1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 /* 139 * Assumptions behind phandle_cache implementation: 140 * - phandle property values are in a contiguous range of 1..n 141 * 142 * If the assumptions do not hold, then 143 * - the phandle lookup overhead reduction provided by the cache 144 * will likely be less 145 */ 146 147 static struct device_node **phandle_cache; 148 static u32 phandle_cache_mask; 149 150 /* 151 * Caller must hold devtree_lock. 152 */ 153 static void __of_free_phandle_cache(void) 154 { 155 u32 cache_entries = phandle_cache_mask + 1; 156 u32 k; 157 158 if (!phandle_cache) 159 return; 160 161 for (k = 0; k < cache_entries; k++) 162 of_node_put(phandle_cache[k]); 163 164 kfree(phandle_cache); 165 phandle_cache = NULL; 166 } 167 168 int of_free_phandle_cache(void) 169 { 170 unsigned long flags; 171 172 raw_spin_lock_irqsave(&devtree_lock, flags); 173 174 __of_free_phandle_cache(); 175 176 raw_spin_unlock_irqrestore(&devtree_lock, flags); 177 178 return 0; 179 } 180 #if !defined(CONFIG_MODULES) 181 late_initcall_sync(of_free_phandle_cache); 182 #endif 183 184 /* 185 * Caller must hold devtree_lock. 186 */ 187 void __of_free_phandle_cache_entry(phandle handle) 188 { 189 phandle masked_handle; 190 struct device_node *np; 191 192 if (!handle) 193 return; 194 195 masked_handle = handle & phandle_cache_mask; 196 197 if (phandle_cache) { 198 np = phandle_cache[masked_handle]; 199 if (np && handle == np->phandle) { 200 of_node_put(np); 201 phandle_cache[masked_handle] = NULL; 202 } 203 } 204 } 205 206 void of_populate_phandle_cache(void) 207 { 208 unsigned long flags; 209 u32 cache_entries; 210 struct device_node *np; 211 u32 phandles = 0; 212 213 raw_spin_lock_irqsave(&devtree_lock, flags); 214 215 __of_free_phandle_cache(); 216 217 for_each_of_allnodes(np) 218 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 219 phandles++; 220 221 if (!phandles) 222 goto out; 223 224 cache_entries = roundup_pow_of_two(phandles); 225 phandle_cache_mask = cache_entries - 1; 226 227 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), 228 GFP_ATOMIC); 229 if (!phandle_cache) 230 goto out; 231 232 for_each_of_allnodes(np) 233 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) { 234 of_node_get(np); 235 phandle_cache[np->phandle & phandle_cache_mask] = np; 236 } 237 238 out: 239 raw_spin_unlock_irqrestore(&devtree_lock, flags); 240 } 241 242 void __init of_core_init(void) 243 { 244 struct device_node *np; 245 246 of_populate_phandle_cache(); 247 248 /* Create the kset, and register existing nodes */ 249 mutex_lock(&of_mutex); 250 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 251 if (!of_kset) { 252 mutex_unlock(&of_mutex); 253 pr_err("failed to register existing nodes\n"); 254 return; 255 } 256 for_each_of_allnodes(np) 257 __of_attach_node_sysfs(np); 258 mutex_unlock(&of_mutex); 259 260 /* Symlink in /proc as required by userspace ABI */ 261 if (of_root) 262 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 263 } 264 265 static struct property *__of_find_property(const struct device_node *np, 266 const char *name, int *lenp) 267 { 268 struct property *pp; 269 270 if (!np) 271 return NULL; 272 273 for (pp = np->properties; pp; pp = pp->next) { 274 if (of_prop_cmp(pp->name, name) == 0) { 275 if (lenp) 276 *lenp = pp->length; 277 break; 278 } 279 } 280 281 return pp; 282 } 283 284 struct property *of_find_property(const struct device_node *np, 285 const char *name, 286 int *lenp) 287 { 288 struct property *pp; 289 unsigned long flags; 290 291 raw_spin_lock_irqsave(&devtree_lock, flags); 292 pp = __of_find_property(np, name, lenp); 293 raw_spin_unlock_irqrestore(&devtree_lock, flags); 294 295 return pp; 296 } 297 EXPORT_SYMBOL(of_find_property); 298 299 struct device_node *__of_find_all_nodes(struct device_node *prev) 300 { 301 struct device_node *np; 302 if (!prev) { 303 np = of_root; 304 } else if (prev->child) { 305 np = prev->child; 306 } else { 307 /* Walk back up looking for a sibling, or the end of the structure */ 308 np = prev; 309 while (np->parent && !np->sibling) 310 np = np->parent; 311 np = np->sibling; /* Might be null at the end of the tree */ 312 } 313 return np; 314 } 315 316 /** 317 * of_find_all_nodes - Get next node in global list 318 * @prev: Previous node or NULL to start iteration 319 * of_node_put() will be called on it 320 * 321 * Returns a node pointer with refcount incremented, use 322 * of_node_put() on it when done. 323 */ 324 struct device_node *of_find_all_nodes(struct device_node *prev) 325 { 326 struct device_node *np; 327 unsigned long flags; 328 329 raw_spin_lock_irqsave(&devtree_lock, flags); 330 np = __of_find_all_nodes(prev); 331 of_node_get(np); 332 of_node_put(prev); 333 raw_spin_unlock_irqrestore(&devtree_lock, flags); 334 return np; 335 } 336 EXPORT_SYMBOL(of_find_all_nodes); 337 338 /* 339 * Find a property with a given name for a given node 340 * and return the value. 341 */ 342 const void *__of_get_property(const struct device_node *np, 343 const char *name, int *lenp) 344 { 345 struct property *pp = __of_find_property(np, name, lenp); 346 347 return pp ? pp->value : NULL; 348 } 349 350 /* 351 * Find a property with a given name for a given node 352 * and return the value. 353 */ 354 const void *of_get_property(const struct device_node *np, const char *name, 355 int *lenp) 356 { 357 struct property *pp = of_find_property(np, name, lenp); 358 359 return pp ? pp->value : NULL; 360 } 361 EXPORT_SYMBOL(of_get_property); 362 363 /* 364 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 365 * 366 * @cpu: logical cpu index of a core/thread 367 * @phys_id: physical identifier of a core/thread 368 * 369 * CPU logical to physical index mapping is architecture specific. 370 * However this __weak function provides a default match of physical 371 * id to logical cpu index. phys_id provided here is usually values read 372 * from the device tree which must match the hardware internal registers. 373 * 374 * Returns true if the physical identifier and the logical cpu index 375 * correspond to the same core/thread, false otherwise. 376 */ 377 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 378 { 379 return (u32)phys_id == cpu; 380 } 381 382 /** 383 * Checks if the given "prop_name" property holds the physical id of the 384 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 385 * NULL, local thread number within the core is returned in it. 386 */ 387 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 388 const char *prop_name, int cpu, unsigned int *thread) 389 { 390 const __be32 *cell; 391 int ac, prop_len, tid; 392 u64 hwid; 393 394 ac = of_n_addr_cells(cpun); 395 cell = of_get_property(cpun, prop_name, &prop_len); 396 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 397 return true; 398 if (!cell || !ac) 399 return false; 400 prop_len /= sizeof(*cell) * ac; 401 for (tid = 0; tid < prop_len; tid++) { 402 hwid = of_read_number(cell, ac); 403 if (arch_match_cpu_phys_id(cpu, hwid)) { 404 if (thread) 405 *thread = tid; 406 return true; 407 } 408 cell += ac; 409 } 410 return false; 411 } 412 413 /* 414 * arch_find_n_match_cpu_physical_id - See if the given device node is 415 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 416 * else false. If 'thread' is non-NULL, the local thread number within the 417 * core is returned in it. 418 */ 419 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 420 int cpu, unsigned int *thread) 421 { 422 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 423 * for thread ids on PowerPC. If it doesn't exist fallback to 424 * standard "reg" property. 425 */ 426 if (IS_ENABLED(CONFIG_PPC) && 427 __of_find_n_match_cpu_property(cpun, 428 "ibm,ppc-interrupt-server#s", 429 cpu, thread)) 430 return true; 431 432 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 433 } 434 435 /** 436 * of_get_cpu_node - Get device node associated with the given logical CPU 437 * 438 * @cpu: CPU number(logical index) for which device node is required 439 * @thread: if not NULL, local thread number within the physical core is 440 * returned 441 * 442 * The main purpose of this function is to retrieve the device node for the 443 * given logical CPU index. It should be used to initialize the of_node in 444 * cpu device. Once of_node in cpu device is populated, all the further 445 * references can use that instead. 446 * 447 * CPU logical to physical index mapping is architecture specific and is built 448 * before booting secondary cores. This function uses arch_match_cpu_phys_id 449 * which can be overridden by architecture specific implementation. 450 * 451 * Returns a node pointer for the logical cpu with refcount incremented, use 452 * of_node_put() on it when done. Returns NULL if not found. 453 */ 454 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 455 { 456 struct device_node *cpun; 457 458 for_each_of_cpu_node(cpun) { 459 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 460 return cpun; 461 } 462 return NULL; 463 } 464 EXPORT_SYMBOL(of_get_cpu_node); 465 466 /** 467 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 468 * 469 * @cpu_node: Pointer to the device_node for CPU. 470 * 471 * Returns the logical CPU number of the given CPU device_node. 472 * Returns -ENODEV if the CPU is not found. 473 */ 474 int of_cpu_node_to_id(struct device_node *cpu_node) 475 { 476 int cpu; 477 bool found = false; 478 struct device_node *np; 479 480 for_each_possible_cpu(cpu) { 481 np = of_cpu_device_node_get(cpu); 482 found = (cpu_node == np); 483 of_node_put(np); 484 if (found) 485 return cpu; 486 } 487 488 return -ENODEV; 489 } 490 EXPORT_SYMBOL(of_cpu_node_to_id); 491 492 /** 493 * __of_device_is_compatible() - Check if the node matches given constraints 494 * @device: pointer to node 495 * @compat: required compatible string, NULL or "" for any match 496 * @type: required device_type value, NULL or "" for any match 497 * @name: required node name, NULL or "" for any match 498 * 499 * Checks if the given @compat, @type and @name strings match the 500 * properties of the given @device. A constraints can be skipped by 501 * passing NULL or an empty string as the constraint. 502 * 503 * Returns 0 for no match, and a positive integer on match. The return 504 * value is a relative score with larger values indicating better 505 * matches. The score is weighted for the most specific compatible value 506 * to get the highest score. Matching type is next, followed by matching 507 * name. Practically speaking, this results in the following priority 508 * order for matches: 509 * 510 * 1. specific compatible && type && name 511 * 2. specific compatible && type 512 * 3. specific compatible && name 513 * 4. specific compatible 514 * 5. general compatible && type && name 515 * 6. general compatible && type 516 * 7. general compatible && name 517 * 8. general compatible 518 * 9. type && name 519 * 10. type 520 * 11. name 521 */ 522 static int __of_device_is_compatible(const struct device_node *device, 523 const char *compat, const char *type, const char *name) 524 { 525 struct property *prop; 526 const char *cp; 527 int index = 0, score = 0; 528 529 /* Compatible match has highest priority */ 530 if (compat && compat[0]) { 531 prop = __of_find_property(device, "compatible", NULL); 532 for (cp = of_prop_next_string(prop, NULL); cp; 533 cp = of_prop_next_string(prop, cp), index++) { 534 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 535 score = INT_MAX/2 - (index << 2); 536 break; 537 } 538 } 539 if (!score) 540 return 0; 541 } 542 543 /* Matching type is better than matching name */ 544 if (type && type[0]) { 545 if (!__of_node_is_type(device, type)) 546 return 0; 547 score += 2; 548 } 549 550 /* Matching name is a bit better than not */ 551 if (name && name[0]) { 552 if (!of_node_name_eq(device, name)) 553 return 0; 554 score++; 555 } 556 557 return score; 558 } 559 560 /** Checks if the given "compat" string matches one of the strings in 561 * the device's "compatible" property 562 */ 563 int of_device_is_compatible(const struct device_node *device, 564 const char *compat) 565 { 566 unsigned long flags; 567 int res; 568 569 raw_spin_lock_irqsave(&devtree_lock, flags); 570 res = __of_device_is_compatible(device, compat, NULL, NULL); 571 raw_spin_unlock_irqrestore(&devtree_lock, flags); 572 return res; 573 } 574 EXPORT_SYMBOL(of_device_is_compatible); 575 576 /** Checks if the device is compatible with any of the entries in 577 * a NULL terminated array of strings. Returns the best match 578 * score or 0. 579 */ 580 int of_device_compatible_match(struct device_node *device, 581 const char *const *compat) 582 { 583 unsigned int tmp, score = 0; 584 585 if (!compat) 586 return 0; 587 588 while (*compat) { 589 tmp = of_device_is_compatible(device, *compat); 590 if (tmp > score) 591 score = tmp; 592 compat++; 593 } 594 595 return score; 596 } 597 598 /** 599 * of_machine_is_compatible - Test root of device tree for a given compatible value 600 * @compat: compatible string to look for in root node's compatible property. 601 * 602 * Returns a positive integer if the root node has the given value in its 603 * compatible property. 604 */ 605 int of_machine_is_compatible(const char *compat) 606 { 607 struct device_node *root; 608 int rc = 0; 609 610 root = of_find_node_by_path("/"); 611 if (root) { 612 rc = of_device_is_compatible(root, compat); 613 of_node_put(root); 614 } 615 return rc; 616 } 617 EXPORT_SYMBOL(of_machine_is_compatible); 618 619 /** 620 * __of_device_is_available - check if a device is available for use 621 * 622 * @device: Node to check for availability, with locks already held 623 * 624 * Returns true if the status property is absent or set to "okay" or "ok", 625 * false otherwise 626 */ 627 static bool __of_device_is_available(const struct device_node *device) 628 { 629 const char *status; 630 int statlen; 631 632 if (!device) 633 return false; 634 635 status = __of_get_property(device, "status", &statlen); 636 if (status == NULL) 637 return true; 638 639 if (statlen > 0) { 640 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 641 return true; 642 } 643 644 return false; 645 } 646 647 /** 648 * of_device_is_available - check if a device is available for use 649 * 650 * @device: Node to check for availability 651 * 652 * Returns true if the status property is absent or set to "okay" or "ok", 653 * false otherwise 654 */ 655 bool of_device_is_available(const struct device_node *device) 656 { 657 unsigned long flags; 658 bool res; 659 660 raw_spin_lock_irqsave(&devtree_lock, flags); 661 res = __of_device_is_available(device); 662 raw_spin_unlock_irqrestore(&devtree_lock, flags); 663 return res; 664 665 } 666 EXPORT_SYMBOL(of_device_is_available); 667 668 /** 669 * of_device_is_big_endian - check if a device has BE registers 670 * 671 * @device: Node to check for endianness 672 * 673 * Returns true if the device has a "big-endian" property, or if the kernel 674 * was compiled for BE *and* the device has a "native-endian" property. 675 * Returns false otherwise. 676 * 677 * Callers would nominally use ioread32be/iowrite32be if 678 * of_device_is_big_endian() == true, or readl/writel otherwise. 679 */ 680 bool of_device_is_big_endian(const struct device_node *device) 681 { 682 if (of_property_read_bool(device, "big-endian")) 683 return true; 684 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 685 of_property_read_bool(device, "native-endian")) 686 return true; 687 return false; 688 } 689 EXPORT_SYMBOL(of_device_is_big_endian); 690 691 /** 692 * of_get_parent - Get a node's parent if any 693 * @node: Node to get parent 694 * 695 * Returns a node pointer with refcount incremented, use 696 * of_node_put() on it when done. 697 */ 698 struct device_node *of_get_parent(const struct device_node *node) 699 { 700 struct device_node *np; 701 unsigned long flags; 702 703 if (!node) 704 return NULL; 705 706 raw_spin_lock_irqsave(&devtree_lock, flags); 707 np = of_node_get(node->parent); 708 raw_spin_unlock_irqrestore(&devtree_lock, flags); 709 return np; 710 } 711 EXPORT_SYMBOL(of_get_parent); 712 713 /** 714 * of_get_next_parent - Iterate to a node's parent 715 * @node: Node to get parent of 716 * 717 * This is like of_get_parent() except that it drops the 718 * refcount on the passed node, making it suitable for iterating 719 * through a node's parents. 720 * 721 * Returns a node pointer with refcount incremented, use 722 * of_node_put() on it when done. 723 */ 724 struct device_node *of_get_next_parent(struct device_node *node) 725 { 726 struct device_node *parent; 727 unsigned long flags; 728 729 if (!node) 730 return NULL; 731 732 raw_spin_lock_irqsave(&devtree_lock, flags); 733 parent = of_node_get(node->parent); 734 of_node_put(node); 735 raw_spin_unlock_irqrestore(&devtree_lock, flags); 736 return parent; 737 } 738 EXPORT_SYMBOL(of_get_next_parent); 739 740 static struct device_node *__of_get_next_child(const struct device_node *node, 741 struct device_node *prev) 742 { 743 struct device_node *next; 744 745 if (!node) 746 return NULL; 747 748 next = prev ? prev->sibling : node->child; 749 for (; next; next = next->sibling) 750 if (of_node_get(next)) 751 break; 752 of_node_put(prev); 753 return next; 754 } 755 #define __for_each_child_of_node(parent, child) \ 756 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 757 child = __of_get_next_child(parent, child)) 758 759 /** 760 * of_get_next_child - Iterate a node childs 761 * @node: parent node 762 * @prev: previous child of the parent node, or NULL to get first 763 * 764 * Returns a node pointer with refcount incremented, use of_node_put() on 765 * it when done. Returns NULL when prev is the last child. Decrements the 766 * refcount of prev. 767 */ 768 struct device_node *of_get_next_child(const struct device_node *node, 769 struct device_node *prev) 770 { 771 struct device_node *next; 772 unsigned long flags; 773 774 raw_spin_lock_irqsave(&devtree_lock, flags); 775 next = __of_get_next_child(node, prev); 776 raw_spin_unlock_irqrestore(&devtree_lock, flags); 777 return next; 778 } 779 EXPORT_SYMBOL(of_get_next_child); 780 781 /** 782 * of_get_next_available_child - Find the next available child node 783 * @node: parent node 784 * @prev: previous child of the parent node, or NULL to get first 785 * 786 * This function is like of_get_next_child(), except that it 787 * automatically skips any disabled nodes (i.e. status = "disabled"). 788 */ 789 struct device_node *of_get_next_available_child(const struct device_node *node, 790 struct device_node *prev) 791 { 792 struct device_node *next; 793 unsigned long flags; 794 795 if (!node) 796 return NULL; 797 798 raw_spin_lock_irqsave(&devtree_lock, flags); 799 next = prev ? prev->sibling : node->child; 800 for (; next; next = next->sibling) { 801 if (!__of_device_is_available(next)) 802 continue; 803 if (of_node_get(next)) 804 break; 805 } 806 of_node_put(prev); 807 raw_spin_unlock_irqrestore(&devtree_lock, flags); 808 return next; 809 } 810 EXPORT_SYMBOL(of_get_next_available_child); 811 812 /** 813 * of_get_next_cpu_node - Iterate on cpu nodes 814 * @prev: previous child of the /cpus node, or NULL to get first 815 * 816 * Returns a cpu node pointer with refcount incremented, use of_node_put() 817 * on it when done. Returns NULL when prev is the last child. Decrements 818 * the refcount of prev. 819 */ 820 struct device_node *of_get_next_cpu_node(struct device_node *prev) 821 { 822 struct device_node *next = NULL; 823 unsigned long flags; 824 struct device_node *node; 825 826 if (!prev) 827 node = of_find_node_by_path("/cpus"); 828 829 raw_spin_lock_irqsave(&devtree_lock, flags); 830 if (prev) 831 next = prev->sibling; 832 else if (node) { 833 next = node->child; 834 of_node_put(node); 835 } 836 for (; next; next = next->sibling) { 837 if (!(of_node_name_eq(next, "cpu") || 838 __of_node_is_type(next, "cpu"))) 839 continue; 840 if (of_node_get(next)) 841 break; 842 } 843 of_node_put(prev); 844 raw_spin_unlock_irqrestore(&devtree_lock, flags); 845 return next; 846 } 847 EXPORT_SYMBOL(of_get_next_cpu_node); 848 849 /** 850 * of_get_compatible_child - Find compatible child node 851 * @parent: parent node 852 * @compatible: compatible string 853 * 854 * Lookup child node whose compatible property contains the given compatible 855 * string. 856 * 857 * Returns a node pointer with refcount incremented, use of_node_put() on it 858 * when done; or NULL if not found. 859 */ 860 struct device_node *of_get_compatible_child(const struct device_node *parent, 861 const char *compatible) 862 { 863 struct device_node *child; 864 865 for_each_child_of_node(parent, child) { 866 if (of_device_is_compatible(child, compatible)) 867 break; 868 } 869 870 return child; 871 } 872 EXPORT_SYMBOL(of_get_compatible_child); 873 874 /** 875 * of_get_child_by_name - Find the child node by name for a given parent 876 * @node: parent node 877 * @name: child name to look for. 878 * 879 * This function looks for child node for given matching name 880 * 881 * Returns a node pointer if found, with refcount incremented, use 882 * of_node_put() on it when done. 883 * Returns NULL if node is not found. 884 */ 885 struct device_node *of_get_child_by_name(const struct device_node *node, 886 const char *name) 887 { 888 struct device_node *child; 889 890 for_each_child_of_node(node, child) 891 if (of_node_name_eq(child, name)) 892 break; 893 return child; 894 } 895 EXPORT_SYMBOL(of_get_child_by_name); 896 897 struct device_node *__of_find_node_by_path(struct device_node *parent, 898 const char *path) 899 { 900 struct device_node *child; 901 int len; 902 903 len = strcspn(path, "/:"); 904 if (!len) 905 return NULL; 906 907 __for_each_child_of_node(parent, child) { 908 const char *name = kbasename(child->full_name); 909 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 910 return child; 911 } 912 return NULL; 913 } 914 915 struct device_node *__of_find_node_by_full_path(struct device_node *node, 916 const char *path) 917 { 918 const char *separator = strchr(path, ':'); 919 920 while (node && *path == '/') { 921 struct device_node *tmp = node; 922 923 path++; /* Increment past '/' delimiter */ 924 node = __of_find_node_by_path(node, path); 925 of_node_put(tmp); 926 path = strchrnul(path, '/'); 927 if (separator && separator < path) 928 break; 929 } 930 return node; 931 } 932 933 /** 934 * of_find_node_opts_by_path - Find a node matching a full OF path 935 * @path: Either the full path to match, or if the path does not 936 * start with '/', the name of a property of the /aliases 937 * node (an alias). In the case of an alias, the node 938 * matching the alias' value will be returned. 939 * @opts: Address of a pointer into which to store the start of 940 * an options string appended to the end of the path with 941 * a ':' separator. 942 * 943 * Valid paths: 944 * /foo/bar Full path 945 * foo Valid alias 946 * foo/bar Valid alias + relative path 947 * 948 * Returns a node pointer with refcount incremented, use 949 * of_node_put() on it when done. 950 */ 951 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 952 { 953 struct device_node *np = NULL; 954 struct property *pp; 955 unsigned long flags; 956 const char *separator = strchr(path, ':'); 957 958 if (opts) 959 *opts = separator ? separator + 1 : NULL; 960 961 if (strcmp(path, "/") == 0) 962 return of_node_get(of_root); 963 964 /* The path could begin with an alias */ 965 if (*path != '/') { 966 int len; 967 const char *p = separator; 968 969 if (!p) 970 p = strchrnul(path, '/'); 971 len = p - path; 972 973 /* of_aliases must not be NULL */ 974 if (!of_aliases) 975 return NULL; 976 977 for_each_property_of_node(of_aliases, pp) { 978 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 979 np = of_find_node_by_path(pp->value); 980 break; 981 } 982 } 983 if (!np) 984 return NULL; 985 path = p; 986 } 987 988 /* Step down the tree matching path components */ 989 raw_spin_lock_irqsave(&devtree_lock, flags); 990 if (!np) 991 np = of_node_get(of_root); 992 np = __of_find_node_by_full_path(np, path); 993 raw_spin_unlock_irqrestore(&devtree_lock, flags); 994 return np; 995 } 996 EXPORT_SYMBOL(of_find_node_opts_by_path); 997 998 /** 999 * of_find_node_by_name - Find a node by its "name" property 1000 * @from: The node to start searching from or NULL; the node 1001 * you pass will not be searched, only the next one 1002 * will. Typically, you pass what the previous call 1003 * returned. of_node_put() will be called on @from. 1004 * @name: The name string to match against 1005 * 1006 * Returns a node pointer with refcount incremented, use 1007 * of_node_put() on it when done. 1008 */ 1009 struct device_node *of_find_node_by_name(struct device_node *from, 1010 const char *name) 1011 { 1012 struct device_node *np; 1013 unsigned long flags; 1014 1015 raw_spin_lock_irqsave(&devtree_lock, flags); 1016 for_each_of_allnodes_from(from, np) 1017 if (of_node_name_eq(np, name) && of_node_get(np)) 1018 break; 1019 of_node_put(from); 1020 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1021 return np; 1022 } 1023 EXPORT_SYMBOL(of_find_node_by_name); 1024 1025 /** 1026 * of_find_node_by_type - Find a node by its "device_type" property 1027 * @from: The node to start searching from, or NULL to start searching 1028 * the entire device tree. The node you pass will not be 1029 * searched, only the next one will; typically, you pass 1030 * what the previous call returned. of_node_put() will be 1031 * called on from for you. 1032 * @type: The type string to match against 1033 * 1034 * Returns a node pointer with refcount incremented, use 1035 * of_node_put() on it when done. 1036 */ 1037 struct device_node *of_find_node_by_type(struct device_node *from, 1038 const char *type) 1039 { 1040 struct device_node *np; 1041 unsigned long flags; 1042 1043 raw_spin_lock_irqsave(&devtree_lock, flags); 1044 for_each_of_allnodes_from(from, np) 1045 if (__of_node_is_type(np, type) && of_node_get(np)) 1046 break; 1047 of_node_put(from); 1048 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1049 return np; 1050 } 1051 EXPORT_SYMBOL(of_find_node_by_type); 1052 1053 /** 1054 * of_find_compatible_node - Find a node based on type and one of the 1055 * tokens in its "compatible" property 1056 * @from: The node to start searching from or NULL, the node 1057 * you pass will not be searched, only the next one 1058 * will; typically, you pass what the previous call 1059 * returned. of_node_put() will be called on it 1060 * @type: The type string to match "device_type" or NULL to ignore 1061 * @compatible: The string to match to one of the tokens in the device 1062 * "compatible" list. 1063 * 1064 * Returns a node pointer with refcount incremented, use 1065 * of_node_put() on it when done. 1066 */ 1067 struct device_node *of_find_compatible_node(struct device_node *from, 1068 const char *type, const char *compatible) 1069 { 1070 struct device_node *np; 1071 unsigned long flags; 1072 1073 raw_spin_lock_irqsave(&devtree_lock, flags); 1074 for_each_of_allnodes_from(from, np) 1075 if (__of_device_is_compatible(np, compatible, type, NULL) && 1076 of_node_get(np)) 1077 break; 1078 of_node_put(from); 1079 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1080 return np; 1081 } 1082 EXPORT_SYMBOL(of_find_compatible_node); 1083 1084 /** 1085 * of_find_node_with_property - Find a node which has a property with 1086 * the given name. 1087 * @from: The node to start searching from or NULL, the node 1088 * you pass will not be searched, only the next one 1089 * will; typically, you pass what the previous call 1090 * returned. of_node_put() will be called on it 1091 * @prop_name: The name of the property to look for. 1092 * 1093 * Returns a node pointer with refcount incremented, use 1094 * of_node_put() on it when done. 1095 */ 1096 struct device_node *of_find_node_with_property(struct device_node *from, 1097 const char *prop_name) 1098 { 1099 struct device_node *np; 1100 struct property *pp; 1101 unsigned long flags; 1102 1103 raw_spin_lock_irqsave(&devtree_lock, flags); 1104 for_each_of_allnodes_from(from, np) { 1105 for (pp = np->properties; pp; pp = pp->next) { 1106 if (of_prop_cmp(pp->name, prop_name) == 0) { 1107 of_node_get(np); 1108 goto out; 1109 } 1110 } 1111 } 1112 out: 1113 of_node_put(from); 1114 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1115 return np; 1116 } 1117 EXPORT_SYMBOL(of_find_node_with_property); 1118 1119 static 1120 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1121 const struct device_node *node) 1122 { 1123 const struct of_device_id *best_match = NULL; 1124 int score, best_score = 0; 1125 1126 if (!matches) 1127 return NULL; 1128 1129 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1130 score = __of_device_is_compatible(node, matches->compatible, 1131 matches->type, matches->name); 1132 if (score > best_score) { 1133 best_match = matches; 1134 best_score = score; 1135 } 1136 } 1137 1138 return best_match; 1139 } 1140 1141 /** 1142 * of_match_node - Tell if a device_node has a matching of_match structure 1143 * @matches: array of of device match structures to search in 1144 * @node: the of device structure to match against 1145 * 1146 * Low level utility function used by device matching. 1147 */ 1148 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1149 const struct device_node *node) 1150 { 1151 const struct of_device_id *match; 1152 unsigned long flags; 1153 1154 raw_spin_lock_irqsave(&devtree_lock, flags); 1155 match = __of_match_node(matches, node); 1156 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1157 return match; 1158 } 1159 EXPORT_SYMBOL(of_match_node); 1160 1161 /** 1162 * of_find_matching_node_and_match - Find a node based on an of_device_id 1163 * match table. 1164 * @from: The node to start searching from or NULL, the node 1165 * you pass will not be searched, only the next one 1166 * will; typically, you pass what the previous call 1167 * returned. of_node_put() will be called on it 1168 * @matches: array of of device match structures to search in 1169 * @match Updated to point at the matches entry which matched 1170 * 1171 * Returns a node pointer with refcount incremented, use 1172 * of_node_put() on it when done. 1173 */ 1174 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1175 const struct of_device_id *matches, 1176 const struct of_device_id **match) 1177 { 1178 struct device_node *np; 1179 const struct of_device_id *m; 1180 unsigned long flags; 1181 1182 if (match) 1183 *match = NULL; 1184 1185 raw_spin_lock_irqsave(&devtree_lock, flags); 1186 for_each_of_allnodes_from(from, np) { 1187 m = __of_match_node(matches, np); 1188 if (m && of_node_get(np)) { 1189 if (match) 1190 *match = m; 1191 break; 1192 } 1193 } 1194 of_node_put(from); 1195 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1196 return np; 1197 } 1198 EXPORT_SYMBOL(of_find_matching_node_and_match); 1199 1200 /** 1201 * of_modalias_node - Lookup appropriate modalias for a device node 1202 * @node: pointer to a device tree node 1203 * @modalias: Pointer to buffer that modalias value will be copied into 1204 * @len: Length of modalias value 1205 * 1206 * Based on the value of the compatible property, this routine will attempt 1207 * to choose an appropriate modalias value for a particular device tree node. 1208 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1209 * from the first entry in the compatible list property. 1210 * 1211 * This routine returns 0 on success, <0 on failure. 1212 */ 1213 int of_modalias_node(struct device_node *node, char *modalias, int len) 1214 { 1215 const char *compatible, *p; 1216 int cplen; 1217 1218 compatible = of_get_property(node, "compatible", &cplen); 1219 if (!compatible || strlen(compatible) > cplen) 1220 return -ENODEV; 1221 p = strchr(compatible, ','); 1222 strlcpy(modalias, p ? p + 1 : compatible, len); 1223 return 0; 1224 } 1225 EXPORT_SYMBOL_GPL(of_modalias_node); 1226 1227 /** 1228 * of_find_node_by_phandle - Find a node given a phandle 1229 * @handle: phandle of the node to find 1230 * 1231 * Returns a node pointer with refcount incremented, use 1232 * of_node_put() on it when done. 1233 */ 1234 struct device_node *of_find_node_by_phandle(phandle handle) 1235 { 1236 struct device_node *np = NULL; 1237 unsigned long flags; 1238 phandle masked_handle; 1239 1240 if (!handle) 1241 return NULL; 1242 1243 raw_spin_lock_irqsave(&devtree_lock, flags); 1244 1245 masked_handle = handle & phandle_cache_mask; 1246 1247 if (phandle_cache) { 1248 if (phandle_cache[masked_handle] && 1249 handle == phandle_cache[masked_handle]->phandle) 1250 np = phandle_cache[masked_handle]; 1251 if (np && of_node_check_flag(np, OF_DETACHED)) { 1252 WARN_ON(1); /* did not uncache np on node removal */ 1253 of_node_put(np); 1254 phandle_cache[masked_handle] = NULL; 1255 np = NULL; 1256 } 1257 } 1258 1259 if (!np) { 1260 for_each_of_allnodes(np) 1261 if (np->phandle == handle && 1262 !of_node_check_flag(np, OF_DETACHED)) { 1263 if (phandle_cache) { 1264 /* will put when removed from cache */ 1265 of_node_get(np); 1266 phandle_cache[masked_handle] = np; 1267 } 1268 break; 1269 } 1270 } 1271 1272 of_node_get(np); 1273 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1274 return np; 1275 } 1276 EXPORT_SYMBOL(of_find_node_by_phandle); 1277 1278 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1279 { 1280 int i; 1281 printk("%s %pOF", msg, args->np); 1282 for (i = 0; i < args->args_count; i++) { 1283 const char delim = i ? ',' : ':'; 1284 1285 pr_cont("%c%08x", delim, args->args[i]); 1286 } 1287 pr_cont("\n"); 1288 } 1289 1290 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1291 const struct device_node *np, 1292 const char *list_name, 1293 const char *cells_name, 1294 int cell_count) 1295 { 1296 const __be32 *list; 1297 int size; 1298 1299 memset(it, 0, sizeof(*it)); 1300 1301 /* 1302 * one of cell_count or cells_name must be provided to determine the 1303 * argument length. 1304 */ 1305 if (cell_count < 0 && !cells_name) 1306 return -EINVAL; 1307 1308 list = of_get_property(np, list_name, &size); 1309 if (!list) 1310 return -ENOENT; 1311 1312 it->cells_name = cells_name; 1313 it->cell_count = cell_count; 1314 it->parent = np; 1315 it->list_end = list + size / sizeof(*list); 1316 it->phandle_end = list; 1317 it->cur = list; 1318 1319 return 0; 1320 } 1321 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1322 1323 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1324 { 1325 uint32_t count = 0; 1326 1327 if (it->node) { 1328 of_node_put(it->node); 1329 it->node = NULL; 1330 } 1331 1332 if (!it->cur || it->phandle_end >= it->list_end) 1333 return -ENOENT; 1334 1335 it->cur = it->phandle_end; 1336 1337 /* If phandle is 0, then it is an empty entry with no arguments. */ 1338 it->phandle = be32_to_cpup(it->cur++); 1339 1340 if (it->phandle) { 1341 1342 /* 1343 * Find the provider node and parse the #*-cells property to 1344 * determine the argument length. 1345 */ 1346 it->node = of_find_node_by_phandle(it->phandle); 1347 1348 if (it->cells_name) { 1349 if (!it->node) { 1350 pr_err("%pOF: could not find phandle\n", 1351 it->parent); 1352 goto err; 1353 } 1354 1355 if (of_property_read_u32(it->node, it->cells_name, 1356 &count)) { 1357 /* 1358 * If both cell_count and cells_name is given, 1359 * fall back to cell_count in absence 1360 * of the cells_name property 1361 */ 1362 if (it->cell_count >= 0) { 1363 count = it->cell_count; 1364 } else { 1365 pr_err("%pOF: could not get %s for %pOF\n", 1366 it->parent, 1367 it->cells_name, 1368 it->node); 1369 goto err; 1370 } 1371 } 1372 } else { 1373 count = it->cell_count; 1374 } 1375 1376 /* 1377 * Make sure that the arguments actually fit in the remaining 1378 * property data length 1379 */ 1380 if (it->cur + count > it->list_end) { 1381 pr_err("%pOF: %s = %d found %d\n", 1382 it->parent, it->cells_name, 1383 count, it->cell_count); 1384 goto err; 1385 } 1386 } 1387 1388 it->phandle_end = it->cur + count; 1389 it->cur_count = count; 1390 1391 return 0; 1392 1393 err: 1394 if (it->node) { 1395 of_node_put(it->node); 1396 it->node = NULL; 1397 } 1398 1399 return -EINVAL; 1400 } 1401 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1402 1403 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1404 uint32_t *args, 1405 int size) 1406 { 1407 int i, count; 1408 1409 count = it->cur_count; 1410 1411 if (WARN_ON(size < count)) 1412 count = size; 1413 1414 for (i = 0; i < count; i++) 1415 args[i] = be32_to_cpup(it->cur++); 1416 1417 return count; 1418 } 1419 1420 static int __of_parse_phandle_with_args(const struct device_node *np, 1421 const char *list_name, 1422 const char *cells_name, 1423 int cell_count, int index, 1424 struct of_phandle_args *out_args) 1425 { 1426 struct of_phandle_iterator it; 1427 int rc, cur_index = 0; 1428 1429 /* Loop over the phandles until all the requested entry is found */ 1430 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1431 /* 1432 * All of the error cases bail out of the loop, so at 1433 * this point, the parsing is successful. If the requested 1434 * index matches, then fill the out_args structure and return, 1435 * or return -ENOENT for an empty entry. 1436 */ 1437 rc = -ENOENT; 1438 if (cur_index == index) { 1439 if (!it.phandle) 1440 goto err; 1441 1442 if (out_args) { 1443 int c; 1444 1445 c = of_phandle_iterator_args(&it, 1446 out_args->args, 1447 MAX_PHANDLE_ARGS); 1448 out_args->np = it.node; 1449 out_args->args_count = c; 1450 } else { 1451 of_node_put(it.node); 1452 } 1453 1454 /* Found it! return success */ 1455 return 0; 1456 } 1457 1458 cur_index++; 1459 } 1460 1461 /* 1462 * Unlock node before returning result; will be one of: 1463 * -ENOENT : index is for empty phandle 1464 * -EINVAL : parsing error on data 1465 */ 1466 1467 err: 1468 of_node_put(it.node); 1469 return rc; 1470 } 1471 1472 /** 1473 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1474 * @np: Pointer to device node holding phandle property 1475 * @phandle_name: Name of property holding a phandle value 1476 * @index: For properties holding a table of phandles, this is the index into 1477 * the table 1478 * 1479 * Returns the device_node pointer with refcount incremented. Use 1480 * of_node_put() on it when done. 1481 */ 1482 struct device_node *of_parse_phandle(const struct device_node *np, 1483 const char *phandle_name, int index) 1484 { 1485 struct of_phandle_args args; 1486 1487 if (index < 0) 1488 return NULL; 1489 1490 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1491 index, &args)) 1492 return NULL; 1493 1494 return args.np; 1495 } 1496 EXPORT_SYMBOL(of_parse_phandle); 1497 1498 /** 1499 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1500 * @np: pointer to a device tree node containing a list 1501 * @list_name: property name that contains a list 1502 * @cells_name: property name that specifies phandles' arguments count 1503 * @index: index of a phandle to parse out 1504 * @out_args: optional pointer to output arguments structure (will be filled) 1505 * 1506 * This function is useful to parse lists of phandles and their arguments. 1507 * Returns 0 on success and fills out_args, on error returns appropriate 1508 * errno value. 1509 * 1510 * Caller is responsible to call of_node_put() on the returned out_args->np 1511 * pointer. 1512 * 1513 * Example: 1514 * 1515 * phandle1: node1 { 1516 * #list-cells = <2>; 1517 * } 1518 * 1519 * phandle2: node2 { 1520 * #list-cells = <1>; 1521 * } 1522 * 1523 * node3 { 1524 * list = <&phandle1 1 2 &phandle2 3>; 1525 * } 1526 * 1527 * To get a device_node of the `node2' node you may call this: 1528 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1529 */ 1530 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1531 const char *cells_name, int index, 1532 struct of_phandle_args *out_args) 1533 { 1534 int cell_count = -1; 1535 1536 if (index < 0) 1537 return -EINVAL; 1538 1539 /* If cells_name is NULL we assume a cell count of 0 */ 1540 if (!cells_name) 1541 cell_count = 0; 1542 1543 return __of_parse_phandle_with_args(np, list_name, cells_name, 1544 cell_count, index, out_args); 1545 } 1546 EXPORT_SYMBOL(of_parse_phandle_with_args); 1547 1548 /** 1549 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1550 * @np: pointer to a device tree node containing a list 1551 * @list_name: property name that contains a list 1552 * @stem_name: stem of property names that specify phandles' arguments count 1553 * @index: index of a phandle to parse out 1554 * @out_args: optional pointer to output arguments structure (will be filled) 1555 * 1556 * This function is useful to parse lists of phandles and their arguments. 1557 * Returns 0 on success and fills out_args, on error returns appropriate errno 1558 * value. The difference between this function and of_parse_phandle_with_args() 1559 * is that this API remaps a phandle if the node the phandle points to has 1560 * a <@stem_name>-map property. 1561 * 1562 * Caller is responsible to call of_node_put() on the returned out_args->np 1563 * pointer. 1564 * 1565 * Example: 1566 * 1567 * phandle1: node1 { 1568 * #list-cells = <2>; 1569 * } 1570 * 1571 * phandle2: node2 { 1572 * #list-cells = <1>; 1573 * } 1574 * 1575 * phandle3: node3 { 1576 * #list-cells = <1>; 1577 * list-map = <0 &phandle2 3>, 1578 * <1 &phandle2 2>, 1579 * <2 &phandle1 5 1>; 1580 * list-map-mask = <0x3>; 1581 * }; 1582 * 1583 * node4 { 1584 * list = <&phandle1 1 2 &phandle3 0>; 1585 * } 1586 * 1587 * To get a device_node of the `node2' node you may call this: 1588 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1589 */ 1590 int of_parse_phandle_with_args_map(const struct device_node *np, 1591 const char *list_name, 1592 const char *stem_name, 1593 int index, struct of_phandle_args *out_args) 1594 { 1595 char *cells_name, *map_name = NULL, *mask_name = NULL; 1596 char *pass_name = NULL; 1597 struct device_node *cur, *new = NULL; 1598 const __be32 *map, *mask, *pass; 1599 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1600 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1601 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1602 const __be32 *match_array = initial_match_array; 1603 int i, ret, map_len, match; 1604 u32 list_size, new_size; 1605 1606 if (index < 0) 1607 return -EINVAL; 1608 1609 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1610 if (!cells_name) 1611 return -ENOMEM; 1612 1613 ret = -ENOMEM; 1614 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1615 if (!map_name) 1616 goto free; 1617 1618 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1619 if (!mask_name) 1620 goto free; 1621 1622 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1623 if (!pass_name) 1624 goto free; 1625 1626 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1627 out_args); 1628 if (ret) 1629 goto free; 1630 1631 /* Get the #<list>-cells property */ 1632 cur = out_args->np; 1633 ret = of_property_read_u32(cur, cells_name, &list_size); 1634 if (ret < 0) 1635 goto put; 1636 1637 /* Precalculate the match array - this simplifies match loop */ 1638 for (i = 0; i < list_size; i++) 1639 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1640 1641 ret = -EINVAL; 1642 while (cur) { 1643 /* Get the <list>-map property */ 1644 map = of_get_property(cur, map_name, &map_len); 1645 if (!map) { 1646 ret = 0; 1647 goto free; 1648 } 1649 map_len /= sizeof(u32); 1650 1651 /* Get the <list>-map-mask property (optional) */ 1652 mask = of_get_property(cur, mask_name, NULL); 1653 if (!mask) 1654 mask = dummy_mask; 1655 /* Iterate through <list>-map property */ 1656 match = 0; 1657 while (map_len > (list_size + 1) && !match) { 1658 /* Compare specifiers */ 1659 match = 1; 1660 for (i = 0; i < list_size; i++, map_len--) 1661 match &= !((match_array[i] ^ *map++) & mask[i]); 1662 1663 of_node_put(new); 1664 new = of_find_node_by_phandle(be32_to_cpup(map)); 1665 map++; 1666 map_len--; 1667 1668 /* Check if not found */ 1669 if (!new) 1670 goto put; 1671 1672 if (!of_device_is_available(new)) 1673 match = 0; 1674 1675 ret = of_property_read_u32(new, cells_name, &new_size); 1676 if (ret) 1677 goto put; 1678 1679 /* Check for malformed properties */ 1680 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1681 goto put; 1682 if (map_len < new_size) 1683 goto put; 1684 1685 /* Move forward by new node's #<list>-cells amount */ 1686 map += new_size; 1687 map_len -= new_size; 1688 } 1689 if (!match) 1690 goto put; 1691 1692 /* Get the <list>-map-pass-thru property (optional) */ 1693 pass = of_get_property(cur, pass_name, NULL); 1694 if (!pass) 1695 pass = dummy_pass; 1696 1697 /* 1698 * Successfully parsed a <list>-map translation; copy new 1699 * specifier into the out_args structure, keeping the 1700 * bits specified in <list>-map-pass-thru. 1701 */ 1702 match_array = map - new_size; 1703 for (i = 0; i < new_size; i++) { 1704 __be32 val = *(map - new_size + i); 1705 1706 if (i < list_size) { 1707 val &= ~pass[i]; 1708 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1709 } 1710 1711 out_args->args[i] = be32_to_cpu(val); 1712 } 1713 out_args->args_count = list_size = new_size; 1714 /* Iterate again with new provider */ 1715 out_args->np = new; 1716 of_node_put(cur); 1717 cur = new; 1718 } 1719 put: 1720 of_node_put(cur); 1721 of_node_put(new); 1722 free: 1723 kfree(mask_name); 1724 kfree(map_name); 1725 kfree(cells_name); 1726 kfree(pass_name); 1727 1728 return ret; 1729 } 1730 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1731 1732 /** 1733 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1734 * @np: pointer to a device tree node containing a list 1735 * @list_name: property name that contains a list 1736 * @cell_count: number of argument cells following the phandle 1737 * @index: index of a phandle to parse out 1738 * @out_args: optional pointer to output arguments structure (will be filled) 1739 * 1740 * This function is useful to parse lists of phandles and their arguments. 1741 * Returns 0 on success and fills out_args, on error returns appropriate 1742 * errno value. 1743 * 1744 * Caller is responsible to call of_node_put() on the returned out_args->np 1745 * pointer. 1746 * 1747 * Example: 1748 * 1749 * phandle1: node1 { 1750 * } 1751 * 1752 * phandle2: node2 { 1753 * } 1754 * 1755 * node3 { 1756 * list = <&phandle1 0 2 &phandle2 2 3>; 1757 * } 1758 * 1759 * To get a device_node of the `node2' node you may call this: 1760 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1761 */ 1762 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1763 const char *list_name, int cell_count, 1764 int index, struct of_phandle_args *out_args) 1765 { 1766 if (index < 0) 1767 return -EINVAL; 1768 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1769 index, out_args); 1770 } 1771 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1772 1773 /** 1774 * of_count_phandle_with_args() - Find the number of phandles references in a property 1775 * @np: pointer to a device tree node containing a list 1776 * @list_name: property name that contains a list 1777 * @cells_name: property name that specifies phandles' arguments count 1778 * 1779 * Returns the number of phandle + argument tuples within a property. It 1780 * is a typical pattern to encode a list of phandle and variable 1781 * arguments into a single property. The number of arguments is encoded 1782 * by a property in the phandle-target node. For example, a gpios 1783 * property would contain a list of GPIO specifies consisting of a 1784 * phandle and 1 or more arguments. The number of arguments are 1785 * determined by the #gpio-cells property in the node pointed to by the 1786 * phandle. 1787 */ 1788 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1789 const char *cells_name) 1790 { 1791 struct of_phandle_iterator it; 1792 int rc, cur_index = 0; 1793 1794 /* 1795 * If cells_name is NULL we assume a cell count of 0. This makes 1796 * counting the phandles trivial as each 32bit word in the list is a 1797 * phandle and no arguments are to consider. So we don't iterate through 1798 * the list but just use the length to determine the phandle count. 1799 */ 1800 if (!cells_name) { 1801 const __be32 *list; 1802 int size; 1803 1804 list = of_get_property(np, list_name, &size); 1805 if (!list) 1806 return -ENOENT; 1807 1808 return size / sizeof(*list); 1809 } 1810 1811 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1812 if (rc) 1813 return rc; 1814 1815 while ((rc = of_phandle_iterator_next(&it)) == 0) 1816 cur_index += 1; 1817 1818 if (rc != -ENOENT) 1819 return rc; 1820 1821 return cur_index; 1822 } 1823 EXPORT_SYMBOL(of_count_phandle_with_args); 1824 1825 /** 1826 * __of_add_property - Add a property to a node without lock operations 1827 */ 1828 int __of_add_property(struct device_node *np, struct property *prop) 1829 { 1830 struct property **next; 1831 1832 prop->next = NULL; 1833 next = &np->properties; 1834 while (*next) { 1835 if (strcmp(prop->name, (*next)->name) == 0) 1836 /* duplicate ! don't insert it */ 1837 return -EEXIST; 1838 1839 next = &(*next)->next; 1840 } 1841 *next = prop; 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * of_add_property - Add a property to a node 1848 */ 1849 int of_add_property(struct device_node *np, struct property *prop) 1850 { 1851 unsigned long flags; 1852 int rc; 1853 1854 mutex_lock(&of_mutex); 1855 1856 raw_spin_lock_irqsave(&devtree_lock, flags); 1857 rc = __of_add_property(np, prop); 1858 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1859 1860 if (!rc) 1861 __of_add_property_sysfs(np, prop); 1862 1863 mutex_unlock(&of_mutex); 1864 1865 if (!rc) 1866 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1867 1868 return rc; 1869 } 1870 1871 int __of_remove_property(struct device_node *np, struct property *prop) 1872 { 1873 struct property **next; 1874 1875 for (next = &np->properties; *next; next = &(*next)->next) { 1876 if (*next == prop) 1877 break; 1878 } 1879 if (*next == NULL) 1880 return -ENODEV; 1881 1882 /* found the node */ 1883 *next = prop->next; 1884 prop->next = np->deadprops; 1885 np->deadprops = prop; 1886 1887 return 0; 1888 } 1889 1890 /** 1891 * of_remove_property - Remove a property from a node. 1892 * 1893 * Note that we don't actually remove it, since we have given out 1894 * who-knows-how-many pointers to the data using get-property. 1895 * Instead we just move the property to the "dead properties" 1896 * list, so it won't be found any more. 1897 */ 1898 int of_remove_property(struct device_node *np, struct property *prop) 1899 { 1900 unsigned long flags; 1901 int rc; 1902 1903 if (!prop) 1904 return -ENODEV; 1905 1906 mutex_lock(&of_mutex); 1907 1908 raw_spin_lock_irqsave(&devtree_lock, flags); 1909 rc = __of_remove_property(np, prop); 1910 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1911 1912 if (!rc) 1913 __of_remove_property_sysfs(np, prop); 1914 1915 mutex_unlock(&of_mutex); 1916 1917 if (!rc) 1918 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1919 1920 return rc; 1921 } 1922 1923 int __of_update_property(struct device_node *np, struct property *newprop, 1924 struct property **oldpropp) 1925 { 1926 struct property **next, *oldprop; 1927 1928 for (next = &np->properties; *next; next = &(*next)->next) { 1929 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1930 break; 1931 } 1932 *oldpropp = oldprop = *next; 1933 1934 if (oldprop) { 1935 /* replace the node */ 1936 newprop->next = oldprop->next; 1937 *next = newprop; 1938 oldprop->next = np->deadprops; 1939 np->deadprops = oldprop; 1940 } else { 1941 /* new node */ 1942 newprop->next = NULL; 1943 *next = newprop; 1944 } 1945 1946 return 0; 1947 } 1948 1949 /* 1950 * of_update_property - Update a property in a node, if the property does 1951 * not exist, add it. 1952 * 1953 * Note that we don't actually remove it, since we have given out 1954 * who-knows-how-many pointers to the data using get-property. 1955 * Instead we just move the property to the "dead properties" list, 1956 * and add the new property to the property list 1957 */ 1958 int of_update_property(struct device_node *np, struct property *newprop) 1959 { 1960 struct property *oldprop; 1961 unsigned long flags; 1962 int rc; 1963 1964 if (!newprop->name) 1965 return -EINVAL; 1966 1967 mutex_lock(&of_mutex); 1968 1969 raw_spin_lock_irqsave(&devtree_lock, flags); 1970 rc = __of_update_property(np, newprop, &oldprop); 1971 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1972 1973 if (!rc) 1974 __of_update_property_sysfs(np, newprop, oldprop); 1975 1976 mutex_unlock(&of_mutex); 1977 1978 if (!rc) 1979 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1980 1981 return rc; 1982 } 1983 1984 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1985 int id, const char *stem, int stem_len) 1986 { 1987 ap->np = np; 1988 ap->id = id; 1989 strncpy(ap->stem, stem, stem_len); 1990 ap->stem[stem_len] = 0; 1991 list_add_tail(&ap->link, &aliases_lookup); 1992 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1993 ap->alias, ap->stem, ap->id, np); 1994 } 1995 1996 /** 1997 * of_alias_scan - Scan all properties of the 'aliases' node 1998 * 1999 * The function scans all the properties of the 'aliases' node and populates 2000 * the global lookup table with the properties. It returns the 2001 * number of alias properties found, or an error code in case of failure. 2002 * 2003 * @dt_alloc: An allocator that provides a virtual address to memory 2004 * for storing the resulting tree 2005 */ 2006 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2007 { 2008 struct property *pp; 2009 2010 of_aliases = of_find_node_by_path("/aliases"); 2011 of_chosen = of_find_node_by_path("/chosen"); 2012 if (of_chosen == NULL) 2013 of_chosen = of_find_node_by_path("/chosen@0"); 2014 2015 if (of_chosen) { 2016 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 2017 const char *name = NULL; 2018 2019 if (of_property_read_string(of_chosen, "stdout-path", &name)) 2020 of_property_read_string(of_chosen, "linux,stdout-path", 2021 &name); 2022 if (IS_ENABLED(CONFIG_PPC) && !name) 2023 of_property_read_string(of_aliases, "stdout", &name); 2024 if (name) 2025 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2026 } 2027 2028 if (!of_aliases) 2029 return; 2030 2031 for_each_property_of_node(of_aliases, pp) { 2032 const char *start = pp->name; 2033 const char *end = start + strlen(start); 2034 struct device_node *np; 2035 struct alias_prop *ap; 2036 int id, len; 2037 2038 /* Skip those we do not want to proceed */ 2039 if (!strcmp(pp->name, "name") || 2040 !strcmp(pp->name, "phandle") || 2041 !strcmp(pp->name, "linux,phandle")) 2042 continue; 2043 2044 np = of_find_node_by_path(pp->value); 2045 if (!np) 2046 continue; 2047 2048 /* walk the alias backwards to extract the id and work out 2049 * the 'stem' string */ 2050 while (isdigit(*(end-1)) && end > start) 2051 end--; 2052 len = end - start; 2053 2054 if (kstrtoint(end, 10, &id) < 0) 2055 continue; 2056 2057 /* Allocate an alias_prop with enough space for the stem */ 2058 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2059 if (!ap) 2060 continue; 2061 memset(ap, 0, sizeof(*ap) + len + 1); 2062 ap->alias = start; 2063 of_alias_add(ap, np, id, start, len); 2064 } 2065 } 2066 2067 /** 2068 * of_alias_get_id - Get alias id for the given device_node 2069 * @np: Pointer to the given device_node 2070 * @stem: Alias stem of the given device_node 2071 * 2072 * The function travels the lookup table to get the alias id for the given 2073 * device_node and alias stem. It returns the alias id if found. 2074 */ 2075 int of_alias_get_id(struct device_node *np, const char *stem) 2076 { 2077 struct alias_prop *app; 2078 int id = -ENODEV; 2079 2080 mutex_lock(&of_mutex); 2081 list_for_each_entry(app, &aliases_lookup, link) { 2082 if (strcmp(app->stem, stem) != 0) 2083 continue; 2084 2085 if (np == app->np) { 2086 id = app->id; 2087 break; 2088 } 2089 } 2090 mutex_unlock(&of_mutex); 2091 2092 return id; 2093 } 2094 EXPORT_SYMBOL_GPL(of_alias_get_id); 2095 2096 /** 2097 * of_alias_get_alias_list - Get alias list for the given device driver 2098 * @matches: Array of OF device match structures to search in 2099 * @stem: Alias stem of the given device_node 2100 * @bitmap: Bitmap field pointer 2101 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2102 * 2103 * The function travels the lookup table to record alias ids for the given 2104 * device match structures and alias stem. 2105 * 2106 * Return: 0 or -ENOSYS when !CONFIG_OF or 2107 * -EOVERFLOW if alias ID is greater then allocated nbits 2108 */ 2109 int of_alias_get_alias_list(const struct of_device_id *matches, 2110 const char *stem, unsigned long *bitmap, 2111 unsigned int nbits) 2112 { 2113 struct alias_prop *app; 2114 int ret = 0; 2115 2116 /* Zero bitmap field to make sure that all the time it is clean */ 2117 bitmap_zero(bitmap, nbits); 2118 2119 mutex_lock(&of_mutex); 2120 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2121 list_for_each_entry(app, &aliases_lookup, link) { 2122 pr_debug("%s: stem: %s, id: %d\n", 2123 __func__, app->stem, app->id); 2124 2125 if (strcmp(app->stem, stem) != 0) { 2126 pr_debug("%s: stem comparison didn't pass %s\n", 2127 __func__, app->stem); 2128 continue; 2129 } 2130 2131 if (of_match_node(matches, app->np)) { 2132 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2133 2134 if (app->id >= nbits) { 2135 pr_warn("%s: ID %d >= than bitmap field %d\n", 2136 __func__, app->id, nbits); 2137 ret = -EOVERFLOW; 2138 } else { 2139 set_bit(app->id, bitmap); 2140 } 2141 } 2142 } 2143 mutex_unlock(&of_mutex); 2144 2145 return ret; 2146 } 2147 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2148 2149 /** 2150 * of_alias_get_highest_id - Get highest alias id for the given stem 2151 * @stem: Alias stem to be examined 2152 * 2153 * The function travels the lookup table to get the highest alias id for the 2154 * given alias stem. It returns the alias id if found. 2155 */ 2156 int of_alias_get_highest_id(const char *stem) 2157 { 2158 struct alias_prop *app; 2159 int id = -ENODEV; 2160 2161 mutex_lock(&of_mutex); 2162 list_for_each_entry(app, &aliases_lookup, link) { 2163 if (strcmp(app->stem, stem) != 0) 2164 continue; 2165 2166 if (app->id > id) 2167 id = app->id; 2168 } 2169 mutex_unlock(&of_mutex); 2170 2171 return id; 2172 } 2173 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2174 2175 /** 2176 * of_console_check() - Test and setup console for DT setup 2177 * @dn - Pointer to device node 2178 * @name - Name to use for preferred console without index. ex. "ttyS" 2179 * @index - Index to use for preferred console. 2180 * 2181 * Check if the given device node matches the stdout-path property in the 2182 * /chosen node. If it does then register it as the preferred console and return 2183 * TRUE. Otherwise return FALSE. 2184 */ 2185 bool of_console_check(struct device_node *dn, char *name, int index) 2186 { 2187 if (!dn || dn != of_stdout || console_set_on_cmdline) 2188 return false; 2189 2190 /* 2191 * XXX: cast `options' to char pointer to suppress complication 2192 * warnings: printk, UART and console drivers expect char pointer. 2193 */ 2194 return !add_preferred_console(name, index, (char *)of_stdout_options); 2195 } 2196 EXPORT_SYMBOL_GPL(of_console_check); 2197 2198 /** 2199 * of_find_next_cache_node - Find a node's subsidiary cache 2200 * @np: node of type "cpu" or "cache" 2201 * 2202 * Returns a node pointer with refcount incremented, use 2203 * of_node_put() on it when done. Caller should hold a reference 2204 * to np. 2205 */ 2206 struct device_node *of_find_next_cache_node(const struct device_node *np) 2207 { 2208 struct device_node *child, *cache_node; 2209 2210 cache_node = of_parse_phandle(np, "l2-cache", 0); 2211 if (!cache_node) 2212 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2213 2214 if (cache_node) 2215 return cache_node; 2216 2217 /* OF on pmac has nodes instead of properties named "l2-cache" 2218 * beneath CPU nodes. 2219 */ 2220 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2221 for_each_child_of_node(np, child) 2222 if (of_node_is_type(child, "cache")) 2223 return child; 2224 2225 return NULL; 2226 } 2227 2228 /** 2229 * of_find_last_cache_level - Find the level at which the last cache is 2230 * present for the given logical cpu 2231 * 2232 * @cpu: cpu number(logical index) for which the last cache level is needed 2233 * 2234 * Returns the the level at which the last cache is present. It is exactly 2235 * same as the total number of cache levels for the given logical cpu. 2236 */ 2237 int of_find_last_cache_level(unsigned int cpu) 2238 { 2239 u32 cache_level = 0; 2240 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2241 2242 while (np) { 2243 prev = np; 2244 of_node_put(np); 2245 np = of_find_next_cache_node(np); 2246 } 2247 2248 of_property_read_u32(prev, "cache-level", &cache_level); 2249 2250 return cache_level; 2251 } 2252 2253 /** 2254 * of_map_rid - Translate a requester ID through a downstream mapping. 2255 * @np: root complex device node. 2256 * @rid: device requester ID to map. 2257 * @map_name: property name of the map to use. 2258 * @map_mask_name: optional property name of the mask to use. 2259 * @target: optional pointer to a target device node. 2260 * @id_out: optional pointer to receive the translated ID. 2261 * 2262 * Given a device requester ID, look up the appropriate implementation-defined 2263 * platform ID and/or the target device which receives transactions on that 2264 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2265 * @id_out may be NULL if only the other is required. If @target points to 2266 * a non-NULL device node pointer, only entries targeting that node will be 2267 * matched; if it points to a NULL value, it will receive the device node of 2268 * the first matching target phandle, with a reference held. 2269 * 2270 * Return: 0 on success or a standard error code on failure. 2271 */ 2272 int of_map_rid(struct device_node *np, u32 rid, 2273 const char *map_name, const char *map_mask_name, 2274 struct device_node **target, u32 *id_out) 2275 { 2276 u32 map_mask, masked_rid; 2277 int map_len; 2278 const __be32 *map = NULL; 2279 2280 if (!np || !map_name || (!target && !id_out)) 2281 return -EINVAL; 2282 2283 map = of_get_property(np, map_name, &map_len); 2284 if (!map) { 2285 if (target) 2286 return -ENODEV; 2287 /* Otherwise, no map implies no translation */ 2288 *id_out = rid; 2289 return 0; 2290 } 2291 2292 if (!map_len || map_len % (4 * sizeof(*map))) { 2293 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2294 map_name, map_len); 2295 return -EINVAL; 2296 } 2297 2298 /* The default is to select all bits. */ 2299 map_mask = 0xffffffff; 2300 2301 /* 2302 * Can be overridden by "{iommu,msi}-map-mask" property. 2303 * If of_property_read_u32() fails, the default is used. 2304 */ 2305 if (map_mask_name) 2306 of_property_read_u32(np, map_mask_name, &map_mask); 2307 2308 masked_rid = map_mask & rid; 2309 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2310 struct device_node *phandle_node; 2311 u32 rid_base = be32_to_cpup(map + 0); 2312 u32 phandle = be32_to_cpup(map + 1); 2313 u32 out_base = be32_to_cpup(map + 2); 2314 u32 rid_len = be32_to_cpup(map + 3); 2315 2316 if (rid_base & ~map_mask) { 2317 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n", 2318 np, map_name, map_name, 2319 map_mask, rid_base); 2320 return -EFAULT; 2321 } 2322 2323 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len) 2324 continue; 2325 2326 phandle_node = of_find_node_by_phandle(phandle); 2327 if (!phandle_node) 2328 return -ENODEV; 2329 2330 if (target) { 2331 if (*target) 2332 of_node_put(phandle_node); 2333 else 2334 *target = phandle_node; 2335 2336 if (*target != phandle_node) 2337 continue; 2338 } 2339 2340 if (id_out) 2341 *id_out = masked_rid - rid_base + out_base; 2342 2343 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n", 2344 np, map_name, map_mask, rid_base, out_base, 2345 rid_len, rid, masked_rid - rid_base + out_base); 2346 return 0; 2347 } 2348 2349 pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name, 2350 rid, target && *target ? *target : NULL); 2351 2352 /* Bypasses translation */ 2353 if (id_out) 2354 *id_out = rid; 2355 return 0; 2356 } 2357 EXPORT_SYMBOL_GPL(of_map_rid); 2358