match structure 966 * @matches: array of of device match structures to search in 967 * @node: the of device structure to match against 968 * 969 * Low level utility function used by device matching. 970 */ 971 const struct of_device_id *of_match_node(const struct of_device_id *matches, 972 const struct device_node *node) 973 { 974 const struct of_device_id *match; 975 unsigned long flags; 976 977 raw_spin_lock_irqsave(&devtree_lock, flags); 978 match = __of_match_node(matches, node); 979 raw_spin_unlock_irqrestore(&devtree_lock, flags); 980 return match; 981 } 982 EXPORT_SYMBOL(of_match_node); 983 984 /** 985 * of_find_matching_node_and_match - Find a node based on an of_device_id 986 * match table. 987 * @from: The node to start searching from or NULL, the node 988 * you pass will not be searched, only the next one 989 * will; typically, you pass what the previous call 990 * returned. of_node_put() will be called on it 991 * @matches: array of of device match structures to search in 992 * @match: Updated to point at the matches entry which matched 993 * 994 * Return: A node pointer with refcount incremented, use 995 * of_node_put() on it when done. 996 */ 997 struct device_node *of_find_matching_node_and_match(struct device_node *from, 998 const struct of_device_id *matches, 999 const struct of_device_id **match) 1000 { 1001 struct device_node *np; 1002 const struct of_device_id *m; 1003 unsigned long flags; 1004 1005 if (match) 1006 *match = NULL; 1007 1008 raw_spin_lock_irqsave(&devtree_lock, flags); 1009 for_each_of_allnodes_from(from, np) { 1010 m = __of_match_node(matches, np); 1011 if (m && of_node_get(np)) { 1012 if (match) 1013 *match = m; 1014 break; 1015 } 1016 } 1017 of_node_put(from); 1018 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1019 return np; 1020 } 1021 EXPORT_SYMBOL(of_find_matching_node_and_match); 1022 1023 /** 1024 * of_alias_from_compatible - Lookup appropriate alias for a device node 1025 * depending on compatible 1026 * @node: pointer to a device tree node 1027 * @alias: Pointer to buffer that alias value will be copied into 1028 * @len: Length of alias value 1029 * 1030 * Based on the value of the compatible property, this routine will attempt 1031 * to choose an appropriate alias value for a particular device tree node. 1032 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1033 * from the first entry in the compatible list property. 1034 * 1035 * Note: The matching on just the "product" side of the compatible is a relic 1036 * from I2C and SPI. Please do not add any new user. 1037 * 1038 * Return: This routine returns 0 on success, <0 on failure. 1039 */ 1040 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1041 { 1042 const char *compatible, *p; 1043 int cplen; 1044 1045 compatible = of_get_property(node, "compatible", &cplen); 1046 if (!compatible || strlen(compatible) > cplen) 1047 return -ENODEV; 1048 p = strchr(compatible, ','); 1049 strscpy(alias, p ? p + 1 : compatible, len); 1050 return 0; 1051 } 1052 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1053 1054 /** 1055 * of_find_node_by_phandle - Find a node given a phandle 1056 * @handle: phandle of the node to find 1057 * 1058 * Return: A node pointer with refcount incremented, use 1059 * of_node_put() on it when done. 1060 */ 1061 struct device_node *of_find_node_by_phandle(phandle handle) 1062 { 1063 struct device_node *np = NULL; 1064 unsigned long flags; 1065 u32 handle_hash; 1066 1067 if (!handle) 1068 return NULL; 1069 1070 handle_hash = of_phandle_cache_hash(handle); 1071 1072 raw_spin_lock_irqsave(&devtree_lock, flags); 1073 1074 if (phandle_cache[handle_hash] && 1075 handle == phandle_cache[handle_hash]->phandle) 1076 np = phandle_cache[handle_hash]; 1077 1078 if (!np) { 1079 for_each_of_allnodes(np) 1080 if (np->phandle == handle && 1081 !of_node_check_flag(np, OF_DETACHED)) { 1082 phandle_cache[handle_hash] = np; 1083 break; 1084 } 1085 } 1086 1087 of_node_get(np); 1088 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1089 return np; 1090 } 1091 EXPORT_SYMBOL(of_find_node_by_phandle); 1092 1093 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1094 { 1095 int i; 1096 printk("%s %pOF", msg, args->np); 1097 for (i = 0; i < args->args_count; i++) { 1098 const char delim = i ? ',' : ':'; 1099 1100 pr_cont("%c%08x", delim, args->args[i]); 1101 } 1102 pr_cont("\n"); 1103 } 1104 1105 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1106 const struct device_node *np, 1107 const char *list_name, 1108 const char *cells_name, 1109 int cell_count) 1110 { 1111 const __be32 *list; 1112 int size; 1113 1114 memset(it, 0, sizeof(*it)); 1115 1116 /* 1117 * one of cell_count or cells_name must be provided to determine the 1118 * argument length. 1119 */ 1120 if (cell_count < 0 && !cells_name) 1121 return -EINVAL; 1122 1123 list = of_get_property(np, list_name, &size); 1124 if (!list) 1125 return -ENOENT; 1126 1127 it->cells_name = cells_name; 1128 it->cell_count = cell_count; 1129 it->parent = np; 1130 it->list_end = list + size / sizeof(*list); 1131 it->phandle_end = list; 1132 it->cur = list; 1133 1134 return 0; 1135 } 1136 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1137 1138 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1139 { 1140 uint32_t count = 0; 1141 1142 if (it->node) { 1143 of_node_put(it->node); 1144 it->node = NULL; 1145 } 1146 1147 if (!it->cur || it->phandle_end >= it->list_end) 1148 return -ENOENT; 1149 1150 it->cur = it->phandle_end; 1151 1152 /* If phandle is 0, then it is an empty entry with no arguments. */ 1153 it->phandle = be32_to_cpup(it->cur++); 1154 1155 if (it->phandle) { 1156 1157 /* 1158 * Find the provider node and parse the #*-cells property to 1159 * determine the argument length. 1160 */ 1161 it->node = of_find_node_by_phandle(it->phandle); 1162 1163 if (it->cells_name) { 1164 if (!it->node) { 1165 pr_err("%pOF: could not find phandle %d\n", 1166 it->parent, it->phandle); 1167 goto err; 1168 } 1169 1170 if (of_property_read_u32(it->node, it->cells_name, 1171 &count)) { 1172 /* 1173 * If both cell_count and cells_name is given, 1174 * fall back to cell_count in absence 1175 * of the cells_name property 1176 */ 1177 if (it->cell_count >= 0) { 1178 count = it->cell_count; 1179 } else { 1180 pr_err("%pOF: could not get %s for %pOF\n", 1181 it->parent, 1182 it->cells_name, 1183 it->node); 1184 goto err; 1185 } 1186 } 1187 } else { 1188 count = it->cell_count; 1189 } 1190 1191 /* 1192 * Make sure that the arguments actually fit in the remaining 1193 * property data length 1194 */ 1195 if (it->cur + count > it->list_end) { 1196 if (it->cells_name) 1197 pr_err("%pOF: %s = %d found %td\n", 1198 it->parent, it->cells_name, 1199 count, it->list_end - it->cur); 1200 else 1201 pr_err("%pOF: phandle %s needs %d, found %td\n", 1202 it->parent, of_node_full_name(it->node), 1203 count, it->list_end - it->cur); 1204 goto err; 1205 } 1206 } 1207 1208 it->phandle_end = it->cur + count; 1209 it->cur_count = count; 1210 1211 return 0; 1212 1213 err: 1214 if (it->node) { 1215 of_node_put(it->node); 1216 it->node = NULL; 1217 } 1218 1219 return -EINVAL; 1220 } 1221 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1222 1223 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1224 uint32_t *args, 1225 int size) 1226 { 1227 int i, count; 1228 1229 count = it->cur_count; 1230 1231 if (WARN_ON(size < count)) 1232 count = size; 1233 1234 for (i = 0; i < count; i++) 1235 args[i] = be32_to_cpup(it->cur++); 1236 1237 return count; 1238 } 1239 1240 int __of_parse_phandle_with_args(const struct device_node *np, 1241 const char *list_name, 1242 const char *cells_name, 1243 int cell_count, int index, 1244 struct of_phandle_args *out_args) 1245 { 1246 struct of_phandle_iterator it; 1247 int rc, cur_index = 0; 1248 1249 if (index < 0) 1250 return -EINVAL; 1251 1252 /* Loop over the phandles until all the requested entry is found */ 1253 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1254 /* 1255 * All of the error cases bail out of the loop, so at 1256 * this point, the parsing is successful. If the requested 1257 * index matches, then fill the out_args structure and return, 1258 * or return -ENOENT for an empty entry. 1259 */ 1260 rc = -ENOENT; 1261 if (cur_index == index) { 1262 if (!it.phandle) 1263 goto err; 1264 1265 if (out_args) { 1266 int c; 1267 1268 c = of_phandle_iterator_args(&it, 1269 out_args->args, 1270 MAX_PHANDLE_ARGS); 1271 out_args->np = it.node; 1272 out_args->args_count = c; 1273 } else { 1274 of_node_put(it.node); 1275 } 1276 1277 /* Found it! return success */ 1278 return 0; 1279 } 1280 1281 cur_index++; 1282 } 1283 1284 /* 1285 * Unlock node before returning result; will be one of: 1286 * -ENOENT : index is for empty phandle 1287 * -EINVAL : parsing error on data 1288 */ 1289 1290 err: 1291 of_node_put(it.node); 1292 return rc; 1293 } 1294 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1295 1296 /** 1297 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1298 * @np: pointer to a device tree node containing a list 1299 * @list_name: property name that contains a list 1300 * @stem_name: stem of property names that specify phandles' arguments count 1301 * @index: index of a phandle to parse out 1302 * @out_args: optional pointer to output arguments structure (will be filled) 1303 * 1304 * This function is useful to parse lists of phandles and their arguments. 1305 * Returns 0 on success and fills out_args, on error returns appropriate errno 1306 * value. The difference between this function and of_parse_phandle_with_args() 1307 * is that this API remaps a phandle if the node the phandle points to has 1308 * a <@stem_name>-map property. 1309 * 1310 * Caller is responsible to call of_node_put() on the returned out_args->np 1311 * pointer. 1312 * 1313 * Example:: 1314 * 1315 * phandle1: node1 { 1316 * #list-cells = <2>; 1317 * }; 1318 * 1319 * phandle2: node2 { 1320 * #list-cells = <1>; 1321 * }; 1322 * 1323 * phandle3: node3 { 1324 * #list-cells = <1>; 1325 * list-map = <0 &phandle2 3>, 1326 * <1 &phandle2 2>, 1327 * <2 &phandle1 5 1>; 1328 * list-map-mask = <0x3>; 1329 * }; 1330 * 1331 * node4 { 1332 * list = <&phandle1 1 2 &phandle3 0>; 1333 * }; 1334 * 1335 * To get a device_node of the ``node2`` node you may call this: 1336 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1337 */ 1338 int of_parse_phandle_with_args_map(const struct device_node *np, 1339 const char *list_name, 1340 const char *stem_name, 1341 int index, struct of_phandle_args *out_args) 1342 { 1343 char *cells_name, *map_name = NULL, *mask_name = NULL; 1344 char *pass_name = NULL; 1345 struct device_node *cur, *new = NULL; 1346 const __be32 *map, *mask, *pass; 1347 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1348 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1349 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1350 const __be32 *match_array = initial_match_array; 1351 int i, ret, map_len, match; 1352 u32 list_size, new_size; 1353 1354 if (index < 0) 1355 return -EINVAL; 1356 1357 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1358 if (!cells_name) 1359 return -ENOMEM; 1360 1361 ret = -ENOMEM; 1362 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1363 if (!map_name) 1364 goto free; 1365 1366 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1367 if (!mask_name) 1368 goto free; 1369 1370 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1371 if (!pass_name) 1372 goto free; 1373 1374 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1375 out_args); 1376 if (ret) 1377 goto free; 1378 1379 /* Get the #<list>-cells property */ 1380 cur = out_args->np; 1381 ret = of_property_read_u32(cur, cells_name, &list_size); 1382 if (ret < 0) 1383 goto put; 1384 1385 /* Precalculate the match array - this simplifies match loop */ 1386 for (i = 0; i < list_size; i++) 1387 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1388 1389 ret = -EINVAL; 1390 while (cur) { 1391 /* Get the <list>-map property */ 1392 map = of_get_property(cur, map_name, &map_len); 1393 if (!map) { 1394 ret = 0; 1395 goto free; 1396 } 1397 map_len /= sizeof(u32); 1398 1399 /* Get the <list>-map-mask property (optional) */ 1400 mask = of_get_property(cur, mask_name, NULL); 1401 if (!mask) 1402 mask = dummy_mask; 1403 /* Iterate through <list>-map property */ 1404 match = 0; 1405 while (map_len > (list_size + 1) && !match) { 1406 /* Compare specifiers */ 1407 match = 1; 1408 for (i = 0; i < list_size; i++, map_len--) 1409 match &= !((match_array[i] ^ *map++) & mask[i]); 1410 1411 of_node_put(new); 1412 new = of_find_node_by_phandle(be32_to_cpup(map)); 1413 map++; 1414 map_len--; 1415 1416 /* Check if not found */ 1417 if (!new) 1418 goto put; 1419 1420 if (!of_device_is_available(new)) 1421 match = 0; 1422 1423 ret = of_property_read_u32(new, cells_name, &new_size); 1424 if (ret) 1425 goto put; 1426 1427 /* Check for malformed properties */ 1428 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1429 goto put; 1430 if (map_len < new_size) 1431 goto put; 1432 1433 /* Move forward by new node's #<list>-cells amount */ 1434 map += new_size; 1435 map_len -= new_size; 1436 } 1437 if (!match) 1438 goto put; 1439 1440 /* Get the <list>-map-pass-thru property (optional) */ 1441 pass = of_get_property(cur, pass_name, NULL); 1442 if (!pass) 1443 pass = dummy_pass; 1444 1445 /* 1446 * Successfully parsed a <list>-map translation; copy new 1447 * specifier into the out_args structure, keeping the 1448 * bits specified in <list>-map-pass-thru. 1449 */ 1450 match_array = map - new_size; 1451 for (i = 0; i < new_size; i++) { 1452 __be32 val = *(map - new_size + i); 1453 1454 if (i < list_size) { 1455 val &= ~pass[i]; 1456 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1457 } 1458 1459 out_args->args[i] = be32_to_cpu(val); 1460 } 1461 out_args->args_count = list_size = new_size; 1462 /* Iterate again with new provider */ 1463 out_args->np = new; 1464 of_node_put(cur); 1465 cur = new; 1466 } 1467 put: 1468 of_node_put(cur); 1469 of_node_put(new); 1470 free: 1471 kfree(mask_name); 1472 kfree(map_name); 1473 kfree(cells_name); 1474 kfree(pass_name); 1475 1476 return ret; 1477 } 1478 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1479 1480 /** 1481 * of_count_phandle_with_args() - Find the number of phandles references in a property 1482 * @np: pointer to a device tree node containing a list 1483 * @list_name: property name that contains a list 1484 * @cells_name: property name that specifies phandles' arguments count 1485 * 1486 * Return: The number of phandle + argument tuples within a property. It 1487 * is a typical pattern to encode a list of phandle and variable 1488 * arguments into a single property. The number of arguments is encoded 1489 * by a property in the phandle-target node. For example, a gpios 1490 * property would contain a list of GPIO specifies consisting of a 1491 * phandle and 1 or more arguments. The number of arguments are 1492 * determined by the #gpio-cells property in the node pointed to by the 1493 * phandle. 1494 */ 1495 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1496 const char *cells_name) 1497 { 1498 struct of_phandle_iterator it; 1499 int rc, cur_index = 0; 1500 1501 /* 1502 * If cells_name is NULL we assume a cell count of 0. This makes 1503 * counting the phandles trivial as each 32bit word in the list is a 1504 * phandle and no arguments are to consider. So we don't iterate through 1505 * the list but just use the length to determine the phandle count. 1506 */ 1507 if (!cells_name) { 1508 const __be32 *list; 1509 int size; 1510 1511 list = of_get_property(np, list_name, &size); 1512 if (!list) 1513 return -ENOENT; 1514 1515 return size / sizeof(*list); 1516 } 1517 1518 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1519 if (rc) 1520 return rc; 1521 1522 while ((rc = of_phandle_iterator_next(&it)) == 0) 1523 cur_index += 1; 1524 1525 if (rc != -ENOENT) 1526 return rc; 1527 1528 return cur_index; 1529 } 1530 EXPORT_SYMBOL(of_count_phandle_with_args); 1531 1532 /** 1533 * __of_add_property - Add a property to a node without lock operations 1534 * @np: Caller's Device Node 1535 * @prop: Property to add 1536 */ 1537 int __of_add_property(struct device_node *np, struct property *prop) 1538 { 1539 struct property **next; 1540 1541 prop->next = NULL; 1542 next = &np->properties; 1543 while (*next) { 1544 if (strcmp(prop->name, (*next)->name) == 0) 1545 /* duplicate ! don't insert it */ 1546 return -EEXIST; 1547 1548 next = &(*next)->next; 1549 } 1550 *next = prop; 1551 1552 return 0; 1553 } 1554 1555 /** 1556 * of_add_property - Add a property to a node 1557 * @np: Caller's Device Node 1558 * @prop: Property to add 1559 */ 1560 int of_add_property(struct device_node *np, struct property *prop) 1561 { 1562 unsigned long flags; 1563 int rc; 1564 1565 mutex_lock(&of_mutex); 1566 1567 raw_spin_lock_irqsave(&devtree_lock, flags); 1568 rc = __of_add_property(np, prop); 1569 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1570 1571 if (!rc) 1572 __of_add_property_sysfs(np, prop); 1573 1574 mutex_unlock(&of_mutex); 1575 1576 if (!rc) 1577 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1578 1579 return rc; 1580 } 1581 EXPORT_SYMBOL_GPL(of_add_property); 1582 1583 int __of_remove_property(struct device_node *np, struct property *prop) 1584 { 1585 struct property **next; 1586 1587 for (next = &np->properties; *next; next = &(*next)->next) { 1588 if (*next == prop) 1589 break; 1590 } 1591 if (*next == NULL) 1592 return -ENODEV; 1593 1594 /* found the node */ 1595 *next = prop->next; 1596 prop->next = np->deadprops; 1597 np->deadprops = prop; 1598 1599 return 0; 1600 } 1601 1602 /** 1603 * of_remove_property - Remove a property from a node. 1604 * @np: Caller's Device Node 1605 * @prop: Property to remove 1606 * 1607 * Note that we don't actually remove it, since we have given out 1608 * who-knows-how-many pointers to the data using get-property. 1609 * Instead we just move the property to the "dead properties" 1610 * list, so it won't be found any more. 1611 */ 1612 int of_remove_property(struct device_node *np, struct property *prop) 1613 { 1614 unsigned long flags; 1615 int rc; 1616 1617 if (!prop) 1618 return -ENODEV; 1619 1620 mutex_lock(&of_mutex); 1621 1622 raw_spin_lock_irqsave(&devtree_lock, flags); 1623 rc = __of_remove_property(np, prop); 1624 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1625 1626 if (!rc) 1627 __of_remove_property_sysfs(np, prop); 1628 1629 mutex_unlock(&of_mutex); 1630 1631 if (!rc) 1632 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1633 1634 return rc; 1635 } 1636 EXPORT_SYMBOL_GPL(of_remove_property); 1637 1638 int __of_update_property(struct device_node *np, struct property *newprop, 1639 struct property **oldpropp) 1640 { 1641 struct property **next, *oldprop; 1642 1643 for (next = &np->properties; *next; next = &(*next)->next) { 1644 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1645 break; 1646 } 1647 *oldpropp = oldprop = *next; 1648 1649 if (oldprop) { 1650 /* replace the node */ 1651 newprop->next = oldprop->next; 1652 *next = newprop; 1653 oldprop->next = np->deadprops; 1654 np->deadprops = oldprop; 1655 } else { 1656 /* new node */ 1657 newprop->next = NULL; 1658 *next = newprop; 1659 } 1660 1661 return 0; 1662 } 1663 1664 /* 1665 * of_update_property - Update a property in a node, if the property does 1666 * not exist, add it. 1667 * 1668 * Note that we don't actually remove it, since we have given out 1669 * who-knows-how-many pointers to the data using get-property. 1670 * Instead we just move the property to the "dead properties" list, 1671 * and add the new property to the property list 1672 */ 1673 int of_update_property(struct device_node *np, struct property *newprop) 1674 { 1675 struct property *oldprop; 1676 unsigned long flags; 1677 int rc; 1678 1679 if (!newprop->name) 1680 return -EINVAL; 1681 1682 mutex_lock(&of_mutex); 1683 1684 raw_spin_lock_irqsave(&devtree_lock, flags); 1685 rc = __of_update_property(np, newprop, &oldprop); 1686 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1687 1688 if (!rc) 1689 __of_update_property_sysfs(np, newprop, oldprop); 1690 1691 mutex_unlock(&of_mutex); 1692 1693 if (!rc) 1694 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1695 1696 return rc; 1697 } 1698 1699 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1700 int id, const char *stem, int stem_len) 1701 { 1702 ap->np = np; 1703 ap->id = id; 1704 strscpy(ap->stem, stem, stem_len + 1); 1705 list_add_tail(&ap->link, &aliases_lookup); 1706 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1707 ap->alias, ap->stem, ap->id, np); 1708 } 1709 1710 /** 1711 * of_alias_scan - Scan all properties of the 'aliases' node 1712 * @dt_alloc: An allocator that provides a virtual address to memory 1713 * for storing the resulting tree 1714 * 1715 * The function scans all the properties of the 'aliases' node and populates 1716 * the global lookup table with the properties. It returns the 1717 * number of alias properties found, or an error code in case of failure. 1718 */ 1719 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1720 { 1721 struct property *pp; 1722 1723 of_aliases = of_find_node_by_path("/aliases"); 1724 of_chosen = of_find_node_by_path("/chosen"); 1725 if (of_chosen == NULL) 1726 of_chosen = of_find_node_by_path("/chosen@0"); 1727 1728 if (of_chosen) { 1729 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1730 const char *name = NULL; 1731 1732 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1733 of_property_read_string(of_chosen, "linux,stdout-path", 1734 &name); 1735 if (IS_ENABLED(CONFIG_PPC) && !name) 1736 of_property_read_string(of_aliases, "stdout", &name); 1737 if (name) 1738 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1739 if (of_stdout) 1740 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1741 } 1742 1743 if (!of_aliases) 1744 return; 1745 1746 for_each_property_of_node(of_aliases, pp) { 1747 const char *start = pp->name; 1748 const char *end = start + strlen(start); 1749 struct device_node *np; 1750 struct alias_prop *ap; 1751 int id, len; 1752 1753 /* Skip those we do not want to proceed */ 1754 if (!strcmp(pp->name, "name") || 1755 !strcmp(pp->name, "phandle") || 1756 !strcmp(pp->name, "linux,phandle")) 1757 continue; 1758 1759 np = of_find_node_by_path(pp->value); 1760 if (!np) 1761 continue; 1762 1763 /* walk the alias backwards to extract the id and work out 1764 * the 'stem' string */ 1765 while (isdigit(*(end-1)) && end > start) 1766 end--; 1767 len = end - start; 1768 1769 if (kstrtoint(end, 10, &id) < 0) 1770 continue; 1771 1772 /* Allocate an alias_prop with enough space for the stem */ 1773 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1774 if (!ap) 1775 continue; 1776 memset(ap, 0, sizeof(*ap) + len + 1); 1777 ap->alias = start; 1778 of_alias_add(ap, np, id, start, len); 1779 } 1780 } 1781 1782 /** 1783 * of_alias_get_id - Get alias id for the given device_node 1784 * @np: Pointer to the given device_node 1785 * @stem: Alias stem of the given device_node 1786 * 1787 * The function travels the lookup table to get the alias id for the given 1788 * device_node and alias stem. 1789 * 1790 * Return: The alias id if found. 1791 */ 1792 int of_alias_get_id(struct device_node *np, const char *stem) 1793 { 1794 struct alias_prop *app; 1795 int id = -ENODEV; 1796 1797 mutex_lock(&of_mutex); 1798 list_for_each_entry(app, &aliases_lookup, link) { 1799 if (strcmp(app->stem, stem) != 0) 1800 continue; 1801 1802 if (np == app->np) { 1803 id = app->id; 1804 break; 1805 } 1806 } 1807 mutex_unlock(&of_mutex); 1808 1809 return id; 1810 } 1811 EXPORT_SYMBOL_GPL(of_alias_get_id); 1812 1813 /** 1814 * of_alias_get_highest_id - Get highest alias id for the given stem 1815 * @stem: Alias stem to be examined 1816 * 1817 * The function travels the lookup table to get the highest alias id for the 1818 * given alias stem. It returns the alias id if found. 1819 */ 1820 int of_alias_get_highest_id(const char *stem) 1821 { 1822 struct alias_prop *app; 1823 int id = -ENODEV; 1824 1825 mutex_lock(&of_mutex); 1826 list_for_each_entry(app, &aliases_lookup, link) { 1827 if (strcmp(app->stem, stem) != 0) 1828 continue; 1829 1830 if (app->id > id) 1831 id = app->id; 1832 } 1833 mutex_unlock(&of_mutex); 1834 1835 return id; 1836 } 1837 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1838 1839 /** 1840 * of_console_check() - Test and setup console for DT setup 1841 * @dn: Pointer to device node 1842 * @name: Name to use for preferred console without index. ex. "ttyS" 1843 * @index: Index to use for preferred console. 1844 * 1845 * Check if the given device node matches the stdout-path property in the 1846 * /chosen node. If it does then register it as the preferred console. 1847 * 1848 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1849 */ 1850 bool of_console_check(struct device_node *dn, char *name, int index) 1851 { 1852 if (!dn || dn != of_stdout || console_set_on_cmdline) 1853 return false; 1854 1855 /* 1856 * XXX: cast `options' to char pointer to suppress complication 1857 * warnings: printk, UART and console drivers expect char pointer. 1858 */ 1859 return !add_preferred_console(name, index, (char *)of_stdout_options); 1860 } 1861 EXPORT_SYMBOL_GPL(of_console_check); 1862 1863 /** 1864 * of_find_next_cache_node - Find a node's subsidiary cache 1865 * @np: node of type "cpu" or "cache" 1866 * 1867 * Return: A node pointer with refcount incremented, use 1868 * of_node_put() on it when done. Caller should hold a reference 1869 * to np. 1870 */ 1871 struct device_node *of_find_next_cache_node(const struct device_node *np) 1872 { 1873 struct device_node *child, *cache_node; 1874 1875 cache_node = of_parse_phandle(np, "l2-cache", 0); 1876 if (!cache_node) 1877 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1878 1879 if (cache_node) 1880 return cache_node; 1881 1882 /* OF on pmac has nodes instead of properties named "l2-cache" 1883 * beneath CPU nodes. 1884 */ 1885 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1886 for_each_child_of_node(np, child) 1887 if (of_node_is_type(child, "cache")) 1888 return child; 1889 1890 return NULL; 1891 } 1892 1893 /** 1894 * of_find_last_cache_level - Find the level at which the last cache is 1895 * present for the given logical cpu 1896 * 1897 * @cpu: cpu number(logical index) for which the last cache level is needed 1898 * 1899 * Return: The level at which the last cache is present. It is exactly 1900 * same as the total number of cache levels for the given logical cpu. 1901 */ 1902 int of_find_last_cache_level(unsigned int cpu) 1903 { 1904 u32 cache_level = 0; 1905 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1906 1907 while (np) { 1908 of_node_put(prev); 1909 prev = np; 1910 np = of_find_next_cache_node(np); 1911 } 1912 1913 of_property_read_u32(prev, "cache-level", &cache_level); 1914 of_node_put(prev); 1915 1916 return cache_level; 1917 } 1918 1919 /** 1920 * of_map_id - Translate an ID through a downstream mapping. 1921 * @np: root complex device node. 1922 * @id: device ID to map. 1923 * @map_name: property name of the map to use. 1924 * @map_mask_name: optional property name of the mask to use. 1925 * @target: optional pointer to a target device node. 1926 * @id_out: optional pointer to receive the translated ID. 1927 * 1928 * Given a device ID, look up the appropriate implementation-defined 1929 * platform ID and/or the target device which receives transactions on that 1930 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 1931 * @id_out may be NULL if only the other is required. If @target points to 1932 * a non-NULL device node pointer, only entries targeting that node will be 1933 * matched; if it points to a NULL value, it will receive the device node of 1934 * the first matching target phandle, with a reference held. 1935 * 1936 * Return: 0 on success or a standard error code on failure. 1937 */ 1938 int of_map_id(struct device_node *np, u32 id, 1939 const char *map_name, const char *map_mask_name, 1940 struct device_node **target, u32 *id_out) 1941 { 1942 u32 map_mask, masked_id; 1943 int map_len; 1944 const __be32 *map = NULL; 1945 1946 if (!np || !map_name || (!target && !id_out)) 1947 return -EINVAL; 1948 1949 map = of_get_property(np, map_name, &map_len); 1950 if (!map) { 1951 if (target) 1952 return -ENODEV; 1953 /* Otherwise, no map implies no translation */ 1954 *id_out = id; 1955 return 0; 1956 } 1957 1958 if (!map_len || map_len % (4 * sizeof(*map))) { 1959 pr_err("%pOF: Error: Bad %s length: %d\n", np, 1960 map_name, map_len); 1961 return -EINVAL; 1962 } 1963 1964 /* The default is to select all bits. */ 1965 map_mask = 0xffffffff; 1966 1967 /* 1968 * Can be overridden by "{iommu,msi}-map-mask" property. 1969 * If of_property_read_u32() fails, the default is used. 1970 */ 1971 if (map_mask_name) 1972 of_property_read_u32(np, map_mask_name, &map_mask); 1973 1974 masked_id = map_mask & id; 1975 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 1976 struct device_node *phandle_node; 1977 u32 id_base = be32_to_cpup(map + 0); 1978 u32 phandle = be32_to_cpup(map + 1); 1979 u32 out_base = be32_to_cpup(map + 2); 1980 u32 id_len = be32_to_cpup(map + 3); 1981 1982 if (id_base & ~map_mask) { 1983 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 1984 np, map_name, map_name, 1985 map_mask, id_base); 1986 return -EFAULT; 1987 } 1988 1989 if (masked_id < id_base || masked_id >= id_base + id_len) 1990 continue; 1991 1992 phandle_node = of_find_node_by_phandle(phandle); 1993 if (!phandle_node) 1994 return -ENODEV; 1995 1996 if (target) { 1997 if (*target) 1998 of_node_put(phandle_node); 1999 else 2000 *target = phandle_node; 2001 2002 if (*target != phandle_node) 2003 continue; 2004 } 2005 2006 if (id_out) 2007 *id_out = masked_id - id_base + out_base; 2008 2009 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2010 np, map_name, map_mask, id_base, out_base, 2011 id_len, id, masked_id - id_base + out_base); 2012 return 0; 2013 } 2014 2015 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2016 id, target && *target ? *target : NULL); 2017 2018 /* Bypasses translation */ 2019 if (id_out) 2020 *id_out = id; 2021 return 0; 2022 } 2023 EXPORT_SYMBOL_GPL(of_map_id); 2024