1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70 } 71 EXPORT_SYMBOL(of_n_addr_cells); 72 73 int of_n_size_cells(struct device_node *np) 74 { 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86 } 87 EXPORT_SYMBOL(of_n_size_cells); 88 89 #ifdef CONFIG_NUMA 90 int __weak of_node_to_nid(struct device_node *np) 91 { 92 return numa_node_id(); 93 } 94 #endif 95 96 #ifndef CONFIG_OF_DYNAMIC 97 static void of_node_release(struct kobject *kobj) 98 { 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100 } 101 #endif /* CONFIG_OF_DYNAMIC */ 102 103 struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105 }; 106 107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110 { 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113 } 114 115 static const char *safe_name(struct kobject *kobj, const char *orig_name) 116 { 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133 } 134 135 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136 { 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157 } 158 159 int __of_attach_node_sysfs(struct device_node *np) 160 { 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190 } 191 192 static int __init of_init(void) 193 { 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 return -ENOMEM; 202 } 203 for_each_of_allnodes(np) 204 __of_attach_node_sysfs(np); 205 mutex_unlock(&of_mutex); 206 207 /* Symlink in /proc as required by userspace ABI */ 208 if (of_root) 209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 210 211 return 0; 212 } 213 core_initcall(of_init); 214 215 static struct property *__of_find_property(const struct device_node *np, 216 const char *name, int *lenp) 217 { 218 struct property *pp; 219 220 if (!np) 221 return NULL; 222 223 for (pp = np->properties; pp; pp = pp->next) { 224 if (of_prop_cmp(pp->name, name) == 0) { 225 if (lenp) 226 *lenp = pp->length; 227 break; 228 } 229 } 230 231 return pp; 232 } 233 234 struct property *of_find_property(const struct device_node *np, 235 const char *name, 236 int *lenp) 237 { 238 struct property *pp; 239 unsigned long flags; 240 241 raw_spin_lock_irqsave(&devtree_lock, flags); 242 pp = __of_find_property(np, name, lenp); 243 raw_spin_unlock_irqrestore(&devtree_lock, flags); 244 245 return pp; 246 } 247 EXPORT_SYMBOL(of_find_property); 248 249 struct device_node *__of_find_all_nodes(struct device_node *prev) 250 { 251 struct device_node *np; 252 if (!prev) { 253 np = of_root; 254 } else if (prev->child) { 255 np = prev->child; 256 } else { 257 /* Walk back up looking for a sibling, or the end of the structure */ 258 np = prev; 259 while (np->parent && !np->sibling) 260 np = np->parent; 261 np = np->sibling; /* Might be null at the end of the tree */ 262 } 263 return np; 264 } 265 266 /** 267 * of_find_all_nodes - Get next node in global list 268 * @prev: Previous node or NULL to start iteration 269 * of_node_put() will be called on it 270 * 271 * Returns a node pointer with refcount incremented, use 272 * of_node_put() on it when done. 273 */ 274 struct device_node *of_find_all_nodes(struct device_node *prev) 275 { 276 struct device_node *np; 277 unsigned long flags; 278 279 raw_spin_lock_irqsave(&devtree_lock, flags); 280 np = __of_find_all_nodes(prev); 281 of_node_get(np); 282 of_node_put(prev); 283 raw_spin_unlock_irqrestore(&devtree_lock, flags); 284 return np; 285 } 286 EXPORT_SYMBOL(of_find_all_nodes); 287 288 /* 289 * Find a property with a given name for a given node 290 * and return the value. 291 */ 292 const void *__of_get_property(const struct device_node *np, 293 const char *name, int *lenp) 294 { 295 struct property *pp = __of_find_property(np, name, lenp); 296 297 return pp ? pp->value : NULL; 298 } 299 300 /* 301 * Find a property with a given name for a given node 302 * and return the value. 303 */ 304 const void *of_get_property(const struct device_node *np, const char *name, 305 int *lenp) 306 { 307 struct property *pp = of_find_property(np, name, lenp); 308 309 return pp ? pp->value : NULL; 310 } 311 EXPORT_SYMBOL(of_get_property); 312 313 /* 314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 315 * 316 * @cpu: logical cpu index of a core/thread 317 * @phys_id: physical identifier of a core/thread 318 * 319 * CPU logical to physical index mapping is architecture specific. 320 * However this __weak function provides a default match of physical 321 * id to logical cpu index. phys_id provided here is usually values read 322 * from the device tree which must match the hardware internal registers. 323 * 324 * Returns true if the physical identifier and the logical cpu index 325 * correspond to the same core/thread, false otherwise. 326 */ 327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 328 { 329 return (u32)phys_id == cpu; 330 } 331 332 /** 333 * Checks if the given "prop_name" property holds the physical id of the 334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 335 * NULL, local thread number within the core is returned in it. 336 */ 337 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 338 const char *prop_name, int cpu, unsigned int *thread) 339 { 340 const __be32 *cell; 341 int ac, prop_len, tid; 342 u64 hwid; 343 344 ac = of_n_addr_cells(cpun); 345 cell = of_get_property(cpun, prop_name, &prop_len); 346 if (!cell || !ac) 347 return false; 348 prop_len /= sizeof(*cell) * ac; 349 for (tid = 0; tid < prop_len; tid++) { 350 hwid = of_read_number(cell, ac); 351 if (arch_match_cpu_phys_id(cpu, hwid)) { 352 if (thread) 353 *thread = tid; 354 return true; 355 } 356 cell += ac; 357 } 358 return false; 359 } 360 361 /* 362 * arch_find_n_match_cpu_physical_id - See if the given device node is 363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 364 * else false. If 'thread' is non-NULL, the local thread number within the 365 * core is returned in it. 366 */ 367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 368 int cpu, unsigned int *thread) 369 { 370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 371 * for thread ids on PowerPC. If it doesn't exist fallback to 372 * standard "reg" property. 373 */ 374 if (IS_ENABLED(CONFIG_PPC) && 375 __of_find_n_match_cpu_property(cpun, 376 "ibm,ppc-interrupt-server#s", 377 cpu, thread)) 378 return true; 379 380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 381 return true; 382 383 return false; 384 } 385 386 /** 387 * of_get_cpu_node - Get device node associated with the given logical CPU 388 * 389 * @cpu: CPU number(logical index) for which device node is required 390 * @thread: if not NULL, local thread number within the physical core is 391 * returned 392 * 393 * The main purpose of this function is to retrieve the device node for the 394 * given logical CPU index. It should be used to initialize the of_node in 395 * cpu device. Once of_node in cpu device is populated, all the further 396 * references can use that instead. 397 * 398 * CPU logical to physical index mapping is architecture specific and is built 399 * before booting secondary cores. This function uses arch_match_cpu_phys_id 400 * which can be overridden by architecture specific implementation. 401 * 402 * Returns a node pointer for the logical cpu if found, else NULL. 403 */ 404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 405 { 406 struct device_node *cpun; 407 408 for_each_node_by_type(cpun, "cpu") { 409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 410 return cpun; 411 } 412 return NULL; 413 } 414 EXPORT_SYMBOL(of_get_cpu_node); 415 416 /** 417 * __of_device_is_compatible() - Check if the node matches given constraints 418 * @device: pointer to node 419 * @compat: required compatible string, NULL or "" for any match 420 * @type: required device_type value, NULL or "" for any match 421 * @name: required node name, NULL or "" for any match 422 * 423 * Checks if the given @compat, @type and @name strings match the 424 * properties of the given @device. A constraints can be skipped by 425 * passing NULL or an empty string as the constraint. 426 * 427 * Returns 0 for no match, and a positive integer on match. The return 428 * value is a relative score with larger values indicating better 429 * matches. The score is weighted for the most specific compatible value 430 * to get the highest score. Matching type is next, followed by matching 431 * name. Practically speaking, this results in the following priority 432 * order for matches: 433 * 434 * 1. specific compatible && type && name 435 * 2. specific compatible && type 436 * 3. specific compatible && name 437 * 4. specific compatible 438 * 5. general compatible && type && name 439 * 6. general compatible && type 440 * 7. general compatible && name 441 * 8. general compatible 442 * 9. type && name 443 * 10. type 444 * 11. name 445 */ 446 static int __of_device_is_compatible(const struct device_node *device, 447 const char *compat, const char *type, const char *name) 448 { 449 struct property *prop; 450 const char *cp; 451 int index = 0, score = 0; 452 453 /* Compatible match has highest priority */ 454 if (compat && compat[0]) { 455 prop = __of_find_property(device, "compatible", NULL); 456 for (cp = of_prop_next_string(prop, NULL); cp; 457 cp = of_prop_next_string(prop, cp), index++) { 458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 459 score = INT_MAX/2 - (index << 2); 460 break; 461 } 462 } 463 if (!score) 464 return 0; 465 } 466 467 /* Matching type is better than matching name */ 468 if (type && type[0]) { 469 if (!device->type || of_node_cmp(type, device->type)) 470 return 0; 471 score += 2; 472 } 473 474 /* Matching name is a bit better than not */ 475 if (name && name[0]) { 476 if (!device->name || of_node_cmp(name, device->name)) 477 return 0; 478 score++; 479 } 480 481 return score; 482 } 483 484 /** Checks if the given "compat" string matches one of the strings in 485 * the device's "compatible" property 486 */ 487 int of_device_is_compatible(const struct device_node *device, 488 const char *compat) 489 { 490 unsigned long flags; 491 int res; 492 493 raw_spin_lock_irqsave(&devtree_lock, flags); 494 res = __of_device_is_compatible(device, compat, NULL, NULL); 495 raw_spin_unlock_irqrestore(&devtree_lock, flags); 496 return res; 497 } 498 EXPORT_SYMBOL(of_device_is_compatible); 499 500 /** 501 * of_machine_is_compatible - Test root of device tree for a given compatible value 502 * @compat: compatible string to look for in root node's compatible property. 503 * 504 * Returns a positive integer if the root node has the given value in its 505 * compatible property. 506 */ 507 int of_machine_is_compatible(const char *compat) 508 { 509 struct device_node *root; 510 int rc = 0; 511 512 root = of_find_node_by_path("/"); 513 if (root) { 514 rc = of_device_is_compatible(root, compat); 515 of_node_put(root); 516 } 517 return rc; 518 } 519 EXPORT_SYMBOL(of_machine_is_compatible); 520 521 /** 522 * __of_device_is_available - check if a device is available for use 523 * 524 * @device: Node to check for availability, with locks already held 525 * 526 * Returns true if the status property is absent or set to "okay" or "ok", 527 * false otherwise 528 */ 529 static bool __of_device_is_available(const struct device_node *device) 530 { 531 const char *status; 532 int statlen; 533 534 if (!device) 535 return false; 536 537 status = __of_get_property(device, "status", &statlen); 538 if (status == NULL) 539 return true; 540 541 if (statlen > 0) { 542 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 543 return true; 544 } 545 546 return false; 547 } 548 549 /** 550 * of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 bool of_device_is_available(const struct device_node *device) 558 { 559 unsigned long flags; 560 bool res; 561 562 raw_spin_lock_irqsave(&devtree_lock, flags); 563 res = __of_device_is_available(device); 564 raw_spin_unlock_irqrestore(&devtree_lock, flags); 565 return res; 566 567 } 568 EXPORT_SYMBOL(of_device_is_available); 569 570 /** 571 * of_get_parent - Get a node's parent if any 572 * @node: Node to get parent 573 * 574 * Returns a node pointer with refcount incremented, use 575 * of_node_put() on it when done. 576 */ 577 struct device_node *of_get_parent(const struct device_node *node) 578 { 579 struct device_node *np; 580 unsigned long flags; 581 582 if (!node) 583 return NULL; 584 585 raw_spin_lock_irqsave(&devtree_lock, flags); 586 np = of_node_get(node->parent); 587 raw_spin_unlock_irqrestore(&devtree_lock, flags); 588 return np; 589 } 590 EXPORT_SYMBOL(of_get_parent); 591 592 /** 593 * of_get_next_parent - Iterate to a node's parent 594 * @node: Node to get parent of 595 * 596 * This is like of_get_parent() except that it drops the 597 * refcount on the passed node, making it suitable for iterating 598 * through a node's parents. 599 * 600 * Returns a node pointer with refcount incremented, use 601 * of_node_put() on it when done. 602 */ 603 struct device_node *of_get_next_parent(struct device_node *node) 604 { 605 struct device_node *parent; 606 unsigned long flags; 607 608 if (!node) 609 return NULL; 610 611 raw_spin_lock_irqsave(&devtree_lock, flags); 612 parent = of_node_get(node->parent); 613 of_node_put(node); 614 raw_spin_unlock_irqrestore(&devtree_lock, flags); 615 return parent; 616 } 617 EXPORT_SYMBOL(of_get_next_parent); 618 619 static struct device_node *__of_get_next_child(const struct device_node *node, 620 struct device_node *prev) 621 { 622 struct device_node *next; 623 624 if (!node) 625 return NULL; 626 627 next = prev ? prev->sibling : node->child; 628 for (; next; next = next->sibling) 629 if (of_node_get(next)) 630 break; 631 of_node_put(prev); 632 return next; 633 } 634 #define __for_each_child_of_node(parent, child) \ 635 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 636 child = __of_get_next_child(parent, child)) 637 638 /** 639 * of_get_next_child - Iterate a node childs 640 * @node: parent node 641 * @prev: previous child of the parent node, or NULL to get first 642 * 643 * Returns a node pointer with refcount incremented, use 644 * of_node_put() on it when done. 645 */ 646 struct device_node *of_get_next_child(const struct device_node *node, 647 struct device_node *prev) 648 { 649 struct device_node *next; 650 unsigned long flags; 651 652 raw_spin_lock_irqsave(&devtree_lock, flags); 653 next = __of_get_next_child(node, prev); 654 raw_spin_unlock_irqrestore(&devtree_lock, flags); 655 return next; 656 } 657 EXPORT_SYMBOL(of_get_next_child); 658 659 /** 660 * of_get_next_available_child - Find the next available child node 661 * @node: parent node 662 * @prev: previous child of the parent node, or NULL to get first 663 * 664 * This function is like of_get_next_child(), except that it 665 * automatically skips any disabled nodes (i.e. status = "disabled"). 666 */ 667 struct device_node *of_get_next_available_child(const struct device_node *node, 668 struct device_node *prev) 669 { 670 struct device_node *next; 671 unsigned long flags; 672 673 if (!node) 674 return NULL; 675 676 raw_spin_lock_irqsave(&devtree_lock, flags); 677 next = prev ? prev->sibling : node->child; 678 for (; next; next = next->sibling) { 679 if (!__of_device_is_available(next)) 680 continue; 681 if (of_node_get(next)) 682 break; 683 } 684 of_node_put(prev); 685 raw_spin_unlock_irqrestore(&devtree_lock, flags); 686 return next; 687 } 688 EXPORT_SYMBOL(of_get_next_available_child); 689 690 /** 691 * of_get_child_by_name - Find the child node by name for a given parent 692 * @node: parent node 693 * @name: child name to look for. 694 * 695 * This function looks for child node for given matching name 696 * 697 * Returns a node pointer if found, with refcount incremented, use 698 * of_node_put() on it when done. 699 * Returns NULL if node is not found. 700 */ 701 struct device_node *of_get_child_by_name(const struct device_node *node, 702 const char *name) 703 { 704 struct device_node *child; 705 706 for_each_child_of_node(node, child) 707 if (child->name && (of_node_cmp(child->name, name) == 0)) 708 break; 709 return child; 710 } 711 EXPORT_SYMBOL(of_get_child_by_name); 712 713 static struct device_node *__of_find_node_by_path(struct device_node *parent, 714 const char *path) 715 { 716 struct device_node *child; 717 int len; 718 719 len = strcspn(path, "/:"); 720 if (!len) 721 return NULL; 722 723 __for_each_child_of_node(parent, child) { 724 const char *name = strrchr(child->full_name, '/'); 725 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 726 continue; 727 name++; 728 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 729 return child; 730 } 731 return NULL; 732 } 733 734 /** 735 * of_find_node_opts_by_path - Find a node matching a full OF path 736 * @path: Either the full path to match, or if the path does not 737 * start with '/', the name of a property of the /aliases 738 * node (an alias). In the case of an alias, the node 739 * matching the alias' value will be returned. 740 * @opts: Address of a pointer into which to store the start of 741 * an options string appended to the end of the path with 742 * a ':' separator. 743 * 744 * Valid paths: 745 * /foo/bar Full path 746 * foo Valid alias 747 * foo/bar Valid alias + relative path 748 * 749 * Returns a node pointer with refcount incremented, use 750 * of_node_put() on it when done. 751 */ 752 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 753 { 754 struct device_node *np = NULL; 755 struct property *pp; 756 unsigned long flags; 757 const char *separator = strchr(path, ':'); 758 759 if (opts) 760 *opts = separator ? separator + 1 : NULL; 761 762 if (strcmp(path, "/") == 0) 763 return of_node_get(of_root); 764 765 /* The path could begin with an alias */ 766 if (*path != '/') { 767 int len; 768 const char *p = separator; 769 770 if (!p) 771 p = strchrnul(path, '/'); 772 len = p - path; 773 774 /* of_aliases must not be NULL */ 775 if (!of_aliases) 776 return NULL; 777 778 for_each_property_of_node(of_aliases, pp) { 779 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 780 np = of_find_node_by_path(pp->value); 781 break; 782 } 783 } 784 if (!np) 785 return NULL; 786 path = p; 787 } 788 789 /* Step down the tree matching path components */ 790 raw_spin_lock_irqsave(&devtree_lock, flags); 791 if (!np) 792 np = of_node_get(of_root); 793 while (np && *path == '/') { 794 path++; /* Increment past '/' delimiter */ 795 np = __of_find_node_by_path(np, path); 796 path = strchrnul(path, '/'); 797 if (separator && separator < path) 798 break; 799 } 800 raw_spin_unlock_irqrestore(&devtree_lock, flags); 801 return np; 802 } 803 EXPORT_SYMBOL(of_find_node_opts_by_path); 804 805 /** 806 * of_find_node_by_name - Find a node by its "name" property 807 * @from: The node to start searching from or NULL, the node 808 * you pass will not be searched, only the next one 809 * will; typically, you pass what the previous call 810 * returned. of_node_put() will be called on it 811 * @name: The name string to match against 812 * 813 * Returns a node pointer with refcount incremented, use 814 * of_node_put() on it when done. 815 */ 816 struct device_node *of_find_node_by_name(struct device_node *from, 817 const char *name) 818 { 819 struct device_node *np; 820 unsigned long flags; 821 822 raw_spin_lock_irqsave(&devtree_lock, flags); 823 for_each_of_allnodes_from(from, np) 824 if (np->name && (of_node_cmp(np->name, name) == 0) 825 && of_node_get(np)) 826 break; 827 of_node_put(from); 828 raw_spin_unlock_irqrestore(&devtree_lock, flags); 829 return np; 830 } 831 EXPORT_SYMBOL(of_find_node_by_name); 832 833 /** 834 * of_find_node_by_type - Find a node by its "device_type" property 835 * @from: The node to start searching from, or NULL to start searching 836 * the entire device tree. The node you pass will not be 837 * searched, only the next one will; typically, you pass 838 * what the previous call returned. of_node_put() will be 839 * called on from for you. 840 * @type: The type string to match against 841 * 842 * Returns a node pointer with refcount incremented, use 843 * of_node_put() on it when done. 844 */ 845 struct device_node *of_find_node_by_type(struct device_node *from, 846 const char *type) 847 { 848 struct device_node *np; 849 unsigned long flags; 850 851 raw_spin_lock_irqsave(&devtree_lock, flags); 852 for_each_of_allnodes_from(from, np) 853 if (np->type && (of_node_cmp(np->type, type) == 0) 854 && of_node_get(np)) 855 break; 856 of_node_put(from); 857 raw_spin_unlock_irqrestore(&devtree_lock, flags); 858 return np; 859 } 860 EXPORT_SYMBOL(of_find_node_by_type); 861 862 /** 863 * of_find_compatible_node - Find a node based on type and one of the 864 * tokens in its "compatible" property 865 * @from: The node to start searching from or NULL, the node 866 * you pass will not be searched, only the next one 867 * will; typically, you pass what the previous call 868 * returned. of_node_put() will be called on it 869 * @type: The type string to match "device_type" or NULL to ignore 870 * @compatible: The string to match to one of the tokens in the device 871 * "compatible" list. 872 * 873 * Returns a node pointer with refcount incremented, use 874 * of_node_put() on it when done. 875 */ 876 struct device_node *of_find_compatible_node(struct device_node *from, 877 const char *type, const char *compatible) 878 { 879 struct device_node *np; 880 unsigned long flags; 881 882 raw_spin_lock_irqsave(&devtree_lock, flags); 883 for_each_of_allnodes_from(from, np) 884 if (__of_device_is_compatible(np, compatible, type, NULL) && 885 of_node_get(np)) 886 break; 887 of_node_put(from); 888 raw_spin_unlock_irqrestore(&devtree_lock, flags); 889 return np; 890 } 891 EXPORT_SYMBOL(of_find_compatible_node); 892 893 /** 894 * of_find_node_with_property - Find a node which has a property with 895 * the given name. 896 * @from: The node to start searching from or NULL, the node 897 * you pass will not be searched, only the next one 898 * will; typically, you pass what the previous call 899 * returned. of_node_put() will be called on it 900 * @prop_name: The name of the property to look for. 901 * 902 * Returns a node pointer with refcount incremented, use 903 * of_node_put() on it when done. 904 */ 905 struct device_node *of_find_node_with_property(struct device_node *from, 906 const char *prop_name) 907 { 908 struct device_node *np; 909 struct property *pp; 910 unsigned long flags; 911 912 raw_spin_lock_irqsave(&devtree_lock, flags); 913 for_each_of_allnodes_from(from, np) { 914 for (pp = np->properties; pp; pp = pp->next) { 915 if (of_prop_cmp(pp->name, prop_name) == 0) { 916 of_node_get(np); 917 goto out; 918 } 919 } 920 } 921 out: 922 of_node_put(from); 923 raw_spin_unlock_irqrestore(&devtree_lock, flags); 924 return np; 925 } 926 EXPORT_SYMBOL(of_find_node_with_property); 927 928 static 929 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 930 const struct device_node *node) 931 { 932 const struct of_device_id *best_match = NULL; 933 int score, best_score = 0; 934 935 if (!matches) 936 return NULL; 937 938 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 939 score = __of_device_is_compatible(node, matches->compatible, 940 matches->type, matches->name); 941 if (score > best_score) { 942 best_match = matches; 943 best_score = score; 944 } 945 } 946 947 return best_match; 948 } 949 950 /** 951 * of_match_node - Tell if a device_node has a matching of_match structure 952 * @matches: array of of device match structures to search in 953 * @node: the of device structure to match against 954 * 955 * Low level utility function used by device matching. 956 */ 957 const struct of_device_id *of_match_node(const struct of_device_id *matches, 958 const struct device_node *node) 959 { 960 const struct of_device_id *match; 961 unsigned long flags; 962 963 raw_spin_lock_irqsave(&devtree_lock, flags); 964 match = __of_match_node(matches, node); 965 raw_spin_unlock_irqrestore(&devtree_lock, flags); 966 return match; 967 } 968 EXPORT_SYMBOL(of_match_node); 969 970 /** 971 * of_find_matching_node_and_match - Find a node based on an of_device_id 972 * match table. 973 * @from: The node to start searching from or NULL, the node 974 * you pass will not be searched, only the next one 975 * will; typically, you pass what the previous call 976 * returned. of_node_put() will be called on it 977 * @matches: array of of device match structures to search in 978 * @match Updated to point at the matches entry which matched 979 * 980 * Returns a node pointer with refcount incremented, use 981 * of_node_put() on it when done. 982 */ 983 struct device_node *of_find_matching_node_and_match(struct device_node *from, 984 const struct of_device_id *matches, 985 const struct of_device_id **match) 986 { 987 struct device_node *np; 988 const struct of_device_id *m; 989 unsigned long flags; 990 991 if (match) 992 *match = NULL; 993 994 raw_spin_lock_irqsave(&devtree_lock, flags); 995 for_each_of_allnodes_from(from, np) { 996 m = __of_match_node(matches, np); 997 if (m && of_node_get(np)) { 998 if (match) 999 *match = m; 1000 break; 1001 } 1002 } 1003 of_node_put(from); 1004 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1005 return np; 1006 } 1007 EXPORT_SYMBOL(of_find_matching_node_and_match); 1008 1009 /** 1010 * of_modalias_node - Lookup appropriate modalias for a device node 1011 * @node: pointer to a device tree node 1012 * @modalias: Pointer to buffer that modalias value will be copied into 1013 * @len: Length of modalias value 1014 * 1015 * Based on the value of the compatible property, this routine will attempt 1016 * to choose an appropriate modalias value for a particular device tree node. 1017 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1018 * from the first entry in the compatible list property. 1019 * 1020 * This routine returns 0 on success, <0 on failure. 1021 */ 1022 int of_modalias_node(struct device_node *node, char *modalias, int len) 1023 { 1024 const char *compatible, *p; 1025 int cplen; 1026 1027 compatible = of_get_property(node, "compatible", &cplen); 1028 if (!compatible || strlen(compatible) > cplen) 1029 return -ENODEV; 1030 p = strchr(compatible, ','); 1031 strlcpy(modalias, p ? p + 1 : compatible, len); 1032 return 0; 1033 } 1034 EXPORT_SYMBOL_GPL(of_modalias_node); 1035 1036 /** 1037 * of_find_node_by_phandle - Find a node given a phandle 1038 * @handle: phandle of the node to find 1039 * 1040 * Returns a node pointer with refcount incremented, use 1041 * of_node_put() on it when done. 1042 */ 1043 struct device_node *of_find_node_by_phandle(phandle handle) 1044 { 1045 struct device_node *np; 1046 unsigned long flags; 1047 1048 if (!handle) 1049 return NULL; 1050 1051 raw_spin_lock_irqsave(&devtree_lock, flags); 1052 for_each_of_allnodes(np) 1053 if (np->phandle == handle) 1054 break; 1055 of_node_get(np); 1056 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1057 return np; 1058 } 1059 EXPORT_SYMBOL(of_find_node_by_phandle); 1060 1061 /** 1062 * of_property_count_elems_of_size - Count the number of elements in a property 1063 * 1064 * @np: device node from which the property value is to be read. 1065 * @propname: name of the property to be searched. 1066 * @elem_size: size of the individual element 1067 * 1068 * Search for a property in a device node and count the number of elements of 1069 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1070 * property does not exist or its length does not match a multiple of elem_size 1071 * and -ENODATA if the property does not have a value. 1072 */ 1073 int of_property_count_elems_of_size(const struct device_node *np, 1074 const char *propname, int elem_size) 1075 { 1076 struct property *prop = of_find_property(np, propname, NULL); 1077 1078 if (!prop) 1079 return -EINVAL; 1080 if (!prop->value) 1081 return -ENODATA; 1082 1083 if (prop->length % elem_size != 0) { 1084 pr_err("size of %s in node %s is not a multiple of %d\n", 1085 propname, np->full_name, elem_size); 1086 return -EINVAL; 1087 } 1088 1089 return prop->length / elem_size; 1090 } 1091 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1092 1093 /** 1094 * of_find_property_value_of_size 1095 * 1096 * @np: device node from which the property value is to be read. 1097 * @propname: name of the property to be searched. 1098 * @len: requested length of property value 1099 * 1100 * Search for a property in a device node and valid the requested size. 1101 * Returns the property value on success, -EINVAL if the property does not 1102 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1103 * property data isn't large enough. 1104 * 1105 */ 1106 static void *of_find_property_value_of_size(const struct device_node *np, 1107 const char *propname, u32 len) 1108 { 1109 struct property *prop = of_find_property(np, propname, NULL); 1110 1111 if (!prop) 1112 return ERR_PTR(-EINVAL); 1113 if (!prop->value) 1114 return ERR_PTR(-ENODATA); 1115 if (len > prop->length) 1116 return ERR_PTR(-EOVERFLOW); 1117 1118 return prop->value; 1119 } 1120 1121 /** 1122 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1123 * 1124 * @np: device node from which the property value is to be read. 1125 * @propname: name of the property to be searched. 1126 * @index: index of the u32 in the list of values 1127 * @out_value: pointer to return value, modified only if no error. 1128 * 1129 * Search for a property in a device node and read nth 32-bit value from 1130 * it. Returns 0 on success, -EINVAL if the property does not exist, 1131 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1132 * property data isn't large enough. 1133 * 1134 * The out_value is modified only if a valid u32 value can be decoded. 1135 */ 1136 int of_property_read_u32_index(const struct device_node *np, 1137 const char *propname, 1138 u32 index, u32 *out_value) 1139 { 1140 const u32 *val = of_find_property_value_of_size(np, propname, 1141 ((index + 1) * sizeof(*out_value))); 1142 1143 if (IS_ERR(val)) 1144 return PTR_ERR(val); 1145 1146 *out_value = be32_to_cpup(((__be32 *)val) + index); 1147 return 0; 1148 } 1149 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1150 1151 /** 1152 * of_property_read_u8_array - Find and read an array of u8 from a property. 1153 * 1154 * @np: device node from which the property value is to be read. 1155 * @propname: name of the property to be searched. 1156 * @out_values: pointer to return value, modified only if return value is 0. 1157 * @sz: number of array elements to read 1158 * 1159 * Search for a property in a device node and read 8-bit value(s) from 1160 * it. Returns 0 on success, -EINVAL if the property does not exist, 1161 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1162 * property data isn't large enough. 1163 * 1164 * dts entry of array should be like: 1165 * property = /bits/ 8 <0x50 0x60 0x70>; 1166 * 1167 * The out_values is modified only if a valid u8 value can be decoded. 1168 */ 1169 int of_property_read_u8_array(const struct device_node *np, 1170 const char *propname, u8 *out_values, size_t sz) 1171 { 1172 const u8 *val = of_find_property_value_of_size(np, propname, 1173 (sz * sizeof(*out_values))); 1174 1175 if (IS_ERR(val)) 1176 return PTR_ERR(val); 1177 1178 while (sz--) 1179 *out_values++ = *val++; 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1183 1184 /** 1185 * of_property_read_u16_array - Find and read an array of u16 from a property. 1186 * 1187 * @np: device node from which the property value is to be read. 1188 * @propname: name of the property to be searched. 1189 * @out_values: pointer to return value, modified only if return value is 0. 1190 * @sz: number of array elements to read 1191 * 1192 * Search for a property in a device node and read 16-bit value(s) from 1193 * it. Returns 0 on success, -EINVAL if the property does not exist, 1194 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1195 * property data isn't large enough. 1196 * 1197 * dts entry of array should be like: 1198 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1199 * 1200 * The out_values is modified only if a valid u16 value can be decoded. 1201 */ 1202 int of_property_read_u16_array(const struct device_node *np, 1203 const char *propname, u16 *out_values, size_t sz) 1204 { 1205 const __be16 *val = of_find_property_value_of_size(np, propname, 1206 (sz * sizeof(*out_values))); 1207 1208 if (IS_ERR(val)) 1209 return PTR_ERR(val); 1210 1211 while (sz--) 1212 *out_values++ = be16_to_cpup(val++); 1213 return 0; 1214 } 1215 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1216 1217 /** 1218 * of_property_read_u32_array - Find and read an array of 32 bit integers 1219 * from a property. 1220 * 1221 * @np: device node from which the property value is to be read. 1222 * @propname: name of the property to be searched. 1223 * @out_values: pointer to return value, modified only if return value is 0. 1224 * @sz: number of array elements to read 1225 * 1226 * Search for a property in a device node and read 32-bit value(s) from 1227 * it. Returns 0 on success, -EINVAL if the property does not exist, 1228 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1229 * property data isn't large enough. 1230 * 1231 * The out_values is modified only if a valid u32 value can be decoded. 1232 */ 1233 int of_property_read_u32_array(const struct device_node *np, 1234 const char *propname, u32 *out_values, 1235 size_t sz) 1236 { 1237 const __be32 *val = of_find_property_value_of_size(np, propname, 1238 (sz * sizeof(*out_values))); 1239 1240 if (IS_ERR(val)) 1241 return PTR_ERR(val); 1242 1243 while (sz--) 1244 *out_values++ = be32_to_cpup(val++); 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1248 1249 /** 1250 * of_property_read_u64 - Find and read a 64 bit integer from a property 1251 * @np: device node from which the property value is to be read. 1252 * @propname: name of the property to be searched. 1253 * @out_value: pointer to return value, modified only if return value is 0. 1254 * 1255 * Search for a property in a device node and read a 64-bit value from 1256 * it. Returns 0 on success, -EINVAL if the property does not exist, 1257 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1258 * property data isn't large enough. 1259 * 1260 * The out_value is modified only if a valid u64 value can be decoded. 1261 */ 1262 int of_property_read_u64(const struct device_node *np, const char *propname, 1263 u64 *out_value) 1264 { 1265 const __be32 *val = of_find_property_value_of_size(np, propname, 1266 sizeof(*out_value)); 1267 1268 if (IS_ERR(val)) 1269 return PTR_ERR(val); 1270 1271 *out_value = of_read_number(val, 2); 1272 return 0; 1273 } 1274 EXPORT_SYMBOL_GPL(of_property_read_u64); 1275 1276 /** 1277 * of_property_read_u64_array - Find and read an array of 64 bit integers 1278 * from a property. 1279 * 1280 * @np: device node from which the property value is to be read. 1281 * @propname: name of the property to be searched. 1282 * @out_values: pointer to return value, modified only if return value is 0. 1283 * @sz: number of array elements to read 1284 * 1285 * Search for a property in a device node and read 64-bit value(s) from 1286 * it. Returns 0 on success, -EINVAL if the property does not exist, 1287 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1288 * property data isn't large enough. 1289 * 1290 * The out_values is modified only if a valid u64 value can be decoded. 1291 */ 1292 int of_property_read_u64_array(const struct device_node *np, 1293 const char *propname, u64 *out_values, 1294 size_t sz) 1295 { 1296 const __be32 *val = of_find_property_value_of_size(np, propname, 1297 (sz * sizeof(*out_values))); 1298 1299 if (IS_ERR(val)) 1300 return PTR_ERR(val); 1301 1302 while (sz--) { 1303 *out_values++ = of_read_number(val, 2); 1304 val += 2; 1305 } 1306 return 0; 1307 } 1308 EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1309 1310 /** 1311 * of_property_read_string - Find and read a string from a property 1312 * @np: device node from which the property value is to be read. 1313 * @propname: name of the property to be searched. 1314 * @out_string: pointer to null terminated return string, modified only if 1315 * return value is 0. 1316 * 1317 * Search for a property in a device tree node and retrieve a null 1318 * terminated string value (pointer to data, not a copy). Returns 0 on 1319 * success, -EINVAL if the property does not exist, -ENODATA if property 1320 * does not have a value, and -EILSEQ if the string is not null-terminated 1321 * within the length of the property data. 1322 * 1323 * The out_string pointer is modified only if a valid string can be decoded. 1324 */ 1325 int of_property_read_string(struct device_node *np, const char *propname, 1326 const char **out_string) 1327 { 1328 struct property *prop = of_find_property(np, propname, NULL); 1329 if (!prop) 1330 return -EINVAL; 1331 if (!prop->value) 1332 return -ENODATA; 1333 if (strnlen(prop->value, prop->length) >= prop->length) 1334 return -EILSEQ; 1335 *out_string = prop->value; 1336 return 0; 1337 } 1338 EXPORT_SYMBOL_GPL(of_property_read_string); 1339 1340 /** 1341 * of_property_match_string() - Find string in a list and return index 1342 * @np: pointer to node containing string list property 1343 * @propname: string list property name 1344 * @string: pointer to string to search for in string list 1345 * 1346 * This function searches a string list property and returns the index 1347 * of a specific string value. 1348 */ 1349 int of_property_match_string(struct device_node *np, const char *propname, 1350 const char *string) 1351 { 1352 struct property *prop = of_find_property(np, propname, NULL); 1353 size_t l; 1354 int i; 1355 const char *p, *end; 1356 1357 if (!prop) 1358 return -EINVAL; 1359 if (!prop->value) 1360 return -ENODATA; 1361 1362 p = prop->value; 1363 end = p + prop->length; 1364 1365 for (i = 0; p < end; i++, p += l) { 1366 l = strnlen(p, end - p) + 1; 1367 if (p + l > end) 1368 return -EILSEQ; 1369 pr_debug("comparing %s with %s\n", string, p); 1370 if (strcmp(string, p) == 0) 1371 return i; /* Found it; return index */ 1372 } 1373 return -ENODATA; 1374 } 1375 EXPORT_SYMBOL_GPL(of_property_match_string); 1376 1377 /** 1378 * of_property_read_string_helper() - Utility helper for parsing string properties 1379 * @np: device node from which the property value is to be read. 1380 * @propname: name of the property to be searched. 1381 * @out_strs: output array of string pointers. 1382 * @sz: number of array elements to read. 1383 * @skip: Number of strings to skip over at beginning of list. 1384 * 1385 * Don't call this function directly. It is a utility helper for the 1386 * of_property_read_string*() family of functions. 1387 */ 1388 int of_property_read_string_helper(struct device_node *np, const char *propname, 1389 const char **out_strs, size_t sz, int skip) 1390 { 1391 struct property *prop = of_find_property(np, propname, NULL); 1392 int l = 0, i = 0; 1393 const char *p, *end; 1394 1395 if (!prop) 1396 return -EINVAL; 1397 if (!prop->value) 1398 return -ENODATA; 1399 p = prop->value; 1400 end = p + prop->length; 1401 1402 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1403 l = strnlen(p, end - p) + 1; 1404 if (p + l > end) 1405 return -EILSEQ; 1406 if (out_strs && i >= skip) 1407 *out_strs++ = p; 1408 } 1409 i -= skip; 1410 return i <= 0 ? -ENODATA : i; 1411 } 1412 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1413 1414 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1415 { 1416 int i; 1417 printk("%s %s", msg, of_node_full_name(args->np)); 1418 for (i = 0; i < args->args_count; i++) 1419 printk(i ? ",%08x" : ":%08x", args->args[i]); 1420 printk("\n"); 1421 } 1422 1423 static int __of_parse_phandle_with_args(const struct device_node *np, 1424 const char *list_name, 1425 const char *cells_name, 1426 int cell_count, int index, 1427 struct of_phandle_args *out_args) 1428 { 1429 const __be32 *list, *list_end; 1430 int rc = 0, size, cur_index = 0; 1431 uint32_t count = 0; 1432 struct device_node *node = NULL; 1433 phandle phandle; 1434 1435 /* Retrieve the phandle list property */ 1436 list = of_get_property(np, list_name, &size); 1437 if (!list) 1438 return -ENOENT; 1439 list_end = list + size / sizeof(*list); 1440 1441 /* Loop over the phandles until all the requested entry is found */ 1442 while (list < list_end) { 1443 rc = -EINVAL; 1444 count = 0; 1445 1446 /* 1447 * If phandle is 0, then it is an empty entry with no 1448 * arguments. Skip forward to the next entry. 1449 */ 1450 phandle = be32_to_cpup(list++); 1451 if (phandle) { 1452 /* 1453 * Find the provider node and parse the #*-cells 1454 * property to determine the argument length. 1455 * 1456 * This is not needed if the cell count is hard-coded 1457 * (i.e. cells_name not set, but cell_count is set), 1458 * except when we're going to return the found node 1459 * below. 1460 */ 1461 if (cells_name || cur_index == index) { 1462 node = of_find_node_by_phandle(phandle); 1463 if (!node) { 1464 pr_err("%s: could not find phandle\n", 1465 np->full_name); 1466 goto err; 1467 } 1468 } 1469 1470 if (cells_name) { 1471 if (of_property_read_u32(node, cells_name, 1472 &count)) { 1473 pr_err("%s: could not get %s for %s\n", 1474 np->full_name, cells_name, 1475 node->full_name); 1476 goto err; 1477 } 1478 } else { 1479 count = cell_count; 1480 } 1481 1482 /* 1483 * Make sure that the arguments actually fit in the 1484 * remaining property data length 1485 */ 1486 if (list + count > list_end) { 1487 pr_err("%s: arguments longer than property\n", 1488 np->full_name); 1489 goto err; 1490 } 1491 } 1492 1493 /* 1494 * All of the error cases above bail out of the loop, so at 1495 * this point, the parsing is successful. If the requested 1496 * index matches, then fill the out_args structure and return, 1497 * or return -ENOENT for an empty entry. 1498 */ 1499 rc = -ENOENT; 1500 if (cur_index == index) { 1501 if (!phandle) 1502 goto err; 1503 1504 if (out_args) { 1505 int i; 1506 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1507 count = MAX_PHANDLE_ARGS; 1508 out_args->np = node; 1509 out_args->args_count = count; 1510 for (i = 0; i < count; i++) 1511 out_args->args[i] = be32_to_cpup(list++); 1512 } else { 1513 of_node_put(node); 1514 } 1515 1516 /* Found it! return success */ 1517 return 0; 1518 } 1519 1520 of_node_put(node); 1521 node = NULL; 1522 list += count; 1523 cur_index++; 1524 } 1525 1526 /* 1527 * Unlock node before returning result; will be one of: 1528 * -ENOENT : index is for empty phandle 1529 * -EINVAL : parsing error on data 1530 * [1..n] : Number of phandle (count mode; when index = -1) 1531 */ 1532 rc = index < 0 ? cur_index : -ENOENT; 1533 err: 1534 if (node) 1535 of_node_put(node); 1536 return rc; 1537 } 1538 1539 /** 1540 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1541 * @np: Pointer to device node holding phandle property 1542 * @phandle_name: Name of property holding a phandle value 1543 * @index: For properties holding a table of phandles, this is the index into 1544 * the table 1545 * 1546 * Returns the device_node pointer with refcount incremented. Use 1547 * of_node_put() on it when done. 1548 */ 1549 struct device_node *of_parse_phandle(const struct device_node *np, 1550 const char *phandle_name, int index) 1551 { 1552 struct of_phandle_args args; 1553 1554 if (index < 0) 1555 return NULL; 1556 1557 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1558 index, &args)) 1559 return NULL; 1560 1561 return args.np; 1562 } 1563 EXPORT_SYMBOL(of_parse_phandle); 1564 1565 /** 1566 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1567 * @np: pointer to a device tree node containing a list 1568 * @list_name: property name that contains a list 1569 * @cells_name: property name that specifies phandles' arguments count 1570 * @index: index of a phandle to parse out 1571 * @out_args: optional pointer to output arguments structure (will be filled) 1572 * 1573 * This function is useful to parse lists of phandles and their arguments. 1574 * Returns 0 on success and fills out_args, on error returns appropriate 1575 * errno value. 1576 * 1577 * Caller is responsible to call of_node_put() on the returned out_args->np 1578 * pointer. 1579 * 1580 * Example: 1581 * 1582 * phandle1: node1 { 1583 * #list-cells = <2>; 1584 * } 1585 * 1586 * phandle2: node2 { 1587 * #list-cells = <1>; 1588 * } 1589 * 1590 * node3 { 1591 * list = <&phandle1 1 2 &phandle2 3>; 1592 * } 1593 * 1594 * To get a device_node of the `node2' node you may call this: 1595 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1596 */ 1597 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1598 const char *cells_name, int index, 1599 struct of_phandle_args *out_args) 1600 { 1601 if (index < 0) 1602 return -EINVAL; 1603 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1604 index, out_args); 1605 } 1606 EXPORT_SYMBOL(of_parse_phandle_with_args); 1607 1608 /** 1609 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1610 * @np: pointer to a device tree node containing a list 1611 * @list_name: property name that contains a list 1612 * @cell_count: number of argument cells following the phandle 1613 * @index: index of a phandle to parse out 1614 * @out_args: optional pointer to output arguments structure (will be filled) 1615 * 1616 * This function is useful to parse lists of phandles and their arguments. 1617 * Returns 0 on success and fills out_args, on error returns appropriate 1618 * errno value. 1619 * 1620 * Caller is responsible to call of_node_put() on the returned out_args->np 1621 * pointer. 1622 * 1623 * Example: 1624 * 1625 * phandle1: node1 { 1626 * } 1627 * 1628 * phandle2: node2 { 1629 * } 1630 * 1631 * node3 { 1632 * list = <&phandle1 0 2 &phandle2 2 3>; 1633 * } 1634 * 1635 * To get a device_node of the `node2' node you may call this: 1636 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1637 */ 1638 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1639 const char *list_name, int cell_count, 1640 int index, struct of_phandle_args *out_args) 1641 { 1642 if (index < 0) 1643 return -EINVAL; 1644 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1645 index, out_args); 1646 } 1647 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1648 1649 /** 1650 * of_count_phandle_with_args() - Find the number of phandles references in a property 1651 * @np: pointer to a device tree node containing a list 1652 * @list_name: property name that contains a list 1653 * @cells_name: property name that specifies phandles' arguments count 1654 * 1655 * Returns the number of phandle + argument tuples within a property. It 1656 * is a typical pattern to encode a list of phandle and variable 1657 * arguments into a single property. The number of arguments is encoded 1658 * by a property in the phandle-target node. For example, a gpios 1659 * property would contain a list of GPIO specifies consisting of a 1660 * phandle and 1 or more arguments. The number of arguments are 1661 * determined by the #gpio-cells property in the node pointed to by the 1662 * phandle. 1663 */ 1664 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1665 const char *cells_name) 1666 { 1667 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1668 NULL); 1669 } 1670 EXPORT_SYMBOL(of_count_phandle_with_args); 1671 1672 /** 1673 * __of_add_property - Add a property to a node without lock operations 1674 */ 1675 int __of_add_property(struct device_node *np, struct property *prop) 1676 { 1677 struct property **next; 1678 1679 prop->next = NULL; 1680 next = &np->properties; 1681 while (*next) { 1682 if (strcmp(prop->name, (*next)->name) == 0) 1683 /* duplicate ! don't insert it */ 1684 return -EEXIST; 1685 1686 next = &(*next)->next; 1687 } 1688 *next = prop; 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * of_add_property - Add a property to a node 1695 */ 1696 int of_add_property(struct device_node *np, struct property *prop) 1697 { 1698 unsigned long flags; 1699 int rc; 1700 1701 mutex_lock(&of_mutex); 1702 1703 raw_spin_lock_irqsave(&devtree_lock, flags); 1704 rc = __of_add_property(np, prop); 1705 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1706 1707 if (!rc) 1708 __of_add_property_sysfs(np, prop); 1709 1710 mutex_unlock(&of_mutex); 1711 1712 if (!rc) 1713 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1714 1715 return rc; 1716 } 1717 1718 int __of_remove_property(struct device_node *np, struct property *prop) 1719 { 1720 struct property **next; 1721 1722 for (next = &np->properties; *next; next = &(*next)->next) { 1723 if (*next == prop) 1724 break; 1725 } 1726 if (*next == NULL) 1727 return -ENODEV; 1728 1729 /* found the node */ 1730 *next = prop->next; 1731 prop->next = np->deadprops; 1732 np->deadprops = prop; 1733 1734 return 0; 1735 } 1736 1737 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1738 { 1739 if (!IS_ENABLED(CONFIG_SYSFS)) 1740 return; 1741 1742 /* at early boot, bail here and defer setup to of_init() */ 1743 if (of_kset && of_node_is_attached(np)) 1744 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1745 } 1746 1747 /** 1748 * of_remove_property - Remove a property from a node. 1749 * 1750 * Note that we don't actually remove it, since we have given out 1751 * who-knows-how-many pointers to the data using get-property. 1752 * Instead we just move the property to the "dead properties" 1753 * list, so it won't be found any more. 1754 */ 1755 int of_remove_property(struct device_node *np, struct property *prop) 1756 { 1757 unsigned long flags; 1758 int rc; 1759 1760 mutex_lock(&of_mutex); 1761 1762 raw_spin_lock_irqsave(&devtree_lock, flags); 1763 rc = __of_remove_property(np, prop); 1764 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1765 1766 if (!rc) 1767 __of_remove_property_sysfs(np, prop); 1768 1769 mutex_unlock(&of_mutex); 1770 1771 if (!rc) 1772 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1773 1774 return rc; 1775 } 1776 1777 int __of_update_property(struct device_node *np, struct property *newprop, 1778 struct property **oldpropp) 1779 { 1780 struct property **next, *oldprop; 1781 1782 for (next = &np->properties; *next; next = &(*next)->next) { 1783 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1784 break; 1785 } 1786 *oldpropp = oldprop = *next; 1787 1788 if (oldprop) { 1789 /* replace the node */ 1790 newprop->next = oldprop->next; 1791 *next = newprop; 1792 oldprop->next = np->deadprops; 1793 np->deadprops = oldprop; 1794 } else { 1795 /* new node */ 1796 newprop->next = NULL; 1797 *next = newprop; 1798 } 1799 1800 return 0; 1801 } 1802 1803 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1804 struct property *oldprop) 1805 { 1806 if (!IS_ENABLED(CONFIG_SYSFS)) 1807 return; 1808 1809 /* At early boot, bail out and defer setup to of_init() */ 1810 if (!of_kset) 1811 return; 1812 1813 if (oldprop) 1814 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1815 __of_add_property_sysfs(np, newprop); 1816 } 1817 1818 /* 1819 * of_update_property - Update a property in a node, if the property does 1820 * not exist, add it. 1821 * 1822 * Note that we don't actually remove it, since we have given out 1823 * who-knows-how-many pointers to the data using get-property. 1824 * Instead we just move the property to the "dead properties" list, 1825 * and add the new property to the property list 1826 */ 1827 int of_update_property(struct device_node *np, struct property *newprop) 1828 { 1829 struct property *oldprop; 1830 unsigned long flags; 1831 int rc; 1832 1833 if (!newprop->name) 1834 return -EINVAL; 1835 1836 mutex_lock(&of_mutex); 1837 1838 raw_spin_lock_irqsave(&devtree_lock, flags); 1839 rc = __of_update_property(np, newprop, &oldprop); 1840 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1841 1842 if (!rc) 1843 __of_update_property_sysfs(np, newprop, oldprop); 1844 1845 mutex_unlock(&of_mutex); 1846 1847 if (!rc) 1848 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1849 1850 return rc; 1851 } 1852 1853 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1854 int id, const char *stem, int stem_len) 1855 { 1856 ap->np = np; 1857 ap->id = id; 1858 strncpy(ap->stem, stem, stem_len); 1859 ap->stem[stem_len] = 0; 1860 list_add_tail(&ap->link, &aliases_lookup); 1861 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1862 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1863 } 1864 1865 /** 1866 * of_alias_scan - Scan all properties of the 'aliases' node 1867 * 1868 * The function scans all the properties of the 'aliases' node and populates 1869 * the global lookup table with the properties. It returns the 1870 * number of alias properties found, or an error code in case of failure. 1871 * 1872 * @dt_alloc: An allocator that provides a virtual address to memory 1873 * for storing the resulting tree 1874 */ 1875 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1876 { 1877 struct property *pp; 1878 1879 of_aliases = of_find_node_by_path("/aliases"); 1880 of_chosen = of_find_node_by_path("/chosen"); 1881 if (of_chosen == NULL) 1882 of_chosen = of_find_node_by_path("/chosen@0"); 1883 1884 if (of_chosen) { 1885 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1886 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1887 if (!name) 1888 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1889 if (IS_ENABLED(CONFIG_PPC) && !name) 1890 name = of_get_property(of_aliases, "stdout", NULL); 1891 if (name) 1892 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1893 } 1894 1895 if (!of_aliases) 1896 return; 1897 1898 for_each_property_of_node(of_aliases, pp) { 1899 const char *start = pp->name; 1900 const char *end = start + strlen(start); 1901 struct device_node *np; 1902 struct alias_prop *ap; 1903 int id, len; 1904 1905 /* Skip those we do not want to proceed */ 1906 if (!strcmp(pp->name, "name") || 1907 !strcmp(pp->name, "phandle") || 1908 !strcmp(pp->name, "linux,phandle")) 1909 continue; 1910 1911 np = of_find_node_by_path(pp->value); 1912 if (!np) 1913 continue; 1914 1915 /* walk the alias backwards to extract the id and work out 1916 * the 'stem' string */ 1917 while (isdigit(*(end-1)) && end > start) 1918 end--; 1919 len = end - start; 1920 1921 if (kstrtoint(end, 10, &id) < 0) 1922 continue; 1923 1924 /* Allocate an alias_prop with enough space for the stem */ 1925 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1926 if (!ap) 1927 continue; 1928 memset(ap, 0, sizeof(*ap) + len + 1); 1929 ap->alias = start; 1930 of_alias_add(ap, np, id, start, len); 1931 } 1932 } 1933 1934 /** 1935 * of_alias_get_id - Get alias id for the given device_node 1936 * @np: Pointer to the given device_node 1937 * @stem: Alias stem of the given device_node 1938 * 1939 * The function travels the lookup table to get the alias id for the given 1940 * device_node and alias stem. It returns the alias id if found. 1941 */ 1942 int of_alias_get_id(struct device_node *np, const char *stem) 1943 { 1944 struct alias_prop *app; 1945 int id = -ENODEV; 1946 1947 mutex_lock(&of_mutex); 1948 list_for_each_entry(app, &aliases_lookup, link) { 1949 if (strcmp(app->stem, stem) != 0) 1950 continue; 1951 1952 if (np == app->np) { 1953 id = app->id; 1954 break; 1955 } 1956 } 1957 mutex_unlock(&of_mutex); 1958 1959 return id; 1960 } 1961 EXPORT_SYMBOL_GPL(of_alias_get_id); 1962 1963 /** 1964 * of_alias_get_highest_id - Get highest alias id for the given stem 1965 * @stem: Alias stem to be examined 1966 * 1967 * The function travels the lookup table to get the highest alias id for the 1968 * given alias stem. It returns the alias id if found. 1969 */ 1970 int of_alias_get_highest_id(const char *stem) 1971 { 1972 struct alias_prop *app; 1973 int id = -ENODEV; 1974 1975 mutex_lock(&of_mutex); 1976 list_for_each_entry(app, &aliases_lookup, link) { 1977 if (strcmp(app->stem, stem) != 0) 1978 continue; 1979 1980 if (app->id > id) 1981 id = app->id; 1982 } 1983 mutex_unlock(&of_mutex); 1984 1985 return id; 1986 } 1987 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1988 1989 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1990 u32 *pu) 1991 { 1992 const void *curv = cur; 1993 1994 if (!prop) 1995 return NULL; 1996 1997 if (!cur) { 1998 curv = prop->value; 1999 goto out_val; 2000 } 2001 2002 curv += sizeof(*cur); 2003 if (curv >= prop->value + prop->length) 2004 return NULL; 2005 2006 out_val: 2007 *pu = be32_to_cpup(curv); 2008 return curv; 2009 } 2010 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2011 2012 const char *of_prop_next_string(struct property *prop, const char *cur) 2013 { 2014 const void *curv = cur; 2015 2016 if (!prop) 2017 return NULL; 2018 2019 if (!cur) 2020 return prop->value; 2021 2022 curv += strlen(cur) + 1; 2023 if (curv >= prop->value + prop->length) 2024 return NULL; 2025 2026 return curv; 2027 } 2028 EXPORT_SYMBOL_GPL(of_prop_next_string); 2029 2030 /** 2031 * of_console_check() - Test and setup console for DT setup 2032 * @dn - Pointer to device node 2033 * @name - Name to use for preferred console without index. ex. "ttyS" 2034 * @index - Index to use for preferred console. 2035 * 2036 * Check if the given device node matches the stdout-path property in the 2037 * /chosen node. If it does then register it as the preferred console and return 2038 * TRUE. Otherwise return FALSE. 2039 */ 2040 bool of_console_check(struct device_node *dn, char *name, int index) 2041 { 2042 if (!dn || dn != of_stdout || console_set_on_cmdline) 2043 return false; 2044 return !add_preferred_console(name, index, 2045 kstrdup(of_stdout_options, GFP_KERNEL)); 2046 } 2047 EXPORT_SYMBOL_GPL(of_console_check); 2048 2049 /** 2050 * of_find_next_cache_node - Find a node's subsidiary cache 2051 * @np: node of type "cpu" or "cache" 2052 * 2053 * Returns a node pointer with refcount incremented, use 2054 * of_node_put() on it when done. Caller should hold a reference 2055 * to np. 2056 */ 2057 struct device_node *of_find_next_cache_node(const struct device_node *np) 2058 { 2059 struct device_node *child; 2060 const phandle *handle; 2061 2062 handle = of_get_property(np, "l2-cache", NULL); 2063 if (!handle) 2064 handle = of_get_property(np, "next-level-cache", NULL); 2065 2066 if (handle) 2067 return of_find_node_by_phandle(be32_to_cpup(handle)); 2068 2069 /* OF on pmac has nodes instead of properties named "l2-cache" 2070 * beneath CPU nodes. 2071 */ 2072 if (!strcmp(np->type, "cpu")) 2073 for_each_child_of_node(np, child) 2074 if (!strcmp(child->type, "cache")) 2075 return child; 2076 2077 return NULL; 2078 } 2079 2080 /** 2081 * of_graph_parse_endpoint() - parse common endpoint node properties 2082 * @node: pointer to endpoint device_node 2083 * @endpoint: pointer to the OF endpoint data structure 2084 * 2085 * The caller should hold a reference to @node. 2086 */ 2087 int of_graph_parse_endpoint(const struct device_node *node, 2088 struct of_endpoint *endpoint) 2089 { 2090 struct device_node *port_node = of_get_parent(node); 2091 2092 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2093 __func__, node->full_name); 2094 2095 memset(endpoint, 0, sizeof(*endpoint)); 2096 2097 endpoint->local_node = node; 2098 /* 2099 * It doesn't matter whether the two calls below succeed. 2100 * If they don't then the default value 0 is used. 2101 */ 2102 of_property_read_u32(port_node, "reg", &endpoint->port); 2103 of_property_read_u32(node, "reg", &endpoint->id); 2104 2105 of_node_put(port_node); 2106 2107 return 0; 2108 } 2109 EXPORT_SYMBOL(of_graph_parse_endpoint); 2110 2111 /** 2112 * of_graph_get_port_by_id() - get the port matching a given id 2113 * @parent: pointer to the parent device node 2114 * @id: id of the port 2115 * 2116 * Return: A 'port' node pointer with refcount incremented. The caller 2117 * has to use of_node_put() on it when done. 2118 */ 2119 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2120 { 2121 struct device_node *node, *port; 2122 2123 node = of_get_child_by_name(parent, "ports"); 2124 if (node) 2125 parent = node; 2126 2127 for_each_child_of_node(parent, port) { 2128 u32 port_id = 0; 2129 2130 if (of_node_cmp(port->name, "port") != 0) 2131 continue; 2132 of_property_read_u32(port, "reg", &port_id); 2133 if (id == port_id) 2134 break; 2135 } 2136 2137 of_node_put(node); 2138 2139 return port; 2140 } 2141 EXPORT_SYMBOL(of_graph_get_port_by_id); 2142 2143 /** 2144 * of_graph_get_next_endpoint() - get next endpoint node 2145 * @parent: pointer to the parent device node 2146 * @prev: previous endpoint node, or NULL to get first 2147 * 2148 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2149 * of the passed @prev node is decremented. 2150 */ 2151 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2152 struct device_node *prev) 2153 { 2154 struct device_node *endpoint; 2155 struct device_node *port; 2156 2157 if (!parent) 2158 return NULL; 2159 2160 /* 2161 * Start by locating the port node. If no previous endpoint is specified 2162 * search for the first port node, otherwise get the previous endpoint 2163 * parent port node. 2164 */ 2165 if (!prev) { 2166 struct device_node *node; 2167 2168 node = of_get_child_by_name(parent, "ports"); 2169 if (node) 2170 parent = node; 2171 2172 port = of_get_child_by_name(parent, "port"); 2173 of_node_put(node); 2174 2175 if (!port) { 2176 pr_err("%s(): no port node found in %s\n", 2177 __func__, parent->full_name); 2178 return NULL; 2179 } 2180 } else { 2181 port = of_get_parent(prev); 2182 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2183 __func__, prev->full_name)) 2184 return NULL; 2185 } 2186 2187 while (1) { 2188 /* 2189 * Now that we have a port node, get the next endpoint by 2190 * getting the next child. If the previous endpoint is NULL this 2191 * will return the first child. 2192 */ 2193 endpoint = of_get_next_child(port, prev); 2194 if (endpoint) { 2195 of_node_put(port); 2196 return endpoint; 2197 } 2198 2199 /* No more endpoints under this port, try the next one. */ 2200 prev = NULL; 2201 2202 do { 2203 port = of_get_next_child(parent, port); 2204 if (!port) 2205 return NULL; 2206 } while (of_node_cmp(port->name, "port")); 2207 } 2208 } 2209 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2210 2211 /** 2212 * of_graph_get_remote_port_parent() - get remote port's parent node 2213 * @node: pointer to a local endpoint device_node 2214 * 2215 * Return: Remote device node associated with remote endpoint node linked 2216 * to @node. Use of_node_put() on it when done. 2217 */ 2218 struct device_node *of_graph_get_remote_port_parent( 2219 const struct device_node *node) 2220 { 2221 struct device_node *np; 2222 unsigned int depth; 2223 2224 /* Get remote endpoint node. */ 2225 np = of_parse_phandle(node, "remote-endpoint", 0); 2226 2227 /* Walk 3 levels up only if there is 'ports' node. */ 2228 for (depth = 3; depth && np; depth--) { 2229 np = of_get_next_parent(np); 2230 if (depth == 2 && of_node_cmp(np->name, "ports")) 2231 break; 2232 } 2233 return np; 2234 } 2235 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2236 2237 /** 2238 * of_graph_get_remote_port() - get remote port node 2239 * @node: pointer to a local endpoint device_node 2240 * 2241 * Return: Remote port node associated with remote endpoint node linked 2242 * to @node. Use of_node_put() on it when done. 2243 */ 2244 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2245 { 2246 struct device_node *np; 2247 2248 /* Get remote endpoint node. */ 2249 np = of_parse_phandle(node, "remote-endpoint", 0); 2250 if (!np) 2251 return NULL; 2252 return of_get_next_parent(np); 2253 } 2254 EXPORT_SYMBOL(of_graph_get_remote_port); 2255