xref: /openbmc/linux/drivers/of/base.c (revision 3805e6a1)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 int of_n_addr_cells(struct device_node *np)
58 {
59 	const __be32 *ip;
60 
61 	do {
62 		if (np->parent)
63 			np = np->parent;
64 		ip = of_get_property(np, "#address-cells", NULL);
65 		if (ip)
66 			return be32_to_cpup(ip);
67 	} while (np->parent);
68 	/* No #address-cells property for the root node */
69 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72 
73 int of_n_size_cells(struct device_node *np)
74 {
75 	const __be32 *ip;
76 
77 	do {
78 		if (np->parent)
79 			np = np->parent;
80 		ip = of_get_property(np, "#size-cells", NULL);
81 		if (ip)
82 			return be32_to_cpup(ip);
83 	} while (np->parent);
84 	/* No #size-cells property for the root node */
85 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88 
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 	return NUMA_NO_NODE;
93 }
94 #endif
95 
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102 
103 struct kobj_type of_node_ktype = {
104 	.release = of_node_release,
105 };
106 
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 				struct bin_attribute *bin_attr, char *buf,
109 				loff_t offset, size_t count)
110 {
111 	struct property *pp = container_of(bin_attr, struct property, attr);
112 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114 
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 	const char *name = orig_name;
118 	struct kernfs_node *kn;
119 	int i = 0;
120 
121 	/* don't be a hero. After 16 tries give up */
122 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 		sysfs_put(kn);
124 		if (name != orig_name)
125 			kfree(name);
126 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 	}
128 
129 	if (name != orig_name)
130 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 			kobject_name(kobj), name);
132 	return name;
133 }
134 
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 	int rc;
138 
139 	/* Important: Don't leak passwords */
140 	bool secure = strncmp(pp->name, "security-", 9) == 0;
141 
142 	if (!IS_ENABLED(CONFIG_SYSFS))
143 		return 0;
144 
145 	if (!of_kset || !of_node_is_attached(np))
146 		return 0;
147 
148 	sysfs_bin_attr_init(&pp->attr);
149 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 	pp->attr.size = secure ? 0 : pp->length;
152 	pp->attr.read = of_node_property_read;
153 
154 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 	return rc;
157 }
158 
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 	const char *name;
162 	struct property *pp;
163 	int rc;
164 
165 	if (!IS_ENABLED(CONFIG_SYSFS))
166 		return 0;
167 
168 	if (!of_kset)
169 		return 0;
170 
171 	np->kobj.kset = of_kset;
172 	if (!np->parent) {
173 		/* Nodes without parents are new top level trees */
174 		rc = kobject_add(&np->kobj, NULL, "%s",
175 				 safe_name(&of_kset->kobj, "base"));
176 	} else {
177 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 		if (!name || !name[0])
179 			return -EINVAL;
180 
181 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 	}
183 	if (rc)
184 		return rc;
185 
186 	for_each_property_of_node(np, pp)
187 		__of_add_property_sysfs(np, pp);
188 
189 	return 0;
190 }
191 
192 void __init of_core_init(void)
193 {
194 	struct device_node *np;
195 
196 	/* Create the kset, and register existing nodes */
197 	mutex_lock(&of_mutex);
198 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 	if (!of_kset) {
200 		mutex_unlock(&of_mutex);
201 		pr_err("devicetree: failed to register existing nodes\n");
202 		return;
203 	}
204 	for_each_of_allnodes(np)
205 		__of_attach_node_sysfs(np);
206 	mutex_unlock(&of_mutex);
207 
208 	/* Symlink in /proc as required by userspace ABI */
209 	if (of_root)
210 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
211 }
212 
213 static struct property *__of_find_property(const struct device_node *np,
214 					   const char *name, int *lenp)
215 {
216 	struct property *pp;
217 
218 	if (!np)
219 		return NULL;
220 
221 	for (pp = np->properties; pp; pp = pp->next) {
222 		if (of_prop_cmp(pp->name, name) == 0) {
223 			if (lenp)
224 				*lenp = pp->length;
225 			break;
226 		}
227 	}
228 
229 	return pp;
230 }
231 
232 struct property *of_find_property(const struct device_node *np,
233 				  const char *name,
234 				  int *lenp)
235 {
236 	struct property *pp;
237 	unsigned long flags;
238 
239 	raw_spin_lock_irqsave(&devtree_lock, flags);
240 	pp = __of_find_property(np, name, lenp);
241 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
242 
243 	return pp;
244 }
245 EXPORT_SYMBOL(of_find_property);
246 
247 struct device_node *__of_find_all_nodes(struct device_node *prev)
248 {
249 	struct device_node *np;
250 	if (!prev) {
251 		np = of_root;
252 	} else if (prev->child) {
253 		np = prev->child;
254 	} else {
255 		/* Walk back up looking for a sibling, or the end of the structure */
256 		np = prev;
257 		while (np->parent && !np->sibling)
258 			np = np->parent;
259 		np = np->sibling; /* Might be null at the end of the tree */
260 	}
261 	return np;
262 }
263 
264 /**
265  * of_find_all_nodes - Get next node in global list
266  * @prev:	Previous node or NULL to start iteration
267  *		of_node_put() will be called on it
268  *
269  * Returns a node pointer with refcount incremented, use
270  * of_node_put() on it when done.
271  */
272 struct device_node *of_find_all_nodes(struct device_node *prev)
273 {
274 	struct device_node *np;
275 	unsigned long flags;
276 
277 	raw_spin_lock_irqsave(&devtree_lock, flags);
278 	np = __of_find_all_nodes(prev);
279 	of_node_get(np);
280 	of_node_put(prev);
281 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 	return np;
283 }
284 EXPORT_SYMBOL(of_find_all_nodes);
285 
286 /*
287  * Find a property with a given name for a given node
288  * and return the value.
289  */
290 const void *__of_get_property(const struct device_node *np,
291 			      const char *name, int *lenp)
292 {
293 	struct property *pp = __of_find_property(np, name, lenp);
294 
295 	return pp ? pp->value : NULL;
296 }
297 
298 /*
299  * Find a property with a given name for a given node
300  * and return the value.
301  */
302 const void *of_get_property(const struct device_node *np, const char *name,
303 			    int *lenp)
304 {
305 	struct property *pp = of_find_property(np, name, lenp);
306 
307 	return pp ? pp->value : NULL;
308 }
309 EXPORT_SYMBOL(of_get_property);
310 
311 /*
312  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313  *
314  * @cpu: logical cpu index of a core/thread
315  * @phys_id: physical identifier of a core/thread
316  *
317  * CPU logical to physical index mapping is architecture specific.
318  * However this __weak function provides a default match of physical
319  * id to logical cpu index. phys_id provided here is usually values read
320  * from the device tree which must match the hardware internal registers.
321  *
322  * Returns true if the physical identifier and the logical cpu index
323  * correspond to the same core/thread, false otherwise.
324  */
325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326 {
327 	return (u32)phys_id == cpu;
328 }
329 
330 /**
331  * Checks if the given "prop_name" property holds the physical id of the
332  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333  * NULL, local thread number within the core is returned in it.
334  */
335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 			const char *prop_name, int cpu, unsigned int *thread)
337 {
338 	const __be32 *cell;
339 	int ac, prop_len, tid;
340 	u64 hwid;
341 
342 	ac = of_n_addr_cells(cpun);
343 	cell = of_get_property(cpun, prop_name, &prop_len);
344 	if (!cell || !ac)
345 		return false;
346 	prop_len /= sizeof(*cell) * ac;
347 	for (tid = 0; tid < prop_len; tid++) {
348 		hwid = of_read_number(cell, ac);
349 		if (arch_match_cpu_phys_id(cpu, hwid)) {
350 			if (thread)
351 				*thread = tid;
352 			return true;
353 		}
354 		cell += ac;
355 	}
356 	return false;
357 }
358 
359 /*
360  * arch_find_n_match_cpu_physical_id - See if the given device node is
361  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
362  * else false.  If 'thread' is non-NULL, the local thread number within the
363  * core is returned in it.
364  */
365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366 					      int cpu, unsigned int *thread)
367 {
368 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
369 	 * for thread ids on PowerPC. If it doesn't exist fallback to
370 	 * standard "reg" property.
371 	 */
372 	if (IS_ENABLED(CONFIG_PPC) &&
373 	    __of_find_n_match_cpu_property(cpun,
374 					   "ibm,ppc-interrupt-server#s",
375 					   cpu, thread))
376 		return true;
377 
378 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
379 }
380 
381 /**
382  * of_get_cpu_node - Get device node associated with the given logical CPU
383  *
384  * @cpu: CPU number(logical index) for which device node is required
385  * @thread: if not NULL, local thread number within the physical core is
386  *          returned
387  *
388  * The main purpose of this function is to retrieve the device node for the
389  * given logical CPU index. It should be used to initialize the of_node in
390  * cpu device. Once of_node in cpu device is populated, all the further
391  * references can use that instead.
392  *
393  * CPU logical to physical index mapping is architecture specific and is built
394  * before booting secondary cores. This function uses arch_match_cpu_phys_id
395  * which can be overridden by architecture specific implementation.
396  *
397  * Returns a node pointer for the logical cpu with refcount incremented, use
398  * of_node_put() on it when done. Returns NULL if not found.
399  */
400 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
401 {
402 	struct device_node *cpun;
403 
404 	for_each_node_by_type(cpun, "cpu") {
405 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
406 			return cpun;
407 	}
408 	return NULL;
409 }
410 EXPORT_SYMBOL(of_get_cpu_node);
411 
412 /**
413  * __of_device_is_compatible() - Check if the node matches given constraints
414  * @device: pointer to node
415  * @compat: required compatible string, NULL or "" for any match
416  * @type: required device_type value, NULL or "" for any match
417  * @name: required node name, NULL or "" for any match
418  *
419  * Checks if the given @compat, @type and @name strings match the
420  * properties of the given @device. A constraints can be skipped by
421  * passing NULL or an empty string as the constraint.
422  *
423  * Returns 0 for no match, and a positive integer on match. The return
424  * value is a relative score with larger values indicating better
425  * matches. The score is weighted for the most specific compatible value
426  * to get the highest score. Matching type is next, followed by matching
427  * name. Practically speaking, this results in the following priority
428  * order for matches:
429  *
430  * 1. specific compatible && type && name
431  * 2. specific compatible && type
432  * 3. specific compatible && name
433  * 4. specific compatible
434  * 5. general compatible && type && name
435  * 6. general compatible && type
436  * 7. general compatible && name
437  * 8. general compatible
438  * 9. type && name
439  * 10. type
440  * 11. name
441  */
442 static int __of_device_is_compatible(const struct device_node *device,
443 				     const char *compat, const char *type, const char *name)
444 {
445 	struct property *prop;
446 	const char *cp;
447 	int index = 0, score = 0;
448 
449 	/* Compatible match has highest priority */
450 	if (compat && compat[0]) {
451 		prop = __of_find_property(device, "compatible", NULL);
452 		for (cp = of_prop_next_string(prop, NULL); cp;
453 		     cp = of_prop_next_string(prop, cp), index++) {
454 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
455 				score = INT_MAX/2 - (index << 2);
456 				break;
457 			}
458 		}
459 		if (!score)
460 			return 0;
461 	}
462 
463 	/* Matching type is better than matching name */
464 	if (type && type[0]) {
465 		if (!device->type || of_node_cmp(type, device->type))
466 			return 0;
467 		score += 2;
468 	}
469 
470 	/* Matching name is a bit better than not */
471 	if (name && name[0]) {
472 		if (!device->name || of_node_cmp(name, device->name))
473 			return 0;
474 		score++;
475 	}
476 
477 	return score;
478 }
479 
480 /** Checks if the given "compat" string matches one of the strings in
481  * the device's "compatible" property
482  */
483 int of_device_is_compatible(const struct device_node *device,
484 		const char *compat)
485 {
486 	unsigned long flags;
487 	int res;
488 
489 	raw_spin_lock_irqsave(&devtree_lock, flags);
490 	res = __of_device_is_compatible(device, compat, NULL, NULL);
491 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
492 	return res;
493 }
494 EXPORT_SYMBOL(of_device_is_compatible);
495 
496 /**
497  * of_machine_is_compatible - Test root of device tree for a given compatible value
498  * @compat: compatible string to look for in root node's compatible property.
499  *
500  * Returns a positive integer if the root node has the given value in its
501  * compatible property.
502  */
503 int of_machine_is_compatible(const char *compat)
504 {
505 	struct device_node *root;
506 	int rc = 0;
507 
508 	root = of_find_node_by_path("/");
509 	if (root) {
510 		rc = of_device_is_compatible(root, compat);
511 		of_node_put(root);
512 	}
513 	return rc;
514 }
515 EXPORT_SYMBOL(of_machine_is_compatible);
516 
517 /**
518  *  __of_device_is_available - check if a device is available for use
519  *
520  *  @device: Node to check for availability, with locks already held
521  *
522  *  Returns true if the status property is absent or set to "okay" or "ok",
523  *  false otherwise
524  */
525 static bool __of_device_is_available(const struct device_node *device)
526 {
527 	const char *status;
528 	int statlen;
529 
530 	if (!device)
531 		return false;
532 
533 	status = __of_get_property(device, "status", &statlen);
534 	if (status == NULL)
535 		return true;
536 
537 	if (statlen > 0) {
538 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
539 			return true;
540 	}
541 
542 	return false;
543 }
544 
545 /**
546  *  of_device_is_available - check if a device is available for use
547  *
548  *  @device: Node to check for availability
549  *
550  *  Returns true if the status property is absent or set to "okay" or "ok",
551  *  false otherwise
552  */
553 bool of_device_is_available(const struct device_node *device)
554 {
555 	unsigned long flags;
556 	bool res;
557 
558 	raw_spin_lock_irqsave(&devtree_lock, flags);
559 	res = __of_device_is_available(device);
560 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
561 	return res;
562 
563 }
564 EXPORT_SYMBOL(of_device_is_available);
565 
566 /**
567  *  of_device_is_big_endian - check if a device has BE registers
568  *
569  *  @device: Node to check for endianness
570  *
571  *  Returns true if the device has a "big-endian" property, or if the kernel
572  *  was compiled for BE *and* the device has a "native-endian" property.
573  *  Returns false otherwise.
574  *
575  *  Callers would nominally use ioread32be/iowrite32be if
576  *  of_device_is_big_endian() == true, or readl/writel otherwise.
577  */
578 bool of_device_is_big_endian(const struct device_node *device)
579 {
580 	if (of_property_read_bool(device, "big-endian"))
581 		return true;
582 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
583 	    of_property_read_bool(device, "native-endian"))
584 		return true;
585 	return false;
586 }
587 EXPORT_SYMBOL(of_device_is_big_endian);
588 
589 /**
590  *	of_get_parent - Get a node's parent if any
591  *	@node:	Node to get parent
592  *
593  *	Returns a node pointer with refcount incremented, use
594  *	of_node_put() on it when done.
595  */
596 struct device_node *of_get_parent(const struct device_node *node)
597 {
598 	struct device_node *np;
599 	unsigned long flags;
600 
601 	if (!node)
602 		return NULL;
603 
604 	raw_spin_lock_irqsave(&devtree_lock, flags);
605 	np = of_node_get(node->parent);
606 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
607 	return np;
608 }
609 EXPORT_SYMBOL(of_get_parent);
610 
611 /**
612  *	of_get_next_parent - Iterate to a node's parent
613  *	@node:	Node to get parent of
614  *
615  *	This is like of_get_parent() except that it drops the
616  *	refcount on the passed node, making it suitable for iterating
617  *	through a node's parents.
618  *
619  *	Returns a node pointer with refcount incremented, use
620  *	of_node_put() on it when done.
621  */
622 struct device_node *of_get_next_parent(struct device_node *node)
623 {
624 	struct device_node *parent;
625 	unsigned long flags;
626 
627 	if (!node)
628 		return NULL;
629 
630 	raw_spin_lock_irqsave(&devtree_lock, flags);
631 	parent = of_node_get(node->parent);
632 	of_node_put(node);
633 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
634 	return parent;
635 }
636 EXPORT_SYMBOL(of_get_next_parent);
637 
638 static struct device_node *__of_get_next_child(const struct device_node *node,
639 						struct device_node *prev)
640 {
641 	struct device_node *next;
642 
643 	if (!node)
644 		return NULL;
645 
646 	next = prev ? prev->sibling : node->child;
647 	for (; next; next = next->sibling)
648 		if (of_node_get(next))
649 			break;
650 	of_node_put(prev);
651 	return next;
652 }
653 #define __for_each_child_of_node(parent, child) \
654 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
655 	     child = __of_get_next_child(parent, child))
656 
657 /**
658  *	of_get_next_child - Iterate a node childs
659  *	@node:	parent node
660  *	@prev:	previous child of the parent node, or NULL to get first
661  *
662  *	Returns a node pointer with refcount incremented, use of_node_put() on
663  *	it when done. Returns NULL when prev is the last child. Decrements the
664  *	refcount of prev.
665  */
666 struct device_node *of_get_next_child(const struct device_node *node,
667 	struct device_node *prev)
668 {
669 	struct device_node *next;
670 	unsigned long flags;
671 
672 	raw_spin_lock_irqsave(&devtree_lock, flags);
673 	next = __of_get_next_child(node, prev);
674 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
675 	return next;
676 }
677 EXPORT_SYMBOL(of_get_next_child);
678 
679 /**
680  *	of_get_next_available_child - Find the next available child node
681  *	@node:	parent node
682  *	@prev:	previous child of the parent node, or NULL to get first
683  *
684  *      This function is like of_get_next_child(), except that it
685  *      automatically skips any disabled nodes (i.e. status = "disabled").
686  */
687 struct device_node *of_get_next_available_child(const struct device_node *node,
688 	struct device_node *prev)
689 {
690 	struct device_node *next;
691 	unsigned long flags;
692 
693 	if (!node)
694 		return NULL;
695 
696 	raw_spin_lock_irqsave(&devtree_lock, flags);
697 	next = prev ? prev->sibling : node->child;
698 	for (; next; next = next->sibling) {
699 		if (!__of_device_is_available(next))
700 			continue;
701 		if (of_node_get(next))
702 			break;
703 	}
704 	of_node_put(prev);
705 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
706 	return next;
707 }
708 EXPORT_SYMBOL(of_get_next_available_child);
709 
710 /**
711  *	of_get_child_by_name - Find the child node by name for a given parent
712  *	@node:	parent node
713  *	@name:	child name to look for.
714  *
715  *      This function looks for child node for given matching name
716  *
717  *	Returns a node pointer if found, with refcount incremented, use
718  *	of_node_put() on it when done.
719  *	Returns NULL if node is not found.
720  */
721 struct device_node *of_get_child_by_name(const struct device_node *node,
722 				const char *name)
723 {
724 	struct device_node *child;
725 
726 	for_each_child_of_node(node, child)
727 		if (child->name && (of_node_cmp(child->name, name) == 0))
728 			break;
729 	return child;
730 }
731 EXPORT_SYMBOL(of_get_child_by_name);
732 
733 static struct device_node *__of_find_node_by_path(struct device_node *parent,
734 						const char *path)
735 {
736 	struct device_node *child;
737 	int len;
738 
739 	len = strcspn(path, "/:");
740 	if (!len)
741 		return NULL;
742 
743 	__for_each_child_of_node(parent, child) {
744 		const char *name = strrchr(child->full_name, '/');
745 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
746 			continue;
747 		name++;
748 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
749 			return child;
750 	}
751 	return NULL;
752 }
753 
754 /**
755  *	of_find_node_opts_by_path - Find a node matching a full OF path
756  *	@path: Either the full path to match, or if the path does not
757  *	       start with '/', the name of a property of the /aliases
758  *	       node (an alias).  In the case of an alias, the node
759  *	       matching the alias' value will be returned.
760  *	@opts: Address of a pointer into which to store the start of
761  *	       an options string appended to the end of the path with
762  *	       a ':' separator.
763  *
764  *	Valid paths:
765  *		/foo/bar	Full path
766  *		foo		Valid alias
767  *		foo/bar		Valid alias + relative path
768  *
769  *	Returns a node pointer with refcount incremented, use
770  *	of_node_put() on it when done.
771  */
772 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
773 {
774 	struct device_node *np = NULL;
775 	struct property *pp;
776 	unsigned long flags;
777 	const char *separator = strchr(path, ':');
778 
779 	if (opts)
780 		*opts = separator ? separator + 1 : NULL;
781 
782 	if (strcmp(path, "/") == 0)
783 		return of_node_get(of_root);
784 
785 	/* The path could begin with an alias */
786 	if (*path != '/') {
787 		int len;
788 		const char *p = separator;
789 
790 		if (!p)
791 			p = strchrnul(path, '/');
792 		len = p - path;
793 
794 		/* of_aliases must not be NULL */
795 		if (!of_aliases)
796 			return NULL;
797 
798 		for_each_property_of_node(of_aliases, pp) {
799 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
800 				np = of_find_node_by_path(pp->value);
801 				break;
802 			}
803 		}
804 		if (!np)
805 			return NULL;
806 		path = p;
807 	}
808 
809 	/* Step down the tree matching path components */
810 	raw_spin_lock_irqsave(&devtree_lock, flags);
811 	if (!np)
812 		np = of_node_get(of_root);
813 	while (np && *path == '/') {
814 		path++; /* Increment past '/' delimiter */
815 		np = __of_find_node_by_path(np, path);
816 		path = strchrnul(path, '/');
817 		if (separator && separator < path)
818 			break;
819 	}
820 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
821 	return np;
822 }
823 EXPORT_SYMBOL(of_find_node_opts_by_path);
824 
825 /**
826  *	of_find_node_by_name - Find a node by its "name" property
827  *	@from:	The node to start searching from or NULL, the node
828  *		you pass will not be searched, only the next one
829  *		will; typically, you pass what the previous call
830  *		returned. of_node_put() will be called on it
831  *	@name:	The name string to match against
832  *
833  *	Returns a node pointer with refcount incremented, use
834  *	of_node_put() on it when done.
835  */
836 struct device_node *of_find_node_by_name(struct device_node *from,
837 	const char *name)
838 {
839 	struct device_node *np;
840 	unsigned long flags;
841 
842 	raw_spin_lock_irqsave(&devtree_lock, flags);
843 	for_each_of_allnodes_from(from, np)
844 		if (np->name && (of_node_cmp(np->name, name) == 0)
845 		    && of_node_get(np))
846 			break;
847 	of_node_put(from);
848 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
849 	return np;
850 }
851 EXPORT_SYMBOL(of_find_node_by_name);
852 
853 /**
854  *	of_find_node_by_type - Find a node by its "device_type" property
855  *	@from:	The node to start searching from, or NULL to start searching
856  *		the entire device tree. The node you pass will not be
857  *		searched, only the next one will; typically, you pass
858  *		what the previous call returned. of_node_put() will be
859  *		called on from for you.
860  *	@type:	The type string to match against
861  *
862  *	Returns a node pointer with refcount incremented, use
863  *	of_node_put() on it when done.
864  */
865 struct device_node *of_find_node_by_type(struct device_node *from,
866 	const char *type)
867 {
868 	struct device_node *np;
869 	unsigned long flags;
870 
871 	raw_spin_lock_irqsave(&devtree_lock, flags);
872 	for_each_of_allnodes_from(from, np)
873 		if (np->type && (of_node_cmp(np->type, type) == 0)
874 		    && of_node_get(np))
875 			break;
876 	of_node_put(from);
877 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
878 	return np;
879 }
880 EXPORT_SYMBOL(of_find_node_by_type);
881 
882 /**
883  *	of_find_compatible_node - Find a node based on type and one of the
884  *                                tokens in its "compatible" property
885  *	@from:		The node to start searching from or NULL, the node
886  *			you pass will not be searched, only the next one
887  *			will; typically, you pass what the previous call
888  *			returned. of_node_put() will be called on it
889  *	@type:		The type string to match "device_type" or NULL to ignore
890  *	@compatible:	The string to match to one of the tokens in the device
891  *			"compatible" list.
892  *
893  *	Returns a node pointer with refcount incremented, use
894  *	of_node_put() on it when done.
895  */
896 struct device_node *of_find_compatible_node(struct device_node *from,
897 	const char *type, const char *compatible)
898 {
899 	struct device_node *np;
900 	unsigned long flags;
901 
902 	raw_spin_lock_irqsave(&devtree_lock, flags);
903 	for_each_of_allnodes_from(from, np)
904 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
905 		    of_node_get(np))
906 			break;
907 	of_node_put(from);
908 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
909 	return np;
910 }
911 EXPORT_SYMBOL(of_find_compatible_node);
912 
913 /**
914  *	of_find_node_with_property - Find a node which has a property with
915  *                                   the given name.
916  *	@from:		The node to start searching from or NULL, the node
917  *			you pass will not be searched, only the next one
918  *			will; typically, you pass what the previous call
919  *			returned. of_node_put() will be called on it
920  *	@prop_name:	The name of the property to look for.
921  *
922  *	Returns a node pointer with refcount incremented, use
923  *	of_node_put() on it when done.
924  */
925 struct device_node *of_find_node_with_property(struct device_node *from,
926 	const char *prop_name)
927 {
928 	struct device_node *np;
929 	struct property *pp;
930 	unsigned long flags;
931 
932 	raw_spin_lock_irqsave(&devtree_lock, flags);
933 	for_each_of_allnodes_from(from, np) {
934 		for (pp = np->properties; pp; pp = pp->next) {
935 			if (of_prop_cmp(pp->name, prop_name) == 0) {
936 				of_node_get(np);
937 				goto out;
938 			}
939 		}
940 	}
941 out:
942 	of_node_put(from);
943 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
944 	return np;
945 }
946 EXPORT_SYMBOL(of_find_node_with_property);
947 
948 static
949 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
950 					   const struct device_node *node)
951 {
952 	const struct of_device_id *best_match = NULL;
953 	int score, best_score = 0;
954 
955 	if (!matches)
956 		return NULL;
957 
958 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
959 		score = __of_device_is_compatible(node, matches->compatible,
960 						  matches->type, matches->name);
961 		if (score > best_score) {
962 			best_match = matches;
963 			best_score = score;
964 		}
965 	}
966 
967 	return best_match;
968 }
969 
970 /**
971  * of_match_node - Tell if a device_node has a matching of_match structure
972  *	@matches:	array of of device match structures to search in
973  *	@node:		the of device structure to match against
974  *
975  *	Low level utility function used by device matching.
976  */
977 const struct of_device_id *of_match_node(const struct of_device_id *matches,
978 					 const struct device_node *node)
979 {
980 	const struct of_device_id *match;
981 	unsigned long flags;
982 
983 	raw_spin_lock_irqsave(&devtree_lock, flags);
984 	match = __of_match_node(matches, node);
985 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
986 	return match;
987 }
988 EXPORT_SYMBOL(of_match_node);
989 
990 /**
991  *	of_find_matching_node_and_match - Find a node based on an of_device_id
992  *					  match table.
993  *	@from:		The node to start searching from or NULL, the node
994  *			you pass will not be searched, only the next one
995  *			will; typically, you pass what the previous call
996  *			returned. of_node_put() will be called on it
997  *	@matches:	array of of device match structures to search in
998  *	@match		Updated to point at the matches entry which matched
999  *
1000  *	Returns a node pointer with refcount incremented, use
1001  *	of_node_put() on it when done.
1002  */
1003 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1004 					const struct of_device_id *matches,
1005 					const struct of_device_id **match)
1006 {
1007 	struct device_node *np;
1008 	const struct of_device_id *m;
1009 	unsigned long flags;
1010 
1011 	if (match)
1012 		*match = NULL;
1013 
1014 	raw_spin_lock_irqsave(&devtree_lock, flags);
1015 	for_each_of_allnodes_from(from, np) {
1016 		m = __of_match_node(matches, np);
1017 		if (m && of_node_get(np)) {
1018 			if (match)
1019 				*match = m;
1020 			break;
1021 		}
1022 	}
1023 	of_node_put(from);
1024 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1025 	return np;
1026 }
1027 EXPORT_SYMBOL(of_find_matching_node_and_match);
1028 
1029 /**
1030  * of_modalias_node - Lookup appropriate modalias for a device node
1031  * @node:	pointer to a device tree node
1032  * @modalias:	Pointer to buffer that modalias value will be copied into
1033  * @len:	Length of modalias value
1034  *
1035  * Based on the value of the compatible property, this routine will attempt
1036  * to choose an appropriate modalias value for a particular device tree node.
1037  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1038  * from the first entry in the compatible list property.
1039  *
1040  * This routine returns 0 on success, <0 on failure.
1041  */
1042 int of_modalias_node(struct device_node *node, char *modalias, int len)
1043 {
1044 	const char *compatible, *p;
1045 	int cplen;
1046 
1047 	compatible = of_get_property(node, "compatible", &cplen);
1048 	if (!compatible || strlen(compatible) > cplen)
1049 		return -ENODEV;
1050 	p = strchr(compatible, ',');
1051 	strlcpy(modalias, p ? p + 1 : compatible, len);
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(of_modalias_node);
1055 
1056 /**
1057  * of_find_node_by_phandle - Find a node given a phandle
1058  * @handle:	phandle of the node to find
1059  *
1060  * Returns a node pointer with refcount incremented, use
1061  * of_node_put() on it when done.
1062  */
1063 struct device_node *of_find_node_by_phandle(phandle handle)
1064 {
1065 	struct device_node *np;
1066 	unsigned long flags;
1067 
1068 	if (!handle)
1069 		return NULL;
1070 
1071 	raw_spin_lock_irqsave(&devtree_lock, flags);
1072 	for_each_of_allnodes(np)
1073 		if (np->phandle == handle)
1074 			break;
1075 	of_node_get(np);
1076 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077 	return np;
1078 }
1079 EXPORT_SYMBOL(of_find_node_by_phandle);
1080 
1081 /**
1082  * of_property_count_elems_of_size - Count the number of elements in a property
1083  *
1084  * @np:		device node from which the property value is to be read.
1085  * @propname:	name of the property to be searched.
1086  * @elem_size:	size of the individual element
1087  *
1088  * Search for a property in a device node and count the number of elements of
1089  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1090  * property does not exist or its length does not match a multiple of elem_size
1091  * and -ENODATA if the property does not have a value.
1092  */
1093 int of_property_count_elems_of_size(const struct device_node *np,
1094 				const char *propname, int elem_size)
1095 {
1096 	struct property *prop = of_find_property(np, propname, NULL);
1097 
1098 	if (!prop)
1099 		return -EINVAL;
1100 	if (!prop->value)
1101 		return -ENODATA;
1102 
1103 	if (prop->length % elem_size != 0) {
1104 		pr_err("size of %s in node %s is not a multiple of %d\n",
1105 		       propname, np->full_name, elem_size);
1106 		return -EINVAL;
1107 	}
1108 
1109 	return prop->length / elem_size;
1110 }
1111 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1112 
1113 /**
1114  * of_find_property_value_of_size
1115  *
1116  * @np:		device node from which the property value is to be read.
1117  * @propname:	name of the property to be searched.
1118  * @len:	requested length of property value
1119  *
1120  * Search for a property in a device node and valid the requested size.
1121  * Returns the property value on success, -EINVAL if the property does not
1122  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1123  * property data isn't large enough.
1124  *
1125  */
1126 static void *of_find_property_value_of_size(const struct device_node *np,
1127 			const char *propname, u32 len)
1128 {
1129 	struct property *prop = of_find_property(np, propname, NULL);
1130 
1131 	if (!prop)
1132 		return ERR_PTR(-EINVAL);
1133 	if (!prop->value)
1134 		return ERR_PTR(-ENODATA);
1135 	if (len > prop->length)
1136 		return ERR_PTR(-EOVERFLOW);
1137 
1138 	return prop->value;
1139 }
1140 
1141 /**
1142  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1143  *
1144  * @np:		device node from which the property value is to be read.
1145  * @propname:	name of the property to be searched.
1146  * @index:	index of the u32 in the list of values
1147  * @out_value:	pointer to return value, modified only if no error.
1148  *
1149  * Search for a property in a device node and read nth 32-bit value from
1150  * it. Returns 0 on success, -EINVAL if the property does not exist,
1151  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1152  * property data isn't large enough.
1153  *
1154  * The out_value is modified only if a valid u32 value can be decoded.
1155  */
1156 int of_property_read_u32_index(const struct device_node *np,
1157 				       const char *propname,
1158 				       u32 index, u32 *out_value)
1159 {
1160 	const u32 *val = of_find_property_value_of_size(np, propname,
1161 					((index + 1) * sizeof(*out_value)));
1162 
1163 	if (IS_ERR(val))
1164 		return PTR_ERR(val);
1165 
1166 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1167 	return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1170 
1171 /**
1172  * of_property_read_u8_array - Find and read an array of u8 from a property.
1173  *
1174  * @np:		device node from which the property value is to be read.
1175  * @propname:	name of the property to be searched.
1176  * @out_values:	pointer to return value, modified only if return value is 0.
1177  * @sz:		number of array elements to read
1178  *
1179  * Search for a property in a device node and read 8-bit value(s) from
1180  * it. Returns 0 on success, -EINVAL if the property does not exist,
1181  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1182  * property data isn't large enough.
1183  *
1184  * dts entry of array should be like:
1185  *	property = /bits/ 8 <0x50 0x60 0x70>;
1186  *
1187  * The out_values is modified only if a valid u8 value can be decoded.
1188  */
1189 int of_property_read_u8_array(const struct device_node *np,
1190 			const char *propname, u8 *out_values, size_t sz)
1191 {
1192 	const u8 *val = of_find_property_value_of_size(np, propname,
1193 						(sz * sizeof(*out_values)));
1194 
1195 	if (IS_ERR(val))
1196 		return PTR_ERR(val);
1197 
1198 	while (sz--)
1199 		*out_values++ = *val++;
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1203 
1204 /**
1205  * of_property_read_u16_array - Find and read an array of u16 from a property.
1206  *
1207  * @np:		device node from which the property value is to be read.
1208  * @propname:	name of the property to be searched.
1209  * @out_values:	pointer to return value, modified only if return value is 0.
1210  * @sz:		number of array elements to read
1211  *
1212  * Search for a property in a device node and read 16-bit value(s) from
1213  * it. Returns 0 on success, -EINVAL if the property does not exist,
1214  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1215  * property data isn't large enough.
1216  *
1217  * dts entry of array should be like:
1218  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1219  *
1220  * The out_values is modified only if a valid u16 value can be decoded.
1221  */
1222 int of_property_read_u16_array(const struct device_node *np,
1223 			const char *propname, u16 *out_values, size_t sz)
1224 {
1225 	const __be16 *val = of_find_property_value_of_size(np, propname,
1226 						(sz * sizeof(*out_values)));
1227 
1228 	if (IS_ERR(val))
1229 		return PTR_ERR(val);
1230 
1231 	while (sz--)
1232 		*out_values++ = be16_to_cpup(val++);
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1236 
1237 /**
1238  * of_property_read_u32_array - Find and read an array of 32 bit integers
1239  * from a property.
1240  *
1241  * @np:		device node from which the property value is to be read.
1242  * @propname:	name of the property to be searched.
1243  * @out_values:	pointer to return value, modified only if return value is 0.
1244  * @sz:		number of array elements to read
1245  *
1246  * Search for a property in a device node and read 32-bit value(s) from
1247  * it. Returns 0 on success, -EINVAL if the property does not exist,
1248  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1249  * property data isn't large enough.
1250  *
1251  * The out_values is modified only if a valid u32 value can be decoded.
1252  */
1253 int of_property_read_u32_array(const struct device_node *np,
1254 			       const char *propname, u32 *out_values,
1255 			       size_t sz)
1256 {
1257 	const __be32 *val = of_find_property_value_of_size(np, propname,
1258 						(sz * sizeof(*out_values)));
1259 
1260 	if (IS_ERR(val))
1261 		return PTR_ERR(val);
1262 
1263 	while (sz--)
1264 		*out_values++ = be32_to_cpup(val++);
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1268 
1269 /**
1270  * of_property_read_u64 - Find and read a 64 bit integer from a property
1271  * @np:		device node from which the property value is to be read.
1272  * @propname:	name of the property to be searched.
1273  * @out_value:	pointer to return value, modified only if return value is 0.
1274  *
1275  * Search for a property in a device node and read a 64-bit value from
1276  * it. Returns 0 on success, -EINVAL if the property does not exist,
1277  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1278  * property data isn't large enough.
1279  *
1280  * The out_value is modified only if a valid u64 value can be decoded.
1281  */
1282 int of_property_read_u64(const struct device_node *np, const char *propname,
1283 			 u64 *out_value)
1284 {
1285 	const __be32 *val = of_find_property_value_of_size(np, propname,
1286 						sizeof(*out_value));
1287 
1288 	if (IS_ERR(val))
1289 		return PTR_ERR(val);
1290 
1291 	*out_value = of_read_number(val, 2);
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(of_property_read_u64);
1295 
1296 /**
1297  * of_property_read_u64_array - Find and read an array of 64 bit integers
1298  * from a property.
1299  *
1300  * @np:		device node from which the property value is to be read.
1301  * @propname:	name of the property to be searched.
1302  * @out_values:	pointer to return value, modified only if return value is 0.
1303  * @sz:		number of array elements to read
1304  *
1305  * Search for a property in a device node and read 64-bit value(s) from
1306  * it. Returns 0 on success, -EINVAL if the property does not exist,
1307  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1308  * property data isn't large enough.
1309  *
1310  * The out_values is modified only if a valid u64 value can be decoded.
1311  */
1312 int of_property_read_u64_array(const struct device_node *np,
1313 			       const char *propname, u64 *out_values,
1314 			       size_t sz)
1315 {
1316 	const __be32 *val = of_find_property_value_of_size(np, propname,
1317 						(sz * sizeof(*out_values)));
1318 
1319 	if (IS_ERR(val))
1320 		return PTR_ERR(val);
1321 
1322 	while (sz--) {
1323 		*out_values++ = of_read_number(val, 2);
1324 		val += 2;
1325 	}
1326 	return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1329 
1330 /**
1331  * of_property_read_string - Find and read a string from a property
1332  * @np:		device node from which the property value is to be read.
1333  * @propname:	name of the property to be searched.
1334  * @out_string:	pointer to null terminated return string, modified only if
1335  *		return value is 0.
1336  *
1337  * Search for a property in a device tree node and retrieve a null
1338  * terminated string value (pointer to data, not a copy). Returns 0 on
1339  * success, -EINVAL if the property does not exist, -ENODATA if property
1340  * does not have a value, and -EILSEQ if the string is not null-terminated
1341  * within the length of the property data.
1342  *
1343  * The out_string pointer is modified only if a valid string can be decoded.
1344  */
1345 int of_property_read_string(const struct device_node *np, const char *propname,
1346 				const char **out_string)
1347 {
1348 	const struct property *prop = of_find_property(np, propname, NULL);
1349 	if (!prop)
1350 		return -EINVAL;
1351 	if (!prop->value)
1352 		return -ENODATA;
1353 	if (strnlen(prop->value, prop->length) >= prop->length)
1354 		return -EILSEQ;
1355 	*out_string = prop->value;
1356 	return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(of_property_read_string);
1359 
1360 /**
1361  * of_property_match_string() - Find string in a list and return index
1362  * @np: pointer to node containing string list property
1363  * @propname: string list property name
1364  * @string: pointer to string to search for in string list
1365  *
1366  * This function searches a string list property and returns the index
1367  * of a specific string value.
1368  */
1369 int of_property_match_string(const struct device_node *np, const char *propname,
1370 			     const char *string)
1371 {
1372 	const struct property *prop = of_find_property(np, propname, NULL);
1373 	size_t l;
1374 	int i;
1375 	const char *p, *end;
1376 
1377 	if (!prop)
1378 		return -EINVAL;
1379 	if (!prop->value)
1380 		return -ENODATA;
1381 
1382 	p = prop->value;
1383 	end = p + prop->length;
1384 
1385 	for (i = 0; p < end; i++, p += l) {
1386 		l = strnlen(p, end - p) + 1;
1387 		if (p + l > end)
1388 			return -EILSEQ;
1389 		pr_debug("comparing %s with %s\n", string, p);
1390 		if (strcmp(string, p) == 0)
1391 			return i; /* Found it; return index */
1392 	}
1393 	return -ENODATA;
1394 }
1395 EXPORT_SYMBOL_GPL(of_property_match_string);
1396 
1397 /**
1398  * of_property_read_string_helper() - Utility helper for parsing string properties
1399  * @np:		device node from which the property value is to be read.
1400  * @propname:	name of the property to be searched.
1401  * @out_strs:	output array of string pointers.
1402  * @sz:		number of array elements to read.
1403  * @skip:	Number of strings to skip over at beginning of list.
1404  *
1405  * Don't call this function directly. It is a utility helper for the
1406  * of_property_read_string*() family of functions.
1407  */
1408 int of_property_read_string_helper(const struct device_node *np,
1409 				   const char *propname, const char **out_strs,
1410 				   size_t sz, int skip)
1411 {
1412 	const struct property *prop = of_find_property(np, propname, NULL);
1413 	int l = 0, i = 0;
1414 	const char *p, *end;
1415 
1416 	if (!prop)
1417 		return -EINVAL;
1418 	if (!prop->value)
1419 		return -ENODATA;
1420 	p = prop->value;
1421 	end = p + prop->length;
1422 
1423 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1424 		l = strnlen(p, end - p) + 1;
1425 		if (p + l > end)
1426 			return -EILSEQ;
1427 		if (out_strs && i >= skip)
1428 			*out_strs++ = p;
1429 	}
1430 	i -= skip;
1431 	return i <= 0 ? -ENODATA : i;
1432 }
1433 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1434 
1435 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1436 {
1437 	int i;
1438 	printk("%s %s", msg, of_node_full_name(args->np));
1439 	for (i = 0; i < args->args_count; i++)
1440 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1441 	printk("\n");
1442 }
1443 
1444 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1445 		const struct device_node *np,
1446 		const char *list_name,
1447 		const char *cells_name,
1448 		int cell_count)
1449 {
1450 	const __be32 *list;
1451 	int size;
1452 
1453 	memset(it, 0, sizeof(*it));
1454 
1455 	list = of_get_property(np, list_name, &size);
1456 	if (!list)
1457 		return -ENOENT;
1458 
1459 	it->cells_name = cells_name;
1460 	it->cell_count = cell_count;
1461 	it->parent = np;
1462 	it->list_end = list + size / sizeof(*list);
1463 	it->phandle_end = list;
1464 	it->cur = list;
1465 
1466 	return 0;
1467 }
1468 
1469 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1470 {
1471 	uint32_t count = 0;
1472 
1473 	if (it->node) {
1474 		of_node_put(it->node);
1475 		it->node = NULL;
1476 	}
1477 
1478 	if (!it->cur || it->phandle_end >= it->list_end)
1479 		return -ENOENT;
1480 
1481 	it->cur = it->phandle_end;
1482 
1483 	/* If phandle is 0, then it is an empty entry with no arguments. */
1484 	it->phandle = be32_to_cpup(it->cur++);
1485 
1486 	if (it->phandle) {
1487 
1488 		/*
1489 		 * Find the provider node and parse the #*-cells property to
1490 		 * determine the argument length.
1491 		 */
1492 		it->node = of_find_node_by_phandle(it->phandle);
1493 
1494 		if (it->cells_name) {
1495 			if (!it->node) {
1496 				pr_err("%s: could not find phandle\n",
1497 				       it->parent->full_name);
1498 				goto err;
1499 			}
1500 
1501 			if (of_property_read_u32(it->node, it->cells_name,
1502 						 &count)) {
1503 				pr_err("%s: could not get %s for %s\n",
1504 				       it->parent->full_name,
1505 				       it->cells_name,
1506 				       it->node->full_name);
1507 				goto err;
1508 			}
1509 		} else {
1510 			count = it->cell_count;
1511 		}
1512 
1513 		/*
1514 		 * Make sure that the arguments actually fit in the remaining
1515 		 * property data length
1516 		 */
1517 		if (it->cur + count > it->list_end) {
1518 			pr_err("%s: arguments longer than property\n",
1519 			       it->parent->full_name);
1520 			goto err;
1521 		}
1522 	}
1523 
1524 	it->phandle_end = it->cur + count;
1525 	it->cur_count = count;
1526 
1527 	return 0;
1528 
1529 err:
1530 	if (it->node) {
1531 		of_node_put(it->node);
1532 		it->node = NULL;
1533 	}
1534 
1535 	return -EINVAL;
1536 }
1537 
1538 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1539 			     uint32_t *args,
1540 			     int size)
1541 {
1542 	int i, count;
1543 
1544 	count = it->cur_count;
1545 
1546 	if (WARN_ON(size < count))
1547 		count = size;
1548 
1549 	for (i = 0; i < count; i++)
1550 		args[i] = be32_to_cpup(it->cur++);
1551 
1552 	return count;
1553 }
1554 
1555 static int __of_parse_phandle_with_args(const struct device_node *np,
1556 					const char *list_name,
1557 					const char *cells_name,
1558 					int cell_count, int index,
1559 					struct of_phandle_args *out_args)
1560 {
1561 	struct of_phandle_iterator it;
1562 	int rc, cur_index = 0;
1563 
1564 	/* Loop over the phandles until all the requested entry is found */
1565 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1566 		/*
1567 		 * All of the error cases bail out of the loop, so at
1568 		 * this point, the parsing is successful. If the requested
1569 		 * index matches, then fill the out_args structure and return,
1570 		 * or return -ENOENT for an empty entry.
1571 		 */
1572 		rc = -ENOENT;
1573 		if (cur_index == index) {
1574 			if (!it.phandle)
1575 				goto err;
1576 
1577 			if (out_args) {
1578 				int c;
1579 
1580 				c = of_phandle_iterator_args(&it,
1581 							     out_args->args,
1582 							     MAX_PHANDLE_ARGS);
1583 				out_args->np = it.node;
1584 				out_args->args_count = c;
1585 			} else {
1586 				of_node_put(it.node);
1587 			}
1588 
1589 			/* Found it! return success */
1590 			return 0;
1591 		}
1592 
1593 		cur_index++;
1594 	}
1595 
1596 	/*
1597 	 * Unlock node before returning result; will be one of:
1598 	 * -ENOENT : index is for empty phandle
1599 	 * -EINVAL : parsing error on data
1600 	 */
1601 
1602  err:
1603 	if (it.node)
1604 		of_node_put(it.node);
1605 	return rc;
1606 }
1607 
1608 /**
1609  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1610  * @np: Pointer to device node holding phandle property
1611  * @phandle_name: Name of property holding a phandle value
1612  * @index: For properties holding a table of phandles, this is the index into
1613  *         the table
1614  *
1615  * Returns the device_node pointer with refcount incremented.  Use
1616  * of_node_put() on it when done.
1617  */
1618 struct device_node *of_parse_phandle(const struct device_node *np,
1619 				     const char *phandle_name, int index)
1620 {
1621 	struct of_phandle_args args;
1622 
1623 	if (index < 0)
1624 		return NULL;
1625 
1626 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1627 					 index, &args))
1628 		return NULL;
1629 
1630 	return args.np;
1631 }
1632 EXPORT_SYMBOL(of_parse_phandle);
1633 
1634 /**
1635  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1636  * @np:		pointer to a device tree node containing a list
1637  * @list_name:	property name that contains a list
1638  * @cells_name:	property name that specifies phandles' arguments count
1639  * @index:	index of a phandle to parse out
1640  * @out_args:	optional pointer to output arguments structure (will be filled)
1641  *
1642  * This function is useful to parse lists of phandles and their arguments.
1643  * Returns 0 on success and fills out_args, on error returns appropriate
1644  * errno value.
1645  *
1646  * Caller is responsible to call of_node_put() on the returned out_args->np
1647  * pointer.
1648  *
1649  * Example:
1650  *
1651  * phandle1: node1 {
1652  *	#list-cells = <2>;
1653  * }
1654  *
1655  * phandle2: node2 {
1656  *	#list-cells = <1>;
1657  * }
1658  *
1659  * node3 {
1660  *	list = <&phandle1 1 2 &phandle2 3>;
1661  * }
1662  *
1663  * To get a device_node of the `node2' node you may call this:
1664  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1665  */
1666 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1667 				const char *cells_name, int index,
1668 				struct of_phandle_args *out_args)
1669 {
1670 	if (index < 0)
1671 		return -EINVAL;
1672 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1673 					    index, out_args);
1674 }
1675 EXPORT_SYMBOL(of_parse_phandle_with_args);
1676 
1677 /**
1678  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1679  * @np:		pointer to a device tree node containing a list
1680  * @list_name:	property name that contains a list
1681  * @cell_count: number of argument cells following the phandle
1682  * @index:	index of a phandle to parse out
1683  * @out_args:	optional pointer to output arguments structure (will be filled)
1684  *
1685  * This function is useful to parse lists of phandles and their arguments.
1686  * Returns 0 on success and fills out_args, on error returns appropriate
1687  * errno value.
1688  *
1689  * Caller is responsible to call of_node_put() on the returned out_args->np
1690  * pointer.
1691  *
1692  * Example:
1693  *
1694  * phandle1: node1 {
1695  * }
1696  *
1697  * phandle2: node2 {
1698  * }
1699  *
1700  * node3 {
1701  *	list = <&phandle1 0 2 &phandle2 2 3>;
1702  * }
1703  *
1704  * To get a device_node of the `node2' node you may call this:
1705  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1706  */
1707 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1708 				const char *list_name, int cell_count,
1709 				int index, struct of_phandle_args *out_args)
1710 {
1711 	if (index < 0)
1712 		return -EINVAL;
1713 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1714 					   index, out_args);
1715 }
1716 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1717 
1718 /**
1719  * of_count_phandle_with_args() - Find the number of phandles references in a property
1720  * @np:		pointer to a device tree node containing a list
1721  * @list_name:	property name that contains a list
1722  * @cells_name:	property name that specifies phandles' arguments count
1723  *
1724  * Returns the number of phandle + argument tuples within a property. It
1725  * is a typical pattern to encode a list of phandle and variable
1726  * arguments into a single property. The number of arguments is encoded
1727  * by a property in the phandle-target node. For example, a gpios
1728  * property would contain a list of GPIO specifies consisting of a
1729  * phandle and 1 or more arguments. The number of arguments are
1730  * determined by the #gpio-cells property in the node pointed to by the
1731  * phandle.
1732  */
1733 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1734 				const char *cells_name)
1735 {
1736 	struct of_phandle_iterator it;
1737 	int rc, cur_index = 0;
1738 
1739 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1740 	if (rc)
1741 		return rc;
1742 
1743 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1744 		cur_index += 1;
1745 
1746 	if (rc != -ENOENT)
1747 		return rc;
1748 
1749 	return cur_index;
1750 }
1751 EXPORT_SYMBOL(of_count_phandle_with_args);
1752 
1753 /**
1754  * __of_add_property - Add a property to a node without lock operations
1755  */
1756 int __of_add_property(struct device_node *np, struct property *prop)
1757 {
1758 	struct property **next;
1759 
1760 	prop->next = NULL;
1761 	next = &np->properties;
1762 	while (*next) {
1763 		if (strcmp(prop->name, (*next)->name) == 0)
1764 			/* duplicate ! don't insert it */
1765 			return -EEXIST;
1766 
1767 		next = &(*next)->next;
1768 	}
1769 	*next = prop;
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * of_add_property - Add a property to a node
1776  */
1777 int of_add_property(struct device_node *np, struct property *prop)
1778 {
1779 	unsigned long flags;
1780 	int rc;
1781 
1782 	mutex_lock(&of_mutex);
1783 
1784 	raw_spin_lock_irqsave(&devtree_lock, flags);
1785 	rc = __of_add_property(np, prop);
1786 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1787 
1788 	if (!rc)
1789 		__of_add_property_sysfs(np, prop);
1790 
1791 	mutex_unlock(&of_mutex);
1792 
1793 	if (!rc)
1794 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1795 
1796 	return rc;
1797 }
1798 
1799 int __of_remove_property(struct device_node *np, struct property *prop)
1800 {
1801 	struct property **next;
1802 
1803 	for (next = &np->properties; *next; next = &(*next)->next) {
1804 		if (*next == prop)
1805 			break;
1806 	}
1807 	if (*next == NULL)
1808 		return -ENODEV;
1809 
1810 	/* found the node */
1811 	*next = prop->next;
1812 	prop->next = np->deadprops;
1813 	np->deadprops = prop;
1814 
1815 	return 0;
1816 }
1817 
1818 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1819 {
1820 	if (!IS_ENABLED(CONFIG_SYSFS))
1821 		return;
1822 
1823 	/* at early boot, bail here and defer setup to of_init() */
1824 	if (of_kset && of_node_is_attached(np))
1825 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1826 }
1827 
1828 /**
1829  * of_remove_property - Remove a property from a node.
1830  *
1831  * Note that we don't actually remove it, since we have given out
1832  * who-knows-how-many pointers to the data using get-property.
1833  * Instead we just move the property to the "dead properties"
1834  * list, so it won't be found any more.
1835  */
1836 int of_remove_property(struct device_node *np, struct property *prop)
1837 {
1838 	unsigned long flags;
1839 	int rc;
1840 
1841 	if (!prop)
1842 		return -ENODEV;
1843 
1844 	mutex_lock(&of_mutex);
1845 
1846 	raw_spin_lock_irqsave(&devtree_lock, flags);
1847 	rc = __of_remove_property(np, prop);
1848 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1849 
1850 	if (!rc)
1851 		__of_remove_property_sysfs(np, prop);
1852 
1853 	mutex_unlock(&of_mutex);
1854 
1855 	if (!rc)
1856 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1857 
1858 	return rc;
1859 }
1860 
1861 int __of_update_property(struct device_node *np, struct property *newprop,
1862 		struct property **oldpropp)
1863 {
1864 	struct property **next, *oldprop;
1865 
1866 	for (next = &np->properties; *next; next = &(*next)->next) {
1867 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1868 			break;
1869 	}
1870 	*oldpropp = oldprop = *next;
1871 
1872 	if (oldprop) {
1873 		/* replace the node */
1874 		newprop->next = oldprop->next;
1875 		*next = newprop;
1876 		oldprop->next = np->deadprops;
1877 		np->deadprops = oldprop;
1878 	} else {
1879 		/* new node */
1880 		newprop->next = NULL;
1881 		*next = newprop;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1888 		struct property *oldprop)
1889 {
1890 	if (!IS_ENABLED(CONFIG_SYSFS))
1891 		return;
1892 
1893 	/* At early boot, bail out and defer setup to of_init() */
1894 	if (!of_kset)
1895 		return;
1896 
1897 	if (oldprop)
1898 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1899 	__of_add_property_sysfs(np, newprop);
1900 }
1901 
1902 /*
1903  * of_update_property - Update a property in a node, if the property does
1904  * not exist, add it.
1905  *
1906  * Note that we don't actually remove it, since we have given out
1907  * who-knows-how-many pointers to the data using get-property.
1908  * Instead we just move the property to the "dead properties" list,
1909  * and add the new property to the property list
1910  */
1911 int of_update_property(struct device_node *np, struct property *newprop)
1912 {
1913 	struct property *oldprop;
1914 	unsigned long flags;
1915 	int rc;
1916 
1917 	if (!newprop->name)
1918 		return -EINVAL;
1919 
1920 	mutex_lock(&of_mutex);
1921 
1922 	raw_spin_lock_irqsave(&devtree_lock, flags);
1923 	rc = __of_update_property(np, newprop, &oldprop);
1924 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1925 
1926 	if (!rc)
1927 		__of_update_property_sysfs(np, newprop, oldprop);
1928 
1929 	mutex_unlock(&of_mutex);
1930 
1931 	if (!rc)
1932 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1933 
1934 	return rc;
1935 }
1936 
1937 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1938 			 int id, const char *stem, int stem_len)
1939 {
1940 	ap->np = np;
1941 	ap->id = id;
1942 	strncpy(ap->stem, stem, stem_len);
1943 	ap->stem[stem_len] = 0;
1944 	list_add_tail(&ap->link, &aliases_lookup);
1945 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1946 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1947 }
1948 
1949 /**
1950  * of_alias_scan - Scan all properties of the 'aliases' node
1951  *
1952  * The function scans all the properties of the 'aliases' node and populates
1953  * the global lookup table with the properties.  It returns the
1954  * number of alias properties found, or an error code in case of failure.
1955  *
1956  * @dt_alloc:	An allocator that provides a virtual address to memory
1957  *		for storing the resulting tree
1958  */
1959 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1960 {
1961 	struct property *pp;
1962 
1963 	of_aliases = of_find_node_by_path("/aliases");
1964 	of_chosen = of_find_node_by_path("/chosen");
1965 	if (of_chosen == NULL)
1966 		of_chosen = of_find_node_by_path("/chosen@0");
1967 
1968 	if (of_chosen) {
1969 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1970 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1971 		if (!name)
1972 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1973 		if (IS_ENABLED(CONFIG_PPC) && !name)
1974 			name = of_get_property(of_aliases, "stdout", NULL);
1975 		if (name)
1976 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1977 	}
1978 
1979 	if (!of_aliases)
1980 		return;
1981 
1982 	for_each_property_of_node(of_aliases, pp) {
1983 		const char *start = pp->name;
1984 		const char *end = start + strlen(start);
1985 		struct device_node *np;
1986 		struct alias_prop *ap;
1987 		int id, len;
1988 
1989 		/* Skip those we do not want to proceed */
1990 		if (!strcmp(pp->name, "name") ||
1991 		    !strcmp(pp->name, "phandle") ||
1992 		    !strcmp(pp->name, "linux,phandle"))
1993 			continue;
1994 
1995 		np = of_find_node_by_path(pp->value);
1996 		if (!np)
1997 			continue;
1998 
1999 		/* walk the alias backwards to extract the id and work out
2000 		 * the 'stem' string */
2001 		while (isdigit(*(end-1)) && end > start)
2002 			end--;
2003 		len = end - start;
2004 
2005 		if (kstrtoint(end, 10, &id) < 0)
2006 			continue;
2007 
2008 		/* Allocate an alias_prop with enough space for the stem */
2009 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2010 		if (!ap)
2011 			continue;
2012 		memset(ap, 0, sizeof(*ap) + len + 1);
2013 		ap->alias = start;
2014 		of_alias_add(ap, np, id, start, len);
2015 	}
2016 }
2017 
2018 /**
2019  * of_alias_get_id - Get alias id for the given device_node
2020  * @np:		Pointer to the given device_node
2021  * @stem:	Alias stem of the given device_node
2022  *
2023  * The function travels the lookup table to get the alias id for the given
2024  * device_node and alias stem.  It returns the alias id if found.
2025  */
2026 int of_alias_get_id(struct device_node *np, const char *stem)
2027 {
2028 	struct alias_prop *app;
2029 	int id = -ENODEV;
2030 
2031 	mutex_lock(&of_mutex);
2032 	list_for_each_entry(app, &aliases_lookup, link) {
2033 		if (strcmp(app->stem, stem) != 0)
2034 			continue;
2035 
2036 		if (np == app->np) {
2037 			id = app->id;
2038 			break;
2039 		}
2040 	}
2041 	mutex_unlock(&of_mutex);
2042 
2043 	return id;
2044 }
2045 EXPORT_SYMBOL_GPL(of_alias_get_id);
2046 
2047 /**
2048  * of_alias_get_highest_id - Get highest alias id for the given stem
2049  * @stem:	Alias stem to be examined
2050  *
2051  * The function travels the lookup table to get the highest alias id for the
2052  * given alias stem.  It returns the alias id if found.
2053  */
2054 int of_alias_get_highest_id(const char *stem)
2055 {
2056 	struct alias_prop *app;
2057 	int id = -ENODEV;
2058 
2059 	mutex_lock(&of_mutex);
2060 	list_for_each_entry(app, &aliases_lookup, link) {
2061 		if (strcmp(app->stem, stem) != 0)
2062 			continue;
2063 
2064 		if (app->id > id)
2065 			id = app->id;
2066 	}
2067 	mutex_unlock(&of_mutex);
2068 
2069 	return id;
2070 }
2071 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2072 
2073 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2074 			       u32 *pu)
2075 {
2076 	const void *curv = cur;
2077 
2078 	if (!prop)
2079 		return NULL;
2080 
2081 	if (!cur) {
2082 		curv = prop->value;
2083 		goto out_val;
2084 	}
2085 
2086 	curv += sizeof(*cur);
2087 	if (curv >= prop->value + prop->length)
2088 		return NULL;
2089 
2090 out_val:
2091 	*pu = be32_to_cpup(curv);
2092 	return curv;
2093 }
2094 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2095 
2096 const char *of_prop_next_string(struct property *prop, const char *cur)
2097 {
2098 	const void *curv = cur;
2099 
2100 	if (!prop)
2101 		return NULL;
2102 
2103 	if (!cur)
2104 		return prop->value;
2105 
2106 	curv += strlen(cur) + 1;
2107 	if (curv >= prop->value + prop->length)
2108 		return NULL;
2109 
2110 	return curv;
2111 }
2112 EXPORT_SYMBOL_GPL(of_prop_next_string);
2113 
2114 /**
2115  * of_console_check() - Test and setup console for DT setup
2116  * @dn - Pointer to device node
2117  * @name - Name to use for preferred console without index. ex. "ttyS"
2118  * @index - Index to use for preferred console.
2119  *
2120  * Check if the given device node matches the stdout-path property in the
2121  * /chosen node. If it does then register it as the preferred console and return
2122  * TRUE. Otherwise return FALSE.
2123  */
2124 bool of_console_check(struct device_node *dn, char *name, int index)
2125 {
2126 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2127 		return false;
2128 	return !add_preferred_console(name, index,
2129 				      kstrdup(of_stdout_options, GFP_KERNEL));
2130 }
2131 EXPORT_SYMBOL_GPL(of_console_check);
2132 
2133 /**
2134  *	of_find_next_cache_node - Find a node's subsidiary cache
2135  *	@np:	node of type "cpu" or "cache"
2136  *
2137  *	Returns a node pointer with refcount incremented, use
2138  *	of_node_put() on it when done.  Caller should hold a reference
2139  *	to np.
2140  */
2141 struct device_node *of_find_next_cache_node(const struct device_node *np)
2142 {
2143 	struct device_node *child;
2144 	const phandle *handle;
2145 
2146 	handle = of_get_property(np, "l2-cache", NULL);
2147 	if (!handle)
2148 		handle = of_get_property(np, "next-level-cache", NULL);
2149 
2150 	if (handle)
2151 		return of_find_node_by_phandle(be32_to_cpup(handle));
2152 
2153 	/* OF on pmac has nodes instead of properties named "l2-cache"
2154 	 * beneath CPU nodes.
2155 	 */
2156 	if (!strcmp(np->type, "cpu"))
2157 		for_each_child_of_node(np, child)
2158 			if (!strcmp(child->type, "cache"))
2159 				return child;
2160 
2161 	return NULL;
2162 }
2163 
2164 /**
2165  * of_graph_parse_endpoint() - parse common endpoint node properties
2166  * @node: pointer to endpoint device_node
2167  * @endpoint: pointer to the OF endpoint data structure
2168  *
2169  * The caller should hold a reference to @node.
2170  */
2171 int of_graph_parse_endpoint(const struct device_node *node,
2172 			    struct of_endpoint *endpoint)
2173 {
2174 	struct device_node *port_node = of_get_parent(node);
2175 
2176 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2177 		  __func__, node->full_name);
2178 
2179 	memset(endpoint, 0, sizeof(*endpoint));
2180 
2181 	endpoint->local_node = node;
2182 	/*
2183 	 * It doesn't matter whether the two calls below succeed.
2184 	 * If they don't then the default value 0 is used.
2185 	 */
2186 	of_property_read_u32(port_node, "reg", &endpoint->port);
2187 	of_property_read_u32(node, "reg", &endpoint->id);
2188 
2189 	of_node_put(port_node);
2190 
2191 	return 0;
2192 }
2193 EXPORT_SYMBOL(of_graph_parse_endpoint);
2194 
2195 /**
2196  * of_graph_get_port_by_id() - get the port matching a given id
2197  * @parent: pointer to the parent device node
2198  * @id: id of the port
2199  *
2200  * Return: A 'port' node pointer with refcount incremented. The caller
2201  * has to use of_node_put() on it when done.
2202  */
2203 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2204 {
2205 	struct device_node *node, *port;
2206 
2207 	node = of_get_child_by_name(parent, "ports");
2208 	if (node)
2209 		parent = node;
2210 
2211 	for_each_child_of_node(parent, port) {
2212 		u32 port_id = 0;
2213 
2214 		if (of_node_cmp(port->name, "port") != 0)
2215 			continue;
2216 		of_property_read_u32(port, "reg", &port_id);
2217 		if (id == port_id)
2218 			break;
2219 	}
2220 
2221 	of_node_put(node);
2222 
2223 	return port;
2224 }
2225 EXPORT_SYMBOL(of_graph_get_port_by_id);
2226 
2227 /**
2228  * of_graph_get_next_endpoint() - get next endpoint node
2229  * @parent: pointer to the parent device node
2230  * @prev: previous endpoint node, or NULL to get first
2231  *
2232  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2233  * of the passed @prev node is decremented.
2234  */
2235 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2236 					struct device_node *prev)
2237 {
2238 	struct device_node *endpoint;
2239 	struct device_node *port;
2240 
2241 	if (!parent)
2242 		return NULL;
2243 
2244 	/*
2245 	 * Start by locating the port node. If no previous endpoint is specified
2246 	 * search for the first port node, otherwise get the previous endpoint
2247 	 * parent port node.
2248 	 */
2249 	if (!prev) {
2250 		struct device_node *node;
2251 
2252 		node = of_get_child_by_name(parent, "ports");
2253 		if (node)
2254 			parent = node;
2255 
2256 		port = of_get_child_by_name(parent, "port");
2257 		of_node_put(node);
2258 
2259 		if (!port) {
2260 			pr_err("%s(): no port node found in %s\n",
2261 			       __func__, parent->full_name);
2262 			return NULL;
2263 		}
2264 	} else {
2265 		port = of_get_parent(prev);
2266 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2267 			      __func__, prev->full_name))
2268 			return NULL;
2269 	}
2270 
2271 	while (1) {
2272 		/*
2273 		 * Now that we have a port node, get the next endpoint by
2274 		 * getting the next child. If the previous endpoint is NULL this
2275 		 * will return the first child.
2276 		 */
2277 		endpoint = of_get_next_child(port, prev);
2278 		if (endpoint) {
2279 			of_node_put(port);
2280 			return endpoint;
2281 		}
2282 
2283 		/* No more endpoints under this port, try the next one. */
2284 		prev = NULL;
2285 
2286 		do {
2287 			port = of_get_next_child(parent, port);
2288 			if (!port)
2289 				return NULL;
2290 		} while (of_node_cmp(port->name, "port"));
2291 	}
2292 }
2293 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2294 
2295 /**
2296  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2297  * @parent: pointer to the parent device node
2298  * @port_reg: identifier (value of reg property) of the parent port node
2299  * @reg: identifier (value of reg property) of the endpoint node
2300  *
2301  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2302  * is the child of a port node identified by port_reg. reg and port_reg are
2303  * ignored when they are -1.
2304  */
2305 struct device_node *of_graph_get_endpoint_by_regs(
2306 	const struct device_node *parent, int port_reg, int reg)
2307 {
2308 	struct of_endpoint endpoint;
2309 	struct device_node *node, *prev_node = NULL;
2310 
2311 	while (1) {
2312 		node = of_graph_get_next_endpoint(parent, prev_node);
2313 		of_node_put(prev_node);
2314 		if (!node)
2315 			break;
2316 
2317 		of_graph_parse_endpoint(node, &endpoint);
2318 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2319 			((reg == -1) || (endpoint.id == reg)))
2320 			return node;
2321 
2322 		prev_node = node;
2323 	}
2324 
2325 	return NULL;
2326 }
2327 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2328 
2329 /**
2330  * of_graph_get_remote_port_parent() - get remote port's parent node
2331  * @node: pointer to a local endpoint device_node
2332  *
2333  * Return: Remote device node associated with remote endpoint node linked
2334  *	   to @node. Use of_node_put() on it when done.
2335  */
2336 struct device_node *of_graph_get_remote_port_parent(
2337 			       const struct device_node *node)
2338 {
2339 	struct device_node *np;
2340 	unsigned int depth;
2341 
2342 	/* Get remote endpoint node. */
2343 	np = of_parse_phandle(node, "remote-endpoint", 0);
2344 
2345 	/* Walk 3 levels up only if there is 'ports' node. */
2346 	for (depth = 3; depth && np; depth--) {
2347 		np = of_get_next_parent(np);
2348 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2349 			break;
2350 	}
2351 	return np;
2352 }
2353 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2354 
2355 /**
2356  * of_graph_get_remote_port() - get remote port node
2357  * @node: pointer to a local endpoint device_node
2358  *
2359  * Return: Remote port node associated with remote endpoint node linked
2360  *	   to @node. Use of_node_put() on it when done.
2361  */
2362 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2363 {
2364 	struct device_node *np;
2365 
2366 	/* Get remote endpoint node. */
2367 	np = of_parse_phandle(node, "remote-endpoint", 0);
2368 	if (!np)
2369 		return NULL;
2370 	return of_get_next_parent(np);
2371 }
2372 EXPORT_SYMBOL(of_graph_get_remote_port);
2373