1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/spinlock.h> 25 #include <linux/slab.h> 26 #include <linux/proc_fs.h> 27 28 #include "of_private.h" 29 30 LIST_HEAD(aliases_lookup); 31 32 struct device_node *of_allnodes; 33 EXPORT_SYMBOL(of_allnodes); 34 struct device_node *of_chosen; 35 struct device_node *of_aliases; 36 static struct device_node *of_stdout; 37 38 DEFINE_MUTEX(of_aliases_mutex); 39 40 /* use when traversing tree through the allnext, child, sibling, 41 * or parent members of struct device_node. 42 */ 43 DEFINE_RAW_SPINLOCK(devtree_lock); 44 45 int of_n_addr_cells(struct device_node *np) 46 { 47 const __be32 *ip; 48 49 do { 50 if (np->parent) 51 np = np->parent; 52 ip = of_get_property(np, "#address-cells", NULL); 53 if (ip) 54 return be32_to_cpup(ip); 55 } while (np->parent); 56 /* No #address-cells property for the root node */ 57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 58 } 59 EXPORT_SYMBOL(of_n_addr_cells); 60 61 int of_n_size_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#size-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #size-cells property for the root node */ 73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_size_cells); 76 77 #ifdef CONFIG_NUMA 78 int __weak of_node_to_nid(struct device_node *np) 79 { 80 return numa_node_id(); 81 } 82 #endif 83 84 #if defined(CONFIG_OF_DYNAMIC) 85 /** 86 * of_node_get - Increment refcount of a node 87 * @node: Node to inc refcount, NULL is supported to 88 * simplify writing of callers 89 * 90 * Returns node. 91 */ 92 struct device_node *of_node_get(struct device_node *node) 93 { 94 if (node) 95 kref_get(&node->kref); 96 return node; 97 } 98 EXPORT_SYMBOL(of_node_get); 99 100 static inline struct device_node *kref_to_device_node(struct kref *kref) 101 { 102 return container_of(kref, struct device_node, kref); 103 } 104 105 /** 106 * of_node_release - release a dynamically allocated node 107 * @kref: kref element of the node to be released 108 * 109 * In of_node_put() this function is passed to kref_put() 110 * as the destructor. 111 */ 112 static void of_node_release(struct kref *kref) 113 { 114 struct device_node *node = kref_to_device_node(kref); 115 struct property *prop = node->properties; 116 117 /* We should never be releasing nodes that haven't been detached. */ 118 if (!of_node_check_flag(node, OF_DETACHED)) { 119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); 120 dump_stack(); 121 kref_init(&node->kref); 122 return; 123 } 124 125 if (!of_node_check_flag(node, OF_DYNAMIC)) 126 return; 127 128 while (prop) { 129 struct property *next = prop->next; 130 kfree(prop->name); 131 kfree(prop->value); 132 kfree(prop); 133 prop = next; 134 135 if (!prop) { 136 prop = node->deadprops; 137 node->deadprops = NULL; 138 } 139 } 140 kfree(node->full_name); 141 kfree(node->data); 142 kfree(node); 143 } 144 145 /** 146 * of_node_put - Decrement refcount of a node 147 * @node: Node to dec refcount, NULL is supported to 148 * simplify writing of callers 149 * 150 */ 151 void of_node_put(struct device_node *node) 152 { 153 if (node) 154 kref_put(&node->kref, of_node_release); 155 } 156 EXPORT_SYMBOL(of_node_put); 157 #endif /* CONFIG_OF_DYNAMIC */ 158 159 static struct property *__of_find_property(const struct device_node *np, 160 const char *name, int *lenp) 161 { 162 struct property *pp; 163 164 if (!np) 165 return NULL; 166 167 for (pp = np->properties; pp; pp = pp->next) { 168 if (of_prop_cmp(pp->name, name) == 0) { 169 if (lenp) 170 *lenp = pp->length; 171 break; 172 } 173 } 174 175 return pp; 176 } 177 178 struct property *of_find_property(const struct device_node *np, 179 const char *name, 180 int *lenp) 181 { 182 struct property *pp; 183 unsigned long flags; 184 185 raw_spin_lock_irqsave(&devtree_lock, flags); 186 pp = __of_find_property(np, name, lenp); 187 raw_spin_unlock_irqrestore(&devtree_lock, flags); 188 189 return pp; 190 } 191 EXPORT_SYMBOL(of_find_property); 192 193 /** 194 * of_find_all_nodes - Get next node in global list 195 * @prev: Previous node or NULL to start iteration 196 * of_node_put() will be called on it 197 * 198 * Returns a node pointer with refcount incremented, use 199 * of_node_put() on it when done. 200 */ 201 struct device_node *of_find_all_nodes(struct device_node *prev) 202 { 203 struct device_node *np; 204 unsigned long flags; 205 206 raw_spin_lock_irqsave(&devtree_lock, flags); 207 np = prev ? prev->allnext : of_allnodes; 208 for (; np != NULL; np = np->allnext) 209 if (of_node_get(np)) 210 break; 211 of_node_put(prev); 212 raw_spin_unlock_irqrestore(&devtree_lock, flags); 213 return np; 214 } 215 EXPORT_SYMBOL(of_find_all_nodes); 216 217 /* 218 * Find a property with a given name for a given node 219 * and return the value. 220 */ 221 static const void *__of_get_property(const struct device_node *np, 222 const char *name, int *lenp) 223 { 224 struct property *pp = __of_find_property(np, name, lenp); 225 226 return pp ? pp->value : NULL; 227 } 228 229 /* 230 * Find a property with a given name for a given node 231 * and return the value. 232 */ 233 const void *of_get_property(const struct device_node *np, const char *name, 234 int *lenp) 235 { 236 struct property *pp = of_find_property(np, name, lenp); 237 238 return pp ? pp->value : NULL; 239 } 240 EXPORT_SYMBOL(of_get_property); 241 242 /* 243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 244 * 245 * @cpu: logical cpu index of a core/thread 246 * @phys_id: physical identifier of a core/thread 247 * 248 * CPU logical to physical index mapping is architecture specific. 249 * However this __weak function provides a default match of physical 250 * id to logical cpu index. phys_id provided here is usually values read 251 * from the device tree which must match the hardware internal registers. 252 * 253 * Returns true if the physical identifier and the logical cpu index 254 * correspond to the same core/thread, false otherwise. 255 */ 256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 257 { 258 return (u32)phys_id == cpu; 259 } 260 261 /** 262 * Checks if the given "prop_name" property holds the physical id of the 263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 264 * NULL, local thread number within the core is returned in it. 265 */ 266 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 267 const char *prop_name, int cpu, unsigned int *thread) 268 { 269 const __be32 *cell; 270 int ac, prop_len, tid; 271 u64 hwid; 272 273 ac = of_n_addr_cells(cpun); 274 cell = of_get_property(cpun, prop_name, &prop_len); 275 if (!cell || !ac) 276 return false; 277 prop_len /= sizeof(*cell) * ac; 278 for (tid = 0; tid < prop_len; tid++) { 279 hwid = of_read_number(cell, ac); 280 if (arch_match_cpu_phys_id(cpu, hwid)) { 281 if (thread) 282 *thread = tid; 283 return true; 284 } 285 cell += ac; 286 } 287 return false; 288 } 289 290 /* 291 * arch_find_n_match_cpu_physical_id - See if the given device node is 292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 293 * else false. If 'thread' is non-NULL, the local thread number within the 294 * core is returned in it. 295 */ 296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 297 int cpu, unsigned int *thread) 298 { 299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 300 * for thread ids on PowerPC. If it doesn't exist fallback to 301 * standard "reg" property. 302 */ 303 if (IS_ENABLED(CONFIG_PPC) && 304 __of_find_n_match_cpu_property(cpun, 305 "ibm,ppc-interrupt-server#s", 306 cpu, thread)) 307 return true; 308 309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 310 return true; 311 312 return false; 313 } 314 315 /** 316 * of_get_cpu_node - Get device node associated with the given logical CPU 317 * 318 * @cpu: CPU number(logical index) for which device node is required 319 * @thread: if not NULL, local thread number within the physical core is 320 * returned 321 * 322 * The main purpose of this function is to retrieve the device node for the 323 * given logical CPU index. It should be used to initialize the of_node in 324 * cpu device. Once of_node in cpu device is populated, all the further 325 * references can use that instead. 326 * 327 * CPU logical to physical index mapping is architecture specific and is built 328 * before booting secondary cores. This function uses arch_match_cpu_phys_id 329 * which can be overridden by architecture specific implementation. 330 * 331 * Returns a node pointer for the logical cpu if found, else NULL. 332 */ 333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 334 { 335 struct device_node *cpun; 336 337 for_each_node_by_type(cpun, "cpu") { 338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 339 return cpun; 340 } 341 return NULL; 342 } 343 EXPORT_SYMBOL(of_get_cpu_node); 344 345 /** Checks if the given "compat" string matches one of the strings in 346 * the device's "compatible" property 347 */ 348 static int __of_device_is_compatible(const struct device_node *device, 349 const char *compat) 350 { 351 const char* cp; 352 int cplen, l; 353 354 cp = __of_get_property(device, "compatible", &cplen); 355 if (cp == NULL) 356 return 0; 357 while (cplen > 0) { 358 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) 359 return 1; 360 l = strlen(cp) + 1; 361 cp += l; 362 cplen -= l; 363 } 364 365 return 0; 366 } 367 368 /** Checks if the given "compat" string matches one of the strings in 369 * the device's "compatible" property 370 */ 371 int of_device_is_compatible(const struct device_node *device, 372 const char *compat) 373 { 374 unsigned long flags; 375 int res; 376 377 raw_spin_lock_irqsave(&devtree_lock, flags); 378 res = __of_device_is_compatible(device, compat); 379 raw_spin_unlock_irqrestore(&devtree_lock, flags); 380 return res; 381 } 382 EXPORT_SYMBOL(of_device_is_compatible); 383 384 /** 385 * of_machine_is_compatible - Test root of device tree for a given compatible value 386 * @compat: compatible string to look for in root node's compatible property. 387 * 388 * Returns true if the root node has the given value in its 389 * compatible property. 390 */ 391 int of_machine_is_compatible(const char *compat) 392 { 393 struct device_node *root; 394 int rc = 0; 395 396 root = of_find_node_by_path("/"); 397 if (root) { 398 rc = of_device_is_compatible(root, compat); 399 of_node_put(root); 400 } 401 return rc; 402 } 403 EXPORT_SYMBOL(of_machine_is_compatible); 404 405 /** 406 * __of_device_is_available - check if a device is available for use 407 * 408 * @device: Node to check for availability, with locks already held 409 * 410 * Returns 1 if the status property is absent or set to "okay" or "ok", 411 * 0 otherwise 412 */ 413 static int __of_device_is_available(const struct device_node *device) 414 { 415 const char *status; 416 int statlen; 417 418 if (!device) 419 return 0; 420 421 status = __of_get_property(device, "status", &statlen); 422 if (status == NULL) 423 return 1; 424 425 if (statlen > 0) { 426 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 427 return 1; 428 } 429 430 return 0; 431 } 432 433 /** 434 * of_device_is_available - check if a device is available for use 435 * 436 * @device: Node to check for availability 437 * 438 * Returns 1 if the status property is absent or set to "okay" or "ok", 439 * 0 otherwise 440 */ 441 int of_device_is_available(const struct device_node *device) 442 { 443 unsigned long flags; 444 int res; 445 446 raw_spin_lock_irqsave(&devtree_lock, flags); 447 res = __of_device_is_available(device); 448 raw_spin_unlock_irqrestore(&devtree_lock, flags); 449 return res; 450 451 } 452 EXPORT_SYMBOL(of_device_is_available); 453 454 /** 455 * of_get_parent - Get a node's parent if any 456 * @node: Node to get parent 457 * 458 * Returns a node pointer with refcount incremented, use 459 * of_node_put() on it when done. 460 */ 461 struct device_node *of_get_parent(const struct device_node *node) 462 { 463 struct device_node *np; 464 unsigned long flags; 465 466 if (!node) 467 return NULL; 468 469 raw_spin_lock_irqsave(&devtree_lock, flags); 470 np = of_node_get(node->parent); 471 raw_spin_unlock_irqrestore(&devtree_lock, flags); 472 return np; 473 } 474 EXPORT_SYMBOL(of_get_parent); 475 476 /** 477 * of_get_next_parent - Iterate to a node's parent 478 * @node: Node to get parent of 479 * 480 * This is like of_get_parent() except that it drops the 481 * refcount on the passed node, making it suitable for iterating 482 * through a node's parents. 483 * 484 * Returns a node pointer with refcount incremented, use 485 * of_node_put() on it when done. 486 */ 487 struct device_node *of_get_next_parent(struct device_node *node) 488 { 489 struct device_node *parent; 490 unsigned long flags; 491 492 if (!node) 493 return NULL; 494 495 raw_spin_lock_irqsave(&devtree_lock, flags); 496 parent = of_node_get(node->parent); 497 of_node_put(node); 498 raw_spin_unlock_irqrestore(&devtree_lock, flags); 499 return parent; 500 } 501 EXPORT_SYMBOL(of_get_next_parent); 502 503 /** 504 * of_get_next_child - Iterate a node childs 505 * @node: parent node 506 * @prev: previous child of the parent node, or NULL to get first 507 * 508 * Returns a node pointer with refcount incremented, use 509 * of_node_put() on it when done. 510 */ 511 struct device_node *of_get_next_child(const struct device_node *node, 512 struct device_node *prev) 513 { 514 struct device_node *next; 515 unsigned long flags; 516 517 raw_spin_lock_irqsave(&devtree_lock, flags); 518 next = prev ? prev->sibling : node->child; 519 for (; next; next = next->sibling) 520 if (of_node_get(next)) 521 break; 522 of_node_put(prev); 523 raw_spin_unlock_irqrestore(&devtree_lock, flags); 524 return next; 525 } 526 EXPORT_SYMBOL(of_get_next_child); 527 528 /** 529 * of_get_next_available_child - Find the next available child node 530 * @node: parent node 531 * @prev: previous child of the parent node, or NULL to get first 532 * 533 * This function is like of_get_next_child(), except that it 534 * automatically skips any disabled nodes (i.e. status = "disabled"). 535 */ 536 struct device_node *of_get_next_available_child(const struct device_node *node, 537 struct device_node *prev) 538 { 539 struct device_node *next; 540 unsigned long flags; 541 542 raw_spin_lock_irqsave(&devtree_lock, flags); 543 next = prev ? prev->sibling : node->child; 544 for (; next; next = next->sibling) { 545 if (!__of_device_is_available(next)) 546 continue; 547 if (of_node_get(next)) 548 break; 549 } 550 of_node_put(prev); 551 raw_spin_unlock_irqrestore(&devtree_lock, flags); 552 return next; 553 } 554 EXPORT_SYMBOL(of_get_next_available_child); 555 556 /** 557 * of_get_child_by_name - Find the child node by name for a given parent 558 * @node: parent node 559 * @name: child name to look for. 560 * 561 * This function looks for child node for given matching name 562 * 563 * Returns a node pointer if found, with refcount incremented, use 564 * of_node_put() on it when done. 565 * Returns NULL if node is not found. 566 */ 567 struct device_node *of_get_child_by_name(const struct device_node *node, 568 const char *name) 569 { 570 struct device_node *child; 571 572 for_each_child_of_node(node, child) 573 if (child->name && (of_node_cmp(child->name, name) == 0)) 574 break; 575 return child; 576 } 577 EXPORT_SYMBOL(of_get_child_by_name); 578 579 /** 580 * of_find_node_by_path - Find a node matching a full OF path 581 * @path: The full path to match 582 * 583 * Returns a node pointer with refcount incremented, use 584 * of_node_put() on it when done. 585 */ 586 struct device_node *of_find_node_by_path(const char *path) 587 { 588 struct device_node *np = of_allnodes; 589 unsigned long flags; 590 591 raw_spin_lock_irqsave(&devtree_lock, flags); 592 for (; np; np = np->allnext) { 593 if (np->full_name && (of_node_cmp(np->full_name, path) == 0) 594 && of_node_get(np)) 595 break; 596 } 597 raw_spin_unlock_irqrestore(&devtree_lock, flags); 598 return np; 599 } 600 EXPORT_SYMBOL(of_find_node_by_path); 601 602 /** 603 * of_find_node_by_name - Find a node by its "name" property 604 * @from: The node to start searching from or NULL, the node 605 * you pass will not be searched, only the next one 606 * will; typically, you pass what the previous call 607 * returned. of_node_put() will be called on it 608 * @name: The name string to match against 609 * 610 * Returns a node pointer with refcount incremented, use 611 * of_node_put() on it when done. 612 */ 613 struct device_node *of_find_node_by_name(struct device_node *from, 614 const char *name) 615 { 616 struct device_node *np; 617 unsigned long flags; 618 619 raw_spin_lock_irqsave(&devtree_lock, flags); 620 np = from ? from->allnext : of_allnodes; 621 for (; np; np = np->allnext) 622 if (np->name && (of_node_cmp(np->name, name) == 0) 623 && of_node_get(np)) 624 break; 625 of_node_put(from); 626 raw_spin_unlock_irqrestore(&devtree_lock, flags); 627 return np; 628 } 629 EXPORT_SYMBOL(of_find_node_by_name); 630 631 /** 632 * of_find_node_by_type - Find a node by its "device_type" property 633 * @from: The node to start searching from, or NULL to start searching 634 * the entire device tree. The node you pass will not be 635 * searched, only the next one will; typically, you pass 636 * what the previous call returned. of_node_put() will be 637 * called on from for you. 638 * @type: The type string to match against 639 * 640 * Returns a node pointer with refcount incremented, use 641 * of_node_put() on it when done. 642 */ 643 struct device_node *of_find_node_by_type(struct device_node *from, 644 const char *type) 645 { 646 struct device_node *np; 647 unsigned long flags; 648 649 raw_spin_lock_irqsave(&devtree_lock, flags); 650 np = from ? from->allnext : of_allnodes; 651 for (; np; np = np->allnext) 652 if (np->type && (of_node_cmp(np->type, type) == 0) 653 && of_node_get(np)) 654 break; 655 of_node_put(from); 656 raw_spin_unlock_irqrestore(&devtree_lock, flags); 657 return np; 658 } 659 EXPORT_SYMBOL(of_find_node_by_type); 660 661 /** 662 * of_find_compatible_node - Find a node based on type and one of the 663 * tokens in its "compatible" property 664 * @from: The node to start searching from or NULL, the node 665 * you pass will not be searched, only the next one 666 * will; typically, you pass what the previous call 667 * returned. of_node_put() will be called on it 668 * @type: The type string to match "device_type" or NULL to ignore 669 * @compatible: The string to match to one of the tokens in the device 670 * "compatible" list. 671 * 672 * Returns a node pointer with refcount incremented, use 673 * of_node_put() on it when done. 674 */ 675 struct device_node *of_find_compatible_node(struct device_node *from, 676 const char *type, const char *compatible) 677 { 678 struct device_node *np; 679 unsigned long flags; 680 681 raw_spin_lock_irqsave(&devtree_lock, flags); 682 np = from ? from->allnext : of_allnodes; 683 for (; np; np = np->allnext) { 684 if (type 685 && !(np->type && (of_node_cmp(np->type, type) == 0))) 686 continue; 687 if (__of_device_is_compatible(np, compatible) && 688 of_node_get(np)) 689 break; 690 } 691 of_node_put(from); 692 raw_spin_unlock_irqrestore(&devtree_lock, flags); 693 return np; 694 } 695 EXPORT_SYMBOL(of_find_compatible_node); 696 697 /** 698 * of_find_node_with_property - Find a node which has a property with 699 * the given name. 700 * @from: The node to start searching from or NULL, the node 701 * you pass will not be searched, only the next one 702 * will; typically, you pass what the previous call 703 * returned. of_node_put() will be called on it 704 * @prop_name: The name of the property to look for. 705 * 706 * Returns a node pointer with refcount incremented, use 707 * of_node_put() on it when done. 708 */ 709 struct device_node *of_find_node_with_property(struct device_node *from, 710 const char *prop_name) 711 { 712 struct device_node *np; 713 struct property *pp; 714 unsigned long flags; 715 716 raw_spin_lock_irqsave(&devtree_lock, flags); 717 np = from ? from->allnext : of_allnodes; 718 for (; np; np = np->allnext) { 719 for (pp = np->properties; pp; pp = pp->next) { 720 if (of_prop_cmp(pp->name, prop_name) == 0) { 721 of_node_get(np); 722 goto out; 723 } 724 } 725 } 726 out: 727 of_node_put(from); 728 raw_spin_unlock_irqrestore(&devtree_lock, flags); 729 return np; 730 } 731 EXPORT_SYMBOL(of_find_node_with_property); 732 733 static 734 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 735 const struct device_node *node) 736 { 737 const char *cp; 738 int cplen, l; 739 740 if (!matches) 741 return NULL; 742 743 cp = __of_get_property(node, "compatible", &cplen); 744 do { 745 const struct of_device_id *m = matches; 746 747 /* Check against matches with current compatible string */ 748 while (m->name[0] || m->type[0] || m->compatible[0]) { 749 int match = 1; 750 if (m->name[0]) 751 match &= node->name 752 && !strcmp(m->name, node->name); 753 if (m->type[0]) 754 match &= node->type 755 && !strcmp(m->type, node->type); 756 if (m->compatible[0]) 757 match &= cp 758 && !of_compat_cmp(m->compatible, cp, 759 strlen(m->compatible)); 760 if (match) 761 return m; 762 m++; 763 } 764 765 /* Get node's next compatible string */ 766 if (cp) { 767 l = strlen(cp) + 1; 768 cp += l; 769 cplen -= l; 770 } 771 } while (cp && (cplen > 0)); 772 773 return NULL; 774 } 775 776 /** 777 * of_match_node - Tell if an device_node has a matching of_match structure 778 * @matches: array of of device match structures to search in 779 * @node: the of device structure to match against 780 * 781 * Low level utility function used by device matching. Matching order 782 * is to compare each of the node's compatibles with all given matches 783 * first. This implies node's compatible is sorted from specific to 784 * generic while matches can be in any order. 785 */ 786 const struct of_device_id *of_match_node(const struct of_device_id *matches, 787 const struct device_node *node) 788 { 789 const struct of_device_id *match; 790 unsigned long flags; 791 792 raw_spin_lock_irqsave(&devtree_lock, flags); 793 match = __of_match_node(matches, node); 794 raw_spin_unlock_irqrestore(&devtree_lock, flags); 795 return match; 796 } 797 EXPORT_SYMBOL(of_match_node); 798 799 /** 800 * of_find_matching_node_and_match - Find a node based on an of_device_id 801 * match table. 802 * @from: The node to start searching from or NULL, the node 803 * you pass will not be searched, only the next one 804 * will; typically, you pass what the previous call 805 * returned. of_node_put() will be called on it 806 * @matches: array of of device match structures to search in 807 * @match Updated to point at the matches entry which matched 808 * 809 * Returns a node pointer with refcount incremented, use 810 * of_node_put() on it when done. 811 */ 812 struct device_node *of_find_matching_node_and_match(struct device_node *from, 813 const struct of_device_id *matches, 814 const struct of_device_id **match) 815 { 816 struct device_node *np; 817 const struct of_device_id *m; 818 unsigned long flags; 819 820 if (match) 821 *match = NULL; 822 823 raw_spin_lock_irqsave(&devtree_lock, flags); 824 np = from ? from->allnext : of_allnodes; 825 for (; np; np = np->allnext) { 826 m = __of_match_node(matches, np); 827 if (m && of_node_get(np)) { 828 if (match) 829 *match = m; 830 break; 831 } 832 } 833 of_node_put(from); 834 raw_spin_unlock_irqrestore(&devtree_lock, flags); 835 return np; 836 } 837 EXPORT_SYMBOL(of_find_matching_node_and_match); 838 839 /** 840 * of_modalias_node - Lookup appropriate modalias for a device node 841 * @node: pointer to a device tree node 842 * @modalias: Pointer to buffer that modalias value will be copied into 843 * @len: Length of modalias value 844 * 845 * Based on the value of the compatible property, this routine will attempt 846 * to choose an appropriate modalias value for a particular device tree node. 847 * It does this by stripping the manufacturer prefix (as delimited by a ',') 848 * from the first entry in the compatible list property. 849 * 850 * This routine returns 0 on success, <0 on failure. 851 */ 852 int of_modalias_node(struct device_node *node, char *modalias, int len) 853 { 854 const char *compatible, *p; 855 int cplen; 856 857 compatible = of_get_property(node, "compatible", &cplen); 858 if (!compatible || strlen(compatible) > cplen) 859 return -ENODEV; 860 p = strchr(compatible, ','); 861 strlcpy(modalias, p ? p + 1 : compatible, len); 862 return 0; 863 } 864 EXPORT_SYMBOL_GPL(of_modalias_node); 865 866 /** 867 * of_find_node_by_phandle - Find a node given a phandle 868 * @handle: phandle of the node to find 869 * 870 * Returns a node pointer with refcount incremented, use 871 * of_node_put() on it when done. 872 */ 873 struct device_node *of_find_node_by_phandle(phandle handle) 874 { 875 struct device_node *np; 876 unsigned long flags; 877 878 raw_spin_lock_irqsave(&devtree_lock, flags); 879 for (np = of_allnodes; np; np = np->allnext) 880 if (np->phandle == handle) 881 break; 882 of_node_get(np); 883 raw_spin_unlock_irqrestore(&devtree_lock, flags); 884 return np; 885 } 886 EXPORT_SYMBOL(of_find_node_by_phandle); 887 888 /** 889 * of_find_property_value_of_size 890 * 891 * @np: device node from which the property value is to be read. 892 * @propname: name of the property to be searched. 893 * @len: requested length of property value 894 * 895 * Search for a property in a device node and valid the requested size. 896 * Returns the property value on success, -EINVAL if the property does not 897 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 898 * property data isn't large enough. 899 * 900 */ 901 static void *of_find_property_value_of_size(const struct device_node *np, 902 const char *propname, u32 len) 903 { 904 struct property *prop = of_find_property(np, propname, NULL); 905 906 if (!prop) 907 return ERR_PTR(-EINVAL); 908 if (!prop->value) 909 return ERR_PTR(-ENODATA); 910 if (len > prop->length) 911 return ERR_PTR(-EOVERFLOW); 912 913 return prop->value; 914 } 915 916 /** 917 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 918 * 919 * @np: device node from which the property value is to be read. 920 * @propname: name of the property to be searched. 921 * @index: index of the u32 in the list of values 922 * @out_value: pointer to return value, modified only if no error. 923 * 924 * Search for a property in a device node and read nth 32-bit value from 925 * it. Returns 0 on success, -EINVAL if the property does not exist, 926 * -ENODATA if property does not have a value, and -EOVERFLOW if the 927 * property data isn't large enough. 928 * 929 * The out_value is modified only if a valid u32 value can be decoded. 930 */ 931 int of_property_read_u32_index(const struct device_node *np, 932 const char *propname, 933 u32 index, u32 *out_value) 934 { 935 const u32 *val = of_find_property_value_of_size(np, propname, 936 ((index + 1) * sizeof(*out_value))); 937 938 if (IS_ERR(val)) 939 return PTR_ERR(val); 940 941 *out_value = be32_to_cpup(((__be32 *)val) + index); 942 return 0; 943 } 944 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 945 946 /** 947 * of_property_read_u8_array - Find and read an array of u8 from a property. 948 * 949 * @np: device node from which the property value is to be read. 950 * @propname: name of the property to be searched. 951 * @out_values: pointer to return value, modified only if return value is 0. 952 * @sz: number of array elements to read 953 * 954 * Search for a property in a device node and read 8-bit value(s) from 955 * it. Returns 0 on success, -EINVAL if the property does not exist, 956 * -ENODATA if property does not have a value, and -EOVERFLOW if the 957 * property data isn't large enough. 958 * 959 * dts entry of array should be like: 960 * property = /bits/ 8 <0x50 0x60 0x70>; 961 * 962 * The out_values is modified only if a valid u8 value can be decoded. 963 */ 964 int of_property_read_u8_array(const struct device_node *np, 965 const char *propname, u8 *out_values, size_t sz) 966 { 967 const u8 *val = of_find_property_value_of_size(np, propname, 968 (sz * sizeof(*out_values))); 969 970 if (IS_ERR(val)) 971 return PTR_ERR(val); 972 973 while (sz--) 974 *out_values++ = *val++; 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 978 979 /** 980 * of_property_read_u16_array - Find and read an array of u16 from a property. 981 * 982 * @np: device node from which the property value is to be read. 983 * @propname: name of the property to be searched. 984 * @out_values: pointer to return value, modified only if return value is 0. 985 * @sz: number of array elements to read 986 * 987 * Search for a property in a device node and read 16-bit value(s) from 988 * it. Returns 0 on success, -EINVAL if the property does not exist, 989 * -ENODATA if property does not have a value, and -EOVERFLOW if the 990 * property data isn't large enough. 991 * 992 * dts entry of array should be like: 993 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 994 * 995 * The out_values is modified only if a valid u16 value can be decoded. 996 */ 997 int of_property_read_u16_array(const struct device_node *np, 998 const char *propname, u16 *out_values, size_t sz) 999 { 1000 const __be16 *val = of_find_property_value_of_size(np, propname, 1001 (sz * sizeof(*out_values))); 1002 1003 if (IS_ERR(val)) 1004 return PTR_ERR(val); 1005 1006 while (sz--) 1007 *out_values++ = be16_to_cpup(val++); 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1011 1012 /** 1013 * of_property_read_u32_array - Find and read an array of 32 bit integers 1014 * from a property. 1015 * 1016 * @np: device node from which the property value is to be read. 1017 * @propname: name of the property to be searched. 1018 * @out_values: pointer to return value, modified only if return value is 0. 1019 * @sz: number of array elements to read 1020 * 1021 * Search for a property in a device node and read 32-bit value(s) from 1022 * it. Returns 0 on success, -EINVAL if the property does not exist, 1023 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1024 * property data isn't large enough. 1025 * 1026 * The out_values is modified only if a valid u32 value can be decoded. 1027 */ 1028 int of_property_read_u32_array(const struct device_node *np, 1029 const char *propname, u32 *out_values, 1030 size_t sz) 1031 { 1032 const __be32 *val = of_find_property_value_of_size(np, propname, 1033 (sz * sizeof(*out_values))); 1034 1035 if (IS_ERR(val)) 1036 return PTR_ERR(val); 1037 1038 while (sz--) 1039 *out_values++ = be32_to_cpup(val++); 1040 return 0; 1041 } 1042 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1043 1044 /** 1045 * of_property_read_u64 - Find and read a 64 bit integer from a property 1046 * @np: device node from which the property value is to be read. 1047 * @propname: name of the property to be searched. 1048 * @out_value: pointer to return value, modified only if return value is 0. 1049 * 1050 * Search for a property in a device node and read a 64-bit value from 1051 * it. Returns 0 on success, -EINVAL if the property does not exist, 1052 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1053 * property data isn't large enough. 1054 * 1055 * The out_value is modified only if a valid u64 value can be decoded. 1056 */ 1057 int of_property_read_u64(const struct device_node *np, const char *propname, 1058 u64 *out_value) 1059 { 1060 const __be32 *val = of_find_property_value_of_size(np, propname, 1061 sizeof(*out_value)); 1062 1063 if (IS_ERR(val)) 1064 return PTR_ERR(val); 1065 1066 *out_value = of_read_number(val, 2); 1067 return 0; 1068 } 1069 EXPORT_SYMBOL_GPL(of_property_read_u64); 1070 1071 /** 1072 * of_property_read_string - Find and read a string from a property 1073 * @np: device node from which the property value is to be read. 1074 * @propname: name of the property to be searched. 1075 * @out_string: pointer to null terminated return string, modified only if 1076 * return value is 0. 1077 * 1078 * Search for a property in a device tree node and retrieve a null 1079 * terminated string value (pointer to data, not a copy). Returns 0 on 1080 * success, -EINVAL if the property does not exist, -ENODATA if property 1081 * does not have a value, and -EILSEQ if the string is not null-terminated 1082 * within the length of the property data. 1083 * 1084 * The out_string pointer is modified only if a valid string can be decoded. 1085 */ 1086 int of_property_read_string(struct device_node *np, const char *propname, 1087 const char **out_string) 1088 { 1089 struct property *prop = of_find_property(np, propname, NULL); 1090 if (!prop) 1091 return -EINVAL; 1092 if (!prop->value) 1093 return -ENODATA; 1094 if (strnlen(prop->value, prop->length) >= prop->length) 1095 return -EILSEQ; 1096 *out_string = prop->value; 1097 return 0; 1098 } 1099 EXPORT_SYMBOL_GPL(of_property_read_string); 1100 1101 /** 1102 * of_property_read_string_index - Find and read a string from a multiple 1103 * strings property. 1104 * @np: device node from which the property value is to be read. 1105 * @propname: name of the property to be searched. 1106 * @index: index of the string in the list of strings 1107 * @out_string: pointer to null terminated return string, modified only if 1108 * return value is 0. 1109 * 1110 * Search for a property in a device tree node and retrieve a null 1111 * terminated string value (pointer to data, not a copy) in the list of strings 1112 * contained in that property. 1113 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if 1114 * property does not have a value, and -EILSEQ if the string is not 1115 * null-terminated within the length of the property data. 1116 * 1117 * The out_string pointer is modified only if a valid string can be decoded. 1118 */ 1119 int of_property_read_string_index(struct device_node *np, const char *propname, 1120 int index, const char **output) 1121 { 1122 struct property *prop = of_find_property(np, propname, NULL); 1123 int i = 0; 1124 size_t l = 0, total = 0; 1125 const char *p; 1126 1127 if (!prop) 1128 return -EINVAL; 1129 if (!prop->value) 1130 return -ENODATA; 1131 if (strnlen(prop->value, prop->length) >= prop->length) 1132 return -EILSEQ; 1133 1134 p = prop->value; 1135 1136 for (i = 0; total < prop->length; total += l, p += l) { 1137 l = strlen(p) + 1; 1138 if (i++ == index) { 1139 *output = p; 1140 return 0; 1141 } 1142 } 1143 return -ENODATA; 1144 } 1145 EXPORT_SYMBOL_GPL(of_property_read_string_index); 1146 1147 /** 1148 * of_property_match_string() - Find string in a list and return index 1149 * @np: pointer to node containing string list property 1150 * @propname: string list property name 1151 * @string: pointer to string to search for in string list 1152 * 1153 * This function searches a string list property and returns the index 1154 * of a specific string value. 1155 */ 1156 int of_property_match_string(struct device_node *np, const char *propname, 1157 const char *string) 1158 { 1159 struct property *prop = of_find_property(np, propname, NULL); 1160 size_t l; 1161 int i; 1162 const char *p, *end; 1163 1164 if (!prop) 1165 return -EINVAL; 1166 if (!prop->value) 1167 return -ENODATA; 1168 1169 p = prop->value; 1170 end = p + prop->length; 1171 1172 for (i = 0; p < end; i++, p += l) { 1173 l = strlen(p) + 1; 1174 if (p + l > end) 1175 return -EILSEQ; 1176 pr_debug("comparing %s with %s\n", string, p); 1177 if (strcmp(string, p) == 0) 1178 return i; /* Found it; return index */ 1179 } 1180 return -ENODATA; 1181 } 1182 EXPORT_SYMBOL_GPL(of_property_match_string); 1183 1184 /** 1185 * of_property_count_strings - Find and return the number of strings from a 1186 * multiple strings property. 1187 * @np: device node from which the property value is to be read. 1188 * @propname: name of the property to be searched. 1189 * 1190 * Search for a property in a device tree node and retrieve the number of null 1191 * terminated string contain in it. Returns the number of strings on 1192 * success, -EINVAL if the property does not exist, -ENODATA if property 1193 * does not have a value, and -EILSEQ if the string is not null-terminated 1194 * within the length of the property data. 1195 */ 1196 int of_property_count_strings(struct device_node *np, const char *propname) 1197 { 1198 struct property *prop = of_find_property(np, propname, NULL); 1199 int i = 0; 1200 size_t l = 0, total = 0; 1201 const char *p; 1202 1203 if (!prop) 1204 return -EINVAL; 1205 if (!prop->value) 1206 return -ENODATA; 1207 if (strnlen(prop->value, prop->length) >= prop->length) 1208 return -EILSEQ; 1209 1210 p = prop->value; 1211 1212 for (i = 0; total < prop->length; total += l, p += l, i++) 1213 l = strlen(p) + 1; 1214 1215 return i; 1216 } 1217 EXPORT_SYMBOL_GPL(of_property_count_strings); 1218 1219 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1220 { 1221 int i; 1222 printk("%s %s", msg, of_node_full_name(args->np)); 1223 for (i = 0; i < args->args_count; i++) 1224 printk(i ? ",%08x" : ":%08x", args->args[i]); 1225 printk("\n"); 1226 } 1227 1228 static int __of_parse_phandle_with_args(const struct device_node *np, 1229 const char *list_name, 1230 const char *cells_name, 1231 int cell_count, int index, 1232 struct of_phandle_args *out_args) 1233 { 1234 const __be32 *list, *list_end; 1235 int rc = 0, size, cur_index = 0; 1236 uint32_t count = 0; 1237 struct device_node *node = NULL; 1238 phandle phandle; 1239 1240 /* Retrieve the phandle list property */ 1241 list = of_get_property(np, list_name, &size); 1242 if (!list) 1243 return -ENOENT; 1244 list_end = list + size / sizeof(*list); 1245 1246 /* Loop over the phandles until all the requested entry is found */ 1247 while (list < list_end) { 1248 rc = -EINVAL; 1249 count = 0; 1250 1251 /* 1252 * If phandle is 0, then it is an empty entry with no 1253 * arguments. Skip forward to the next entry. 1254 */ 1255 phandle = be32_to_cpup(list++); 1256 if (phandle) { 1257 /* 1258 * Find the provider node and parse the #*-cells 1259 * property to determine the argument length. 1260 * 1261 * This is not needed if the cell count is hard-coded 1262 * (i.e. cells_name not set, but cell_count is set), 1263 * except when we're going to return the found node 1264 * below. 1265 */ 1266 if (cells_name || cur_index == index) { 1267 node = of_find_node_by_phandle(phandle); 1268 if (!node) { 1269 pr_err("%s: could not find phandle\n", 1270 np->full_name); 1271 goto err; 1272 } 1273 } 1274 1275 if (cells_name) { 1276 if (of_property_read_u32(node, cells_name, 1277 &count)) { 1278 pr_err("%s: could not get %s for %s\n", 1279 np->full_name, cells_name, 1280 node->full_name); 1281 goto err; 1282 } 1283 } else { 1284 count = cell_count; 1285 } 1286 1287 /* 1288 * Make sure that the arguments actually fit in the 1289 * remaining property data length 1290 */ 1291 if (list + count > list_end) { 1292 pr_err("%s: arguments longer than property\n", 1293 np->full_name); 1294 goto err; 1295 } 1296 } 1297 1298 /* 1299 * All of the error cases above bail out of the loop, so at 1300 * this point, the parsing is successful. If the requested 1301 * index matches, then fill the out_args structure and return, 1302 * or return -ENOENT for an empty entry. 1303 */ 1304 rc = -ENOENT; 1305 if (cur_index == index) { 1306 if (!phandle) 1307 goto err; 1308 1309 if (out_args) { 1310 int i; 1311 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1312 count = MAX_PHANDLE_ARGS; 1313 out_args->np = node; 1314 out_args->args_count = count; 1315 for (i = 0; i < count; i++) 1316 out_args->args[i] = be32_to_cpup(list++); 1317 } else { 1318 of_node_put(node); 1319 } 1320 1321 /* Found it! return success */ 1322 return 0; 1323 } 1324 1325 of_node_put(node); 1326 node = NULL; 1327 list += count; 1328 cur_index++; 1329 } 1330 1331 /* 1332 * Unlock node before returning result; will be one of: 1333 * -ENOENT : index is for empty phandle 1334 * -EINVAL : parsing error on data 1335 * [1..n] : Number of phandle (count mode; when index = -1) 1336 */ 1337 rc = index < 0 ? cur_index : -ENOENT; 1338 err: 1339 if (node) 1340 of_node_put(node); 1341 return rc; 1342 } 1343 1344 /** 1345 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1346 * @np: Pointer to device node holding phandle property 1347 * @phandle_name: Name of property holding a phandle value 1348 * @index: For properties holding a table of phandles, this is the index into 1349 * the table 1350 * 1351 * Returns the device_node pointer with refcount incremented. Use 1352 * of_node_put() on it when done. 1353 */ 1354 struct device_node *of_parse_phandle(const struct device_node *np, 1355 const char *phandle_name, int index) 1356 { 1357 struct of_phandle_args args; 1358 1359 if (index < 0) 1360 return NULL; 1361 1362 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1363 index, &args)) 1364 return NULL; 1365 1366 return args.np; 1367 } 1368 EXPORT_SYMBOL(of_parse_phandle); 1369 1370 /** 1371 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1372 * @np: pointer to a device tree node containing a list 1373 * @list_name: property name that contains a list 1374 * @cells_name: property name that specifies phandles' arguments count 1375 * @index: index of a phandle to parse out 1376 * @out_args: optional pointer to output arguments structure (will be filled) 1377 * 1378 * This function is useful to parse lists of phandles and their arguments. 1379 * Returns 0 on success and fills out_args, on error returns appropriate 1380 * errno value. 1381 * 1382 * Caller is responsible to call of_node_put() on the returned out_args->node 1383 * pointer. 1384 * 1385 * Example: 1386 * 1387 * phandle1: node1 { 1388 * #list-cells = <2>; 1389 * } 1390 * 1391 * phandle2: node2 { 1392 * #list-cells = <1>; 1393 * } 1394 * 1395 * node3 { 1396 * list = <&phandle1 1 2 &phandle2 3>; 1397 * } 1398 * 1399 * To get a device_node of the `node2' node you may call this: 1400 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1401 */ 1402 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1403 const char *cells_name, int index, 1404 struct of_phandle_args *out_args) 1405 { 1406 if (index < 0) 1407 return -EINVAL; 1408 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1409 index, out_args); 1410 } 1411 EXPORT_SYMBOL(of_parse_phandle_with_args); 1412 1413 /** 1414 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1415 * @np: pointer to a device tree node containing a list 1416 * @list_name: property name that contains a list 1417 * @cell_count: number of argument cells following the phandle 1418 * @index: index of a phandle to parse out 1419 * @out_args: optional pointer to output arguments structure (will be filled) 1420 * 1421 * This function is useful to parse lists of phandles and their arguments. 1422 * Returns 0 on success and fills out_args, on error returns appropriate 1423 * errno value. 1424 * 1425 * Caller is responsible to call of_node_put() on the returned out_args->node 1426 * pointer. 1427 * 1428 * Example: 1429 * 1430 * phandle1: node1 { 1431 * } 1432 * 1433 * phandle2: node2 { 1434 * } 1435 * 1436 * node3 { 1437 * list = <&phandle1 0 2 &phandle2 2 3>; 1438 * } 1439 * 1440 * To get a device_node of the `node2' node you may call this: 1441 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1442 */ 1443 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1444 const char *list_name, int cell_count, 1445 int index, struct of_phandle_args *out_args) 1446 { 1447 if (index < 0) 1448 return -EINVAL; 1449 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1450 index, out_args); 1451 } 1452 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1453 1454 /** 1455 * of_count_phandle_with_args() - Find the number of phandles references in a property 1456 * @np: pointer to a device tree node containing a list 1457 * @list_name: property name that contains a list 1458 * @cells_name: property name that specifies phandles' arguments count 1459 * 1460 * Returns the number of phandle + argument tuples within a property. It 1461 * is a typical pattern to encode a list of phandle and variable 1462 * arguments into a single property. The number of arguments is encoded 1463 * by a property in the phandle-target node. For example, a gpios 1464 * property would contain a list of GPIO specifies consisting of a 1465 * phandle and 1 or more arguments. The number of arguments are 1466 * determined by the #gpio-cells property in the node pointed to by the 1467 * phandle. 1468 */ 1469 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1470 const char *cells_name) 1471 { 1472 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1473 NULL); 1474 } 1475 EXPORT_SYMBOL(of_count_phandle_with_args); 1476 1477 #if defined(CONFIG_OF_DYNAMIC) 1478 static int of_property_notify(int action, struct device_node *np, 1479 struct property *prop) 1480 { 1481 struct of_prop_reconfig pr; 1482 1483 pr.dn = np; 1484 pr.prop = prop; 1485 return of_reconfig_notify(action, &pr); 1486 } 1487 #else 1488 static int of_property_notify(int action, struct device_node *np, 1489 struct property *prop) 1490 { 1491 return 0; 1492 } 1493 #endif 1494 1495 /** 1496 * of_add_property - Add a property to a node 1497 */ 1498 int of_add_property(struct device_node *np, struct property *prop) 1499 { 1500 struct property **next; 1501 unsigned long flags; 1502 int rc; 1503 1504 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); 1505 if (rc) 1506 return rc; 1507 1508 prop->next = NULL; 1509 raw_spin_lock_irqsave(&devtree_lock, flags); 1510 next = &np->properties; 1511 while (*next) { 1512 if (strcmp(prop->name, (*next)->name) == 0) { 1513 /* duplicate ! don't insert it */ 1514 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1515 return -1; 1516 } 1517 next = &(*next)->next; 1518 } 1519 *next = prop; 1520 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1521 1522 #ifdef CONFIG_PROC_DEVICETREE 1523 /* try to add to proc as well if it was initialized */ 1524 if (np->pde) 1525 proc_device_tree_add_prop(np->pde, prop); 1526 #endif /* CONFIG_PROC_DEVICETREE */ 1527 1528 return 0; 1529 } 1530 1531 /** 1532 * of_remove_property - Remove a property from a node. 1533 * 1534 * Note that we don't actually remove it, since we have given out 1535 * who-knows-how-many pointers to the data using get-property. 1536 * Instead we just move the property to the "dead properties" 1537 * list, so it won't be found any more. 1538 */ 1539 int of_remove_property(struct device_node *np, struct property *prop) 1540 { 1541 struct property **next; 1542 unsigned long flags; 1543 int found = 0; 1544 int rc; 1545 1546 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); 1547 if (rc) 1548 return rc; 1549 1550 raw_spin_lock_irqsave(&devtree_lock, flags); 1551 next = &np->properties; 1552 while (*next) { 1553 if (*next == prop) { 1554 /* found the node */ 1555 *next = prop->next; 1556 prop->next = np->deadprops; 1557 np->deadprops = prop; 1558 found = 1; 1559 break; 1560 } 1561 next = &(*next)->next; 1562 } 1563 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1564 1565 if (!found) 1566 return -ENODEV; 1567 1568 #ifdef CONFIG_PROC_DEVICETREE 1569 /* try to remove the proc node as well */ 1570 if (np->pde) 1571 proc_device_tree_remove_prop(np->pde, prop); 1572 #endif /* CONFIG_PROC_DEVICETREE */ 1573 1574 return 0; 1575 } 1576 1577 /* 1578 * of_update_property - Update a property in a node, if the property does 1579 * not exist, add it. 1580 * 1581 * Note that we don't actually remove it, since we have given out 1582 * who-knows-how-many pointers to the data using get-property. 1583 * Instead we just move the property to the "dead properties" list, 1584 * and add the new property to the property list 1585 */ 1586 int of_update_property(struct device_node *np, struct property *newprop) 1587 { 1588 struct property **next, *oldprop; 1589 unsigned long flags; 1590 int rc, found = 0; 1591 1592 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); 1593 if (rc) 1594 return rc; 1595 1596 if (!newprop->name) 1597 return -EINVAL; 1598 1599 oldprop = of_find_property(np, newprop->name, NULL); 1600 if (!oldprop) 1601 return of_add_property(np, newprop); 1602 1603 raw_spin_lock_irqsave(&devtree_lock, flags); 1604 next = &np->properties; 1605 while (*next) { 1606 if (*next == oldprop) { 1607 /* found the node */ 1608 newprop->next = oldprop->next; 1609 *next = newprop; 1610 oldprop->next = np->deadprops; 1611 np->deadprops = oldprop; 1612 found = 1; 1613 break; 1614 } 1615 next = &(*next)->next; 1616 } 1617 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1618 1619 if (!found) 1620 return -ENODEV; 1621 1622 #ifdef CONFIG_PROC_DEVICETREE 1623 /* try to add to proc as well if it was initialized */ 1624 if (np->pde) 1625 proc_device_tree_update_prop(np->pde, newprop, oldprop); 1626 #endif /* CONFIG_PROC_DEVICETREE */ 1627 1628 return 0; 1629 } 1630 1631 #if defined(CONFIG_OF_DYNAMIC) 1632 /* 1633 * Support for dynamic device trees. 1634 * 1635 * On some platforms, the device tree can be manipulated at runtime. 1636 * The routines in this section support adding, removing and changing 1637 * device tree nodes. 1638 */ 1639 1640 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); 1641 1642 int of_reconfig_notifier_register(struct notifier_block *nb) 1643 { 1644 return blocking_notifier_chain_register(&of_reconfig_chain, nb); 1645 } 1646 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); 1647 1648 int of_reconfig_notifier_unregister(struct notifier_block *nb) 1649 { 1650 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); 1651 } 1652 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); 1653 1654 int of_reconfig_notify(unsigned long action, void *p) 1655 { 1656 int rc; 1657 1658 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); 1659 return notifier_to_errno(rc); 1660 } 1661 1662 #ifdef CONFIG_PROC_DEVICETREE 1663 static void of_add_proc_dt_entry(struct device_node *dn) 1664 { 1665 struct proc_dir_entry *ent; 1666 1667 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde); 1668 if (ent) 1669 proc_device_tree_add_node(dn, ent); 1670 } 1671 #else 1672 static void of_add_proc_dt_entry(struct device_node *dn) 1673 { 1674 return; 1675 } 1676 #endif 1677 1678 /** 1679 * of_attach_node - Plug a device node into the tree and global list. 1680 */ 1681 int of_attach_node(struct device_node *np) 1682 { 1683 unsigned long flags; 1684 int rc; 1685 1686 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); 1687 if (rc) 1688 return rc; 1689 1690 raw_spin_lock_irqsave(&devtree_lock, flags); 1691 np->sibling = np->parent->child; 1692 np->allnext = of_allnodes; 1693 np->parent->child = np; 1694 of_allnodes = np; 1695 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1696 1697 of_add_proc_dt_entry(np); 1698 return 0; 1699 } 1700 1701 #ifdef CONFIG_PROC_DEVICETREE 1702 static void of_remove_proc_dt_entry(struct device_node *dn) 1703 { 1704 proc_remove(dn->pde); 1705 } 1706 #else 1707 static void of_remove_proc_dt_entry(struct device_node *dn) 1708 { 1709 return; 1710 } 1711 #endif 1712 1713 /** 1714 * of_detach_node - "Unplug" a node from the device tree. 1715 * 1716 * The caller must hold a reference to the node. The memory associated with 1717 * the node is not freed until its refcount goes to zero. 1718 */ 1719 int of_detach_node(struct device_node *np) 1720 { 1721 struct device_node *parent; 1722 unsigned long flags; 1723 int rc = 0; 1724 1725 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); 1726 if (rc) 1727 return rc; 1728 1729 raw_spin_lock_irqsave(&devtree_lock, flags); 1730 1731 if (of_node_check_flag(np, OF_DETACHED)) { 1732 /* someone already detached it */ 1733 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1734 return rc; 1735 } 1736 1737 parent = np->parent; 1738 if (!parent) { 1739 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1740 return rc; 1741 } 1742 1743 if (of_allnodes == np) 1744 of_allnodes = np->allnext; 1745 else { 1746 struct device_node *prev; 1747 for (prev = of_allnodes; 1748 prev->allnext != np; 1749 prev = prev->allnext) 1750 ; 1751 prev->allnext = np->allnext; 1752 } 1753 1754 if (parent->child == np) 1755 parent->child = np->sibling; 1756 else { 1757 struct device_node *prevsib; 1758 for (prevsib = np->parent->child; 1759 prevsib->sibling != np; 1760 prevsib = prevsib->sibling) 1761 ; 1762 prevsib->sibling = np->sibling; 1763 } 1764 1765 of_node_set_flag(np, OF_DETACHED); 1766 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1767 1768 of_remove_proc_dt_entry(np); 1769 return rc; 1770 } 1771 #endif /* defined(CONFIG_OF_DYNAMIC) */ 1772 1773 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1774 int id, const char *stem, int stem_len) 1775 { 1776 ap->np = np; 1777 ap->id = id; 1778 strncpy(ap->stem, stem, stem_len); 1779 ap->stem[stem_len] = 0; 1780 list_add_tail(&ap->link, &aliases_lookup); 1781 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1782 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1783 } 1784 1785 /** 1786 * of_alias_scan - Scan all properties of 'aliases' node 1787 * 1788 * The function scans all the properties of 'aliases' node and populate 1789 * the the global lookup table with the properties. It returns the 1790 * number of alias_prop found, or error code in error case. 1791 * 1792 * @dt_alloc: An allocator that provides a virtual address to memory 1793 * for the resulting tree 1794 */ 1795 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1796 { 1797 struct property *pp; 1798 1799 of_chosen = of_find_node_by_path("/chosen"); 1800 if (of_chosen == NULL) 1801 of_chosen = of_find_node_by_path("/chosen@0"); 1802 1803 if (of_chosen) { 1804 const char *name; 1805 1806 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1807 if (name) 1808 of_stdout = of_find_node_by_path(name); 1809 } 1810 1811 of_aliases = of_find_node_by_path("/aliases"); 1812 if (!of_aliases) 1813 return; 1814 1815 for_each_property_of_node(of_aliases, pp) { 1816 const char *start = pp->name; 1817 const char *end = start + strlen(start); 1818 struct device_node *np; 1819 struct alias_prop *ap; 1820 int id, len; 1821 1822 /* Skip those we do not want to proceed */ 1823 if (!strcmp(pp->name, "name") || 1824 !strcmp(pp->name, "phandle") || 1825 !strcmp(pp->name, "linux,phandle")) 1826 continue; 1827 1828 np = of_find_node_by_path(pp->value); 1829 if (!np) 1830 continue; 1831 1832 /* walk the alias backwards to extract the id and work out 1833 * the 'stem' string */ 1834 while (isdigit(*(end-1)) && end > start) 1835 end--; 1836 len = end - start; 1837 1838 if (kstrtoint(end, 10, &id) < 0) 1839 continue; 1840 1841 /* Allocate an alias_prop with enough space for the stem */ 1842 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1843 if (!ap) 1844 continue; 1845 memset(ap, 0, sizeof(*ap) + len + 1); 1846 ap->alias = start; 1847 of_alias_add(ap, np, id, start, len); 1848 } 1849 } 1850 1851 /** 1852 * of_alias_get_id - Get alias id for the given device_node 1853 * @np: Pointer to the given device_node 1854 * @stem: Alias stem of the given device_node 1855 * 1856 * The function travels the lookup table to get alias id for the given 1857 * device_node and alias stem. It returns the alias id if find it. 1858 */ 1859 int of_alias_get_id(struct device_node *np, const char *stem) 1860 { 1861 struct alias_prop *app; 1862 int id = -ENODEV; 1863 1864 mutex_lock(&of_aliases_mutex); 1865 list_for_each_entry(app, &aliases_lookup, link) { 1866 if (strcmp(app->stem, stem) != 0) 1867 continue; 1868 1869 if (np == app->np) { 1870 id = app->id; 1871 break; 1872 } 1873 } 1874 mutex_unlock(&of_aliases_mutex); 1875 1876 return id; 1877 } 1878 EXPORT_SYMBOL_GPL(of_alias_get_id); 1879 1880 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1881 u32 *pu) 1882 { 1883 const void *curv = cur; 1884 1885 if (!prop) 1886 return NULL; 1887 1888 if (!cur) { 1889 curv = prop->value; 1890 goto out_val; 1891 } 1892 1893 curv += sizeof(*cur); 1894 if (curv >= prop->value + prop->length) 1895 return NULL; 1896 1897 out_val: 1898 *pu = be32_to_cpup(curv); 1899 return curv; 1900 } 1901 EXPORT_SYMBOL_GPL(of_prop_next_u32); 1902 1903 const char *of_prop_next_string(struct property *prop, const char *cur) 1904 { 1905 const void *curv = cur; 1906 1907 if (!prop) 1908 return NULL; 1909 1910 if (!cur) 1911 return prop->value; 1912 1913 curv += strlen(cur) + 1; 1914 if (curv >= prop->value + prop->length) 1915 return NULL; 1916 1917 return curv; 1918 } 1919 EXPORT_SYMBOL_GPL(of_prop_next_string); 1920 1921 /** 1922 * of_device_is_stdout_path - check if a device node matches the 1923 * linux,stdout-path property 1924 * 1925 * Check if this device node matches the linux,stdout-path property 1926 * in the chosen node. return true if yes, false otherwise. 1927 */ 1928 int of_device_is_stdout_path(struct device_node *dn) 1929 { 1930 if (!of_stdout) 1931 return false; 1932 1933 return of_stdout == dn; 1934 } 1935 EXPORT_SYMBOL_GPL(of_device_is_stdout_path); 1936 1937 /** 1938 * of_find_next_cache_node - Find a node's subsidiary cache 1939 * @np: node of type "cpu" or "cache" 1940 * 1941 * Returns a node pointer with refcount incremented, use 1942 * of_node_put() on it when done. Caller should hold a reference 1943 * to np. 1944 */ 1945 struct device_node *of_find_next_cache_node(const struct device_node *np) 1946 { 1947 struct device_node *child; 1948 const phandle *handle; 1949 1950 handle = of_get_property(np, "l2-cache", NULL); 1951 if (!handle) 1952 handle = of_get_property(np, "next-level-cache", NULL); 1953 1954 if (handle) 1955 return of_find_node_by_phandle(be32_to_cpup(handle)); 1956 1957 /* OF on pmac has nodes instead of properties named "l2-cache" 1958 * beneath CPU nodes. 1959 */ 1960 if (!strcmp(np->type, "cpu")) 1961 for_each_child_of_node(np, child) 1962 if (!strcmp(child->type, "cache")) 1963 return child; 1964 1965 return NULL; 1966 } 1967