xref: /openbmc/linux/drivers/of/base.c (revision 483eb062)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27 
28 #include "of_private.h"
29 
30 LIST_HEAD(aliases_lookup);
31 
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37 
38 DEFINE_MUTEX(of_aliases_mutex);
39 
40 /* use when traversing tree through the allnext, child, sibling,
41  * or parent members of struct device_node.
42  */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44 
45 int of_n_addr_cells(struct device_node *np)
46 {
47 	const __be32 *ip;
48 
49 	do {
50 		if (np->parent)
51 			np = np->parent;
52 		ip = of_get_property(np, "#address-cells", NULL);
53 		if (ip)
54 			return be32_to_cpup(ip);
55 	} while (np->parent);
56 	/* No #address-cells property for the root node */
57 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60 
61 int of_n_size_cells(struct device_node *np)
62 {
63 	const __be32 *ip;
64 
65 	do {
66 		if (np->parent)
67 			np = np->parent;
68 		ip = of_get_property(np, "#size-cells", NULL);
69 		if (ip)
70 			return be32_to_cpup(ip);
71 	} while (np->parent);
72 	/* No #size-cells property for the root node */
73 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76 
77 #ifdef CONFIG_NUMA
78 int __weak of_node_to_nid(struct device_node *np)
79 {
80 	return numa_node_id();
81 }
82 #endif
83 
84 #if defined(CONFIG_OF_DYNAMIC)
85 /**
86  *	of_node_get - Increment refcount of a node
87  *	@node:	Node to inc refcount, NULL is supported to
88  *		simplify writing of callers
89  *
90  *	Returns node.
91  */
92 struct device_node *of_node_get(struct device_node *node)
93 {
94 	if (node)
95 		kref_get(&node->kref);
96 	return node;
97 }
98 EXPORT_SYMBOL(of_node_get);
99 
100 static inline struct device_node *kref_to_device_node(struct kref *kref)
101 {
102 	return container_of(kref, struct device_node, kref);
103 }
104 
105 /**
106  *	of_node_release - release a dynamically allocated node
107  *	@kref:  kref element of the node to be released
108  *
109  *	In of_node_put() this function is passed to kref_put()
110  *	as the destructor.
111  */
112 static void of_node_release(struct kref *kref)
113 {
114 	struct device_node *node = kref_to_device_node(kref);
115 	struct property *prop = node->properties;
116 
117 	/* We should never be releasing nodes that haven't been detached. */
118 	if (!of_node_check_flag(node, OF_DETACHED)) {
119 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
120 		dump_stack();
121 		kref_init(&node->kref);
122 		return;
123 	}
124 
125 	if (!of_node_check_flag(node, OF_DYNAMIC))
126 		return;
127 
128 	while (prop) {
129 		struct property *next = prop->next;
130 		kfree(prop->name);
131 		kfree(prop->value);
132 		kfree(prop);
133 		prop = next;
134 
135 		if (!prop) {
136 			prop = node->deadprops;
137 			node->deadprops = NULL;
138 		}
139 	}
140 	kfree(node->full_name);
141 	kfree(node->data);
142 	kfree(node);
143 }
144 
145 /**
146  *	of_node_put - Decrement refcount of a node
147  *	@node:	Node to dec refcount, NULL is supported to
148  *		simplify writing of callers
149  *
150  */
151 void of_node_put(struct device_node *node)
152 {
153 	if (node)
154 		kref_put(&node->kref, of_node_release);
155 }
156 EXPORT_SYMBOL(of_node_put);
157 #endif /* CONFIG_OF_DYNAMIC */
158 
159 static struct property *__of_find_property(const struct device_node *np,
160 					   const char *name, int *lenp)
161 {
162 	struct property *pp;
163 
164 	if (!np)
165 		return NULL;
166 
167 	for (pp = np->properties; pp; pp = pp->next) {
168 		if (of_prop_cmp(pp->name, name) == 0) {
169 			if (lenp)
170 				*lenp = pp->length;
171 			break;
172 		}
173 	}
174 
175 	return pp;
176 }
177 
178 struct property *of_find_property(const struct device_node *np,
179 				  const char *name,
180 				  int *lenp)
181 {
182 	struct property *pp;
183 	unsigned long flags;
184 
185 	raw_spin_lock_irqsave(&devtree_lock, flags);
186 	pp = __of_find_property(np, name, lenp);
187 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
188 
189 	return pp;
190 }
191 EXPORT_SYMBOL(of_find_property);
192 
193 /**
194  * of_find_all_nodes - Get next node in global list
195  * @prev:	Previous node or NULL to start iteration
196  *		of_node_put() will be called on it
197  *
198  * Returns a node pointer with refcount incremented, use
199  * of_node_put() on it when done.
200  */
201 struct device_node *of_find_all_nodes(struct device_node *prev)
202 {
203 	struct device_node *np;
204 	unsigned long flags;
205 
206 	raw_spin_lock_irqsave(&devtree_lock, flags);
207 	np = prev ? prev->allnext : of_allnodes;
208 	for (; np != NULL; np = np->allnext)
209 		if (of_node_get(np))
210 			break;
211 	of_node_put(prev);
212 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
213 	return np;
214 }
215 EXPORT_SYMBOL(of_find_all_nodes);
216 
217 /*
218  * Find a property with a given name for a given node
219  * and return the value.
220  */
221 static const void *__of_get_property(const struct device_node *np,
222 				     const char *name, int *lenp)
223 {
224 	struct property *pp = __of_find_property(np, name, lenp);
225 
226 	return pp ? pp->value : NULL;
227 }
228 
229 /*
230  * Find a property with a given name for a given node
231  * and return the value.
232  */
233 const void *of_get_property(const struct device_node *np, const char *name,
234 			    int *lenp)
235 {
236 	struct property *pp = of_find_property(np, name, lenp);
237 
238 	return pp ? pp->value : NULL;
239 }
240 EXPORT_SYMBOL(of_get_property);
241 
242 /*
243  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
244  *
245  * @cpu: logical cpu index of a core/thread
246  * @phys_id: physical identifier of a core/thread
247  *
248  * CPU logical to physical index mapping is architecture specific.
249  * However this __weak function provides a default match of physical
250  * id to logical cpu index. phys_id provided here is usually values read
251  * from the device tree which must match the hardware internal registers.
252  *
253  * Returns true if the physical identifier and the logical cpu index
254  * correspond to the same core/thread, false otherwise.
255  */
256 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
257 {
258 	return (u32)phys_id == cpu;
259 }
260 
261 /**
262  * Checks if the given "prop_name" property holds the physical id of the
263  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
264  * NULL, local thread number within the core is returned in it.
265  */
266 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
267 			const char *prop_name, int cpu, unsigned int *thread)
268 {
269 	const __be32 *cell;
270 	int ac, prop_len, tid;
271 	u64 hwid;
272 
273 	ac = of_n_addr_cells(cpun);
274 	cell = of_get_property(cpun, prop_name, &prop_len);
275 	if (!cell || !ac)
276 		return false;
277 	prop_len /= sizeof(*cell) * ac;
278 	for (tid = 0; tid < prop_len; tid++) {
279 		hwid = of_read_number(cell, ac);
280 		if (arch_match_cpu_phys_id(cpu, hwid)) {
281 			if (thread)
282 				*thread = tid;
283 			return true;
284 		}
285 		cell += ac;
286 	}
287 	return false;
288 }
289 
290 /*
291  * arch_find_n_match_cpu_physical_id - See if the given device node is
292  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
293  * else false.  If 'thread' is non-NULL, the local thread number within the
294  * core is returned in it.
295  */
296 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
297 					      int cpu, unsigned int *thread)
298 {
299 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
300 	 * for thread ids on PowerPC. If it doesn't exist fallback to
301 	 * standard "reg" property.
302 	 */
303 	if (IS_ENABLED(CONFIG_PPC) &&
304 	    __of_find_n_match_cpu_property(cpun,
305 					   "ibm,ppc-interrupt-server#s",
306 					   cpu, thread))
307 		return true;
308 
309 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
310 		return true;
311 
312 	return false;
313 }
314 
315 /**
316  * of_get_cpu_node - Get device node associated with the given logical CPU
317  *
318  * @cpu: CPU number(logical index) for which device node is required
319  * @thread: if not NULL, local thread number within the physical core is
320  *          returned
321  *
322  * The main purpose of this function is to retrieve the device node for the
323  * given logical CPU index. It should be used to initialize the of_node in
324  * cpu device. Once of_node in cpu device is populated, all the further
325  * references can use that instead.
326  *
327  * CPU logical to physical index mapping is architecture specific and is built
328  * before booting secondary cores. This function uses arch_match_cpu_phys_id
329  * which can be overridden by architecture specific implementation.
330  *
331  * Returns a node pointer for the logical cpu if found, else NULL.
332  */
333 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
334 {
335 	struct device_node *cpun;
336 
337 	for_each_node_by_type(cpun, "cpu") {
338 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
339 			return cpun;
340 	}
341 	return NULL;
342 }
343 EXPORT_SYMBOL(of_get_cpu_node);
344 
345 /** Checks if the given "compat" string matches one of the strings in
346  * the device's "compatible" property
347  */
348 static int __of_device_is_compatible(const struct device_node *device,
349 				     const char *compat)
350 {
351 	const char* cp;
352 	int cplen, l;
353 
354 	cp = __of_get_property(device, "compatible", &cplen);
355 	if (cp == NULL)
356 		return 0;
357 	while (cplen > 0) {
358 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
359 			return 1;
360 		l = strlen(cp) + 1;
361 		cp += l;
362 		cplen -= l;
363 	}
364 
365 	return 0;
366 }
367 
368 /** Checks if the given "compat" string matches one of the strings in
369  * the device's "compatible" property
370  */
371 int of_device_is_compatible(const struct device_node *device,
372 		const char *compat)
373 {
374 	unsigned long flags;
375 	int res;
376 
377 	raw_spin_lock_irqsave(&devtree_lock, flags);
378 	res = __of_device_is_compatible(device, compat);
379 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
380 	return res;
381 }
382 EXPORT_SYMBOL(of_device_is_compatible);
383 
384 /**
385  * of_machine_is_compatible - Test root of device tree for a given compatible value
386  * @compat: compatible string to look for in root node's compatible property.
387  *
388  * Returns true if the root node has the given value in its
389  * compatible property.
390  */
391 int of_machine_is_compatible(const char *compat)
392 {
393 	struct device_node *root;
394 	int rc = 0;
395 
396 	root = of_find_node_by_path("/");
397 	if (root) {
398 		rc = of_device_is_compatible(root, compat);
399 		of_node_put(root);
400 	}
401 	return rc;
402 }
403 EXPORT_SYMBOL(of_machine_is_compatible);
404 
405 /**
406  *  __of_device_is_available - check if a device is available for use
407  *
408  *  @device: Node to check for availability, with locks already held
409  *
410  *  Returns 1 if the status property is absent or set to "okay" or "ok",
411  *  0 otherwise
412  */
413 static int __of_device_is_available(const struct device_node *device)
414 {
415 	const char *status;
416 	int statlen;
417 
418 	if (!device)
419 		return 0;
420 
421 	status = __of_get_property(device, "status", &statlen);
422 	if (status == NULL)
423 		return 1;
424 
425 	if (statlen > 0) {
426 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
427 			return 1;
428 	}
429 
430 	return 0;
431 }
432 
433 /**
434  *  of_device_is_available - check if a device is available for use
435  *
436  *  @device: Node to check for availability
437  *
438  *  Returns 1 if the status property is absent or set to "okay" or "ok",
439  *  0 otherwise
440  */
441 int of_device_is_available(const struct device_node *device)
442 {
443 	unsigned long flags;
444 	int res;
445 
446 	raw_spin_lock_irqsave(&devtree_lock, flags);
447 	res = __of_device_is_available(device);
448 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
449 	return res;
450 
451 }
452 EXPORT_SYMBOL(of_device_is_available);
453 
454 /**
455  *	of_get_parent - Get a node's parent if any
456  *	@node:	Node to get parent
457  *
458  *	Returns a node pointer with refcount incremented, use
459  *	of_node_put() on it when done.
460  */
461 struct device_node *of_get_parent(const struct device_node *node)
462 {
463 	struct device_node *np;
464 	unsigned long flags;
465 
466 	if (!node)
467 		return NULL;
468 
469 	raw_spin_lock_irqsave(&devtree_lock, flags);
470 	np = of_node_get(node->parent);
471 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
472 	return np;
473 }
474 EXPORT_SYMBOL(of_get_parent);
475 
476 /**
477  *	of_get_next_parent - Iterate to a node's parent
478  *	@node:	Node to get parent of
479  *
480  * 	This is like of_get_parent() except that it drops the
481  * 	refcount on the passed node, making it suitable for iterating
482  * 	through a node's parents.
483  *
484  *	Returns a node pointer with refcount incremented, use
485  *	of_node_put() on it when done.
486  */
487 struct device_node *of_get_next_parent(struct device_node *node)
488 {
489 	struct device_node *parent;
490 	unsigned long flags;
491 
492 	if (!node)
493 		return NULL;
494 
495 	raw_spin_lock_irqsave(&devtree_lock, flags);
496 	parent = of_node_get(node->parent);
497 	of_node_put(node);
498 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
499 	return parent;
500 }
501 EXPORT_SYMBOL(of_get_next_parent);
502 
503 /**
504  *	of_get_next_child - Iterate a node childs
505  *	@node:	parent node
506  *	@prev:	previous child of the parent node, or NULL to get first
507  *
508  *	Returns a node pointer with refcount incremented, use
509  *	of_node_put() on it when done.
510  */
511 struct device_node *of_get_next_child(const struct device_node *node,
512 	struct device_node *prev)
513 {
514 	struct device_node *next;
515 	unsigned long flags;
516 
517 	raw_spin_lock_irqsave(&devtree_lock, flags);
518 	next = prev ? prev->sibling : node->child;
519 	for (; next; next = next->sibling)
520 		if (of_node_get(next))
521 			break;
522 	of_node_put(prev);
523 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
524 	return next;
525 }
526 EXPORT_SYMBOL(of_get_next_child);
527 
528 /**
529  *	of_get_next_available_child - Find the next available child node
530  *	@node:	parent node
531  *	@prev:	previous child of the parent node, or NULL to get first
532  *
533  *      This function is like of_get_next_child(), except that it
534  *      automatically skips any disabled nodes (i.e. status = "disabled").
535  */
536 struct device_node *of_get_next_available_child(const struct device_node *node,
537 	struct device_node *prev)
538 {
539 	struct device_node *next;
540 	unsigned long flags;
541 
542 	raw_spin_lock_irqsave(&devtree_lock, flags);
543 	next = prev ? prev->sibling : node->child;
544 	for (; next; next = next->sibling) {
545 		if (!__of_device_is_available(next))
546 			continue;
547 		if (of_node_get(next))
548 			break;
549 	}
550 	of_node_put(prev);
551 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
552 	return next;
553 }
554 EXPORT_SYMBOL(of_get_next_available_child);
555 
556 /**
557  *	of_get_child_by_name - Find the child node by name for a given parent
558  *	@node:	parent node
559  *	@name:	child name to look for.
560  *
561  *      This function looks for child node for given matching name
562  *
563  *	Returns a node pointer if found, with refcount incremented, use
564  *	of_node_put() on it when done.
565  *	Returns NULL if node is not found.
566  */
567 struct device_node *of_get_child_by_name(const struct device_node *node,
568 				const char *name)
569 {
570 	struct device_node *child;
571 
572 	for_each_child_of_node(node, child)
573 		if (child->name && (of_node_cmp(child->name, name) == 0))
574 			break;
575 	return child;
576 }
577 EXPORT_SYMBOL(of_get_child_by_name);
578 
579 /**
580  *	of_find_node_by_path - Find a node matching a full OF path
581  *	@path:	The full path to match
582  *
583  *	Returns a node pointer with refcount incremented, use
584  *	of_node_put() on it when done.
585  */
586 struct device_node *of_find_node_by_path(const char *path)
587 {
588 	struct device_node *np = of_allnodes;
589 	unsigned long flags;
590 
591 	raw_spin_lock_irqsave(&devtree_lock, flags);
592 	for (; np; np = np->allnext) {
593 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
594 		    && of_node_get(np))
595 			break;
596 	}
597 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
598 	return np;
599 }
600 EXPORT_SYMBOL(of_find_node_by_path);
601 
602 /**
603  *	of_find_node_by_name - Find a node by its "name" property
604  *	@from:	The node to start searching from or NULL, the node
605  *		you pass will not be searched, only the next one
606  *		will; typically, you pass what the previous call
607  *		returned. of_node_put() will be called on it
608  *	@name:	The name string to match against
609  *
610  *	Returns a node pointer with refcount incremented, use
611  *	of_node_put() on it when done.
612  */
613 struct device_node *of_find_node_by_name(struct device_node *from,
614 	const char *name)
615 {
616 	struct device_node *np;
617 	unsigned long flags;
618 
619 	raw_spin_lock_irqsave(&devtree_lock, flags);
620 	np = from ? from->allnext : of_allnodes;
621 	for (; np; np = np->allnext)
622 		if (np->name && (of_node_cmp(np->name, name) == 0)
623 		    && of_node_get(np))
624 			break;
625 	of_node_put(from);
626 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
627 	return np;
628 }
629 EXPORT_SYMBOL(of_find_node_by_name);
630 
631 /**
632  *	of_find_node_by_type - Find a node by its "device_type" property
633  *	@from:	The node to start searching from, or NULL to start searching
634  *		the entire device tree. The node you pass will not be
635  *		searched, only the next one will; typically, you pass
636  *		what the previous call returned. of_node_put() will be
637  *		called on from for you.
638  *	@type:	The type string to match against
639  *
640  *	Returns a node pointer with refcount incremented, use
641  *	of_node_put() on it when done.
642  */
643 struct device_node *of_find_node_by_type(struct device_node *from,
644 	const char *type)
645 {
646 	struct device_node *np;
647 	unsigned long flags;
648 
649 	raw_spin_lock_irqsave(&devtree_lock, flags);
650 	np = from ? from->allnext : of_allnodes;
651 	for (; np; np = np->allnext)
652 		if (np->type && (of_node_cmp(np->type, type) == 0)
653 		    && of_node_get(np))
654 			break;
655 	of_node_put(from);
656 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
657 	return np;
658 }
659 EXPORT_SYMBOL(of_find_node_by_type);
660 
661 /**
662  *	of_find_compatible_node - Find a node based on type and one of the
663  *                                tokens in its "compatible" property
664  *	@from:		The node to start searching from or NULL, the node
665  *			you pass will not be searched, only the next one
666  *			will; typically, you pass what the previous call
667  *			returned. of_node_put() will be called on it
668  *	@type:		The type string to match "device_type" or NULL to ignore
669  *	@compatible:	The string to match to one of the tokens in the device
670  *			"compatible" list.
671  *
672  *	Returns a node pointer with refcount incremented, use
673  *	of_node_put() on it when done.
674  */
675 struct device_node *of_find_compatible_node(struct device_node *from,
676 	const char *type, const char *compatible)
677 {
678 	struct device_node *np;
679 	unsigned long flags;
680 
681 	raw_spin_lock_irqsave(&devtree_lock, flags);
682 	np = from ? from->allnext : of_allnodes;
683 	for (; np; np = np->allnext) {
684 		if (type
685 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
686 			continue;
687 		if (__of_device_is_compatible(np, compatible) &&
688 		    of_node_get(np))
689 			break;
690 	}
691 	of_node_put(from);
692 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
693 	return np;
694 }
695 EXPORT_SYMBOL(of_find_compatible_node);
696 
697 /**
698  *	of_find_node_with_property - Find a node which has a property with
699  *                                   the given name.
700  *	@from:		The node to start searching from or NULL, the node
701  *			you pass will not be searched, only the next one
702  *			will; typically, you pass what the previous call
703  *			returned. of_node_put() will be called on it
704  *	@prop_name:	The name of the property to look for.
705  *
706  *	Returns a node pointer with refcount incremented, use
707  *	of_node_put() on it when done.
708  */
709 struct device_node *of_find_node_with_property(struct device_node *from,
710 	const char *prop_name)
711 {
712 	struct device_node *np;
713 	struct property *pp;
714 	unsigned long flags;
715 
716 	raw_spin_lock_irqsave(&devtree_lock, flags);
717 	np = from ? from->allnext : of_allnodes;
718 	for (; np; np = np->allnext) {
719 		for (pp = np->properties; pp; pp = pp->next) {
720 			if (of_prop_cmp(pp->name, prop_name) == 0) {
721 				of_node_get(np);
722 				goto out;
723 			}
724 		}
725 	}
726 out:
727 	of_node_put(from);
728 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
729 	return np;
730 }
731 EXPORT_SYMBOL(of_find_node_with_property);
732 
733 static
734 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
735 					   const struct device_node *node)
736 {
737 	const char *cp;
738 	int cplen, l;
739 
740 	if (!matches)
741 		return NULL;
742 
743 	cp = __of_get_property(node, "compatible", &cplen);
744 	do {
745 		const struct of_device_id *m = matches;
746 
747 		/* Check against matches with current compatible string */
748 		while (m->name[0] || m->type[0] || m->compatible[0]) {
749 			int match = 1;
750 			if (m->name[0])
751 				match &= node->name
752 					&& !strcmp(m->name, node->name);
753 			if (m->type[0])
754 				match &= node->type
755 					&& !strcmp(m->type, node->type);
756 			if (m->compatible[0])
757 				match &= cp
758 					&& !of_compat_cmp(m->compatible, cp,
759 							strlen(m->compatible));
760 			if (match)
761 				return m;
762 			m++;
763 		}
764 
765 		/* Get node's next compatible string */
766 		if (cp) {
767 			l = strlen(cp) + 1;
768 			cp += l;
769 			cplen -= l;
770 		}
771 	} while (cp && (cplen > 0));
772 
773 	return NULL;
774 }
775 
776 /**
777  * of_match_node - Tell if an device_node has a matching of_match structure
778  *	@matches:	array of of device match structures to search in
779  *	@node:		the of device structure to match against
780  *
781  *	Low level utility function used by device matching. Matching order
782  *	is to compare each of the node's compatibles with all given matches
783  *	first. This implies node's compatible is sorted from specific to
784  *	generic while matches can be in any order.
785  */
786 const struct of_device_id *of_match_node(const struct of_device_id *matches,
787 					 const struct device_node *node)
788 {
789 	const struct of_device_id *match;
790 	unsigned long flags;
791 
792 	raw_spin_lock_irqsave(&devtree_lock, flags);
793 	match = __of_match_node(matches, node);
794 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
795 	return match;
796 }
797 EXPORT_SYMBOL(of_match_node);
798 
799 /**
800  *	of_find_matching_node_and_match - Find a node based on an of_device_id
801  *					  match table.
802  *	@from:		The node to start searching from or NULL, the node
803  *			you pass will not be searched, only the next one
804  *			will; typically, you pass what the previous call
805  *			returned. of_node_put() will be called on it
806  *	@matches:	array of of device match structures to search in
807  *	@match		Updated to point at the matches entry which matched
808  *
809  *	Returns a node pointer with refcount incremented, use
810  *	of_node_put() on it when done.
811  */
812 struct device_node *of_find_matching_node_and_match(struct device_node *from,
813 					const struct of_device_id *matches,
814 					const struct of_device_id **match)
815 {
816 	struct device_node *np;
817 	const struct of_device_id *m;
818 	unsigned long flags;
819 
820 	if (match)
821 		*match = NULL;
822 
823 	raw_spin_lock_irqsave(&devtree_lock, flags);
824 	np = from ? from->allnext : of_allnodes;
825 	for (; np; np = np->allnext) {
826 		m = __of_match_node(matches, np);
827 		if (m && of_node_get(np)) {
828 			if (match)
829 				*match = m;
830 			break;
831 		}
832 	}
833 	of_node_put(from);
834 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
835 	return np;
836 }
837 EXPORT_SYMBOL(of_find_matching_node_and_match);
838 
839 /**
840  * of_modalias_node - Lookup appropriate modalias for a device node
841  * @node:	pointer to a device tree node
842  * @modalias:	Pointer to buffer that modalias value will be copied into
843  * @len:	Length of modalias value
844  *
845  * Based on the value of the compatible property, this routine will attempt
846  * to choose an appropriate modalias value for a particular device tree node.
847  * It does this by stripping the manufacturer prefix (as delimited by a ',')
848  * from the first entry in the compatible list property.
849  *
850  * This routine returns 0 on success, <0 on failure.
851  */
852 int of_modalias_node(struct device_node *node, char *modalias, int len)
853 {
854 	const char *compatible, *p;
855 	int cplen;
856 
857 	compatible = of_get_property(node, "compatible", &cplen);
858 	if (!compatible || strlen(compatible) > cplen)
859 		return -ENODEV;
860 	p = strchr(compatible, ',');
861 	strlcpy(modalias, p ? p + 1 : compatible, len);
862 	return 0;
863 }
864 EXPORT_SYMBOL_GPL(of_modalias_node);
865 
866 /**
867  * of_find_node_by_phandle - Find a node given a phandle
868  * @handle:	phandle of the node to find
869  *
870  * Returns a node pointer with refcount incremented, use
871  * of_node_put() on it when done.
872  */
873 struct device_node *of_find_node_by_phandle(phandle handle)
874 {
875 	struct device_node *np;
876 	unsigned long flags;
877 
878 	raw_spin_lock_irqsave(&devtree_lock, flags);
879 	for (np = of_allnodes; np; np = np->allnext)
880 		if (np->phandle == handle)
881 			break;
882 	of_node_get(np);
883 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
884 	return np;
885 }
886 EXPORT_SYMBOL(of_find_node_by_phandle);
887 
888 /**
889  * of_find_property_value_of_size
890  *
891  * @np:		device node from which the property value is to be read.
892  * @propname:	name of the property to be searched.
893  * @len:	requested length of property value
894  *
895  * Search for a property in a device node and valid the requested size.
896  * Returns the property value on success, -EINVAL if the property does not
897  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
898  * property data isn't large enough.
899  *
900  */
901 static void *of_find_property_value_of_size(const struct device_node *np,
902 			const char *propname, u32 len)
903 {
904 	struct property *prop = of_find_property(np, propname, NULL);
905 
906 	if (!prop)
907 		return ERR_PTR(-EINVAL);
908 	if (!prop->value)
909 		return ERR_PTR(-ENODATA);
910 	if (len > prop->length)
911 		return ERR_PTR(-EOVERFLOW);
912 
913 	return prop->value;
914 }
915 
916 /**
917  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
918  *
919  * @np:		device node from which the property value is to be read.
920  * @propname:	name of the property to be searched.
921  * @index:	index of the u32 in the list of values
922  * @out_value:	pointer to return value, modified only if no error.
923  *
924  * Search for a property in a device node and read nth 32-bit value from
925  * it. Returns 0 on success, -EINVAL if the property does not exist,
926  * -ENODATA if property does not have a value, and -EOVERFLOW if the
927  * property data isn't large enough.
928  *
929  * The out_value is modified only if a valid u32 value can be decoded.
930  */
931 int of_property_read_u32_index(const struct device_node *np,
932 				       const char *propname,
933 				       u32 index, u32 *out_value)
934 {
935 	const u32 *val = of_find_property_value_of_size(np, propname,
936 					((index + 1) * sizeof(*out_value)));
937 
938 	if (IS_ERR(val))
939 		return PTR_ERR(val);
940 
941 	*out_value = be32_to_cpup(((__be32 *)val) + index);
942 	return 0;
943 }
944 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
945 
946 /**
947  * of_property_read_u8_array - Find and read an array of u8 from a property.
948  *
949  * @np:		device node from which the property value is to be read.
950  * @propname:	name of the property to be searched.
951  * @out_values:	pointer to return value, modified only if return value is 0.
952  * @sz:		number of array elements to read
953  *
954  * Search for a property in a device node and read 8-bit value(s) from
955  * it. Returns 0 on success, -EINVAL if the property does not exist,
956  * -ENODATA if property does not have a value, and -EOVERFLOW if the
957  * property data isn't large enough.
958  *
959  * dts entry of array should be like:
960  *	property = /bits/ 8 <0x50 0x60 0x70>;
961  *
962  * The out_values is modified only if a valid u8 value can be decoded.
963  */
964 int of_property_read_u8_array(const struct device_node *np,
965 			const char *propname, u8 *out_values, size_t sz)
966 {
967 	const u8 *val = of_find_property_value_of_size(np, propname,
968 						(sz * sizeof(*out_values)));
969 
970 	if (IS_ERR(val))
971 		return PTR_ERR(val);
972 
973 	while (sz--)
974 		*out_values++ = *val++;
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
978 
979 /**
980  * of_property_read_u16_array - Find and read an array of u16 from a property.
981  *
982  * @np:		device node from which the property value is to be read.
983  * @propname:	name of the property to be searched.
984  * @out_values:	pointer to return value, modified only if return value is 0.
985  * @sz:		number of array elements to read
986  *
987  * Search for a property in a device node and read 16-bit value(s) from
988  * it. Returns 0 on success, -EINVAL if the property does not exist,
989  * -ENODATA if property does not have a value, and -EOVERFLOW if the
990  * property data isn't large enough.
991  *
992  * dts entry of array should be like:
993  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
994  *
995  * The out_values is modified only if a valid u16 value can be decoded.
996  */
997 int of_property_read_u16_array(const struct device_node *np,
998 			const char *propname, u16 *out_values, size_t sz)
999 {
1000 	const __be16 *val = of_find_property_value_of_size(np, propname,
1001 						(sz * sizeof(*out_values)));
1002 
1003 	if (IS_ERR(val))
1004 		return PTR_ERR(val);
1005 
1006 	while (sz--)
1007 		*out_values++ = be16_to_cpup(val++);
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1011 
1012 /**
1013  * of_property_read_u32_array - Find and read an array of 32 bit integers
1014  * from a property.
1015  *
1016  * @np:		device node from which the property value is to be read.
1017  * @propname:	name of the property to be searched.
1018  * @out_values:	pointer to return value, modified only if return value is 0.
1019  * @sz:		number of array elements to read
1020  *
1021  * Search for a property in a device node and read 32-bit value(s) from
1022  * it. Returns 0 on success, -EINVAL if the property does not exist,
1023  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1024  * property data isn't large enough.
1025  *
1026  * The out_values is modified only if a valid u32 value can be decoded.
1027  */
1028 int of_property_read_u32_array(const struct device_node *np,
1029 			       const char *propname, u32 *out_values,
1030 			       size_t sz)
1031 {
1032 	const __be32 *val = of_find_property_value_of_size(np, propname,
1033 						(sz * sizeof(*out_values)));
1034 
1035 	if (IS_ERR(val))
1036 		return PTR_ERR(val);
1037 
1038 	while (sz--)
1039 		*out_values++ = be32_to_cpup(val++);
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1043 
1044 /**
1045  * of_property_read_u64 - Find and read a 64 bit integer from a property
1046  * @np:		device node from which the property value is to be read.
1047  * @propname:	name of the property to be searched.
1048  * @out_value:	pointer to return value, modified only if return value is 0.
1049  *
1050  * Search for a property in a device node and read a 64-bit value from
1051  * it. Returns 0 on success, -EINVAL if the property does not exist,
1052  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1053  * property data isn't large enough.
1054  *
1055  * The out_value is modified only if a valid u64 value can be decoded.
1056  */
1057 int of_property_read_u64(const struct device_node *np, const char *propname,
1058 			 u64 *out_value)
1059 {
1060 	const __be32 *val = of_find_property_value_of_size(np, propname,
1061 						sizeof(*out_value));
1062 
1063 	if (IS_ERR(val))
1064 		return PTR_ERR(val);
1065 
1066 	*out_value = of_read_number(val, 2);
1067 	return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(of_property_read_u64);
1070 
1071 /**
1072  * of_property_read_string - Find and read a string from a property
1073  * @np:		device node from which the property value is to be read.
1074  * @propname:	name of the property to be searched.
1075  * @out_string:	pointer to null terminated return string, modified only if
1076  *		return value is 0.
1077  *
1078  * Search for a property in a device tree node and retrieve a null
1079  * terminated string value (pointer to data, not a copy). Returns 0 on
1080  * success, -EINVAL if the property does not exist, -ENODATA if property
1081  * does not have a value, and -EILSEQ if the string is not null-terminated
1082  * within the length of the property data.
1083  *
1084  * The out_string pointer is modified only if a valid string can be decoded.
1085  */
1086 int of_property_read_string(struct device_node *np, const char *propname,
1087 				const char **out_string)
1088 {
1089 	struct property *prop = of_find_property(np, propname, NULL);
1090 	if (!prop)
1091 		return -EINVAL;
1092 	if (!prop->value)
1093 		return -ENODATA;
1094 	if (strnlen(prop->value, prop->length) >= prop->length)
1095 		return -EILSEQ;
1096 	*out_string = prop->value;
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(of_property_read_string);
1100 
1101 /**
1102  * of_property_read_string_index - Find and read a string from a multiple
1103  * strings property.
1104  * @np:		device node from which the property value is to be read.
1105  * @propname:	name of the property to be searched.
1106  * @index:	index of the string in the list of strings
1107  * @out_string:	pointer to null terminated return string, modified only if
1108  *		return value is 0.
1109  *
1110  * Search for a property in a device tree node and retrieve a null
1111  * terminated string value (pointer to data, not a copy) in the list of strings
1112  * contained in that property.
1113  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1114  * property does not have a value, and -EILSEQ if the string is not
1115  * null-terminated within the length of the property data.
1116  *
1117  * The out_string pointer is modified only if a valid string can be decoded.
1118  */
1119 int of_property_read_string_index(struct device_node *np, const char *propname,
1120 				  int index, const char **output)
1121 {
1122 	struct property *prop = of_find_property(np, propname, NULL);
1123 	int i = 0;
1124 	size_t l = 0, total = 0;
1125 	const char *p;
1126 
1127 	if (!prop)
1128 		return -EINVAL;
1129 	if (!prop->value)
1130 		return -ENODATA;
1131 	if (strnlen(prop->value, prop->length) >= prop->length)
1132 		return -EILSEQ;
1133 
1134 	p = prop->value;
1135 
1136 	for (i = 0; total < prop->length; total += l, p += l) {
1137 		l = strlen(p) + 1;
1138 		if (i++ == index) {
1139 			*output = p;
1140 			return 0;
1141 		}
1142 	}
1143 	return -ENODATA;
1144 }
1145 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1146 
1147 /**
1148  * of_property_match_string() - Find string in a list and return index
1149  * @np: pointer to node containing string list property
1150  * @propname: string list property name
1151  * @string: pointer to string to search for in string list
1152  *
1153  * This function searches a string list property and returns the index
1154  * of a specific string value.
1155  */
1156 int of_property_match_string(struct device_node *np, const char *propname,
1157 			     const char *string)
1158 {
1159 	struct property *prop = of_find_property(np, propname, NULL);
1160 	size_t l;
1161 	int i;
1162 	const char *p, *end;
1163 
1164 	if (!prop)
1165 		return -EINVAL;
1166 	if (!prop->value)
1167 		return -ENODATA;
1168 
1169 	p = prop->value;
1170 	end = p + prop->length;
1171 
1172 	for (i = 0; p < end; i++, p += l) {
1173 		l = strlen(p) + 1;
1174 		if (p + l > end)
1175 			return -EILSEQ;
1176 		pr_debug("comparing %s with %s\n", string, p);
1177 		if (strcmp(string, p) == 0)
1178 			return i; /* Found it; return index */
1179 	}
1180 	return -ENODATA;
1181 }
1182 EXPORT_SYMBOL_GPL(of_property_match_string);
1183 
1184 /**
1185  * of_property_count_strings - Find and return the number of strings from a
1186  * multiple strings property.
1187  * @np:		device node from which the property value is to be read.
1188  * @propname:	name of the property to be searched.
1189  *
1190  * Search for a property in a device tree node and retrieve the number of null
1191  * terminated string contain in it. Returns the number of strings on
1192  * success, -EINVAL if the property does not exist, -ENODATA if property
1193  * does not have a value, and -EILSEQ if the string is not null-terminated
1194  * within the length of the property data.
1195  */
1196 int of_property_count_strings(struct device_node *np, const char *propname)
1197 {
1198 	struct property *prop = of_find_property(np, propname, NULL);
1199 	int i = 0;
1200 	size_t l = 0, total = 0;
1201 	const char *p;
1202 
1203 	if (!prop)
1204 		return -EINVAL;
1205 	if (!prop->value)
1206 		return -ENODATA;
1207 	if (strnlen(prop->value, prop->length) >= prop->length)
1208 		return -EILSEQ;
1209 
1210 	p = prop->value;
1211 
1212 	for (i = 0; total < prop->length; total += l, p += l, i++)
1213 		l = strlen(p) + 1;
1214 
1215 	return i;
1216 }
1217 EXPORT_SYMBOL_GPL(of_property_count_strings);
1218 
1219 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1220 {
1221 	int i;
1222 	printk("%s %s", msg, of_node_full_name(args->np));
1223 	for (i = 0; i < args->args_count; i++)
1224 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1225 	printk("\n");
1226 }
1227 
1228 static int __of_parse_phandle_with_args(const struct device_node *np,
1229 					const char *list_name,
1230 					const char *cells_name,
1231 					int cell_count, int index,
1232 					struct of_phandle_args *out_args)
1233 {
1234 	const __be32 *list, *list_end;
1235 	int rc = 0, size, cur_index = 0;
1236 	uint32_t count = 0;
1237 	struct device_node *node = NULL;
1238 	phandle phandle;
1239 
1240 	/* Retrieve the phandle list property */
1241 	list = of_get_property(np, list_name, &size);
1242 	if (!list)
1243 		return -ENOENT;
1244 	list_end = list + size / sizeof(*list);
1245 
1246 	/* Loop over the phandles until all the requested entry is found */
1247 	while (list < list_end) {
1248 		rc = -EINVAL;
1249 		count = 0;
1250 
1251 		/*
1252 		 * If phandle is 0, then it is an empty entry with no
1253 		 * arguments.  Skip forward to the next entry.
1254 		 */
1255 		phandle = be32_to_cpup(list++);
1256 		if (phandle) {
1257 			/*
1258 			 * Find the provider node and parse the #*-cells
1259 			 * property to determine the argument length.
1260 			 *
1261 			 * This is not needed if the cell count is hard-coded
1262 			 * (i.e. cells_name not set, but cell_count is set),
1263 			 * except when we're going to return the found node
1264 			 * below.
1265 			 */
1266 			if (cells_name || cur_index == index) {
1267 				node = of_find_node_by_phandle(phandle);
1268 				if (!node) {
1269 					pr_err("%s: could not find phandle\n",
1270 						np->full_name);
1271 					goto err;
1272 				}
1273 			}
1274 
1275 			if (cells_name) {
1276 				if (of_property_read_u32(node, cells_name,
1277 							 &count)) {
1278 					pr_err("%s: could not get %s for %s\n",
1279 						np->full_name, cells_name,
1280 						node->full_name);
1281 					goto err;
1282 				}
1283 			} else {
1284 				count = cell_count;
1285 			}
1286 
1287 			/*
1288 			 * Make sure that the arguments actually fit in the
1289 			 * remaining property data length
1290 			 */
1291 			if (list + count > list_end) {
1292 				pr_err("%s: arguments longer than property\n",
1293 					 np->full_name);
1294 				goto err;
1295 			}
1296 		}
1297 
1298 		/*
1299 		 * All of the error cases above bail out of the loop, so at
1300 		 * this point, the parsing is successful. If the requested
1301 		 * index matches, then fill the out_args structure and return,
1302 		 * or return -ENOENT for an empty entry.
1303 		 */
1304 		rc = -ENOENT;
1305 		if (cur_index == index) {
1306 			if (!phandle)
1307 				goto err;
1308 
1309 			if (out_args) {
1310 				int i;
1311 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1312 					count = MAX_PHANDLE_ARGS;
1313 				out_args->np = node;
1314 				out_args->args_count = count;
1315 				for (i = 0; i < count; i++)
1316 					out_args->args[i] = be32_to_cpup(list++);
1317 			} else {
1318 				of_node_put(node);
1319 			}
1320 
1321 			/* Found it! return success */
1322 			return 0;
1323 		}
1324 
1325 		of_node_put(node);
1326 		node = NULL;
1327 		list += count;
1328 		cur_index++;
1329 	}
1330 
1331 	/*
1332 	 * Unlock node before returning result; will be one of:
1333 	 * -ENOENT : index is for empty phandle
1334 	 * -EINVAL : parsing error on data
1335 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1336 	 */
1337 	rc = index < 0 ? cur_index : -ENOENT;
1338  err:
1339 	if (node)
1340 		of_node_put(node);
1341 	return rc;
1342 }
1343 
1344 /**
1345  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1346  * @np: Pointer to device node holding phandle property
1347  * @phandle_name: Name of property holding a phandle value
1348  * @index: For properties holding a table of phandles, this is the index into
1349  *         the table
1350  *
1351  * Returns the device_node pointer with refcount incremented.  Use
1352  * of_node_put() on it when done.
1353  */
1354 struct device_node *of_parse_phandle(const struct device_node *np,
1355 				     const char *phandle_name, int index)
1356 {
1357 	struct of_phandle_args args;
1358 
1359 	if (index < 0)
1360 		return NULL;
1361 
1362 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1363 					 index, &args))
1364 		return NULL;
1365 
1366 	return args.np;
1367 }
1368 EXPORT_SYMBOL(of_parse_phandle);
1369 
1370 /**
1371  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1372  * @np:		pointer to a device tree node containing a list
1373  * @list_name:	property name that contains a list
1374  * @cells_name:	property name that specifies phandles' arguments count
1375  * @index:	index of a phandle to parse out
1376  * @out_args:	optional pointer to output arguments structure (will be filled)
1377  *
1378  * This function is useful to parse lists of phandles and their arguments.
1379  * Returns 0 on success and fills out_args, on error returns appropriate
1380  * errno value.
1381  *
1382  * Caller is responsible to call of_node_put() on the returned out_args->node
1383  * pointer.
1384  *
1385  * Example:
1386  *
1387  * phandle1: node1 {
1388  * 	#list-cells = <2>;
1389  * }
1390  *
1391  * phandle2: node2 {
1392  * 	#list-cells = <1>;
1393  * }
1394  *
1395  * node3 {
1396  * 	list = <&phandle1 1 2 &phandle2 3>;
1397  * }
1398  *
1399  * To get a device_node of the `node2' node you may call this:
1400  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1401  */
1402 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1403 				const char *cells_name, int index,
1404 				struct of_phandle_args *out_args)
1405 {
1406 	if (index < 0)
1407 		return -EINVAL;
1408 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1409 					    index, out_args);
1410 }
1411 EXPORT_SYMBOL(of_parse_phandle_with_args);
1412 
1413 /**
1414  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1415  * @np:		pointer to a device tree node containing a list
1416  * @list_name:	property name that contains a list
1417  * @cell_count: number of argument cells following the phandle
1418  * @index:	index of a phandle to parse out
1419  * @out_args:	optional pointer to output arguments structure (will be filled)
1420  *
1421  * This function is useful to parse lists of phandles and their arguments.
1422  * Returns 0 on success and fills out_args, on error returns appropriate
1423  * errno value.
1424  *
1425  * Caller is responsible to call of_node_put() on the returned out_args->node
1426  * pointer.
1427  *
1428  * Example:
1429  *
1430  * phandle1: node1 {
1431  * }
1432  *
1433  * phandle2: node2 {
1434  * }
1435  *
1436  * node3 {
1437  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1438  * }
1439  *
1440  * To get a device_node of the `node2' node you may call this:
1441  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1442  */
1443 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1444 				const char *list_name, int cell_count,
1445 				int index, struct of_phandle_args *out_args)
1446 {
1447 	if (index < 0)
1448 		return -EINVAL;
1449 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1450 					   index, out_args);
1451 }
1452 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1453 
1454 /**
1455  * of_count_phandle_with_args() - Find the number of phandles references in a property
1456  * @np:		pointer to a device tree node containing a list
1457  * @list_name:	property name that contains a list
1458  * @cells_name:	property name that specifies phandles' arguments count
1459  *
1460  * Returns the number of phandle + argument tuples within a property. It
1461  * is a typical pattern to encode a list of phandle and variable
1462  * arguments into a single property. The number of arguments is encoded
1463  * by a property in the phandle-target node. For example, a gpios
1464  * property would contain a list of GPIO specifies consisting of a
1465  * phandle and 1 or more arguments. The number of arguments are
1466  * determined by the #gpio-cells property in the node pointed to by the
1467  * phandle.
1468  */
1469 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1470 				const char *cells_name)
1471 {
1472 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1473 					    NULL);
1474 }
1475 EXPORT_SYMBOL(of_count_phandle_with_args);
1476 
1477 #if defined(CONFIG_OF_DYNAMIC)
1478 static int of_property_notify(int action, struct device_node *np,
1479 			      struct property *prop)
1480 {
1481 	struct of_prop_reconfig pr;
1482 
1483 	pr.dn = np;
1484 	pr.prop = prop;
1485 	return of_reconfig_notify(action, &pr);
1486 }
1487 #else
1488 static int of_property_notify(int action, struct device_node *np,
1489 			      struct property *prop)
1490 {
1491 	return 0;
1492 }
1493 #endif
1494 
1495 /**
1496  * of_add_property - Add a property to a node
1497  */
1498 int of_add_property(struct device_node *np, struct property *prop)
1499 {
1500 	struct property **next;
1501 	unsigned long flags;
1502 	int rc;
1503 
1504 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1505 	if (rc)
1506 		return rc;
1507 
1508 	prop->next = NULL;
1509 	raw_spin_lock_irqsave(&devtree_lock, flags);
1510 	next = &np->properties;
1511 	while (*next) {
1512 		if (strcmp(prop->name, (*next)->name) == 0) {
1513 			/* duplicate ! don't insert it */
1514 			raw_spin_unlock_irqrestore(&devtree_lock, flags);
1515 			return -1;
1516 		}
1517 		next = &(*next)->next;
1518 	}
1519 	*next = prop;
1520 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1521 
1522 #ifdef CONFIG_PROC_DEVICETREE
1523 	/* try to add to proc as well if it was initialized */
1524 	if (np->pde)
1525 		proc_device_tree_add_prop(np->pde, prop);
1526 #endif /* CONFIG_PROC_DEVICETREE */
1527 
1528 	return 0;
1529 }
1530 
1531 /**
1532  * of_remove_property - Remove a property from a node.
1533  *
1534  * Note that we don't actually remove it, since we have given out
1535  * who-knows-how-many pointers to the data using get-property.
1536  * Instead we just move the property to the "dead properties"
1537  * list, so it won't be found any more.
1538  */
1539 int of_remove_property(struct device_node *np, struct property *prop)
1540 {
1541 	struct property **next;
1542 	unsigned long flags;
1543 	int found = 0;
1544 	int rc;
1545 
1546 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1547 	if (rc)
1548 		return rc;
1549 
1550 	raw_spin_lock_irqsave(&devtree_lock, flags);
1551 	next = &np->properties;
1552 	while (*next) {
1553 		if (*next == prop) {
1554 			/* found the node */
1555 			*next = prop->next;
1556 			prop->next = np->deadprops;
1557 			np->deadprops = prop;
1558 			found = 1;
1559 			break;
1560 		}
1561 		next = &(*next)->next;
1562 	}
1563 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1564 
1565 	if (!found)
1566 		return -ENODEV;
1567 
1568 #ifdef CONFIG_PROC_DEVICETREE
1569 	/* try to remove the proc node as well */
1570 	if (np->pde)
1571 		proc_device_tree_remove_prop(np->pde, prop);
1572 #endif /* CONFIG_PROC_DEVICETREE */
1573 
1574 	return 0;
1575 }
1576 
1577 /*
1578  * of_update_property - Update a property in a node, if the property does
1579  * not exist, add it.
1580  *
1581  * Note that we don't actually remove it, since we have given out
1582  * who-knows-how-many pointers to the data using get-property.
1583  * Instead we just move the property to the "dead properties" list,
1584  * and add the new property to the property list
1585  */
1586 int of_update_property(struct device_node *np, struct property *newprop)
1587 {
1588 	struct property **next, *oldprop;
1589 	unsigned long flags;
1590 	int rc, found = 0;
1591 
1592 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1593 	if (rc)
1594 		return rc;
1595 
1596 	if (!newprop->name)
1597 		return -EINVAL;
1598 
1599 	oldprop = of_find_property(np, newprop->name, NULL);
1600 	if (!oldprop)
1601 		return of_add_property(np, newprop);
1602 
1603 	raw_spin_lock_irqsave(&devtree_lock, flags);
1604 	next = &np->properties;
1605 	while (*next) {
1606 		if (*next == oldprop) {
1607 			/* found the node */
1608 			newprop->next = oldprop->next;
1609 			*next = newprop;
1610 			oldprop->next = np->deadprops;
1611 			np->deadprops = oldprop;
1612 			found = 1;
1613 			break;
1614 		}
1615 		next = &(*next)->next;
1616 	}
1617 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1618 
1619 	if (!found)
1620 		return -ENODEV;
1621 
1622 #ifdef CONFIG_PROC_DEVICETREE
1623 	/* try to add to proc as well if it was initialized */
1624 	if (np->pde)
1625 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1626 #endif /* CONFIG_PROC_DEVICETREE */
1627 
1628 	return 0;
1629 }
1630 
1631 #if defined(CONFIG_OF_DYNAMIC)
1632 /*
1633  * Support for dynamic device trees.
1634  *
1635  * On some platforms, the device tree can be manipulated at runtime.
1636  * The routines in this section support adding, removing and changing
1637  * device tree nodes.
1638  */
1639 
1640 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1641 
1642 int of_reconfig_notifier_register(struct notifier_block *nb)
1643 {
1644 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1645 }
1646 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1647 
1648 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1649 {
1650 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1651 }
1652 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1653 
1654 int of_reconfig_notify(unsigned long action, void *p)
1655 {
1656 	int rc;
1657 
1658 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1659 	return notifier_to_errno(rc);
1660 }
1661 
1662 #ifdef CONFIG_PROC_DEVICETREE
1663 static void of_add_proc_dt_entry(struct device_node *dn)
1664 {
1665 	struct proc_dir_entry *ent;
1666 
1667 	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1668 	if (ent)
1669 		proc_device_tree_add_node(dn, ent);
1670 }
1671 #else
1672 static void of_add_proc_dt_entry(struct device_node *dn)
1673 {
1674 	return;
1675 }
1676 #endif
1677 
1678 /**
1679  * of_attach_node - Plug a device node into the tree and global list.
1680  */
1681 int of_attach_node(struct device_node *np)
1682 {
1683 	unsigned long flags;
1684 	int rc;
1685 
1686 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1687 	if (rc)
1688 		return rc;
1689 
1690 	raw_spin_lock_irqsave(&devtree_lock, flags);
1691 	np->sibling = np->parent->child;
1692 	np->allnext = of_allnodes;
1693 	np->parent->child = np;
1694 	of_allnodes = np;
1695 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1696 
1697 	of_add_proc_dt_entry(np);
1698 	return 0;
1699 }
1700 
1701 #ifdef CONFIG_PROC_DEVICETREE
1702 static void of_remove_proc_dt_entry(struct device_node *dn)
1703 {
1704 	proc_remove(dn->pde);
1705 }
1706 #else
1707 static void of_remove_proc_dt_entry(struct device_node *dn)
1708 {
1709 	return;
1710 }
1711 #endif
1712 
1713 /**
1714  * of_detach_node - "Unplug" a node from the device tree.
1715  *
1716  * The caller must hold a reference to the node.  The memory associated with
1717  * the node is not freed until its refcount goes to zero.
1718  */
1719 int of_detach_node(struct device_node *np)
1720 {
1721 	struct device_node *parent;
1722 	unsigned long flags;
1723 	int rc = 0;
1724 
1725 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1726 	if (rc)
1727 		return rc;
1728 
1729 	raw_spin_lock_irqsave(&devtree_lock, flags);
1730 
1731 	if (of_node_check_flag(np, OF_DETACHED)) {
1732 		/* someone already detached it */
1733 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1734 		return rc;
1735 	}
1736 
1737 	parent = np->parent;
1738 	if (!parent) {
1739 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1740 		return rc;
1741 	}
1742 
1743 	if (of_allnodes == np)
1744 		of_allnodes = np->allnext;
1745 	else {
1746 		struct device_node *prev;
1747 		for (prev = of_allnodes;
1748 		     prev->allnext != np;
1749 		     prev = prev->allnext)
1750 			;
1751 		prev->allnext = np->allnext;
1752 	}
1753 
1754 	if (parent->child == np)
1755 		parent->child = np->sibling;
1756 	else {
1757 		struct device_node *prevsib;
1758 		for (prevsib = np->parent->child;
1759 		     prevsib->sibling != np;
1760 		     prevsib = prevsib->sibling)
1761 			;
1762 		prevsib->sibling = np->sibling;
1763 	}
1764 
1765 	of_node_set_flag(np, OF_DETACHED);
1766 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1767 
1768 	of_remove_proc_dt_entry(np);
1769 	return rc;
1770 }
1771 #endif /* defined(CONFIG_OF_DYNAMIC) */
1772 
1773 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1774 			 int id, const char *stem, int stem_len)
1775 {
1776 	ap->np = np;
1777 	ap->id = id;
1778 	strncpy(ap->stem, stem, stem_len);
1779 	ap->stem[stem_len] = 0;
1780 	list_add_tail(&ap->link, &aliases_lookup);
1781 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1782 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1783 }
1784 
1785 /**
1786  * of_alias_scan - Scan all properties of 'aliases' node
1787  *
1788  * The function scans all the properties of 'aliases' node and populate
1789  * the the global lookup table with the properties.  It returns the
1790  * number of alias_prop found, or error code in error case.
1791  *
1792  * @dt_alloc:	An allocator that provides a virtual address to memory
1793  *		for the resulting tree
1794  */
1795 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1796 {
1797 	struct property *pp;
1798 
1799 	of_chosen = of_find_node_by_path("/chosen");
1800 	if (of_chosen == NULL)
1801 		of_chosen = of_find_node_by_path("/chosen@0");
1802 
1803 	if (of_chosen) {
1804 		const char *name;
1805 
1806 		name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1807 		if (name)
1808 			of_stdout = of_find_node_by_path(name);
1809 	}
1810 
1811 	of_aliases = of_find_node_by_path("/aliases");
1812 	if (!of_aliases)
1813 		return;
1814 
1815 	for_each_property_of_node(of_aliases, pp) {
1816 		const char *start = pp->name;
1817 		const char *end = start + strlen(start);
1818 		struct device_node *np;
1819 		struct alias_prop *ap;
1820 		int id, len;
1821 
1822 		/* Skip those we do not want to proceed */
1823 		if (!strcmp(pp->name, "name") ||
1824 		    !strcmp(pp->name, "phandle") ||
1825 		    !strcmp(pp->name, "linux,phandle"))
1826 			continue;
1827 
1828 		np = of_find_node_by_path(pp->value);
1829 		if (!np)
1830 			continue;
1831 
1832 		/* walk the alias backwards to extract the id and work out
1833 		 * the 'stem' string */
1834 		while (isdigit(*(end-1)) && end > start)
1835 			end--;
1836 		len = end - start;
1837 
1838 		if (kstrtoint(end, 10, &id) < 0)
1839 			continue;
1840 
1841 		/* Allocate an alias_prop with enough space for the stem */
1842 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1843 		if (!ap)
1844 			continue;
1845 		memset(ap, 0, sizeof(*ap) + len + 1);
1846 		ap->alias = start;
1847 		of_alias_add(ap, np, id, start, len);
1848 	}
1849 }
1850 
1851 /**
1852  * of_alias_get_id - Get alias id for the given device_node
1853  * @np:		Pointer to the given device_node
1854  * @stem:	Alias stem of the given device_node
1855  *
1856  * The function travels the lookup table to get alias id for the given
1857  * device_node and alias stem.  It returns the alias id if find it.
1858  */
1859 int of_alias_get_id(struct device_node *np, const char *stem)
1860 {
1861 	struct alias_prop *app;
1862 	int id = -ENODEV;
1863 
1864 	mutex_lock(&of_aliases_mutex);
1865 	list_for_each_entry(app, &aliases_lookup, link) {
1866 		if (strcmp(app->stem, stem) != 0)
1867 			continue;
1868 
1869 		if (np == app->np) {
1870 			id = app->id;
1871 			break;
1872 		}
1873 	}
1874 	mutex_unlock(&of_aliases_mutex);
1875 
1876 	return id;
1877 }
1878 EXPORT_SYMBOL_GPL(of_alias_get_id);
1879 
1880 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1881 			       u32 *pu)
1882 {
1883 	const void *curv = cur;
1884 
1885 	if (!prop)
1886 		return NULL;
1887 
1888 	if (!cur) {
1889 		curv = prop->value;
1890 		goto out_val;
1891 	}
1892 
1893 	curv += sizeof(*cur);
1894 	if (curv >= prop->value + prop->length)
1895 		return NULL;
1896 
1897 out_val:
1898 	*pu = be32_to_cpup(curv);
1899 	return curv;
1900 }
1901 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1902 
1903 const char *of_prop_next_string(struct property *prop, const char *cur)
1904 {
1905 	const void *curv = cur;
1906 
1907 	if (!prop)
1908 		return NULL;
1909 
1910 	if (!cur)
1911 		return prop->value;
1912 
1913 	curv += strlen(cur) + 1;
1914 	if (curv >= prop->value + prop->length)
1915 		return NULL;
1916 
1917 	return curv;
1918 }
1919 EXPORT_SYMBOL_GPL(of_prop_next_string);
1920 
1921 /**
1922  * of_device_is_stdout_path - check if a device node matches the
1923  *                            linux,stdout-path property
1924  *
1925  * Check if this device node matches the linux,stdout-path property
1926  * in the chosen node. return true if yes, false otherwise.
1927  */
1928 int of_device_is_stdout_path(struct device_node *dn)
1929 {
1930 	if (!of_stdout)
1931 		return false;
1932 
1933 	return of_stdout == dn;
1934 }
1935 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1936 
1937 /**
1938  *	of_find_next_cache_node - Find a node's subsidiary cache
1939  *	@np:	node of type "cpu" or "cache"
1940  *
1941  *	Returns a node pointer with refcount incremented, use
1942  *	of_node_put() on it when done.  Caller should hold a reference
1943  *	to np.
1944  */
1945 struct device_node *of_find_next_cache_node(const struct device_node *np)
1946 {
1947 	struct device_node *child;
1948 	const phandle *handle;
1949 
1950 	handle = of_get_property(np, "l2-cache", NULL);
1951 	if (!handle)
1952 		handle = of_get_property(np, "next-level-cache", NULL);
1953 
1954 	if (handle)
1955 		return of_find_node_by_phandle(be32_to_cpup(handle));
1956 
1957 	/* OF on pmac has nodes instead of properties named "l2-cache"
1958 	 * beneath CPU nodes.
1959 	 */
1960 	if (!strcmp(np->type, "cpu"))
1961 		for_each_child_of_node(np, child)
1962 			if (!strcmp(child->type, "cache"))
1963 				return child;
1964 
1965 	return NULL;
1966 }
1967