1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70 } 71 EXPORT_SYMBOL(of_n_addr_cells); 72 73 int of_n_size_cells(struct device_node *np) 74 { 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86 } 87 EXPORT_SYMBOL(of_n_size_cells); 88 89 #ifdef CONFIG_NUMA 90 int __weak of_node_to_nid(struct device_node *np) 91 { 92 return NUMA_NO_NODE; 93 } 94 #endif 95 96 #ifndef CONFIG_OF_DYNAMIC 97 static void of_node_release(struct kobject *kobj) 98 { 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100 } 101 #endif /* CONFIG_OF_DYNAMIC */ 102 103 struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105 }; 106 107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110 { 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113 } 114 115 static const char *safe_name(struct kobject *kobj, const char *orig_name) 116 { 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133 } 134 135 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136 { 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157 } 158 159 int __of_attach_node_sysfs(struct device_node *np) 160 { 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190 } 191 192 void __init of_core_init(void) 193 { 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 pr_err("devicetree: failed to register existing nodes\n"); 202 return; 203 } 204 for_each_of_allnodes(np) 205 __of_attach_node_sysfs(np); 206 mutex_unlock(&of_mutex); 207 208 /* Symlink in /proc as required by userspace ABI */ 209 if (of_root) 210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 211 } 212 213 static struct property *__of_find_property(const struct device_node *np, 214 const char *name, int *lenp) 215 { 216 struct property *pp; 217 218 if (!np) 219 return NULL; 220 221 for (pp = np->properties; pp; pp = pp->next) { 222 if (of_prop_cmp(pp->name, name) == 0) { 223 if (lenp) 224 *lenp = pp->length; 225 break; 226 } 227 } 228 229 return pp; 230 } 231 232 struct property *of_find_property(const struct device_node *np, 233 const char *name, 234 int *lenp) 235 { 236 struct property *pp; 237 unsigned long flags; 238 239 raw_spin_lock_irqsave(&devtree_lock, flags); 240 pp = __of_find_property(np, name, lenp); 241 raw_spin_unlock_irqrestore(&devtree_lock, flags); 242 243 return pp; 244 } 245 EXPORT_SYMBOL(of_find_property); 246 247 struct device_node *__of_find_all_nodes(struct device_node *prev) 248 { 249 struct device_node *np; 250 if (!prev) { 251 np = of_root; 252 } else if (prev->child) { 253 np = prev->child; 254 } else { 255 /* Walk back up looking for a sibling, or the end of the structure */ 256 np = prev; 257 while (np->parent && !np->sibling) 258 np = np->parent; 259 np = np->sibling; /* Might be null at the end of the tree */ 260 } 261 return np; 262 } 263 264 /** 265 * of_find_all_nodes - Get next node in global list 266 * @prev: Previous node or NULL to start iteration 267 * of_node_put() will be called on it 268 * 269 * Returns a node pointer with refcount incremented, use 270 * of_node_put() on it when done. 271 */ 272 struct device_node *of_find_all_nodes(struct device_node *prev) 273 { 274 struct device_node *np; 275 unsigned long flags; 276 277 raw_spin_lock_irqsave(&devtree_lock, flags); 278 np = __of_find_all_nodes(prev); 279 of_node_get(np); 280 of_node_put(prev); 281 raw_spin_unlock_irqrestore(&devtree_lock, flags); 282 return np; 283 } 284 EXPORT_SYMBOL(of_find_all_nodes); 285 286 /* 287 * Find a property with a given name for a given node 288 * and return the value. 289 */ 290 const void *__of_get_property(const struct device_node *np, 291 const char *name, int *lenp) 292 { 293 struct property *pp = __of_find_property(np, name, lenp); 294 295 return pp ? pp->value : NULL; 296 } 297 298 /* 299 * Find a property with a given name for a given node 300 * and return the value. 301 */ 302 const void *of_get_property(const struct device_node *np, const char *name, 303 int *lenp) 304 { 305 struct property *pp = of_find_property(np, name, lenp); 306 307 return pp ? pp->value : NULL; 308 } 309 EXPORT_SYMBOL(of_get_property); 310 311 /* 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 313 * 314 * @cpu: logical cpu index of a core/thread 315 * @phys_id: physical identifier of a core/thread 316 * 317 * CPU logical to physical index mapping is architecture specific. 318 * However this __weak function provides a default match of physical 319 * id to logical cpu index. phys_id provided here is usually values read 320 * from the device tree which must match the hardware internal registers. 321 * 322 * Returns true if the physical identifier and the logical cpu index 323 * correspond to the same core/thread, false otherwise. 324 */ 325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 326 { 327 return (u32)phys_id == cpu; 328 } 329 330 /** 331 * Checks if the given "prop_name" property holds the physical id of the 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 333 * NULL, local thread number within the core is returned in it. 334 */ 335 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 336 const char *prop_name, int cpu, unsigned int *thread) 337 { 338 const __be32 *cell; 339 int ac, prop_len, tid; 340 u64 hwid; 341 342 ac = of_n_addr_cells(cpun); 343 cell = of_get_property(cpun, prop_name, &prop_len); 344 if (!cell || !ac) 345 return false; 346 prop_len /= sizeof(*cell) * ac; 347 for (tid = 0; tid < prop_len; tid++) { 348 hwid = of_read_number(cell, ac); 349 if (arch_match_cpu_phys_id(cpu, hwid)) { 350 if (thread) 351 *thread = tid; 352 return true; 353 } 354 cell += ac; 355 } 356 return false; 357 } 358 359 /* 360 * arch_find_n_match_cpu_physical_id - See if the given device node is 361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 362 * else false. If 'thread' is non-NULL, the local thread number within the 363 * core is returned in it. 364 */ 365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 366 int cpu, unsigned int *thread) 367 { 368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 369 * for thread ids on PowerPC. If it doesn't exist fallback to 370 * standard "reg" property. 371 */ 372 if (IS_ENABLED(CONFIG_PPC) && 373 __of_find_n_match_cpu_property(cpun, 374 "ibm,ppc-interrupt-server#s", 375 cpu, thread)) 376 return true; 377 378 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 379 } 380 381 /** 382 * of_get_cpu_node - Get device node associated with the given logical CPU 383 * 384 * @cpu: CPU number(logical index) for which device node is required 385 * @thread: if not NULL, local thread number within the physical core is 386 * returned 387 * 388 * The main purpose of this function is to retrieve the device node for the 389 * given logical CPU index. It should be used to initialize the of_node in 390 * cpu device. Once of_node in cpu device is populated, all the further 391 * references can use that instead. 392 * 393 * CPU logical to physical index mapping is architecture specific and is built 394 * before booting secondary cores. This function uses arch_match_cpu_phys_id 395 * which can be overridden by architecture specific implementation. 396 * 397 * Returns a node pointer for the logical cpu with refcount incremented, use 398 * of_node_put() on it when done. Returns NULL if not found. 399 */ 400 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 401 { 402 struct device_node *cpun; 403 404 for_each_node_by_type(cpun, "cpu") { 405 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 406 return cpun; 407 } 408 return NULL; 409 } 410 EXPORT_SYMBOL(of_get_cpu_node); 411 412 /** 413 * __of_device_is_compatible() - Check if the node matches given constraints 414 * @device: pointer to node 415 * @compat: required compatible string, NULL or "" for any match 416 * @type: required device_type value, NULL or "" for any match 417 * @name: required node name, NULL or "" for any match 418 * 419 * Checks if the given @compat, @type and @name strings match the 420 * properties of the given @device. A constraints can be skipped by 421 * passing NULL or an empty string as the constraint. 422 * 423 * Returns 0 for no match, and a positive integer on match. The return 424 * value is a relative score with larger values indicating better 425 * matches. The score is weighted for the most specific compatible value 426 * to get the highest score. Matching type is next, followed by matching 427 * name. Practically speaking, this results in the following priority 428 * order for matches: 429 * 430 * 1. specific compatible && type && name 431 * 2. specific compatible && type 432 * 3. specific compatible && name 433 * 4. specific compatible 434 * 5. general compatible && type && name 435 * 6. general compatible && type 436 * 7. general compatible && name 437 * 8. general compatible 438 * 9. type && name 439 * 10. type 440 * 11. name 441 */ 442 static int __of_device_is_compatible(const struct device_node *device, 443 const char *compat, const char *type, const char *name) 444 { 445 struct property *prop; 446 const char *cp; 447 int index = 0, score = 0; 448 449 /* Compatible match has highest priority */ 450 if (compat && compat[0]) { 451 prop = __of_find_property(device, "compatible", NULL); 452 for (cp = of_prop_next_string(prop, NULL); cp; 453 cp = of_prop_next_string(prop, cp), index++) { 454 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 455 score = INT_MAX/2 - (index << 2); 456 break; 457 } 458 } 459 if (!score) 460 return 0; 461 } 462 463 /* Matching type is better than matching name */ 464 if (type && type[0]) { 465 if (!device->type || of_node_cmp(type, device->type)) 466 return 0; 467 score += 2; 468 } 469 470 /* Matching name is a bit better than not */ 471 if (name && name[0]) { 472 if (!device->name || of_node_cmp(name, device->name)) 473 return 0; 474 score++; 475 } 476 477 return score; 478 } 479 480 /** Checks if the given "compat" string matches one of the strings in 481 * the device's "compatible" property 482 */ 483 int of_device_is_compatible(const struct device_node *device, 484 const char *compat) 485 { 486 unsigned long flags; 487 int res; 488 489 raw_spin_lock_irqsave(&devtree_lock, flags); 490 res = __of_device_is_compatible(device, compat, NULL, NULL); 491 raw_spin_unlock_irqrestore(&devtree_lock, flags); 492 return res; 493 } 494 EXPORT_SYMBOL(of_device_is_compatible); 495 496 /** 497 * of_machine_is_compatible - Test root of device tree for a given compatible value 498 * @compat: compatible string to look for in root node's compatible property. 499 * 500 * Returns a positive integer if the root node has the given value in its 501 * compatible property. 502 */ 503 int of_machine_is_compatible(const char *compat) 504 { 505 struct device_node *root; 506 int rc = 0; 507 508 root = of_find_node_by_path("/"); 509 if (root) { 510 rc = of_device_is_compatible(root, compat); 511 of_node_put(root); 512 } 513 return rc; 514 } 515 EXPORT_SYMBOL(of_machine_is_compatible); 516 517 /** 518 * __of_device_is_available - check if a device is available for use 519 * 520 * @device: Node to check for availability, with locks already held 521 * 522 * Returns true if the status property is absent or set to "okay" or "ok", 523 * false otherwise 524 */ 525 static bool __of_device_is_available(const struct device_node *device) 526 { 527 const char *status; 528 int statlen; 529 530 if (!device) 531 return false; 532 533 status = __of_get_property(device, "status", &statlen); 534 if (status == NULL) 535 return true; 536 537 if (statlen > 0) { 538 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 539 return true; 540 } 541 542 return false; 543 } 544 545 /** 546 * of_device_is_available - check if a device is available for use 547 * 548 * @device: Node to check for availability 549 * 550 * Returns true if the status property is absent or set to "okay" or "ok", 551 * false otherwise 552 */ 553 bool of_device_is_available(const struct device_node *device) 554 { 555 unsigned long flags; 556 bool res; 557 558 raw_spin_lock_irqsave(&devtree_lock, flags); 559 res = __of_device_is_available(device); 560 raw_spin_unlock_irqrestore(&devtree_lock, flags); 561 return res; 562 563 } 564 EXPORT_SYMBOL(of_device_is_available); 565 566 /** 567 * of_device_is_big_endian - check if a device has BE registers 568 * 569 * @device: Node to check for endianness 570 * 571 * Returns true if the device has a "big-endian" property, or if the kernel 572 * was compiled for BE *and* the device has a "native-endian" property. 573 * Returns false otherwise. 574 * 575 * Callers would nominally use ioread32be/iowrite32be if 576 * of_device_is_big_endian() == true, or readl/writel otherwise. 577 */ 578 bool of_device_is_big_endian(const struct device_node *device) 579 { 580 if (of_property_read_bool(device, "big-endian")) 581 return true; 582 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 583 of_property_read_bool(device, "native-endian")) 584 return true; 585 return false; 586 } 587 EXPORT_SYMBOL(of_device_is_big_endian); 588 589 /** 590 * of_get_parent - Get a node's parent if any 591 * @node: Node to get parent 592 * 593 * Returns a node pointer with refcount incremented, use 594 * of_node_put() on it when done. 595 */ 596 struct device_node *of_get_parent(const struct device_node *node) 597 { 598 struct device_node *np; 599 unsigned long flags; 600 601 if (!node) 602 return NULL; 603 604 raw_spin_lock_irqsave(&devtree_lock, flags); 605 np = of_node_get(node->parent); 606 raw_spin_unlock_irqrestore(&devtree_lock, flags); 607 return np; 608 } 609 EXPORT_SYMBOL(of_get_parent); 610 611 /** 612 * of_get_next_parent - Iterate to a node's parent 613 * @node: Node to get parent of 614 * 615 * This is like of_get_parent() except that it drops the 616 * refcount on the passed node, making it suitable for iterating 617 * through a node's parents. 618 * 619 * Returns a node pointer with refcount incremented, use 620 * of_node_put() on it when done. 621 */ 622 struct device_node *of_get_next_parent(struct device_node *node) 623 { 624 struct device_node *parent; 625 unsigned long flags; 626 627 if (!node) 628 return NULL; 629 630 raw_spin_lock_irqsave(&devtree_lock, flags); 631 parent = of_node_get(node->parent); 632 of_node_put(node); 633 raw_spin_unlock_irqrestore(&devtree_lock, flags); 634 return parent; 635 } 636 EXPORT_SYMBOL(of_get_next_parent); 637 638 static struct device_node *__of_get_next_child(const struct device_node *node, 639 struct device_node *prev) 640 { 641 struct device_node *next; 642 643 if (!node) 644 return NULL; 645 646 next = prev ? prev->sibling : node->child; 647 for (; next; next = next->sibling) 648 if (of_node_get(next)) 649 break; 650 of_node_put(prev); 651 return next; 652 } 653 #define __for_each_child_of_node(parent, child) \ 654 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 655 child = __of_get_next_child(parent, child)) 656 657 /** 658 * of_get_next_child - Iterate a node childs 659 * @node: parent node 660 * @prev: previous child of the parent node, or NULL to get first 661 * 662 * Returns a node pointer with refcount incremented, use of_node_put() on 663 * it when done. Returns NULL when prev is the last child. Decrements the 664 * refcount of prev. 665 */ 666 struct device_node *of_get_next_child(const struct device_node *node, 667 struct device_node *prev) 668 { 669 struct device_node *next; 670 unsigned long flags; 671 672 raw_spin_lock_irqsave(&devtree_lock, flags); 673 next = __of_get_next_child(node, prev); 674 raw_spin_unlock_irqrestore(&devtree_lock, flags); 675 return next; 676 } 677 EXPORT_SYMBOL(of_get_next_child); 678 679 /** 680 * of_get_next_available_child - Find the next available child node 681 * @node: parent node 682 * @prev: previous child of the parent node, or NULL to get first 683 * 684 * This function is like of_get_next_child(), except that it 685 * automatically skips any disabled nodes (i.e. status = "disabled"). 686 */ 687 struct device_node *of_get_next_available_child(const struct device_node *node, 688 struct device_node *prev) 689 { 690 struct device_node *next; 691 unsigned long flags; 692 693 if (!node) 694 return NULL; 695 696 raw_spin_lock_irqsave(&devtree_lock, flags); 697 next = prev ? prev->sibling : node->child; 698 for (; next; next = next->sibling) { 699 if (!__of_device_is_available(next)) 700 continue; 701 if (of_node_get(next)) 702 break; 703 } 704 of_node_put(prev); 705 raw_spin_unlock_irqrestore(&devtree_lock, flags); 706 return next; 707 } 708 EXPORT_SYMBOL(of_get_next_available_child); 709 710 /** 711 * of_get_child_by_name - Find the child node by name for a given parent 712 * @node: parent node 713 * @name: child name to look for. 714 * 715 * This function looks for child node for given matching name 716 * 717 * Returns a node pointer if found, with refcount incremented, use 718 * of_node_put() on it when done. 719 * Returns NULL if node is not found. 720 */ 721 struct device_node *of_get_child_by_name(const struct device_node *node, 722 const char *name) 723 { 724 struct device_node *child; 725 726 for_each_child_of_node(node, child) 727 if (child->name && (of_node_cmp(child->name, name) == 0)) 728 break; 729 return child; 730 } 731 EXPORT_SYMBOL(of_get_child_by_name); 732 733 static struct device_node *__of_find_node_by_path(struct device_node *parent, 734 const char *path) 735 { 736 struct device_node *child; 737 int len; 738 739 len = strcspn(path, "/:"); 740 if (!len) 741 return NULL; 742 743 __for_each_child_of_node(parent, child) { 744 const char *name = strrchr(child->full_name, '/'); 745 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 746 continue; 747 name++; 748 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 749 return child; 750 } 751 return NULL; 752 } 753 754 /** 755 * of_find_node_opts_by_path - Find a node matching a full OF path 756 * @path: Either the full path to match, or if the path does not 757 * start with '/', the name of a property of the /aliases 758 * node (an alias). In the case of an alias, the node 759 * matching the alias' value will be returned. 760 * @opts: Address of a pointer into which to store the start of 761 * an options string appended to the end of the path with 762 * a ':' separator. 763 * 764 * Valid paths: 765 * /foo/bar Full path 766 * foo Valid alias 767 * foo/bar Valid alias + relative path 768 * 769 * Returns a node pointer with refcount incremented, use 770 * of_node_put() on it when done. 771 */ 772 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 773 { 774 struct device_node *np = NULL; 775 struct property *pp; 776 unsigned long flags; 777 const char *separator = strchr(path, ':'); 778 779 if (opts) 780 *opts = separator ? separator + 1 : NULL; 781 782 if (strcmp(path, "/") == 0) 783 return of_node_get(of_root); 784 785 /* The path could begin with an alias */ 786 if (*path != '/') { 787 int len; 788 const char *p = separator; 789 790 if (!p) 791 p = strchrnul(path, '/'); 792 len = p - path; 793 794 /* of_aliases must not be NULL */ 795 if (!of_aliases) 796 return NULL; 797 798 for_each_property_of_node(of_aliases, pp) { 799 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 800 np = of_find_node_by_path(pp->value); 801 break; 802 } 803 } 804 if (!np) 805 return NULL; 806 path = p; 807 } 808 809 /* Step down the tree matching path components */ 810 raw_spin_lock_irqsave(&devtree_lock, flags); 811 if (!np) 812 np = of_node_get(of_root); 813 while (np && *path == '/') { 814 path++; /* Increment past '/' delimiter */ 815 np = __of_find_node_by_path(np, path); 816 path = strchrnul(path, '/'); 817 if (separator && separator < path) 818 break; 819 } 820 raw_spin_unlock_irqrestore(&devtree_lock, flags); 821 return np; 822 } 823 EXPORT_SYMBOL(of_find_node_opts_by_path); 824 825 /** 826 * of_find_node_by_name - Find a node by its "name" property 827 * @from: The node to start searching from or NULL, the node 828 * you pass will not be searched, only the next one 829 * will; typically, you pass what the previous call 830 * returned. of_node_put() will be called on it 831 * @name: The name string to match against 832 * 833 * Returns a node pointer with refcount incremented, use 834 * of_node_put() on it when done. 835 */ 836 struct device_node *of_find_node_by_name(struct device_node *from, 837 const char *name) 838 { 839 struct device_node *np; 840 unsigned long flags; 841 842 raw_spin_lock_irqsave(&devtree_lock, flags); 843 for_each_of_allnodes_from(from, np) 844 if (np->name && (of_node_cmp(np->name, name) == 0) 845 && of_node_get(np)) 846 break; 847 of_node_put(from); 848 raw_spin_unlock_irqrestore(&devtree_lock, flags); 849 return np; 850 } 851 EXPORT_SYMBOL(of_find_node_by_name); 852 853 /** 854 * of_find_node_by_type - Find a node by its "device_type" property 855 * @from: The node to start searching from, or NULL to start searching 856 * the entire device tree. The node you pass will not be 857 * searched, only the next one will; typically, you pass 858 * what the previous call returned. of_node_put() will be 859 * called on from for you. 860 * @type: The type string to match against 861 * 862 * Returns a node pointer with refcount incremented, use 863 * of_node_put() on it when done. 864 */ 865 struct device_node *of_find_node_by_type(struct device_node *from, 866 const char *type) 867 { 868 struct device_node *np; 869 unsigned long flags; 870 871 raw_spin_lock_irqsave(&devtree_lock, flags); 872 for_each_of_allnodes_from(from, np) 873 if (np->type && (of_node_cmp(np->type, type) == 0) 874 && of_node_get(np)) 875 break; 876 of_node_put(from); 877 raw_spin_unlock_irqrestore(&devtree_lock, flags); 878 return np; 879 } 880 EXPORT_SYMBOL(of_find_node_by_type); 881 882 /** 883 * of_find_compatible_node - Find a node based on type and one of the 884 * tokens in its "compatible" property 885 * @from: The node to start searching from or NULL, the node 886 * you pass will not be searched, only the next one 887 * will; typically, you pass what the previous call 888 * returned. of_node_put() will be called on it 889 * @type: The type string to match "device_type" or NULL to ignore 890 * @compatible: The string to match to one of the tokens in the device 891 * "compatible" list. 892 * 893 * Returns a node pointer with refcount incremented, use 894 * of_node_put() on it when done. 895 */ 896 struct device_node *of_find_compatible_node(struct device_node *from, 897 const char *type, const char *compatible) 898 { 899 struct device_node *np; 900 unsigned long flags; 901 902 raw_spin_lock_irqsave(&devtree_lock, flags); 903 for_each_of_allnodes_from(from, np) 904 if (__of_device_is_compatible(np, compatible, type, NULL) && 905 of_node_get(np)) 906 break; 907 of_node_put(from); 908 raw_spin_unlock_irqrestore(&devtree_lock, flags); 909 return np; 910 } 911 EXPORT_SYMBOL(of_find_compatible_node); 912 913 /** 914 * of_find_node_with_property - Find a node which has a property with 915 * the given name. 916 * @from: The node to start searching from or NULL, the node 917 * you pass will not be searched, only the next one 918 * will; typically, you pass what the previous call 919 * returned. of_node_put() will be called on it 920 * @prop_name: The name of the property to look for. 921 * 922 * Returns a node pointer with refcount incremented, use 923 * of_node_put() on it when done. 924 */ 925 struct device_node *of_find_node_with_property(struct device_node *from, 926 const char *prop_name) 927 { 928 struct device_node *np; 929 struct property *pp; 930 unsigned long flags; 931 932 raw_spin_lock_irqsave(&devtree_lock, flags); 933 for_each_of_allnodes_from(from, np) { 934 for (pp = np->properties; pp; pp = pp->next) { 935 if (of_prop_cmp(pp->name, prop_name) == 0) { 936 of_node_get(np); 937 goto out; 938 } 939 } 940 } 941 out: 942 of_node_put(from); 943 raw_spin_unlock_irqrestore(&devtree_lock, flags); 944 return np; 945 } 946 EXPORT_SYMBOL(of_find_node_with_property); 947 948 static 949 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 950 const struct device_node *node) 951 { 952 const struct of_device_id *best_match = NULL; 953 int score, best_score = 0; 954 955 if (!matches) 956 return NULL; 957 958 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 959 score = __of_device_is_compatible(node, matches->compatible, 960 matches->type, matches->name); 961 if (score > best_score) { 962 best_match = matches; 963 best_score = score; 964 } 965 } 966 967 return best_match; 968 } 969 970 /** 971 * of_match_node - Tell if a device_node has a matching of_match structure 972 * @matches: array of of device match structures to search in 973 * @node: the of device structure to match against 974 * 975 * Low level utility function used by device matching. 976 */ 977 const struct of_device_id *of_match_node(const struct of_device_id *matches, 978 const struct device_node *node) 979 { 980 const struct of_device_id *match; 981 unsigned long flags; 982 983 raw_spin_lock_irqsave(&devtree_lock, flags); 984 match = __of_match_node(matches, node); 985 raw_spin_unlock_irqrestore(&devtree_lock, flags); 986 return match; 987 } 988 EXPORT_SYMBOL(of_match_node); 989 990 /** 991 * of_find_matching_node_and_match - Find a node based on an of_device_id 992 * match table. 993 * @from: The node to start searching from or NULL, the node 994 * you pass will not be searched, only the next one 995 * will; typically, you pass what the previous call 996 * returned. of_node_put() will be called on it 997 * @matches: array of of device match structures to search in 998 * @match Updated to point at the matches entry which matched 999 * 1000 * Returns a node pointer with refcount incremented, use 1001 * of_node_put() on it when done. 1002 */ 1003 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1004 const struct of_device_id *matches, 1005 const struct of_device_id **match) 1006 { 1007 struct device_node *np; 1008 const struct of_device_id *m; 1009 unsigned long flags; 1010 1011 if (match) 1012 *match = NULL; 1013 1014 raw_spin_lock_irqsave(&devtree_lock, flags); 1015 for_each_of_allnodes_from(from, np) { 1016 m = __of_match_node(matches, np); 1017 if (m && of_node_get(np)) { 1018 if (match) 1019 *match = m; 1020 break; 1021 } 1022 } 1023 of_node_put(from); 1024 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1025 return np; 1026 } 1027 EXPORT_SYMBOL(of_find_matching_node_and_match); 1028 1029 /** 1030 * of_modalias_node - Lookup appropriate modalias for a device node 1031 * @node: pointer to a device tree node 1032 * @modalias: Pointer to buffer that modalias value will be copied into 1033 * @len: Length of modalias value 1034 * 1035 * Based on the value of the compatible property, this routine will attempt 1036 * to choose an appropriate modalias value for a particular device tree node. 1037 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1038 * from the first entry in the compatible list property. 1039 * 1040 * This routine returns 0 on success, <0 on failure. 1041 */ 1042 int of_modalias_node(struct device_node *node, char *modalias, int len) 1043 { 1044 const char *compatible, *p; 1045 int cplen; 1046 1047 compatible = of_get_property(node, "compatible", &cplen); 1048 if (!compatible || strlen(compatible) > cplen) 1049 return -ENODEV; 1050 p = strchr(compatible, ','); 1051 strlcpy(modalias, p ? p + 1 : compatible, len); 1052 return 0; 1053 } 1054 EXPORT_SYMBOL_GPL(of_modalias_node); 1055 1056 /** 1057 * of_find_node_by_phandle - Find a node given a phandle 1058 * @handle: phandle of the node to find 1059 * 1060 * Returns a node pointer with refcount incremented, use 1061 * of_node_put() on it when done. 1062 */ 1063 struct device_node *of_find_node_by_phandle(phandle handle) 1064 { 1065 struct device_node *np; 1066 unsigned long flags; 1067 1068 if (!handle) 1069 return NULL; 1070 1071 raw_spin_lock_irqsave(&devtree_lock, flags); 1072 for_each_of_allnodes(np) 1073 if (np->phandle == handle) 1074 break; 1075 of_node_get(np); 1076 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1077 return np; 1078 } 1079 EXPORT_SYMBOL(of_find_node_by_phandle); 1080 1081 /** 1082 * of_property_count_elems_of_size - Count the number of elements in a property 1083 * 1084 * @np: device node from which the property value is to be read. 1085 * @propname: name of the property to be searched. 1086 * @elem_size: size of the individual element 1087 * 1088 * Search for a property in a device node and count the number of elements of 1089 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1090 * property does not exist or its length does not match a multiple of elem_size 1091 * and -ENODATA if the property does not have a value. 1092 */ 1093 int of_property_count_elems_of_size(const struct device_node *np, 1094 const char *propname, int elem_size) 1095 { 1096 struct property *prop = of_find_property(np, propname, NULL); 1097 1098 if (!prop) 1099 return -EINVAL; 1100 if (!prop->value) 1101 return -ENODATA; 1102 1103 if (prop->length % elem_size != 0) { 1104 pr_err("size of %s in node %s is not a multiple of %d\n", 1105 propname, np->full_name, elem_size); 1106 return -EINVAL; 1107 } 1108 1109 return prop->length / elem_size; 1110 } 1111 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1112 1113 /** 1114 * of_find_property_value_of_size 1115 * 1116 * @np: device node from which the property value is to be read. 1117 * @propname: name of the property to be searched. 1118 * @len: requested length of property value 1119 * 1120 * Search for a property in a device node and valid the requested size. 1121 * Returns the property value on success, -EINVAL if the property does not 1122 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1123 * property data isn't large enough. 1124 * 1125 */ 1126 static void *of_find_property_value_of_size(const struct device_node *np, 1127 const char *propname, u32 len) 1128 { 1129 struct property *prop = of_find_property(np, propname, NULL); 1130 1131 if (!prop) 1132 return ERR_PTR(-EINVAL); 1133 if (!prop->value) 1134 return ERR_PTR(-ENODATA); 1135 if (len > prop->length) 1136 return ERR_PTR(-EOVERFLOW); 1137 1138 return prop->value; 1139 } 1140 1141 /** 1142 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1143 * 1144 * @np: device node from which the property value is to be read. 1145 * @propname: name of the property to be searched. 1146 * @index: index of the u32 in the list of values 1147 * @out_value: pointer to return value, modified only if no error. 1148 * 1149 * Search for a property in a device node and read nth 32-bit value from 1150 * it. Returns 0 on success, -EINVAL if the property does not exist, 1151 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1152 * property data isn't large enough. 1153 * 1154 * The out_value is modified only if a valid u32 value can be decoded. 1155 */ 1156 int of_property_read_u32_index(const struct device_node *np, 1157 const char *propname, 1158 u32 index, u32 *out_value) 1159 { 1160 const u32 *val = of_find_property_value_of_size(np, propname, 1161 ((index + 1) * sizeof(*out_value))); 1162 1163 if (IS_ERR(val)) 1164 return PTR_ERR(val); 1165 1166 *out_value = be32_to_cpup(((__be32 *)val) + index); 1167 return 0; 1168 } 1169 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1170 1171 /** 1172 * of_property_read_u8_array - Find and read an array of u8 from a property. 1173 * 1174 * @np: device node from which the property value is to be read. 1175 * @propname: name of the property to be searched. 1176 * @out_values: pointer to return value, modified only if return value is 0. 1177 * @sz: number of array elements to read 1178 * 1179 * Search for a property in a device node and read 8-bit value(s) from 1180 * it. Returns 0 on success, -EINVAL if the property does not exist, 1181 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1182 * property data isn't large enough. 1183 * 1184 * dts entry of array should be like: 1185 * property = /bits/ 8 <0x50 0x60 0x70>; 1186 * 1187 * The out_values is modified only if a valid u8 value can be decoded. 1188 */ 1189 int of_property_read_u8_array(const struct device_node *np, 1190 const char *propname, u8 *out_values, size_t sz) 1191 { 1192 const u8 *val = of_find_property_value_of_size(np, propname, 1193 (sz * sizeof(*out_values))); 1194 1195 if (IS_ERR(val)) 1196 return PTR_ERR(val); 1197 1198 while (sz--) 1199 *out_values++ = *val++; 1200 return 0; 1201 } 1202 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1203 1204 /** 1205 * of_property_read_u16_array - Find and read an array of u16 from a property. 1206 * 1207 * @np: device node from which the property value is to be read. 1208 * @propname: name of the property to be searched. 1209 * @out_values: pointer to return value, modified only if return value is 0. 1210 * @sz: number of array elements to read 1211 * 1212 * Search for a property in a device node and read 16-bit value(s) from 1213 * it. Returns 0 on success, -EINVAL if the property does not exist, 1214 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1215 * property data isn't large enough. 1216 * 1217 * dts entry of array should be like: 1218 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1219 * 1220 * The out_values is modified only if a valid u16 value can be decoded. 1221 */ 1222 int of_property_read_u16_array(const struct device_node *np, 1223 const char *propname, u16 *out_values, size_t sz) 1224 { 1225 const __be16 *val = of_find_property_value_of_size(np, propname, 1226 (sz * sizeof(*out_values))); 1227 1228 if (IS_ERR(val)) 1229 return PTR_ERR(val); 1230 1231 while (sz--) 1232 *out_values++ = be16_to_cpup(val++); 1233 return 0; 1234 } 1235 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1236 1237 /** 1238 * of_property_read_u32_array - Find and read an array of 32 bit integers 1239 * from a property. 1240 * 1241 * @np: device node from which the property value is to be read. 1242 * @propname: name of the property to be searched. 1243 * @out_values: pointer to return value, modified only if return value is 0. 1244 * @sz: number of array elements to read 1245 * 1246 * Search for a property in a device node and read 32-bit value(s) from 1247 * it. Returns 0 on success, -EINVAL if the property does not exist, 1248 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1249 * property data isn't large enough. 1250 * 1251 * The out_values is modified only if a valid u32 value can be decoded. 1252 */ 1253 int of_property_read_u32_array(const struct device_node *np, 1254 const char *propname, u32 *out_values, 1255 size_t sz) 1256 { 1257 const __be32 *val = of_find_property_value_of_size(np, propname, 1258 (sz * sizeof(*out_values))); 1259 1260 if (IS_ERR(val)) 1261 return PTR_ERR(val); 1262 1263 while (sz--) 1264 *out_values++ = be32_to_cpup(val++); 1265 return 0; 1266 } 1267 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1268 1269 /** 1270 * of_property_read_u64 - Find and read a 64 bit integer from a property 1271 * @np: device node from which the property value is to be read. 1272 * @propname: name of the property to be searched. 1273 * @out_value: pointer to return value, modified only if return value is 0. 1274 * 1275 * Search for a property in a device node and read a 64-bit value from 1276 * it. Returns 0 on success, -EINVAL if the property does not exist, 1277 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1278 * property data isn't large enough. 1279 * 1280 * The out_value is modified only if a valid u64 value can be decoded. 1281 */ 1282 int of_property_read_u64(const struct device_node *np, const char *propname, 1283 u64 *out_value) 1284 { 1285 const __be32 *val = of_find_property_value_of_size(np, propname, 1286 sizeof(*out_value)); 1287 1288 if (IS_ERR(val)) 1289 return PTR_ERR(val); 1290 1291 *out_value = of_read_number(val, 2); 1292 return 0; 1293 } 1294 EXPORT_SYMBOL_GPL(of_property_read_u64); 1295 1296 /** 1297 * of_property_read_u64_array - Find and read an array of 64 bit integers 1298 * from a property. 1299 * 1300 * @np: device node from which the property value is to be read. 1301 * @propname: name of the property to be searched. 1302 * @out_values: pointer to return value, modified only if return value is 0. 1303 * @sz: number of array elements to read 1304 * 1305 * Search for a property in a device node and read 64-bit value(s) from 1306 * it. Returns 0 on success, -EINVAL if the property does not exist, 1307 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1308 * property data isn't large enough. 1309 * 1310 * The out_values is modified only if a valid u64 value can be decoded. 1311 */ 1312 int of_property_read_u64_array(const struct device_node *np, 1313 const char *propname, u64 *out_values, 1314 size_t sz) 1315 { 1316 const __be32 *val = of_find_property_value_of_size(np, propname, 1317 (sz * sizeof(*out_values))); 1318 1319 if (IS_ERR(val)) 1320 return PTR_ERR(val); 1321 1322 while (sz--) { 1323 *out_values++ = of_read_number(val, 2); 1324 val += 2; 1325 } 1326 return 0; 1327 } 1328 EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1329 1330 /** 1331 * of_property_read_string - Find and read a string from a property 1332 * @np: device node from which the property value is to be read. 1333 * @propname: name of the property to be searched. 1334 * @out_string: pointer to null terminated return string, modified only if 1335 * return value is 0. 1336 * 1337 * Search for a property in a device tree node and retrieve a null 1338 * terminated string value (pointer to data, not a copy). Returns 0 on 1339 * success, -EINVAL if the property does not exist, -ENODATA if property 1340 * does not have a value, and -EILSEQ if the string is not null-terminated 1341 * within the length of the property data. 1342 * 1343 * The out_string pointer is modified only if a valid string can be decoded. 1344 */ 1345 int of_property_read_string(const struct device_node *np, const char *propname, 1346 const char **out_string) 1347 { 1348 const struct property *prop = of_find_property(np, propname, NULL); 1349 if (!prop) 1350 return -EINVAL; 1351 if (!prop->value) 1352 return -ENODATA; 1353 if (strnlen(prop->value, prop->length) >= prop->length) 1354 return -EILSEQ; 1355 *out_string = prop->value; 1356 return 0; 1357 } 1358 EXPORT_SYMBOL_GPL(of_property_read_string); 1359 1360 /** 1361 * of_property_match_string() - Find string in a list and return index 1362 * @np: pointer to node containing string list property 1363 * @propname: string list property name 1364 * @string: pointer to string to search for in string list 1365 * 1366 * This function searches a string list property and returns the index 1367 * of a specific string value. 1368 */ 1369 int of_property_match_string(const struct device_node *np, const char *propname, 1370 const char *string) 1371 { 1372 const struct property *prop = of_find_property(np, propname, NULL); 1373 size_t l; 1374 int i; 1375 const char *p, *end; 1376 1377 if (!prop) 1378 return -EINVAL; 1379 if (!prop->value) 1380 return -ENODATA; 1381 1382 p = prop->value; 1383 end = p + prop->length; 1384 1385 for (i = 0; p < end; i++, p += l) { 1386 l = strnlen(p, end - p) + 1; 1387 if (p + l > end) 1388 return -EILSEQ; 1389 pr_debug("comparing %s with %s\n", string, p); 1390 if (strcmp(string, p) == 0) 1391 return i; /* Found it; return index */ 1392 } 1393 return -ENODATA; 1394 } 1395 EXPORT_SYMBOL_GPL(of_property_match_string); 1396 1397 /** 1398 * of_property_read_string_helper() - Utility helper for parsing string properties 1399 * @np: device node from which the property value is to be read. 1400 * @propname: name of the property to be searched. 1401 * @out_strs: output array of string pointers. 1402 * @sz: number of array elements to read. 1403 * @skip: Number of strings to skip over at beginning of list. 1404 * 1405 * Don't call this function directly. It is a utility helper for the 1406 * of_property_read_string*() family of functions. 1407 */ 1408 int of_property_read_string_helper(const struct device_node *np, 1409 const char *propname, const char **out_strs, 1410 size_t sz, int skip) 1411 { 1412 const struct property *prop = of_find_property(np, propname, NULL); 1413 int l = 0, i = 0; 1414 const char *p, *end; 1415 1416 if (!prop) 1417 return -EINVAL; 1418 if (!prop->value) 1419 return -ENODATA; 1420 p = prop->value; 1421 end = p + prop->length; 1422 1423 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1424 l = strnlen(p, end - p) + 1; 1425 if (p + l > end) 1426 return -EILSEQ; 1427 if (out_strs && i >= skip) 1428 *out_strs++ = p; 1429 } 1430 i -= skip; 1431 return i <= 0 ? -ENODATA : i; 1432 } 1433 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1434 1435 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1436 { 1437 int i; 1438 printk("%s %s", msg, of_node_full_name(args->np)); 1439 for (i = 0; i < args->args_count; i++) 1440 printk(i ? ",%08x" : ":%08x", args->args[i]); 1441 printk("\n"); 1442 } 1443 1444 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1445 const struct device_node *np, 1446 const char *list_name, 1447 const char *cells_name, 1448 int cell_count) 1449 { 1450 const __be32 *list; 1451 int size; 1452 1453 memset(it, 0, sizeof(*it)); 1454 1455 list = of_get_property(np, list_name, &size); 1456 if (!list) 1457 return -ENOENT; 1458 1459 it->cells_name = cells_name; 1460 it->cell_count = cell_count; 1461 it->parent = np; 1462 it->list_end = list + size / sizeof(*list); 1463 it->phandle_end = list; 1464 it->cur = list; 1465 1466 return 0; 1467 } 1468 1469 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1470 { 1471 uint32_t count = 0; 1472 1473 if (it->node) { 1474 of_node_put(it->node); 1475 it->node = NULL; 1476 } 1477 1478 if (!it->cur || it->phandle_end >= it->list_end) 1479 return -ENOENT; 1480 1481 it->cur = it->phandle_end; 1482 1483 /* If phandle is 0, then it is an empty entry with no arguments. */ 1484 it->phandle = be32_to_cpup(it->cur++); 1485 1486 if (it->phandle) { 1487 1488 /* 1489 * Find the provider node and parse the #*-cells property to 1490 * determine the argument length. 1491 */ 1492 it->node = of_find_node_by_phandle(it->phandle); 1493 1494 if (it->cells_name) { 1495 if (!it->node) { 1496 pr_err("%s: could not find phandle\n", 1497 it->parent->full_name); 1498 goto err; 1499 } 1500 1501 if (of_property_read_u32(it->node, it->cells_name, 1502 &count)) { 1503 pr_err("%s: could not get %s for %s\n", 1504 it->parent->full_name, 1505 it->cells_name, 1506 it->node->full_name); 1507 goto err; 1508 } 1509 } else { 1510 count = it->cell_count; 1511 } 1512 1513 /* 1514 * Make sure that the arguments actually fit in the remaining 1515 * property data length 1516 */ 1517 if (it->cur + count > it->list_end) { 1518 pr_err("%s: arguments longer than property\n", 1519 it->parent->full_name); 1520 goto err; 1521 } 1522 } 1523 1524 it->phandle_end = it->cur + count; 1525 it->cur_count = count; 1526 1527 return 0; 1528 1529 err: 1530 if (it->node) { 1531 of_node_put(it->node); 1532 it->node = NULL; 1533 } 1534 1535 return -EINVAL; 1536 } 1537 1538 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1539 uint32_t *args, 1540 int size) 1541 { 1542 int i, count; 1543 1544 count = it->cur_count; 1545 1546 if (WARN_ON(size < count)) 1547 count = size; 1548 1549 for (i = 0; i < count; i++) 1550 args[i] = be32_to_cpup(it->cur++); 1551 1552 return count; 1553 } 1554 1555 static int __of_parse_phandle_with_args(const struct device_node *np, 1556 const char *list_name, 1557 const char *cells_name, 1558 int cell_count, int index, 1559 struct of_phandle_args *out_args) 1560 { 1561 struct of_phandle_iterator it; 1562 int rc, cur_index = 0; 1563 1564 /* Loop over the phandles until all the requested entry is found */ 1565 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1566 /* 1567 * All of the error cases bail out of the loop, so at 1568 * this point, the parsing is successful. If the requested 1569 * index matches, then fill the out_args structure and return, 1570 * or return -ENOENT for an empty entry. 1571 */ 1572 rc = -ENOENT; 1573 if (cur_index == index) { 1574 if (!it.phandle) 1575 goto err; 1576 1577 if (out_args) { 1578 int c; 1579 1580 c = of_phandle_iterator_args(&it, 1581 out_args->args, 1582 MAX_PHANDLE_ARGS); 1583 out_args->np = it.node; 1584 out_args->args_count = c; 1585 } else { 1586 of_node_put(it.node); 1587 } 1588 1589 /* Found it! return success */ 1590 return 0; 1591 } 1592 1593 cur_index++; 1594 } 1595 1596 /* 1597 * Unlock node before returning result; will be one of: 1598 * -ENOENT : index is for empty phandle 1599 * -EINVAL : parsing error on data 1600 */ 1601 1602 err: 1603 if (it.node) 1604 of_node_put(it.node); 1605 return rc; 1606 } 1607 1608 /** 1609 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1610 * @np: Pointer to device node holding phandle property 1611 * @phandle_name: Name of property holding a phandle value 1612 * @index: For properties holding a table of phandles, this is the index into 1613 * the table 1614 * 1615 * Returns the device_node pointer with refcount incremented. Use 1616 * of_node_put() on it when done. 1617 */ 1618 struct device_node *of_parse_phandle(const struct device_node *np, 1619 const char *phandle_name, int index) 1620 { 1621 struct of_phandle_args args; 1622 1623 if (index < 0) 1624 return NULL; 1625 1626 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1627 index, &args)) 1628 return NULL; 1629 1630 return args.np; 1631 } 1632 EXPORT_SYMBOL(of_parse_phandle); 1633 1634 /** 1635 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1636 * @np: pointer to a device tree node containing a list 1637 * @list_name: property name that contains a list 1638 * @cells_name: property name that specifies phandles' arguments count 1639 * @index: index of a phandle to parse out 1640 * @out_args: optional pointer to output arguments structure (will be filled) 1641 * 1642 * This function is useful to parse lists of phandles and their arguments. 1643 * Returns 0 on success and fills out_args, on error returns appropriate 1644 * errno value. 1645 * 1646 * Caller is responsible to call of_node_put() on the returned out_args->np 1647 * pointer. 1648 * 1649 * Example: 1650 * 1651 * phandle1: node1 { 1652 * #list-cells = <2>; 1653 * } 1654 * 1655 * phandle2: node2 { 1656 * #list-cells = <1>; 1657 * } 1658 * 1659 * node3 { 1660 * list = <&phandle1 1 2 &phandle2 3>; 1661 * } 1662 * 1663 * To get a device_node of the `node2' node you may call this: 1664 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1665 */ 1666 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1667 const char *cells_name, int index, 1668 struct of_phandle_args *out_args) 1669 { 1670 if (index < 0) 1671 return -EINVAL; 1672 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1673 index, out_args); 1674 } 1675 EXPORT_SYMBOL(of_parse_phandle_with_args); 1676 1677 /** 1678 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1679 * @np: pointer to a device tree node containing a list 1680 * @list_name: property name that contains a list 1681 * @cell_count: number of argument cells following the phandle 1682 * @index: index of a phandle to parse out 1683 * @out_args: optional pointer to output arguments structure (will be filled) 1684 * 1685 * This function is useful to parse lists of phandles and their arguments. 1686 * Returns 0 on success and fills out_args, on error returns appropriate 1687 * errno value. 1688 * 1689 * Caller is responsible to call of_node_put() on the returned out_args->np 1690 * pointer. 1691 * 1692 * Example: 1693 * 1694 * phandle1: node1 { 1695 * } 1696 * 1697 * phandle2: node2 { 1698 * } 1699 * 1700 * node3 { 1701 * list = <&phandle1 0 2 &phandle2 2 3>; 1702 * } 1703 * 1704 * To get a device_node of the `node2' node you may call this: 1705 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1706 */ 1707 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1708 const char *list_name, int cell_count, 1709 int index, struct of_phandle_args *out_args) 1710 { 1711 if (index < 0) 1712 return -EINVAL; 1713 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1714 index, out_args); 1715 } 1716 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1717 1718 /** 1719 * of_count_phandle_with_args() - Find the number of phandles references in a property 1720 * @np: pointer to a device tree node containing a list 1721 * @list_name: property name that contains a list 1722 * @cells_name: property name that specifies phandles' arguments count 1723 * 1724 * Returns the number of phandle + argument tuples within a property. It 1725 * is a typical pattern to encode a list of phandle and variable 1726 * arguments into a single property. The number of arguments is encoded 1727 * by a property in the phandle-target node. For example, a gpios 1728 * property would contain a list of GPIO specifies consisting of a 1729 * phandle and 1 or more arguments. The number of arguments are 1730 * determined by the #gpio-cells property in the node pointed to by the 1731 * phandle. 1732 */ 1733 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1734 const char *cells_name) 1735 { 1736 struct of_phandle_iterator it; 1737 int rc, cur_index = 0; 1738 1739 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1740 if (rc) 1741 return rc; 1742 1743 while ((rc = of_phandle_iterator_next(&it)) == 0) 1744 cur_index += 1; 1745 1746 if (rc != -ENOENT) 1747 return rc; 1748 1749 return cur_index; 1750 } 1751 EXPORT_SYMBOL(of_count_phandle_with_args); 1752 1753 /** 1754 * __of_add_property - Add a property to a node without lock operations 1755 */ 1756 int __of_add_property(struct device_node *np, struct property *prop) 1757 { 1758 struct property **next; 1759 1760 prop->next = NULL; 1761 next = &np->properties; 1762 while (*next) { 1763 if (strcmp(prop->name, (*next)->name) == 0) 1764 /* duplicate ! don't insert it */ 1765 return -EEXIST; 1766 1767 next = &(*next)->next; 1768 } 1769 *next = prop; 1770 1771 return 0; 1772 } 1773 1774 /** 1775 * of_add_property - Add a property to a node 1776 */ 1777 int of_add_property(struct device_node *np, struct property *prop) 1778 { 1779 unsigned long flags; 1780 int rc; 1781 1782 mutex_lock(&of_mutex); 1783 1784 raw_spin_lock_irqsave(&devtree_lock, flags); 1785 rc = __of_add_property(np, prop); 1786 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1787 1788 if (!rc) 1789 __of_add_property_sysfs(np, prop); 1790 1791 mutex_unlock(&of_mutex); 1792 1793 if (!rc) 1794 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1795 1796 return rc; 1797 } 1798 1799 int __of_remove_property(struct device_node *np, struct property *prop) 1800 { 1801 struct property **next; 1802 1803 for (next = &np->properties; *next; next = &(*next)->next) { 1804 if (*next == prop) 1805 break; 1806 } 1807 if (*next == NULL) 1808 return -ENODEV; 1809 1810 /* found the node */ 1811 *next = prop->next; 1812 prop->next = np->deadprops; 1813 np->deadprops = prop; 1814 1815 return 0; 1816 } 1817 1818 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1819 { 1820 if (!IS_ENABLED(CONFIG_SYSFS)) 1821 return; 1822 1823 /* at early boot, bail here and defer setup to of_init() */ 1824 if (of_kset && of_node_is_attached(np)) 1825 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1826 } 1827 1828 /** 1829 * of_remove_property - Remove a property from a node. 1830 * 1831 * Note that we don't actually remove it, since we have given out 1832 * who-knows-how-many pointers to the data using get-property. 1833 * Instead we just move the property to the "dead properties" 1834 * list, so it won't be found any more. 1835 */ 1836 int of_remove_property(struct device_node *np, struct property *prop) 1837 { 1838 unsigned long flags; 1839 int rc; 1840 1841 if (!prop) 1842 return -ENODEV; 1843 1844 mutex_lock(&of_mutex); 1845 1846 raw_spin_lock_irqsave(&devtree_lock, flags); 1847 rc = __of_remove_property(np, prop); 1848 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1849 1850 if (!rc) 1851 __of_remove_property_sysfs(np, prop); 1852 1853 mutex_unlock(&of_mutex); 1854 1855 if (!rc) 1856 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1857 1858 return rc; 1859 } 1860 1861 int __of_update_property(struct device_node *np, struct property *newprop, 1862 struct property **oldpropp) 1863 { 1864 struct property **next, *oldprop; 1865 1866 for (next = &np->properties; *next; next = &(*next)->next) { 1867 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1868 break; 1869 } 1870 *oldpropp = oldprop = *next; 1871 1872 if (oldprop) { 1873 /* replace the node */ 1874 newprop->next = oldprop->next; 1875 *next = newprop; 1876 oldprop->next = np->deadprops; 1877 np->deadprops = oldprop; 1878 } else { 1879 /* new node */ 1880 newprop->next = NULL; 1881 *next = newprop; 1882 } 1883 1884 return 0; 1885 } 1886 1887 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1888 struct property *oldprop) 1889 { 1890 if (!IS_ENABLED(CONFIG_SYSFS)) 1891 return; 1892 1893 /* At early boot, bail out and defer setup to of_init() */ 1894 if (!of_kset) 1895 return; 1896 1897 if (oldprop) 1898 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1899 __of_add_property_sysfs(np, newprop); 1900 } 1901 1902 /* 1903 * of_update_property - Update a property in a node, if the property does 1904 * not exist, add it. 1905 * 1906 * Note that we don't actually remove it, since we have given out 1907 * who-knows-how-many pointers to the data using get-property. 1908 * Instead we just move the property to the "dead properties" list, 1909 * and add the new property to the property list 1910 */ 1911 int of_update_property(struct device_node *np, struct property *newprop) 1912 { 1913 struct property *oldprop; 1914 unsigned long flags; 1915 int rc; 1916 1917 if (!newprop->name) 1918 return -EINVAL; 1919 1920 mutex_lock(&of_mutex); 1921 1922 raw_spin_lock_irqsave(&devtree_lock, flags); 1923 rc = __of_update_property(np, newprop, &oldprop); 1924 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1925 1926 if (!rc) 1927 __of_update_property_sysfs(np, newprop, oldprop); 1928 1929 mutex_unlock(&of_mutex); 1930 1931 if (!rc) 1932 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1933 1934 return rc; 1935 } 1936 1937 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1938 int id, const char *stem, int stem_len) 1939 { 1940 ap->np = np; 1941 ap->id = id; 1942 strncpy(ap->stem, stem, stem_len); 1943 ap->stem[stem_len] = 0; 1944 list_add_tail(&ap->link, &aliases_lookup); 1945 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1946 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1947 } 1948 1949 /** 1950 * of_alias_scan - Scan all properties of the 'aliases' node 1951 * 1952 * The function scans all the properties of the 'aliases' node and populates 1953 * the global lookup table with the properties. It returns the 1954 * number of alias properties found, or an error code in case of failure. 1955 * 1956 * @dt_alloc: An allocator that provides a virtual address to memory 1957 * for storing the resulting tree 1958 */ 1959 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1960 { 1961 struct property *pp; 1962 1963 of_aliases = of_find_node_by_path("/aliases"); 1964 of_chosen = of_find_node_by_path("/chosen"); 1965 if (of_chosen == NULL) 1966 of_chosen = of_find_node_by_path("/chosen@0"); 1967 1968 if (of_chosen) { 1969 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1970 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1971 if (!name) 1972 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1973 if (IS_ENABLED(CONFIG_PPC) && !name) 1974 name = of_get_property(of_aliases, "stdout", NULL); 1975 if (name) 1976 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1977 } 1978 1979 if (!of_aliases) 1980 return; 1981 1982 for_each_property_of_node(of_aliases, pp) { 1983 const char *start = pp->name; 1984 const char *end = start + strlen(start); 1985 struct device_node *np; 1986 struct alias_prop *ap; 1987 int id, len; 1988 1989 /* Skip those we do not want to proceed */ 1990 if (!strcmp(pp->name, "name") || 1991 !strcmp(pp->name, "phandle") || 1992 !strcmp(pp->name, "linux,phandle")) 1993 continue; 1994 1995 np = of_find_node_by_path(pp->value); 1996 if (!np) 1997 continue; 1998 1999 /* walk the alias backwards to extract the id and work out 2000 * the 'stem' string */ 2001 while (isdigit(*(end-1)) && end > start) 2002 end--; 2003 len = end - start; 2004 2005 if (kstrtoint(end, 10, &id) < 0) 2006 continue; 2007 2008 /* Allocate an alias_prop with enough space for the stem */ 2009 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 2010 if (!ap) 2011 continue; 2012 memset(ap, 0, sizeof(*ap) + len + 1); 2013 ap->alias = start; 2014 of_alias_add(ap, np, id, start, len); 2015 } 2016 } 2017 2018 /** 2019 * of_alias_get_id - Get alias id for the given device_node 2020 * @np: Pointer to the given device_node 2021 * @stem: Alias stem of the given device_node 2022 * 2023 * The function travels the lookup table to get the alias id for the given 2024 * device_node and alias stem. It returns the alias id if found. 2025 */ 2026 int of_alias_get_id(struct device_node *np, const char *stem) 2027 { 2028 struct alias_prop *app; 2029 int id = -ENODEV; 2030 2031 mutex_lock(&of_mutex); 2032 list_for_each_entry(app, &aliases_lookup, link) { 2033 if (strcmp(app->stem, stem) != 0) 2034 continue; 2035 2036 if (np == app->np) { 2037 id = app->id; 2038 break; 2039 } 2040 } 2041 mutex_unlock(&of_mutex); 2042 2043 return id; 2044 } 2045 EXPORT_SYMBOL_GPL(of_alias_get_id); 2046 2047 /** 2048 * of_alias_get_highest_id - Get highest alias id for the given stem 2049 * @stem: Alias stem to be examined 2050 * 2051 * The function travels the lookup table to get the highest alias id for the 2052 * given alias stem. It returns the alias id if found. 2053 */ 2054 int of_alias_get_highest_id(const char *stem) 2055 { 2056 struct alias_prop *app; 2057 int id = -ENODEV; 2058 2059 mutex_lock(&of_mutex); 2060 list_for_each_entry(app, &aliases_lookup, link) { 2061 if (strcmp(app->stem, stem) != 0) 2062 continue; 2063 2064 if (app->id > id) 2065 id = app->id; 2066 } 2067 mutex_unlock(&of_mutex); 2068 2069 return id; 2070 } 2071 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2072 2073 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2074 u32 *pu) 2075 { 2076 const void *curv = cur; 2077 2078 if (!prop) 2079 return NULL; 2080 2081 if (!cur) { 2082 curv = prop->value; 2083 goto out_val; 2084 } 2085 2086 curv += sizeof(*cur); 2087 if (curv >= prop->value + prop->length) 2088 return NULL; 2089 2090 out_val: 2091 *pu = be32_to_cpup(curv); 2092 return curv; 2093 } 2094 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2095 2096 const char *of_prop_next_string(struct property *prop, const char *cur) 2097 { 2098 const void *curv = cur; 2099 2100 if (!prop) 2101 return NULL; 2102 2103 if (!cur) 2104 return prop->value; 2105 2106 curv += strlen(cur) + 1; 2107 if (curv >= prop->value + prop->length) 2108 return NULL; 2109 2110 return curv; 2111 } 2112 EXPORT_SYMBOL_GPL(of_prop_next_string); 2113 2114 /** 2115 * of_console_check() - Test and setup console for DT setup 2116 * @dn - Pointer to device node 2117 * @name - Name to use for preferred console without index. ex. "ttyS" 2118 * @index - Index to use for preferred console. 2119 * 2120 * Check if the given device node matches the stdout-path property in the 2121 * /chosen node. If it does then register it as the preferred console and return 2122 * TRUE. Otherwise return FALSE. 2123 */ 2124 bool of_console_check(struct device_node *dn, char *name, int index) 2125 { 2126 if (!dn || dn != of_stdout || console_set_on_cmdline) 2127 return false; 2128 return !add_preferred_console(name, index, 2129 kstrdup(of_stdout_options, GFP_KERNEL)); 2130 } 2131 EXPORT_SYMBOL_GPL(of_console_check); 2132 2133 /** 2134 * of_find_next_cache_node - Find a node's subsidiary cache 2135 * @np: node of type "cpu" or "cache" 2136 * 2137 * Returns a node pointer with refcount incremented, use 2138 * of_node_put() on it when done. Caller should hold a reference 2139 * to np. 2140 */ 2141 struct device_node *of_find_next_cache_node(const struct device_node *np) 2142 { 2143 struct device_node *child; 2144 const phandle *handle; 2145 2146 handle = of_get_property(np, "l2-cache", NULL); 2147 if (!handle) 2148 handle = of_get_property(np, "next-level-cache", NULL); 2149 2150 if (handle) 2151 return of_find_node_by_phandle(be32_to_cpup(handle)); 2152 2153 /* OF on pmac has nodes instead of properties named "l2-cache" 2154 * beneath CPU nodes. 2155 */ 2156 if (!strcmp(np->type, "cpu")) 2157 for_each_child_of_node(np, child) 2158 if (!strcmp(child->type, "cache")) 2159 return child; 2160 2161 return NULL; 2162 } 2163 2164 /** 2165 * of_graph_parse_endpoint() - parse common endpoint node properties 2166 * @node: pointer to endpoint device_node 2167 * @endpoint: pointer to the OF endpoint data structure 2168 * 2169 * The caller should hold a reference to @node. 2170 */ 2171 int of_graph_parse_endpoint(const struct device_node *node, 2172 struct of_endpoint *endpoint) 2173 { 2174 struct device_node *port_node = of_get_parent(node); 2175 2176 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2177 __func__, node->full_name); 2178 2179 memset(endpoint, 0, sizeof(*endpoint)); 2180 2181 endpoint->local_node = node; 2182 /* 2183 * It doesn't matter whether the two calls below succeed. 2184 * If they don't then the default value 0 is used. 2185 */ 2186 of_property_read_u32(port_node, "reg", &endpoint->port); 2187 of_property_read_u32(node, "reg", &endpoint->id); 2188 2189 of_node_put(port_node); 2190 2191 return 0; 2192 } 2193 EXPORT_SYMBOL(of_graph_parse_endpoint); 2194 2195 /** 2196 * of_graph_get_port_by_id() - get the port matching a given id 2197 * @parent: pointer to the parent device node 2198 * @id: id of the port 2199 * 2200 * Return: A 'port' node pointer with refcount incremented. The caller 2201 * has to use of_node_put() on it when done. 2202 */ 2203 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2204 { 2205 struct device_node *node, *port; 2206 2207 node = of_get_child_by_name(parent, "ports"); 2208 if (node) 2209 parent = node; 2210 2211 for_each_child_of_node(parent, port) { 2212 u32 port_id = 0; 2213 2214 if (of_node_cmp(port->name, "port") != 0) 2215 continue; 2216 of_property_read_u32(port, "reg", &port_id); 2217 if (id == port_id) 2218 break; 2219 } 2220 2221 of_node_put(node); 2222 2223 return port; 2224 } 2225 EXPORT_SYMBOL(of_graph_get_port_by_id); 2226 2227 /** 2228 * of_graph_get_next_endpoint() - get next endpoint node 2229 * @parent: pointer to the parent device node 2230 * @prev: previous endpoint node, or NULL to get first 2231 * 2232 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2233 * of the passed @prev node is decremented. 2234 */ 2235 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2236 struct device_node *prev) 2237 { 2238 struct device_node *endpoint; 2239 struct device_node *port; 2240 2241 if (!parent) 2242 return NULL; 2243 2244 /* 2245 * Start by locating the port node. If no previous endpoint is specified 2246 * search for the first port node, otherwise get the previous endpoint 2247 * parent port node. 2248 */ 2249 if (!prev) { 2250 struct device_node *node; 2251 2252 node = of_get_child_by_name(parent, "ports"); 2253 if (node) 2254 parent = node; 2255 2256 port = of_get_child_by_name(parent, "port"); 2257 of_node_put(node); 2258 2259 if (!port) { 2260 pr_err("%s(): no port node found in %s\n", 2261 __func__, parent->full_name); 2262 return NULL; 2263 } 2264 } else { 2265 port = of_get_parent(prev); 2266 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2267 __func__, prev->full_name)) 2268 return NULL; 2269 } 2270 2271 while (1) { 2272 /* 2273 * Now that we have a port node, get the next endpoint by 2274 * getting the next child. If the previous endpoint is NULL this 2275 * will return the first child. 2276 */ 2277 endpoint = of_get_next_child(port, prev); 2278 if (endpoint) { 2279 of_node_put(port); 2280 return endpoint; 2281 } 2282 2283 /* No more endpoints under this port, try the next one. */ 2284 prev = NULL; 2285 2286 do { 2287 port = of_get_next_child(parent, port); 2288 if (!port) 2289 return NULL; 2290 } while (of_node_cmp(port->name, "port")); 2291 } 2292 } 2293 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2294 2295 /** 2296 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2297 * @parent: pointer to the parent device node 2298 * @port_reg: identifier (value of reg property) of the parent port node 2299 * @reg: identifier (value of reg property) of the endpoint node 2300 * 2301 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2302 * is the child of a port node identified by port_reg. reg and port_reg are 2303 * ignored when they are -1. 2304 */ 2305 struct device_node *of_graph_get_endpoint_by_regs( 2306 const struct device_node *parent, int port_reg, int reg) 2307 { 2308 struct of_endpoint endpoint; 2309 struct device_node *node, *prev_node = NULL; 2310 2311 while (1) { 2312 node = of_graph_get_next_endpoint(parent, prev_node); 2313 of_node_put(prev_node); 2314 if (!node) 2315 break; 2316 2317 of_graph_parse_endpoint(node, &endpoint); 2318 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2319 ((reg == -1) || (endpoint.id == reg))) 2320 return node; 2321 2322 prev_node = node; 2323 } 2324 2325 return NULL; 2326 } 2327 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2328 2329 /** 2330 * of_graph_get_remote_port_parent() - get remote port's parent node 2331 * @node: pointer to a local endpoint device_node 2332 * 2333 * Return: Remote device node associated with remote endpoint node linked 2334 * to @node. Use of_node_put() on it when done. 2335 */ 2336 struct device_node *of_graph_get_remote_port_parent( 2337 const struct device_node *node) 2338 { 2339 struct device_node *np; 2340 unsigned int depth; 2341 2342 /* Get remote endpoint node. */ 2343 np = of_parse_phandle(node, "remote-endpoint", 0); 2344 2345 /* Walk 3 levels up only if there is 'ports' node. */ 2346 for (depth = 3; depth && np; depth--) { 2347 np = of_get_next_parent(np); 2348 if (depth == 2 && of_node_cmp(np->name, "ports")) 2349 break; 2350 } 2351 return np; 2352 } 2353 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2354 2355 /** 2356 * of_graph_get_remote_port() - get remote port node 2357 * @node: pointer to a local endpoint device_node 2358 * 2359 * Return: Remote port node associated with remote endpoint node linked 2360 * to @node. Use of_node_put() on it when done. 2361 */ 2362 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2363 { 2364 struct device_node *np; 2365 2366 /* Get remote endpoint node. */ 2367 np = of_parse_phandle(node, "remote-endpoint", 0); 2368 if (!np) 2369 return NULL; 2370 return of_get_next_parent(np); 2371 } 2372 EXPORT_SYMBOL(of_graph_get_remote_port); 2373