1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 21 #define pr_fmt(fmt) "OF: " fmt 22 23 #include <linux/console.h> 24 #include <linux/ctype.h> 25 #include <linux/cpu.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/of_graph.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/proc_fs.h> 34 35 #include "of_private.h" 36 37 LIST_HEAD(aliases_lookup); 38 39 struct device_node *of_root; 40 EXPORT_SYMBOL(of_root); 41 struct device_node *of_chosen; 42 struct device_node *of_aliases; 43 struct device_node *of_stdout; 44 static const char *of_stdout_options; 45 46 struct kset *of_kset; 47 48 /* 49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 50 * This mutex must be held whenever modifications are being made to the 51 * device tree. The of_{attach,detach}_node() and 52 * of_{add,remove,update}_property() helpers make sure this happens. 53 */ 54 DEFINE_MUTEX(of_mutex); 55 56 /* use when traversing tree through the child, sibling, 57 * or parent members of struct device_node. 58 */ 59 DEFINE_RAW_SPINLOCK(devtree_lock); 60 61 int of_n_addr_cells(struct device_node *np) 62 { 63 u32 cells; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 if (!of_property_read_u32(np, "#address-cells", &cells)) 69 return cells; 70 } while (np->parent); 71 /* No #address-cells property for the root node */ 72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 73 } 74 EXPORT_SYMBOL(of_n_addr_cells); 75 76 int of_n_size_cells(struct device_node *np) 77 { 78 u32 cells; 79 80 do { 81 if (np->parent) 82 np = np->parent; 83 if (!of_property_read_u32(np, "#size-cells", &cells)) 84 return cells; 85 } while (np->parent); 86 /* No #size-cells property for the root node */ 87 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 88 } 89 EXPORT_SYMBOL(of_n_size_cells); 90 91 #ifdef CONFIG_NUMA 92 int __weak of_node_to_nid(struct device_node *np) 93 { 94 return NUMA_NO_NODE; 95 } 96 #endif 97 98 #ifndef CONFIG_OF_DYNAMIC 99 static void of_node_release(struct kobject *kobj) 100 { 101 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 102 } 103 #endif /* CONFIG_OF_DYNAMIC */ 104 105 struct kobj_type of_node_ktype = { 106 .release = of_node_release, 107 }; 108 109 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 110 struct bin_attribute *bin_attr, char *buf, 111 loff_t offset, size_t count) 112 { 113 struct property *pp = container_of(bin_attr, struct property, attr); 114 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 115 } 116 117 /* always return newly allocated name, caller must free after use */ 118 static const char *safe_name(struct kobject *kobj, const char *orig_name) 119 { 120 const char *name = orig_name; 121 struct kernfs_node *kn; 122 int i = 0; 123 124 /* don't be a hero. After 16 tries give up */ 125 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 126 sysfs_put(kn); 127 if (name != orig_name) 128 kfree(name); 129 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 130 } 131 132 if (name == orig_name) { 133 name = kstrdup(orig_name, GFP_KERNEL); 134 } else { 135 pr_warn("Duplicate name in %s, renamed to \"%s\"\n", 136 kobject_name(kobj), name); 137 } 138 return name; 139 } 140 141 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 142 { 143 int rc; 144 145 /* Important: Don't leak passwords */ 146 bool secure = strncmp(pp->name, "security-", 9) == 0; 147 148 if (!IS_ENABLED(CONFIG_SYSFS)) 149 return 0; 150 151 if (!of_kset || !of_node_is_attached(np)) 152 return 0; 153 154 sysfs_bin_attr_init(&pp->attr); 155 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 156 pp->attr.attr.mode = secure ? 0400 : 0444; 157 pp->attr.size = secure ? 0 : pp->length; 158 pp->attr.read = of_node_property_read; 159 160 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 161 WARN(rc, "error adding attribute %s to node %pOF\n", pp->name, np); 162 return rc; 163 } 164 165 int __of_attach_node_sysfs(struct device_node *np) 166 { 167 const char *name; 168 struct kobject *parent; 169 struct property *pp; 170 int rc; 171 172 if (!IS_ENABLED(CONFIG_SYSFS)) 173 return 0; 174 175 if (!of_kset) 176 return 0; 177 178 np->kobj.kset = of_kset; 179 if (!np->parent) { 180 /* Nodes without parents are new top level trees */ 181 name = safe_name(&of_kset->kobj, "base"); 182 parent = NULL; 183 } else { 184 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 185 parent = &np->parent->kobj; 186 } 187 if (!name) 188 return -ENOMEM; 189 rc = kobject_add(&np->kobj, parent, "%s", name); 190 kfree(name); 191 if (rc) 192 return rc; 193 194 for_each_property_of_node(np, pp) 195 __of_add_property_sysfs(np, pp); 196 197 return 0; 198 } 199 200 void __init of_core_init(void) 201 { 202 struct device_node *np; 203 204 /* Create the kset, and register existing nodes */ 205 mutex_lock(&of_mutex); 206 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 207 if (!of_kset) { 208 mutex_unlock(&of_mutex); 209 pr_err("failed to register existing nodes\n"); 210 return; 211 } 212 for_each_of_allnodes(np) 213 __of_attach_node_sysfs(np); 214 mutex_unlock(&of_mutex); 215 216 /* Symlink in /proc as required by userspace ABI */ 217 if (of_root) 218 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 219 } 220 221 static struct property *__of_find_property(const struct device_node *np, 222 const char *name, int *lenp) 223 { 224 struct property *pp; 225 226 if (!np) 227 return NULL; 228 229 for (pp = np->properties; pp; pp = pp->next) { 230 if (of_prop_cmp(pp->name, name) == 0) { 231 if (lenp) 232 *lenp = pp->length; 233 break; 234 } 235 } 236 237 return pp; 238 } 239 240 struct property *of_find_property(const struct device_node *np, 241 const char *name, 242 int *lenp) 243 { 244 struct property *pp; 245 unsigned long flags; 246 247 raw_spin_lock_irqsave(&devtree_lock, flags); 248 pp = __of_find_property(np, name, lenp); 249 raw_spin_unlock_irqrestore(&devtree_lock, flags); 250 251 return pp; 252 } 253 EXPORT_SYMBOL(of_find_property); 254 255 struct device_node *__of_find_all_nodes(struct device_node *prev) 256 { 257 struct device_node *np; 258 if (!prev) { 259 np = of_root; 260 } else if (prev->child) { 261 np = prev->child; 262 } else { 263 /* Walk back up looking for a sibling, or the end of the structure */ 264 np = prev; 265 while (np->parent && !np->sibling) 266 np = np->parent; 267 np = np->sibling; /* Might be null at the end of the tree */ 268 } 269 return np; 270 } 271 272 /** 273 * of_find_all_nodes - Get next node in global list 274 * @prev: Previous node or NULL to start iteration 275 * of_node_put() will be called on it 276 * 277 * Returns a node pointer with refcount incremented, use 278 * of_node_put() on it when done. 279 */ 280 struct device_node *of_find_all_nodes(struct device_node *prev) 281 { 282 struct device_node *np; 283 unsigned long flags; 284 285 raw_spin_lock_irqsave(&devtree_lock, flags); 286 np = __of_find_all_nodes(prev); 287 of_node_get(np); 288 of_node_put(prev); 289 raw_spin_unlock_irqrestore(&devtree_lock, flags); 290 return np; 291 } 292 EXPORT_SYMBOL(of_find_all_nodes); 293 294 /* 295 * Find a property with a given name for a given node 296 * and return the value. 297 */ 298 const void *__of_get_property(const struct device_node *np, 299 const char *name, int *lenp) 300 { 301 struct property *pp = __of_find_property(np, name, lenp); 302 303 return pp ? pp->value : NULL; 304 } 305 306 /* 307 * Find a property with a given name for a given node 308 * and return the value. 309 */ 310 const void *of_get_property(const struct device_node *np, const char *name, 311 int *lenp) 312 { 313 struct property *pp = of_find_property(np, name, lenp); 314 315 return pp ? pp->value : NULL; 316 } 317 EXPORT_SYMBOL(of_get_property); 318 319 /* 320 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 321 * 322 * @cpu: logical cpu index of a core/thread 323 * @phys_id: physical identifier of a core/thread 324 * 325 * CPU logical to physical index mapping is architecture specific. 326 * However this __weak function provides a default match of physical 327 * id to logical cpu index. phys_id provided here is usually values read 328 * from the device tree which must match the hardware internal registers. 329 * 330 * Returns true if the physical identifier and the logical cpu index 331 * correspond to the same core/thread, false otherwise. 332 */ 333 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 334 { 335 return (u32)phys_id == cpu; 336 } 337 338 /** 339 * Checks if the given "prop_name" property holds the physical id of the 340 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 341 * NULL, local thread number within the core is returned in it. 342 */ 343 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 344 const char *prop_name, int cpu, unsigned int *thread) 345 { 346 const __be32 *cell; 347 int ac, prop_len, tid; 348 u64 hwid; 349 350 ac = of_n_addr_cells(cpun); 351 cell = of_get_property(cpun, prop_name, &prop_len); 352 if (!cell || !ac) 353 return false; 354 prop_len /= sizeof(*cell) * ac; 355 for (tid = 0; tid < prop_len; tid++) { 356 hwid = of_read_number(cell, ac); 357 if (arch_match_cpu_phys_id(cpu, hwid)) { 358 if (thread) 359 *thread = tid; 360 return true; 361 } 362 cell += ac; 363 } 364 return false; 365 } 366 367 /* 368 * arch_find_n_match_cpu_physical_id - See if the given device node is 369 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 370 * else false. If 'thread' is non-NULL, the local thread number within the 371 * core is returned in it. 372 */ 373 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 374 int cpu, unsigned int *thread) 375 { 376 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 377 * for thread ids on PowerPC. If it doesn't exist fallback to 378 * standard "reg" property. 379 */ 380 if (IS_ENABLED(CONFIG_PPC) && 381 __of_find_n_match_cpu_property(cpun, 382 "ibm,ppc-interrupt-server#s", 383 cpu, thread)) 384 return true; 385 386 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 387 } 388 389 /** 390 * of_get_cpu_node - Get device node associated with the given logical CPU 391 * 392 * @cpu: CPU number(logical index) for which device node is required 393 * @thread: if not NULL, local thread number within the physical core is 394 * returned 395 * 396 * The main purpose of this function is to retrieve the device node for the 397 * given logical CPU index. It should be used to initialize the of_node in 398 * cpu device. Once of_node in cpu device is populated, all the further 399 * references can use that instead. 400 * 401 * CPU logical to physical index mapping is architecture specific and is built 402 * before booting secondary cores. This function uses arch_match_cpu_phys_id 403 * which can be overridden by architecture specific implementation. 404 * 405 * Returns a node pointer for the logical cpu with refcount incremented, use 406 * of_node_put() on it when done. Returns NULL if not found. 407 */ 408 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 409 { 410 struct device_node *cpun; 411 412 for_each_node_by_type(cpun, "cpu") { 413 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 414 return cpun; 415 } 416 return NULL; 417 } 418 EXPORT_SYMBOL(of_get_cpu_node); 419 420 /** 421 * __of_device_is_compatible() - Check if the node matches given constraints 422 * @device: pointer to node 423 * @compat: required compatible string, NULL or "" for any match 424 * @type: required device_type value, NULL or "" for any match 425 * @name: required node name, NULL or "" for any match 426 * 427 * Checks if the given @compat, @type and @name strings match the 428 * properties of the given @device. A constraints can be skipped by 429 * passing NULL or an empty string as the constraint. 430 * 431 * Returns 0 for no match, and a positive integer on match. The return 432 * value is a relative score with larger values indicating better 433 * matches. The score is weighted for the most specific compatible value 434 * to get the highest score. Matching type is next, followed by matching 435 * name. Practically speaking, this results in the following priority 436 * order for matches: 437 * 438 * 1. specific compatible && type && name 439 * 2. specific compatible && type 440 * 3. specific compatible && name 441 * 4. specific compatible 442 * 5. general compatible && type && name 443 * 6. general compatible && type 444 * 7. general compatible && name 445 * 8. general compatible 446 * 9. type && name 447 * 10. type 448 * 11. name 449 */ 450 static int __of_device_is_compatible(const struct device_node *device, 451 const char *compat, const char *type, const char *name) 452 { 453 struct property *prop; 454 const char *cp; 455 int index = 0, score = 0; 456 457 /* Compatible match has highest priority */ 458 if (compat && compat[0]) { 459 prop = __of_find_property(device, "compatible", NULL); 460 for (cp = of_prop_next_string(prop, NULL); cp; 461 cp = of_prop_next_string(prop, cp), index++) { 462 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 463 score = INT_MAX/2 - (index << 2); 464 break; 465 } 466 } 467 if (!score) 468 return 0; 469 } 470 471 /* Matching type is better than matching name */ 472 if (type && type[0]) { 473 if (!device->type || of_node_cmp(type, device->type)) 474 return 0; 475 score += 2; 476 } 477 478 /* Matching name is a bit better than not */ 479 if (name && name[0]) { 480 if (!device->name || of_node_cmp(name, device->name)) 481 return 0; 482 score++; 483 } 484 485 return score; 486 } 487 488 /** Checks if the given "compat" string matches one of the strings in 489 * the device's "compatible" property 490 */ 491 int of_device_is_compatible(const struct device_node *device, 492 const char *compat) 493 { 494 unsigned long flags; 495 int res; 496 497 raw_spin_lock_irqsave(&devtree_lock, flags); 498 res = __of_device_is_compatible(device, compat, NULL, NULL); 499 raw_spin_unlock_irqrestore(&devtree_lock, flags); 500 return res; 501 } 502 EXPORT_SYMBOL(of_device_is_compatible); 503 504 /** Checks if the device is compatible with any of the entries in 505 * a NULL terminated array of strings. Returns the best match 506 * score or 0. 507 */ 508 int of_device_compatible_match(struct device_node *device, 509 const char *const *compat) 510 { 511 unsigned int tmp, score = 0; 512 513 if (!compat) 514 return 0; 515 516 while (*compat) { 517 tmp = of_device_is_compatible(device, *compat); 518 if (tmp > score) 519 score = tmp; 520 compat++; 521 } 522 523 return score; 524 } 525 526 /** 527 * of_machine_is_compatible - Test root of device tree for a given compatible value 528 * @compat: compatible string to look for in root node's compatible property. 529 * 530 * Returns a positive integer if the root node has the given value in its 531 * compatible property. 532 */ 533 int of_machine_is_compatible(const char *compat) 534 { 535 struct device_node *root; 536 int rc = 0; 537 538 root = of_find_node_by_path("/"); 539 if (root) { 540 rc = of_device_is_compatible(root, compat); 541 of_node_put(root); 542 } 543 return rc; 544 } 545 EXPORT_SYMBOL(of_machine_is_compatible); 546 547 /** 548 * __of_device_is_available - check if a device is available for use 549 * 550 * @device: Node to check for availability, with locks already held 551 * 552 * Returns true if the status property is absent or set to "okay" or "ok", 553 * false otherwise 554 */ 555 static bool __of_device_is_available(const struct device_node *device) 556 { 557 const char *status; 558 int statlen; 559 560 if (!device) 561 return false; 562 563 status = __of_get_property(device, "status", &statlen); 564 if (status == NULL) 565 return true; 566 567 if (statlen > 0) { 568 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 569 return true; 570 } 571 572 return false; 573 } 574 575 /** 576 * of_device_is_available - check if a device is available for use 577 * 578 * @device: Node to check for availability 579 * 580 * Returns true if the status property is absent or set to "okay" or "ok", 581 * false otherwise 582 */ 583 bool of_device_is_available(const struct device_node *device) 584 { 585 unsigned long flags; 586 bool res; 587 588 raw_spin_lock_irqsave(&devtree_lock, flags); 589 res = __of_device_is_available(device); 590 raw_spin_unlock_irqrestore(&devtree_lock, flags); 591 return res; 592 593 } 594 EXPORT_SYMBOL(of_device_is_available); 595 596 /** 597 * of_device_is_big_endian - check if a device has BE registers 598 * 599 * @device: Node to check for endianness 600 * 601 * Returns true if the device has a "big-endian" property, or if the kernel 602 * was compiled for BE *and* the device has a "native-endian" property. 603 * Returns false otherwise. 604 * 605 * Callers would nominally use ioread32be/iowrite32be if 606 * of_device_is_big_endian() == true, or readl/writel otherwise. 607 */ 608 bool of_device_is_big_endian(const struct device_node *device) 609 { 610 if (of_property_read_bool(device, "big-endian")) 611 return true; 612 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 613 of_property_read_bool(device, "native-endian")) 614 return true; 615 return false; 616 } 617 EXPORT_SYMBOL(of_device_is_big_endian); 618 619 /** 620 * of_get_parent - Get a node's parent if any 621 * @node: Node to get parent 622 * 623 * Returns a node pointer with refcount incremented, use 624 * of_node_put() on it when done. 625 */ 626 struct device_node *of_get_parent(const struct device_node *node) 627 { 628 struct device_node *np; 629 unsigned long flags; 630 631 if (!node) 632 return NULL; 633 634 raw_spin_lock_irqsave(&devtree_lock, flags); 635 np = of_node_get(node->parent); 636 raw_spin_unlock_irqrestore(&devtree_lock, flags); 637 return np; 638 } 639 EXPORT_SYMBOL(of_get_parent); 640 641 /** 642 * of_get_next_parent - Iterate to a node's parent 643 * @node: Node to get parent of 644 * 645 * This is like of_get_parent() except that it drops the 646 * refcount on the passed node, making it suitable for iterating 647 * through a node's parents. 648 * 649 * Returns a node pointer with refcount incremented, use 650 * of_node_put() on it when done. 651 */ 652 struct device_node *of_get_next_parent(struct device_node *node) 653 { 654 struct device_node *parent; 655 unsigned long flags; 656 657 if (!node) 658 return NULL; 659 660 raw_spin_lock_irqsave(&devtree_lock, flags); 661 parent = of_node_get(node->parent); 662 of_node_put(node); 663 raw_spin_unlock_irqrestore(&devtree_lock, flags); 664 return parent; 665 } 666 EXPORT_SYMBOL(of_get_next_parent); 667 668 static struct device_node *__of_get_next_child(const struct device_node *node, 669 struct device_node *prev) 670 { 671 struct device_node *next; 672 673 if (!node) 674 return NULL; 675 676 next = prev ? prev->sibling : node->child; 677 for (; next; next = next->sibling) 678 if (of_node_get(next)) 679 break; 680 of_node_put(prev); 681 return next; 682 } 683 #define __for_each_child_of_node(parent, child) \ 684 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 685 child = __of_get_next_child(parent, child)) 686 687 /** 688 * of_get_next_child - Iterate a node childs 689 * @node: parent node 690 * @prev: previous child of the parent node, or NULL to get first 691 * 692 * Returns a node pointer with refcount incremented, use of_node_put() on 693 * it when done. Returns NULL when prev is the last child. Decrements the 694 * refcount of prev. 695 */ 696 struct device_node *of_get_next_child(const struct device_node *node, 697 struct device_node *prev) 698 { 699 struct device_node *next; 700 unsigned long flags; 701 702 raw_spin_lock_irqsave(&devtree_lock, flags); 703 next = __of_get_next_child(node, prev); 704 raw_spin_unlock_irqrestore(&devtree_lock, flags); 705 return next; 706 } 707 EXPORT_SYMBOL(of_get_next_child); 708 709 /** 710 * of_get_next_available_child - Find the next available child node 711 * @node: parent node 712 * @prev: previous child of the parent node, or NULL to get first 713 * 714 * This function is like of_get_next_child(), except that it 715 * automatically skips any disabled nodes (i.e. status = "disabled"). 716 */ 717 struct device_node *of_get_next_available_child(const struct device_node *node, 718 struct device_node *prev) 719 { 720 struct device_node *next; 721 unsigned long flags; 722 723 if (!node) 724 return NULL; 725 726 raw_spin_lock_irqsave(&devtree_lock, flags); 727 next = prev ? prev->sibling : node->child; 728 for (; next; next = next->sibling) { 729 if (!__of_device_is_available(next)) 730 continue; 731 if (of_node_get(next)) 732 break; 733 } 734 of_node_put(prev); 735 raw_spin_unlock_irqrestore(&devtree_lock, flags); 736 return next; 737 } 738 EXPORT_SYMBOL(of_get_next_available_child); 739 740 /** 741 * of_get_child_by_name - Find the child node by name for a given parent 742 * @node: parent node 743 * @name: child name to look for. 744 * 745 * This function looks for child node for given matching name 746 * 747 * Returns a node pointer if found, with refcount incremented, use 748 * of_node_put() on it when done. 749 * Returns NULL if node is not found. 750 */ 751 struct device_node *of_get_child_by_name(const struct device_node *node, 752 const char *name) 753 { 754 struct device_node *child; 755 756 for_each_child_of_node(node, child) 757 if (child->name && (of_node_cmp(child->name, name) == 0)) 758 break; 759 return child; 760 } 761 EXPORT_SYMBOL(of_get_child_by_name); 762 763 static struct device_node *__of_find_node_by_path(struct device_node *parent, 764 const char *path) 765 { 766 struct device_node *child; 767 int len; 768 769 len = strcspn(path, "/:"); 770 if (!len) 771 return NULL; 772 773 __for_each_child_of_node(parent, child) { 774 const char *name = kbasename(child->full_name); 775 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 776 return child; 777 } 778 return NULL; 779 } 780 781 struct device_node *__of_find_node_by_full_path(struct device_node *node, 782 const char *path) 783 { 784 const char *separator = strchr(path, ':'); 785 786 while (node && *path == '/') { 787 struct device_node *tmp = node; 788 789 path++; /* Increment past '/' delimiter */ 790 node = __of_find_node_by_path(node, path); 791 of_node_put(tmp); 792 path = strchrnul(path, '/'); 793 if (separator && separator < path) 794 break; 795 } 796 return node; 797 } 798 799 /** 800 * of_find_node_opts_by_path - Find a node matching a full OF path 801 * @path: Either the full path to match, or if the path does not 802 * start with '/', the name of a property of the /aliases 803 * node (an alias). In the case of an alias, the node 804 * matching the alias' value will be returned. 805 * @opts: Address of a pointer into which to store the start of 806 * an options string appended to the end of the path with 807 * a ':' separator. 808 * 809 * Valid paths: 810 * /foo/bar Full path 811 * foo Valid alias 812 * foo/bar Valid alias + relative path 813 * 814 * Returns a node pointer with refcount incremented, use 815 * of_node_put() on it when done. 816 */ 817 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 818 { 819 struct device_node *np = NULL; 820 struct property *pp; 821 unsigned long flags; 822 const char *separator = strchr(path, ':'); 823 824 if (opts) 825 *opts = separator ? separator + 1 : NULL; 826 827 if (strcmp(path, "/") == 0) 828 return of_node_get(of_root); 829 830 /* The path could begin with an alias */ 831 if (*path != '/') { 832 int len; 833 const char *p = separator; 834 835 if (!p) 836 p = strchrnul(path, '/'); 837 len = p - path; 838 839 /* of_aliases must not be NULL */ 840 if (!of_aliases) 841 return NULL; 842 843 for_each_property_of_node(of_aliases, pp) { 844 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 845 np = of_find_node_by_path(pp->value); 846 break; 847 } 848 } 849 if (!np) 850 return NULL; 851 path = p; 852 } 853 854 /* Step down the tree matching path components */ 855 raw_spin_lock_irqsave(&devtree_lock, flags); 856 if (!np) 857 np = of_node_get(of_root); 858 np = __of_find_node_by_full_path(np, path); 859 raw_spin_unlock_irqrestore(&devtree_lock, flags); 860 return np; 861 } 862 EXPORT_SYMBOL(of_find_node_opts_by_path); 863 864 /** 865 * of_find_node_by_name - Find a node by its "name" property 866 * @from: The node to start searching from or NULL, the node 867 * you pass will not be searched, only the next one 868 * will; typically, you pass what the previous call 869 * returned. of_node_put() will be called on it 870 * @name: The name string to match against 871 * 872 * Returns a node pointer with refcount incremented, use 873 * of_node_put() on it when done. 874 */ 875 struct device_node *of_find_node_by_name(struct device_node *from, 876 const char *name) 877 { 878 struct device_node *np; 879 unsigned long flags; 880 881 raw_spin_lock_irqsave(&devtree_lock, flags); 882 for_each_of_allnodes_from(from, np) 883 if (np->name && (of_node_cmp(np->name, name) == 0) 884 && of_node_get(np)) 885 break; 886 of_node_put(from); 887 raw_spin_unlock_irqrestore(&devtree_lock, flags); 888 return np; 889 } 890 EXPORT_SYMBOL(of_find_node_by_name); 891 892 /** 893 * of_find_node_by_type - Find a node by its "device_type" property 894 * @from: The node to start searching from, or NULL to start searching 895 * the entire device tree. The node you pass will not be 896 * searched, only the next one will; typically, you pass 897 * what the previous call returned. of_node_put() will be 898 * called on from for you. 899 * @type: The type string to match against 900 * 901 * Returns a node pointer with refcount incremented, use 902 * of_node_put() on it when done. 903 */ 904 struct device_node *of_find_node_by_type(struct device_node *from, 905 const char *type) 906 { 907 struct device_node *np; 908 unsigned long flags; 909 910 raw_spin_lock_irqsave(&devtree_lock, flags); 911 for_each_of_allnodes_from(from, np) 912 if (np->type && (of_node_cmp(np->type, type) == 0) 913 && of_node_get(np)) 914 break; 915 of_node_put(from); 916 raw_spin_unlock_irqrestore(&devtree_lock, flags); 917 return np; 918 } 919 EXPORT_SYMBOL(of_find_node_by_type); 920 921 /** 922 * of_find_compatible_node - Find a node based on type and one of the 923 * tokens in its "compatible" property 924 * @from: The node to start searching from or NULL, the node 925 * you pass will not be searched, only the next one 926 * will; typically, you pass what the previous call 927 * returned. of_node_put() will be called on it 928 * @type: The type string to match "device_type" or NULL to ignore 929 * @compatible: The string to match to one of the tokens in the device 930 * "compatible" list. 931 * 932 * Returns a node pointer with refcount incremented, use 933 * of_node_put() on it when done. 934 */ 935 struct device_node *of_find_compatible_node(struct device_node *from, 936 const char *type, const char *compatible) 937 { 938 struct device_node *np; 939 unsigned long flags; 940 941 raw_spin_lock_irqsave(&devtree_lock, flags); 942 for_each_of_allnodes_from(from, np) 943 if (__of_device_is_compatible(np, compatible, type, NULL) && 944 of_node_get(np)) 945 break; 946 of_node_put(from); 947 raw_spin_unlock_irqrestore(&devtree_lock, flags); 948 return np; 949 } 950 EXPORT_SYMBOL(of_find_compatible_node); 951 952 /** 953 * of_find_node_with_property - Find a node which has a property with 954 * the given name. 955 * @from: The node to start searching from or NULL, the node 956 * you pass will not be searched, only the next one 957 * will; typically, you pass what the previous call 958 * returned. of_node_put() will be called on it 959 * @prop_name: The name of the property to look for. 960 * 961 * Returns a node pointer with refcount incremented, use 962 * of_node_put() on it when done. 963 */ 964 struct device_node *of_find_node_with_property(struct device_node *from, 965 const char *prop_name) 966 { 967 struct device_node *np; 968 struct property *pp; 969 unsigned long flags; 970 971 raw_spin_lock_irqsave(&devtree_lock, flags); 972 for_each_of_allnodes_from(from, np) { 973 for (pp = np->properties; pp; pp = pp->next) { 974 if (of_prop_cmp(pp->name, prop_name) == 0) { 975 of_node_get(np); 976 goto out; 977 } 978 } 979 } 980 out: 981 of_node_put(from); 982 raw_spin_unlock_irqrestore(&devtree_lock, flags); 983 return np; 984 } 985 EXPORT_SYMBOL(of_find_node_with_property); 986 987 static 988 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 989 const struct device_node *node) 990 { 991 const struct of_device_id *best_match = NULL; 992 int score, best_score = 0; 993 994 if (!matches) 995 return NULL; 996 997 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 998 score = __of_device_is_compatible(node, matches->compatible, 999 matches->type, matches->name); 1000 if (score > best_score) { 1001 best_match = matches; 1002 best_score = score; 1003 } 1004 } 1005 1006 return best_match; 1007 } 1008 1009 /** 1010 * of_match_node - Tell if a device_node has a matching of_match structure 1011 * @matches: array of of device match structures to search in 1012 * @node: the of device structure to match against 1013 * 1014 * Low level utility function used by device matching. 1015 */ 1016 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1017 const struct device_node *node) 1018 { 1019 const struct of_device_id *match; 1020 unsigned long flags; 1021 1022 raw_spin_lock_irqsave(&devtree_lock, flags); 1023 match = __of_match_node(matches, node); 1024 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1025 return match; 1026 } 1027 EXPORT_SYMBOL(of_match_node); 1028 1029 /** 1030 * of_find_matching_node_and_match - Find a node based on an of_device_id 1031 * match table. 1032 * @from: The node to start searching from or NULL, the node 1033 * you pass will not be searched, only the next one 1034 * will; typically, you pass what the previous call 1035 * returned. of_node_put() will be called on it 1036 * @matches: array of of device match structures to search in 1037 * @match Updated to point at the matches entry which matched 1038 * 1039 * Returns a node pointer with refcount incremented, use 1040 * of_node_put() on it when done. 1041 */ 1042 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1043 const struct of_device_id *matches, 1044 const struct of_device_id **match) 1045 { 1046 struct device_node *np; 1047 const struct of_device_id *m; 1048 unsigned long flags; 1049 1050 if (match) 1051 *match = NULL; 1052 1053 raw_spin_lock_irqsave(&devtree_lock, flags); 1054 for_each_of_allnodes_from(from, np) { 1055 m = __of_match_node(matches, np); 1056 if (m && of_node_get(np)) { 1057 if (match) 1058 *match = m; 1059 break; 1060 } 1061 } 1062 of_node_put(from); 1063 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1064 return np; 1065 } 1066 EXPORT_SYMBOL(of_find_matching_node_and_match); 1067 1068 /** 1069 * of_modalias_node - Lookup appropriate modalias for a device node 1070 * @node: pointer to a device tree node 1071 * @modalias: Pointer to buffer that modalias value will be copied into 1072 * @len: Length of modalias value 1073 * 1074 * Based on the value of the compatible property, this routine will attempt 1075 * to choose an appropriate modalias value for a particular device tree node. 1076 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1077 * from the first entry in the compatible list property. 1078 * 1079 * This routine returns 0 on success, <0 on failure. 1080 */ 1081 int of_modalias_node(struct device_node *node, char *modalias, int len) 1082 { 1083 const char *compatible, *p; 1084 int cplen; 1085 1086 compatible = of_get_property(node, "compatible", &cplen); 1087 if (!compatible || strlen(compatible) > cplen) 1088 return -ENODEV; 1089 p = strchr(compatible, ','); 1090 strlcpy(modalias, p ? p + 1 : compatible, len); 1091 return 0; 1092 } 1093 EXPORT_SYMBOL_GPL(of_modalias_node); 1094 1095 /** 1096 * of_find_node_by_phandle - Find a node given a phandle 1097 * @handle: phandle of the node to find 1098 * 1099 * Returns a node pointer with refcount incremented, use 1100 * of_node_put() on it when done. 1101 */ 1102 struct device_node *of_find_node_by_phandle(phandle handle) 1103 { 1104 struct device_node *np; 1105 unsigned long flags; 1106 1107 if (!handle) 1108 return NULL; 1109 1110 raw_spin_lock_irqsave(&devtree_lock, flags); 1111 for_each_of_allnodes(np) 1112 if (np->phandle == handle) 1113 break; 1114 of_node_get(np); 1115 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1116 return np; 1117 } 1118 EXPORT_SYMBOL(of_find_node_by_phandle); 1119 1120 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1121 { 1122 int i; 1123 printk("%s %pOF", msg, args->np); 1124 for (i = 0; i < args->args_count; i++) { 1125 const char delim = i ? ',' : ':'; 1126 1127 pr_cont("%c%08x", delim, args->args[i]); 1128 } 1129 pr_cont("\n"); 1130 } 1131 1132 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1133 const struct device_node *np, 1134 const char *list_name, 1135 const char *cells_name, 1136 int cell_count) 1137 { 1138 const __be32 *list; 1139 int size; 1140 1141 memset(it, 0, sizeof(*it)); 1142 1143 list = of_get_property(np, list_name, &size); 1144 if (!list) 1145 return -ENOENT; 1146 1147 it->cells_name = cells_name; 1148 it->cell_count = cell_count; 1149 it->parent = np; 1150 it->list_end = list + size / sizeof(*list); 1151 it->phandle_end = list; 1152 it->cur = list; 1153 1154 return 0; 1155 } 1156 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1157 1158 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1159 { 1160 uint32_t count = 0; 1161 1162 if (it->node) { 1163 of_node_put(it->node); 1164 it->node = NULL; 1165 } 1166 1167 if (!it->cur || it->phandle_end >= it->list_end) 1168 return -ENOENT; 1169 1170 it->cur = it->phandle_end; 1171 1172 /* If phandle is 0, then it is an empty entry with no arguments. */ 1173 it->phandle = be32_to_cpup(it->cur++); 1174 1175 if (it->phandle) { 1176 1177 /* 1178 * Find the provider node and parse the #*-cells property to 1179 * determine the argument length. 1180 */ 1181 it->node = of_find_node_by_phandle(it->phandle); 1182 1183 if (it->cells_name) { 1184 if (!it->node) { 1185 pr_err("%pOF: could not find phandle\n", 1186 it->parent); 1187 goto err; 1188 } 1189 1190 if (of_property_read_u32(it->node, it->cells_name, 1191 &count)) { 1192 pr_err("%pOF: could not get %s for %pOF\n", 1193 it->parent, 1194 it->cells_name, 1195 it->node); 1196 goto err; 1197 } 1198 } else { 1199 count = it->cell_count; 1200 } 1201 1202 /* 1203 * Make sure that the arguments actually fit in the remaining 1204 * property data length 1205 */ 1206 if (it->cur + count > it->list_end) { 1207 pr_err("%pOF: arguments longer than property\n", 1208 it->parent); 1209 goto err; 1210 } 1211 } 1212 1213 it->phandle_end = it->cur + count; 1214 it->cur_count = count; 1215 1216 return 0; 1217 1218 err: 1219 if (it->node) { 1220 of_node_put(it->node); 1221 it->node = NULL; 1222 } 1223 1224 return -EINVAL; 1225 } 1226 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1227 1228 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1229 uint32_t *args, 1230 int size) 1231 { 1232 int i, count; 1233 1234 count = it->cur_count; 1235 1236 if (WARN_ON(size < count)) 1237 count = size; 1238 1239 for (i = 0; i < count; i++) 1240 args[i] = be32_to_cpup(it->cur++); 1241 1242 return count; 1243 } 1244 1245 static int __of_parse_phandle_with_args(const struct device_node *np, 1246 const char *list_name, 1247 const char *cells_name, 1248 int cell_count, int index, 1249 struct of_phandle_args *out_args) 1250 { 1251 struct of_phandle_iterator it; 1252 int rc, cur_index = 0; 1253 1254 /* Loop over the phandles until all the requested entry is found */ 1255 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1256 /* 1257 * All of the error cases bail out of the loop, so at 1258 * this point, the parsing is successful. If the requested 1259 * index matches, then fill the out_args structure and return, 1260 * or return -ENOENT for an empty entry. 1261 */ 1262 rc = -ENOENT; 1263 if (cur_index == index) { 1264 if (!it.phandle) 1265 goto err; 1266 1267 if (out_args) { 1268 int c; 1269 1270 c = of_phandle_iterator_args(&it, 1271 out_args->args, 1272 MAX_PHANDLE_ARGS); 1273 out_args->np = it.node; 1274 out_args->args_count = c; 1275 } else { 1276 of_node_put(it.node); 1277 } 1278 1279 /* Found it! return success */ 1280 return 0; 1281 } 1282 1283 cur_index++; 1284 } 1285 1286 /* 1287 * Unlock node before returning result; will be one of: 1288 * -ENOENT : index is for empty phandle 1289 * -EINVAL : parsing error on data 1290 */ 1291 1292 err: 1293 of_node_put(it.node); 1294 return rc; 1295 } 1296 1297 /** 1298 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1299 * @np: Pointer to device node holding phandle property 1300 * @phandle_name: Name of property holding a phandle value 1301 * @index: For properties holding a table of phandles, this is the index into 1302 * the table 1303 * 1304 * Returns the device_node pointer with refcount incremented. Use 1305 * of_node_put() on it when done. 1306 */ 1307 struct device_node *of_parse_phandle(const struct device_node *np, 1308 const char *phandle_name, int index) 1309 { 1310 struct of_phandle_args args; 1311 1312 if (index < 0) 1313 return NULL; 1314 1315 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1316 index, &args)) 1317 return NULL; 1318 1319 return args.np; 1320 } 1321 EXPORT_SYMBOL(of_parse_phandle); 1322 1323 /** 1324 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1325 * @np: pointer to a device tree node containing a list 1326 * @list_name: property name that contains a list 1327 * @cells_name: property name that specifies phandles' arguments count 1328 * @index: index of a phandle to parse out 1329 * @out_args: optional pointer to output arguments structure (will be filled) 1330 * 1331 * This function is useful to parse lists of phandles and their arguments. 1332 * Returns 0 on success and fills out_args, on error returns appropriate 1333 * errno value. 1334 * 1335 * Caller is responsible to call of_node_put() on the returned out_args->np 1336 * pointer. 1337 * 1338 * Example: 1339 * 1340 * phandle1: node1 { 1341 * #list-cells = <2>; 1342 * } 1343 * 1344 * phandle2: node2 { 1345 * #list-cells = <1>; 1346 * } 1347 * 1348 * node3 { 1349 * list = <&phandle1 1 2 &phandle2 3>; 1350 * } 1351 * 1352 * To get a device_node of the `node2' node you may call this: 1353 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1354 */ 1355 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1356 const char *cells_name, int index, 1357 struct of_phandle_args *out_args) 1358 { 1359 if (index < 0) 1360 return -EINVAL; 1361 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1362 index, out_args); 1363 } 1364 EXPORT_SYMBOL(of_parse_phandle_with_args); 1365 1366 /** 1367 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1368 * @np: pointer to a device tree node containing a list 1369 * @list_name: property name that contains a list 1370 * @cell_count: number of argument cells following the phandle 1371 * @index: index of a phandle to parse out 1372 * @out_args: optional pointer to output arguments structure (will be filled) 1373 * 1374 * This function is useful to parse lists of phandles and their arguments. 1375 * Returns 0 on success and fills out_args, on error returns appropriate 1376 * errno value. 1377 * 1378 * Caller is responsible to call of_node_put() on the returned out_args->np 1379 * pointer. 1380 * 1381 * Example: 1382 * 1383 * phandle1: node1 { 1384 * } 1385 * 1386 * phandle2: node2 { 1387 * } 1388 * 1389 * node3 { 1390 * list = <&phandle1 0 2 &phandle2 2 3>; 1391 * } 1392 * 1393 * To get a device_node of the `node2' node you may call this: 1394 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1395 */ 1396 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1397 const char *list_name, int cell_count, 1398 int index, struct of_phandle_args *out_args) 1399 { 1400 if (index < 0) 1401 return -EINVAL; 1402 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1403 index, out_args); 1404 } 1405 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1406 1407 /** 1408 * of_count_phandle_with_args() - Find the number of phandles references in a property 1409 * @np: pointer to a device tree node containing a list 1410 * @list_name: property name that contains a list 1411 * @cells_name: property name that specifies phandles' arguments count 1412 * 1413 * Returns the number of phandle + argument tuples within a property. It 1414 * is a typical pattern to encode a list of phandle and variable 1415 * arguments into a single property. The number of arguments is encoded 1416 * by a property in the phandle-target node. For example, a gpios 1417 * property would contain a list of GPIO specifies consisting of a 1418 * phandle and 1 or more arguments. The number of arguments are 1419 * determined by the #gpio-cells property in the node pointed to by the 1420 * phandle. 1421 */ 1422 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1423 const char *cells_name) 1424 { 1425 struct of_phandle_iterator it; 1426 int rc, cur_index = 0; 1427 1428 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1429 if (rc) 1430 return rc; 1431 1432 while ((rc = of_phandle_iterator_next(&it)) == 0) 1433 cur_index += 1; 1434 1435 if (rc != -ENOENT) 1436 return rc; 1437 1438 return cur_index; 1439 } 1440 EXPORT_SYMBOL(of_count_phandle_with_args); 1441 1442 /** 1443 * __of_add_property - Add a property to a node without lock operations 1444 */ 1445 int __of_add_property(struct device_node *np, struct property *prop) 1446 { 1447 struct property **next; 1448 1449 prop->next = NULL; 1450 next = &np->properties; 1451 while (*next) { 1452 if (strcmp(prop->name, (*next)->name) == 0) 1453 /* duplicate ! don't insert it */ 1454 return -EEXIST; 1455 1456 next = &(*next)->next; 1457 } 1458 *next = prop; 1459 1460 return 0; 1461 } 1462 1463 /** 1464 * of_add_property - Add a property to a node 1465 */ 1466 int of_add_property(struct device_node *np, struct property *prop) 1467 { 1468 unsigned long flags; 1469 int rc; 1470 1471 mutex_lock(&of_mutex); 1472 1473 raw_spin_lock_irqsave(&devtree_lock, flags); 1474 rc = __of_add_property(np, prop); 1475 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1476 1477 if (!rc) 1478 __of_add_property_sysfs(np, prop); 1479 1480 mutex_unlock(&of_mutex); 1481 1482 if (!rc) 1483 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1484 1485 return rc; 1486 } 1487 1488 int __of_remove_property(struct device_node *np, struct property *prop) 1489 { 1490 struct property **next; 1491 1492 for (next = &np->properties; *next; next = &(*next)->next) { 1493 if (*next == prop) 1494 break; 1495 } 1496 if (*next == NULL) 1497 return -ENODEV; 1498 1499 /* found the node */ 1500 *next = prop->next; 1501 prop->next = np->deadprops; 1502 np->deadprops = prop; 1503 1504 return 0; 1505 } 1506 1507 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) 1508 { 1509 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1510 kfree(prop->attr.attr.name); 1511 } 1512 1513 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1514 { 1515 if (!IS_ENABLED(CONFIG_SYSFS)) 1516 return; 1517 1518 /* at early boot, bail here and defer setup to of_init() */ 1519 if (of_kset && of_node_is_attached(np)) 1520 __of_sysfs_remove_bin_file(np, prop); 1521 } 1522 1523 /** 1524 * of_remove_property - Remove a property from a node. 1525 * 1526 * Note that we don't actually remove it, since we have given out 1527 * who-knows-how-many pointers to the data using get-property. 1528 * Instead we just move the property to the "dead properties" 1529 * list, so it won't be found any more. 1530 */ 1531 int of_remove_property(struct device_node *np, struct property *prop) 1532 { 1533 unsigned long flags; 1534 int rc; 1535 1536 if (!prop) 1537 return -ENODEV; 1538 1539 mutex_lock(&of_mutex); 1540 1541 raw_spin_lock_irqsave(&devtree_lock, flags); 1542 rc = __of_remove_property(np, prop); 1543 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1544 1545 if (!rc) 1546 __of_remove_property_sysfs(np, prop); 1547 1548 mutex_unlock(&of_mutex); 1549 1550 if (!rc) 1551 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1552 1553 return rc; 1554 } 1555 1556 int __of_update_property(struct device_node *np, struct property *newprop, 1557 struct property **oldpropp) 1558 { 1559 struct property **next, *oldprop; 1560 1561 for (next = &np->properties; *next; next = &(*next)->next) { 1562 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1563 break; 1564 } 1565 *oldpropp = oldprop = *next; 1566 1567 if (oldprop) { 1568 /* replace the node */ 1569 newprop->next = oldprop->next; 1570 *next = newprop; 1571 oldprop->next = np->deadprops; 1572 np->deadprops = oldprop; 1573 } else { 1574 /* new node */ 1575 newprop->next = NULL; 1576 *next = newprop; 1577 } 1578 1579 return 0; 1580 } 1581 1582 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1583 struct property *oldprop) 1584 { 1585 if (!IS_ENABLED(CONFIG_SYSFS)) 1586 return; 1587 1588 /* At early boot, bail out and defer setup to of_init() */ 1589 if (!of_kset) 1590 return; 1591 1592 if (oldprop) 1593 __of_sysfs_remove_bin_file(np, oldprop); 1594 __of_add_property_sysfs(np, newprop); 1595 } 1596 1597 /* 1598 * of_update_property - Update a property in a node, if the property does 1599 * not exist, add it. 1600 * 1601 * Note that we don't actually remove it, since we have given out 1602 * who-knows-how-many pointers to the data using get-property. 1603 * Instead we just move the property to the "dead properties" list, 1604 * and add the new property to the property list 1605 */ 1606 int of_update_property(struct device_node *np, struct property *newprop) 1607 { 1608 struct property *oldprop; 1609 unsigned long flags; 1610 int rc; 1611 1612 if (!newprop->name) 1613 return -EINVAL; 1614 1615 mutex_lock(&of_mutex); 1616 1617 raw_spin_lock_irqsave(&devtree_lock, flags); 1618 rc = __of_update_property(np, newprop, &oldprop); 1619 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1620 1621 if (!rc) 1622 __of_update_property_sysfs(np, newprop, oldprop); 1623 1624 mutex_unlock(&of_mutex); 1625 1626 if (!rc) 1627 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1628 1629 return rc; 1630 } 1631 1632 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1633 int id, const char *stem, int stem_len) 1634 { 1635 ap->np = np; 1636 ap->id = id; 1637 strncpy(ap->stem, stem, stem_len); 1638 ap->stem[stem_len] = 0; 1639 list_add_tail(&ap->link, &aliases_lookup); 1640 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1641 ap->alias, ap->stem, ap->id, np); 1642 } 1643 1644 /** 1645 * of_alias_scan - Scan all properties of the 'aliases' node 1646 * 1647 * The function scans all the properties of the 'aliases' node and populates 1648 * the global lookup table with the properties. It returns the 1649 * number of alias properties found, or an error code in case of failure. 1650 * 1651 * @dt_alloc: An allocator that provides a virtual address to memory 1652 * for storing the resulting tree 1653 */ 1654 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1655 { 1656 struct property *pp; 1657 1658 of_aliases = of_find_node_by_path("/aliases"); 1659 of_chosen = of_find_node_by_path("/chosen"); 1660 if (of_chosen == NULL) 1661 of_chosen = of_find_node_by_path("/chosen@0"); 1662 1663 if (of_chosen) { 1664 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1665 const char *name = NULL; 1666 1667 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1668 of_property_read_string(of_chosen, "linux,stdout-path", 1669 &name); 1670 if (IS_ENABLED(CONFIG_PPC) && !name) 1671 of_property_read_string(of_aliases, "stdout", &name); 1672 if (name) 1673 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1674 } 1675 1676 if (!of_aliases) 1677 return; 1678 1679 for_each_property_of_node(of_aliases, pp) { 1680 const char *start = pp->name; 1681 const char *end = start + strlen(start); 1682 struct device_node *np; 1683 struct alias_prop *ap; 1684 int id, len; 1685 1686 /* Skip those we do not want to proceed */ 1687 if (!strcmp(pp->name, "name") || 1688 !strcmp(pp->name, "phandle") || 1689 !strcmp(pp->name, "linux,phandle")) 1690 continue; 1691 1692 np = of_find_node_by_path(pp->value); 1693 if (!np) 1694 continue; 1695 1696 /* walk the alias backwards to extract the id and work out 1697 * the 'stem' string */ 1698 while (isdigit(*(end-1)) && end > start) 1699 end--; 1700 len = end - start; 1701 1702 if (kstrtoint(end, 10, &id) < 0) 1703 continue; 1704 1705 /* Allocate an alias_prop with enough space for the stem */ 1706 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1707 if (!ap) 1708 continue; 1709 memset(ap, 0, sizeof(*ap) + len + 1); 1710 ap->alias = start; 1711 of_alias_add(ap, np, id, start, len); 1712 } 1713 } 1714 1715 /** 1716 * of_alias_get_id - Get alias id for the given device_node 1717 * @np: Pointer to the given device_node 1718 * @stem: Alias stem of the given device_node 1719 * 1720 * The function travels the lookup table to get the alias id for the given 1721 * device_node and alias stem. It returns the alias id if found. 1722 */ 1723 int of_alias_get_id(struct device_node *np, const char *stem) 1724 { 1725 struct alias_prop *app; 1726 int id = -ENODEV; 1727 1728 mutex_lock(&of_mutex); 1729 list_for_each_entry(app, &aliases_lookup, link) { 1730 if (strcmp(app->stem, stem) != 0) 1731 continue; 1732 1733 if (np == app->np) { 1734 id = app->id; 1735 break; 1736 } 1737 } 1738 mutex_unlock(&of_mutex); 1739 1740 return id; 1741 } 1742 EXPORT_SYMBOL_GPL(of_alias_get_id); 1743 1744 /** 1745 * of_alias_get_highest_id - Get highest alias id for the given stem 1746 * @stem: Alias stem to be examined 1747 * 1748 * The function travels the lookup table to get the highest alias id for the 1749 * given alias stem. It returns the alias id if found. 1750 */ 1751 int of_alias_get_highest_id(const char *stem) 1752 { 1753 struct alias_prop *app; 1754 int id = -ENODEV; 1755 1756 mutex_lock(&of_mutex); 1757 list_for_each_entry(app, &aliases_lookup, link) { 1758 if (strcmp(app->stem, stem) != 0) 1759 continue; 1760 1761 if (app->id > id) 1762 id = app->id; 1763 } 1764 mutex_unlock(&of_mutex); 1765 1766 return id; 1767 } 1768 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1769 1770 /** 1771 * of_console_check() - Test and setup console for DT setup 1772 * @dn - Pointer to device node 1773 * @name - Name to use for preferred console without index. ex. "ttyS" 1774 * @index - Index to use for preferred console. 1775 * 1776 * Check if the given device node matches the stdout-path property in the 1777 * /chosen node. If it does then register it as the preferred console and return 1778 * TRUE. Otherwise return FALSE. 1779 */ 1780 bool of_console_check(struct device_node *dn, char *name, int index) 1781 { 1782 if (!dn || dn != of_stdout || console_set_on_cmdline) 1783 return false; 1784 return !add_preferred_console(name, index, 1785 kstrdup(of_stdout_options, GFP_KERNEL)); 1786 } 1787 EXPORT_SYMBOL_GPL(of_console_check); 1788 1789 /** 1790 * of_find_next_cache_node - Find a node's subsidiary cache 1791 * @np: node of type "cpu" or "cache" 1792 * 1793 * Returns a node pointer with refcount incremented, use 1794 * of_node_put() on it when done. Caller should hold a reference 1795 * to np. 1796 */ 1797 struct device_node *of_find_next_cache_node(const struct device_node *np) 1798 { 1799 struct device_node *child, *cache_node; 1800 1801 cache_node = of_parse_phandle(np, "l2-cache", 0); 1802 if (!cache_node) 1803 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1804 1805 if (cache_node) 1806 return cache_node; 1807 1808 /* OF on pmac has nodes instead of properties named "l2-cache" 1809 * beneath CPU nodes. 1810 */ 1811 if (!strcmp(np->type, "cpu")) 1812 for_each_child_of_node(np, child) 1813 if (!strcmp(child->type, "cache")) 1814 return child; 1815 1816 return NULL; 1817 } 1818 1819 /** 1820 * of_find_last_cache_level - Find the level at which the last cache is 1821 * present for the given logical cpu 1822 * 1823 * @cpu: cpu number(logical index) for which the last cache level is needed 1824 * 1825 * Returns the the level at which the last cache is present. It is exactly 1826 * same as the total number of cache levels for the given logical cpu. 1827 */ 1828 int of_find_last_cache_level(unsigned int cpu) 1829 { 1830 u32 cache_level = 0; 1831 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1832 1833 while (np) { 1834 prev = np; 1835 of_node_put(np); 1836 np = of_find_next_cache_node(np); 1837 } 1838 1839 of_property_read_u32(prev, "cache-level", &cache_level); 1840 1841 return cache_level; 1842 } 1843