xref: /openbmc/linux/drivers/of/base.c (revision 3180449e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 EXPORT_SYMBOL(of_chosen);
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 
171 	/* Create the kset, and register existing nodes */
172 	mutex_lock(&of_mutex);
173 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 	if (!of_kset) {
175 		mutex_unlock(&of_mutex);
176 		pr_err("failed to register existing nodes\n");
177 		return;
178 	}
179 	for_each_of_allnodes(np) {
180 		__of_attach_node_sysfs(np);
181 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 	}
184 	mutex_unlock(&of_mutex);
185 
186 	/* Symlink in /proc as required by userspace ABI */
187 	if (of_root)
188 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190 
191 static struct property *__of_find_property(const struct device_node *np,
192 					   const char *name, int *lenp)
193 {
194 	struct property *pp;
195 
196 	if (!np)
197 		return NULL;
198 
199 	for (pp = np->properties; pp; pp = pp->next) {
200 		if (of_prop_cmp(pp->name, name) == 0) {
201 			if (lenp)
202 				*lenp = pp->length;
203 			break;
204 		}
205 	}
206 
207 	return pp;
208 }
209 
210 struct property *of_find_property(const struct device_node *np,
211 				  const char *name,
212 				  int *lenp)
213 {
214 	struct property *pp;
215 	unsigned long flags;
216 
217 	raw_spin_lock_irqsave(&devtree_lock, flags);
218 	pp = __of_find_property(np, name, lenp);
219 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
220 
221 	return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224 
225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 	struct device_node *np;
228 	if (!prev) {
229 		np = of_root;
230 	} else if (prev->child) {
231 		np = prev->child;
232 	} else {
233 		/* Walk back up looking for a sibling, or the end of the structure */
234 		np = prev;
235 		while (np->parent && !np->sibling)
236 			np = np->parent;
237 		np = np->sibling; /* Might be null at the end of the tree */
238 	}
239 	return np;
240 }
241 
242 /**
243  * of_find_all_nodes - Get next node in global list
244  * @prev:	Previous node or NULL to start iteration
245  *		of_node_put() will be called on it
246  *
247  * Return: A node pointer with refcount incremented, use
248  * of_node_put() on it when done.
249  */
250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 	struct device_node *np;
253 	unsigned long flags;
254 
255 	raw_spin_lock_irqsave(&devtree_lock, flags);
256 	np = __of_find_all_nodes(prev);
257 	of_node_get(np);
258 	of_node_put(prev);
259 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 	return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263 
264 /*
265  * Find a property with a given name for a given node
266  * and return the value.
267  */
268 const void *__of_get_property(const struct device_node *np,
269 			      const char *name, int *lenp)
270 {
271 	struct property *pp = __of_find_property(np, name, lenp);
272 
273 	return pp ? pp->value : NULL;
274 }
275 
276 /*
277  * Find a property with a given name for a given node
278  * and return the value.
279  */
280 const void *of_get_property(const struct device_node *np, const char *name,
281 			    int *lenp)
282 {
283 	struct property *pp = of_find_property(np, name, lenp);
284 
285 	return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288 
289 /**
290  * __of_device_is_compatible() - Check if the node matches given constraints
291  * @device: pointer to node
292  * @compat: required compatible string, NULL or "" for any match
293  * @type: required device_type value, NULL or "" for any match
294  * @name: required node name, NULL or "" for any match
295  *
296  * Checks if the given @compat, @type and @name strings match the
297  * properties of the given @device. A constraints can be skipped by
298  * passing NULL or an empty string as the constraint.
299  *
300  * Returns 0 for no match, and a positive integer on match. The return
301  * value is a relative score with larger values indicating better
302  * matches. The score is weighted for the most specific compatible value
303  * to get the highest score. Matching type is next, followed by matching
304  * name. Practically speaking, this results in the following priority
305  * order for matches:
306  *
307  * 1. specific compatible && type && name
308  * 2. specific compatible && type
309  * 3. specific compatible && name
310  * 4. specific compatible
311  * 5. general compatible && type && name
312  * 6. general compatible && type
313  * 7. general compatible && name
314  * 8. general compatible
315  * 9. type && name
316  * 10. type
317  * 11. name
318  */
319 static int __of_device_is_compatible(const struct device_node *device,
320 				     const char *compat, const char *type, const char *name)
321 {
322 	struct property *prop;
323 	const char *cp;
324 	int index = 0, score = 0;
325 
326 	/* Compatible match has highest priority */
327 	if (compat && compat[0]) {
328 		prop = __of_find_property(device, "compatible", NULL);
329 		for (cp = of_prop_next_string(prop, NULL); cp;
330 		     cp = of_prop_next_string(prop, cp), index++) {
331 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
332 				score = INT_MAX/2 - (index << 2);
333 				break;
334 			}
335 		}
336 		if (!score)
337 			return 0;
338 	}
339 
340 	/* Matching type is better than matching name */
341 	if (type && type[0]) {
342 		if (!__of_node_is_type(device, type))
343 			return 0;
344 		score += 2;
345 	}
346 
347 	/* Matching name is a bit better than not */
348 	if (name && name[0]) {
349 		if (!of_node_name_eq(device, name))
350 			return 0;
351 		score++;
352 	}
353 
354 	return score;
355 }
356 
357 /** Checks if the given "compat" string matches one of the strings in
358  * the device's "compatible" property
359  */
360 int of_device_is_compatible(const struct device_node *device,
361 		const char *compat)
362 {
363 	unsigned long flags;
364 	int res;
365 
366 	raw_spin_lock_irqsave(&devtree_lock, flags);
367 	res = __of_device_is_compatible(device, compat, NULL, NULL);
368 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
369 	return res;
370 }
371 EXPORT_SYMBOL(of_device_is_compatible);
372 
373 /** Checks if the device is compatible with any of the entries in
374  *  a NULL terminated array of strings. Returns the best match
375  *  score or 0.
376  */
377 int of_device_compatible_match(const struct device_node *device,
378 			       const char *const *compat)
379 {
380 	unsigned int tmp, score = 0;
381 
382 	if (!compat)
383 		return 0;
384 
385 	while (*compat) {
386 		tmp = of_device_is_compatible(device, *compat);
387 		if (tmp > score)
388 			score = tmp;
389 		compat++;
390 	}
391 
392 	return score;
393 }
394 EXPORT_SYMBOL_GPL(of_device_compatible_match);
395 
396 /**
397  * of_machine_is_compatible - Test root of device tree for a given compatible value
398  * @compat: compatible string to look for in root node's compatible property.
399  *
400  * Return: A positive integer if the root node has the given value in its
401  * compatible property.
402  */
403 int of_machine_is_compatible(const char *compat)
404 {
405 	struct device_node *root;
406 	int rc = 0;
407 
408 	root = of_find_node_by_path("/");
409 	if (root) {
410 		rc = of_device_is_compatible(root, compat);
411 		of_node_put(root);
412 	}
413 	return rc;
414 }
415 EXPORT_SYMBOL(of_machine_is_compatible);
416 
417 /**
418  *  __of_device_is_available - check if a device is available for use
419  *
420  *  @device: Node to check for availability, with locks already held
421  *
422  *  Return: True if the status property is absent or set to "okay" or "ok",
423  *  false otherwise
424  */
425 static bool __of_device_is_available(const struct device_node *device)
426 {
427 	const char *status;
428 	int statlen;
429 
430 	if (!device)
431 		return false;
432 
433 	status = __of_get_property(device, "status", &statlen);
434 	if (status == NULL)
435 		return true;
436 
437 	if (statlen > 0) {
438 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
439 			return true;
440 	}
441 
442 	return false;
443 }
444 
445 /**
446  *  of_device_is_available - check if a device is available for use
447  *
448  *  @device: Node to check for availability
449  *
450  *  Return: True if the status property is absent or set to "okay" or "ok",
451  *  false otherwise
452  */
453 bool of_device_is_available(const struct device_node *device)
454 {
455 	unsigned long flags;
456 	bool res;
457 
458 	raw_spin_lock_irqsave(&devtree_lock, flags);
459 	res = __of_device_is_available(device);
460 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
461 	return res;
462 
463 }
464 EXPORT_SYMBOL(of_device_is_available);
465 
466 /**
467  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
468  *
469  *  @device: Node to check status for, with locks already held
470  *
471  *  Return: True if the status property is set to "fail" or "fail-..." (for any
472  *  error code suffix), false otherwise
473  */
474 static bool __of_device_is_fail(const struct device_node *device)
475 {
476 	const char *status;
477 
478 	if (!device)
479 		return false;
480 
481 	status = __of_get_property(device, "status", NULL);
482 	if (status == NULL)
483 		return false;
484 
485 	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
486 }
487 
488 /**
489  *  of_device_is_big_endian - check if a device has BE registers
490  *
491  *  @device: Node to check for endianness
492  *
493  *  Return: True if the device has a "big-endian" property, or if the kernel
494  *  was compiled for BE *and* the device has a "native-endian" property.
495  *  Returns false otherwise.
496  *
497  *  Callers would nominally use ioread32be/iowrite32be if
498  *  of_device_is_big_endian() == true, or readl/writel otherwise.
499  */
500 bool of_device_is_big_endian(const struct device_node *device)
501 {
502 	if (of_property_read_bool(device, "big-endian"))
503 		return true;
504 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
505 	    of_property_read_bool(device, "native-endian"))
506 		return true;
507 	return false;
508 }
509 EXPORT_SYMBOL(of_device_is_big_endian);
510 
511 /**
512  * of_get_parent - Get a node's parent if any
513  * @node:	Node to get parent
514  *
515  * Return: A node pointer with refcount incremented, use
516  * of_node_put() on it when done.
517  */
518 struct device_node *of_get_parent(const struct device_node *node)
519 {
520 	struct device_node *np;
521 	unsigned long flags;
522 
523 	if (!node)
524 		return NULL;
525 
526 	raw_spin_lock_irqsave(&devtree_lock, flags);
527 	np = of_node_get(node->parent);
528 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
529 	return np;
530 }
531 EXPORT_SYMBOL(of_get_parent);
532 
533 /**
534  * of_get_next_parent - Iterate to a node's parent
535  * @node:	Node to get parent of
536  *
537  * This is like of_get_parent() except that it drops the
538  * refcount on the passed node, making it suitable for iterating
539  * through a node's parents.
540  *
541  * Return: A node pointer with refcount incremented, use
542  * of_node_put() on it when done.
543  */
544 struct device_node *of_get_next_parent(struct device_node *node)
545 {
546 	struct device_node *parent;
547 	unsigned long flags;
548 
549 	if (!node)
550 		return NULL;
551 
552 	raw_spin_lock_irqsave(&devtree_lock, flags);
553 	parent = of_node_get(node->parent);
554 	of_node_put(node);
555 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
556 	return parent;
557 }
558 EXPORT_SYMBOL(of_get_next_parent);
559 
560 static struct device_node *__of_get_next_child(const struct device_node *node,
561 						struct device_node *prev)
562 {
563 	struct device_node *next;
564 
565 	if (!node)
566 		return NULL;
567 
568 	next = prev ? prev->sibling : node->child;
569 	of_node_get(next);
570 	of_node_put(prev);
571 	return next;
572 }
573 #define __for_each_child_of_node(parent, child) \
574 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
575 	     child = __of_get_next_child(parent, child))
576 
577 /**
578  * of_get_next_child - Iterate a node childs
579  * @node:	parent node
580  * @prev:	previous child of the parent node, or NULL to get first
581  *
582  * Return: A node pointer with refcount incremented, use of_node_put() on
583  * it when done. Returns NULL when prev is the last child. Decrements the
584  * refcount of prev.
585  */
586 struct device_node *of_get_next_child(const struct device_node *node,
587 	struct device_node *prev)
588 {
589 	struct device_node *next;
590 	unsigned long flags;
591 
592 	raw_spin_lock_irqsave(&devtree_lock, flags);
593 	next = __of_get_next_child(node, prev);
594 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
595 	return next;
596 }
597 EXPORT_SYMBOL(of_get_next_child);
598 
599 /**
600  * of_get_next_available_child - Find the next available child node
601  * @node:	parent node
602  * @prev:	previous child of the parent node, or NULL to get first
603  *
604  * This function is like of_get_next_child(), except that it
605  * automatically skips any disabled nodes (i.e. status = "disabled").
606  */
607 struct device_node *of_get_next_available_child(const struct device_node *node,
608 	struct device_node *prev)
609 {
610 	struct device_node *next;
611 	unsigned long flags;
612 
613 	if (!node)
614 		return NULL;
615 
616 	raw_spin_lock_irqsave(&devtree_lock, flags);
617 	next = prev ? prev->sibling : node->child;
618 	for (; next; next = next->sibling) {
619 		if (!__of_device_is_available(next))
620 			continue;
621 		if (of_node_get(next))
622 			break;
623 	}
624 	of_node_put(prev);
625 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 	return next;
627 }
628 EXPORT_SYMBOL(of_get_next_available_child);
629 
630 /**
631  * of_get_next_cpu_node - Iterate on cpu nodes
632  * @prev:	previous child of the /cpus node, or NULL to get first
633  *
634  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
635  * will be skipped.
636  *
637  * Return: A cpu node pointer with refcount incremented, use of_node_put()
638  * on it when done. Returns NULL when prev is the last child. Decrements
639  * the refcount of prev.
640  */
641 struct device_node *of_get_next_cpu_node(struct device_node *prev)
642 {
643 	struct device_node *next = NULL;
644 	unsigned long flags;
645 	struct device_node *node;
646 
647 	if (!prev)
648 		node = of_find_node_by_path("/cpus");
649 
650 	raw_spin_lock_irqsave(&devtree_lock, flags);
651 	if (prev)
652 		next = prev->sibling;
653 	else if (node) {
654 		next = node->child;
655 		of_node_put(node);
656 	}
657 	for (; next; next = next->sibling) {
658 		if (__of_device_is_fail(next))
659 			continue;
660 		if (!(of_node_name_eq(next, "cpu") ||
661 		      __of_node_is_type(next, "cpu")))
662 			continue;
663 		if (of_node_get(next))
664 			break;
665 	}
666 	of_node_put(prev);
667 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
668 	return next;
669 }
670 EXPORT_SYMBOL(of_get_next_cpu_node);
671 
672 /**
673  * of_get_compatible_child - Find compatible child node
674  * @parent:	parent node
675  * @compatible:	compatible string
676  *
677  * Lookup child node whose compatible property contains the given compatible
678  * string.
679  *
680  * Return: a node pointer with refcount incremented, use of_node_put() on it
681  * when done; or NULL if not found.
682  */
683 struct device_node *of_get_compatible_child(const struct device_node *parent,
684 				const char *compatible)
685 {
686 	struct device_node *child;
687 
688 	for_each_child_of_node(parent, child) {
689 		if (of_device_is_compatible(child, compatible))
690 			break;
691 	}
692 
693 	return child;
694 }
695 EXPORT_SYMBOL(of_get_compatible_child);
696 
697 /**
698  * of_get_child_by_name - Find the child node by name for a given parent
699  * @node:	parent node
700  * @name:	child name to look for.
701  *
702  * This function looks for child node for given matching name
703  *
704  * Return: A node pointer if found, with refcount incremented, use
705  * of_node_put() on it when done.
706  * Returns NULL if node is not found.
707  */
708 struct device_node *of_get_child_by_name(const struct device_node *node,
709 				const char *name)
710 {
711 	struct device_node *child;
712 
713 	for_each_child_of_node(node, child)
714 		if (of_node_name_eq(child, name))
715 			break;
716 	return child;
717 }
718 EXPORT_SYMBOL(of_get_child_by_name);
719 
720 struct device_node *__of_find_node_by_path(struct device_node *parent,
721 						const char *path)
722 {
723 	struct device_node *child;
724 	int len;
725 
726 	len = strcspn(path, "/:");
727 	if (!len)
728 		return NULL;
729 
730 	__for_each_child_of_node(parent, child) {
731 		const char *name = kbasename(child->full_name);
732 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
733 			return child;
734 	}
735 	return NULL;
736 }
737 
738 struct device_node *__of_find_node_by_full_path(struct device_node *node,
739 						const char *path)
740 {
741 	const char *separator = strchr(path, ':');
742 
743 	while (node && *path == '/') {
744 		struct device_node *tmp = node;
745 
746 		path++; /* Increment past '/' delimiter */
747 		node = __of_find_node_by_path(node, path);
748 		of_node_put(tmp);
749 		path = strchrnul(path, '/');
750 		if (separator && separator < path)
751 			break;
752 	}
753 	return node;
754 }
755 
756 /**
757  * of_find_node_opts_by_path - Find a node matching a full OF path
758  * @path: Either the full path to match, or if the path does not
759  *       start with '/', the name of a property of the /aliases
760  *       node (an alias).  In the case of an alias, the node
761  *       matching the alias' value will be returned.
762  * @opts: Address of a pointer into which to store the start of
763  *       an options string appended to the end of the path with
764  *       a ':' separator.
765  *
766  * Valid paths:
767  *  * /foo/bar	Full path
768  *  * foo	Valid alias
769  *  * foo/bar	Valid alias + relative path
770  *
771  * Return: A node pointer with refcount incremented, use
772  * of_node_put() on it when done.
773  */
774 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
775 {
776 	struct device_node *np = NULL;
777 	struct property *pp;
778 	unsigned long flags;
779 	const char *separator = strchr(path, ':');
780 
781 	if (opts)
782 		*opts = separator ? separator + 1 : NULL;
783 
784 	if (strcmp(path, "/") == 0)
785 		return of_node_get(of_root);
786 
787 	/* The path could begin with an alias */
788 	if (*path != '/') {
789 		int len;
790 		const char *p = separator;
791 
792 		if (!p)
793 			p = strchrnul(path, '/');
794 		len = p - path;
795 
796 		/* of_aliases must not be NULL */
797 		if (!of_aliases)
798 			return NULL;
799 
800 		for_each_property_of_node(of_aliases, pp) {
801 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
802 				np = of_find_node_by_path(pp->value);
803 				break;
804 			}
805 		}
806 		if (!np)
807 			return NULL;
808 		path = p;
809 	}
810 
811 	/* Step down the tree matching path components */
812 	raw_spin_lock_irqsave(&devtree_lock, flags);
813 	if (!np)
814 		np = of_node_get(of_root);
815 	np = __of_find_node_by_full_path(np, path);
816 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
817 	return np;
818 }
819 EXPORT_SYMBOL(of_find_node_opts_by_path);
820 
821 /**
822  * of_find_node_by_name - Find a node by its "name" property
823  * @from:	The node to start searching from or NULL; the node
824  *		you pass will not be searched, only the next one
825  *		will. Typically, you pass what the previous call
826  *		returned. of_node_put() will be called on @from.
827  * @name:	The name string to match against
828  *
829  * Return: A node pointer with refcount incremented, use
830  * of_node_put() on it when done.
831  */
832 struct device_node *of_find_node_by_name(struct device_node *from,
833 	const char *name)
834 {
835 	struct device_node *np;
836 	unsigned long flags;
837 
838 	raw_spin_lock_irqsave(&devtree_lock, flags);
839 	for_each_of_allnodes_from(from, np)
840 		if (of_node_name_eq(np, name) && of_node_get(np))
841 			break;
842 	of_node_put(from);
843 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
844 	return np;
845 }
846 EXPORT_SYMBOL(of_find_node_by_name);
847 
848 /**
849  * of_find_node_by_type - Find a node by its "device_type" property
850  * @from:	The node to start searching from, or NULL to start searching
851  *		the entire device tree. The node you pass will not be
852  *		searched, only the next one will; typically, you pass
853  *		what the previous call returned. of_node_put() will be
854  *		called on from for you.
855  * @type:	The type string to match against
856  *
857  * Return: A node pointer with refcount incremented, use
858  * of_node_put() on it when done.
859  */
860 struct device_node *of_find_node_by_type(struct device_node *from,
861 	const char *type)
862 {
863 	struct device_node *np;
864 	unsigned long flags;
865 
866 	raw_spin_lock_irqsave(&devtree_lock, flags);
867 	for_each_of_allnodes_from(from, np)
868 		if (__of_node_is_type(np, type) && of_node_get(np))
869 			break;
870 	of_node_put(from);
871 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
872 	return np;
873 }
874 EXPORT_SYMBOL(of_find_node_by_type);
875 
876 /**
877  * of_find_compatible_node - Find a node based on type and one of the
878  *                                tokens in its "compatible" property
879  * @from:	The node to start searching from or NULL, the node
880  *		you pass will not be searched, only the next one
881  *		will; typically, you pass what the previous call
882  *		returned. of_node_put() will be called on it
883  * @type:	The type string to match "device_type" or NULL to ignore
884  * @compatible:	The string to match to one of the tokens in the device
885  *		"compatible" list.
886  *
887  * Return: A node pointer with refcount incremented, use
888  * of_node_put() on it when done.
889  */
890 struct device_node *of_find_compatible_node(struct device_node *from,
891 	const char *type, const char *compatible)
892 {
893 	struct device_node *np;
894 	unsigned long flags;
895 
896 	raw_spin_lock_irqsave(&devtree_lock, flags);
897 	for_each_of_allnodes_from(from, np)
898 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
899 		    of_node_get(np))
900 			break;
901 	of_node_put(from);
902 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
903 	return np;
904 }
905 EXPORT_SYMBOL(of_find_compatible_node);
906 
907 /**
908  * of_find_node_with_property - Find a node which has a property with
909  *                              the given name.
910  * @from:	The node to start searching from or NULL, the node
911  *		you pass will not be searched, only the next one
912  *		will; typically, you pass what the previous call
913  *		returned. of_node_put() will be called on it
914  * @prop_name:	The name of the property to look for.
915  *
916  * Return: A node pointer with refcount incremented, use
917  * of_node_put() on it when done.
918  */
919 struct device_node *of_find_node_with_property(struct device_node *from,
920 	const char *prop_name)
921 {
922 	struct device_node *np;
923 	struct property *pp;
924 	unsigned long flags;
925 
926 	raw_spin_lock_irqsave(&devtree_lock, flags);
927 	for_each_of_allnodes_from(from, np) {
928 		for (pp = np->properties; pp; pp = pp->next) {
929 			if (of_prop_cmp(pp->name, prop_name) == 0) {
930 				of_node_get(np);
931 				goto out;
932 			}
933 		}
934 	}
935 out:
936 	of_node_put(from);
937 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
938 	return np;
939 }
940 EXPORT_SYMBOL(of_find_node_with_property);
941 
942 static
943 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
944 					   const struct device_node *node)
945 {
946 	const struct of_device_id *best_match = NULL;
947 	int score, best_score = 0;
948 
949 	if (!matches)
950 		return NULL;
951 
952 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
953 		score = __of_device_is_compatible(node, matches->compatible,
954 						  matches->type, matches->name);
955 		if (score > best_score) {
956 			best_match = matches;
957 			best_score = score;
958 		}
959 	}
960 
961 	return best_match;
962 }
963 
964 /**
965  * of_match_node - Tell if a device_node has a matching of_match structure
966  * @matches:	array of of device match structures to search in
967  * @node:	the of device structure to match against
968  *
969  * Low level utility function used by device matching.
970  */
971 const struct of_device_id *of_match_node(const struct of_device_id *matches,
972 					 const struct device_node *node)
973 {
974 	const struct of_device_id *match;
975 	unsigned long flags;
976 
977 	raw_spin_lock_irqsave(&devtree_lock, flags);
978 	match = __of_match_node(matches, node);
979 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
980 	return match;
981 }
982 EXPORT_SYMBOL(of_match_node);
983 
984 /**
985  * of_find_matching_node_and_match - Find a node based on an of_device_id
986  *				     match table.
987  * @from:	The node to start searching from or NULL, the node
988  *		you pass will not be searched, only the next one
989  *		will; typically, you pass what the previous call
990  *		returned. of_node_put() will be called on it
991  * @matches:	array of of device match structures to search in
992  * @match:	Updated to point at the matches entry which matched
993  *
994  * Return: A node pointer with refcount incremented, use
995  * of_node_put() on it when done.
996  */
997 struct device_node *of_find_matching_node_and_match(struct device_node *from,
998 					const struct of_device_id *matches,
999 					const struct of_device_id **match)
1000 {
1001 	struct device_node *np;
1002 	const struct of_device_id *m;
1003 	unsigned long flags;
1004 
1005 	if (match)
1006 		*match = NULL;
1007 
1008 	raw_spin_lock_irqsave(&devtree_lock, flags);
1009 	for_each_of_allnodes_from(from, np) {
1010 		m = __of_match_node(matches, np);
1011 		if (m && of_node_get(np)) {
1012 			if (match)
1013 				*match = m;
1014 			break;
1015 		}
1016 	}
1017 	of_node_put(from);
1018 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1019 	return np;
1020 }
1021 EXPORT_SYMBOL(of_find_matching_node_and_match);
1022 
1023 /**
1024  * of_alias_from_compatible - Lookup appropriate alias for a device node
1025  *			      depending on compatible
1026  * @node:	pointer to a device tree node
1027  * @alias:	Pointer to buffer that alias value will be copied into
1028  * @len:	Length of alias value
1029  *
1030  * Based on the value of the compatible property, this routine will attempt
1031  * to choose an appropriate alias value for a particular device tree node.
1032  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1033  * from the first entry in the compatible list property.
1034  *
1035  * Note: The matching on just the "product" side of the compatible is a relic
1036  * from I2C and SPI. Please do not add any new user.
1037  *
1038  * Return: This routine returns 0 on success, <0 on failure.
1039  */
1040 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1041 {
1042 	const char *compatible, *p;
1043 	int cplen;
1044 
1045 	compatible = of_get_property(node, "compatible", &cplen);
1046 	if (!compatible || strlen(compatible) > cplen)
1047 		return -ENODEV;
1048 	p = strchr(compatible, ',');
1049 	strscpy(alias, p ? p + 1 : compatible, len);
1050 	return 0;
1051 }
1052 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1053 
1054 /**
1055  * of_find_node_by_phandle - Find a node given a phandle
1056  * @handle:	phandle of the node to find
1057  *
1058  * Return: A node pointer with refcount incremented, use
1059  * of_node_put() on it when done.
1060  */
1061 struct device_node *of_find_node_by_phandle(phandle handle)
1062 {
1063 	struct device_node *np = NULL;
1064 	unsigned long flags;
1065 	u32 handle_hash;
1066 
1067 	if (!handle)
1068 		return NULL;
1069 
1070 	handle_hash = of_phandle_cache_hash(handle);
1071 
1072 	raw_spin_lock_irqsave(&devtree_lock, flags);
1073 
1074 	if (phandle_cache[handle_hash] &&
1075 	    handle == phandle_cache[handle_hash]->phandle)
1076 		np = phandle_cache[handle_hash];
1077 
1078 	if (!np) {
1079 		for_each_of_allnodes(np)
1080 			if (np->phandle == handle &&
1081 			    !of_node_check_flag(np, OF_DETACHED)) {
1082 				phandle_cache[handle_hash] = np;
1083 				break;
1084 			}
1085 	}
1086 
1087 	of_node_get(np);
1088 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1089 	return np;
1090 }
1091 EXPORT_SYMBOL(of_find_node_by_phandle);
1092 
1093 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1094 {
1095 	int i;
1096 	printk("%s %pOF", msg, args->np);
1097 	for (i = 0; i < args->args_count; i++) {
1098 		const char delim = i ? ',' : ':';
1099 
1100 		pr_cont("%c%08x", delim, args->args[i]);
1101 	}
1102 	pr_cont("\n");
1103 }
1104 
1105 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1106 		const struct device_node *np,
1107 		const char *list_name,
1108 		const char *cells_name,
1109 		int cell_count)
1110 {
1111 	const __be32 *list;
1112 	int size;
1113 
1114 	memset(it, 0, sizeof(*it));
1115 
1116 	/*
1117 	 * one of cell_count or cells_name must be provided to determine the
1118 	 * argument length.
1119 	 */
1120 	if (cell_count < 0 && !cells_name)
1121 		return -EINVAL;
1122 
1123 	list = of_get_property(np, list_name, &size);
1124 	if (!list)
1125 		return -ENOENT;
1126 
1127 	it->cells_name = cells_name;
1128 	it->cell_count = cell_count;
1129 	it->parent = np;
1130 	it->list_end = list + size / sizeof(*list);
1131 	it->phandle_end = list;
1132 	it->cur = list;
1133 
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1137 
1138 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1139 {
1140 	uint32_t count = 0;
1141 
1142 	if (it->node) {
1143 		of_node_put(it->node);
1144 		it->node = NULL;
1145 	}
1146 
1147 	if (!it->cur || it->phandle_end >= it->list_end)
1148 		return -ENOENT;
1149 
1150 	it->cur = it->phandle_end;
1151 
1152 	/* If phandle is 0, then it is an empty entry with no arguments. */
1153 	it->phandle = be32_to_cpup(it->cur++);
1154 
1155 	if (it->phandle) {
1156 
1157 		/*
1158 		 * Find the provider node and parse the #*-cells property to
1159 		 * determine the argument length.
1160 		 */
1161 		it->node = of_find_node_by_phandle(it->phandle);
1162 
1163 		if (it->cells_name) {
1164 			if (!it->node) {
1165 				pr_err("%pOF: could not find phandle %d\n",
1166 				       it->parent, it->phandle);
1167 				goto err;
1168 			}
1169 
1170 			if (of_property_read_u32(it->node, it->cells_name,
1171 						 &count)) {
1172 				/*
1173 				 * If both cell_count and cells_name is given,
1174 				 * fall back to cell_count in absence
1175 				 * of the cells_name property
1176 				 */
1177 				if (it->cell_count >= 0) {
1178 					count = it->cell_count;
1179 				} else {
1180 					pr_err("%pOF: could not get %s for %pOF\n",
1181 					       it->parent,
1182 					       it->cells_name,
1183 					       it->node);
1184 					goto err;
1185 				}
1186 			}
1187 		} else {
1188 			count = it->cell_count;
1189 		}
1190 
1191 		/*
1192 		 * Make sure that the arguments actually fit in the remaining
1193 		 * property data length
1194 		 */
1195 		if (it->cur + count > it->list_end) {
1196 			if (it->cells_name)
1197 				pr_err("%pOF: %s = %d found %td\n",
1198 					it->parent, it->cells_name,
1199 					count, it->list_end - it->cur);
1200 			else
1201 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1202 					it->parent, of_node_full_name(it->node),
1203 					count, it->list_end - it->cur);
1204 			goto err;
1205 		}
1206 	}
1207 
1208 	it->phandle_end = it->cur + count;
1209 	it->cur_count = count;
1210 
1211 	return 0;
1212 
1213 err:
1214 	if (it->node) {
1215 		of_node_put(it->node);
1216 		it->node = NULL;
1217 	}
1218 
1219 	return -EINVAL;
1220 }
1221 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1222 
1223 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1224 			     uint32_t *args,
1225 			     int size)
1226 {
1227 	int i, count;
1228 
1229 	count = it->cur_count;
1230 
1231 	if (WARN_ON(size < count))
1232 		count = size;
1233 
1234 	for (i = 0; i < count; i++)
1235 		args[i] = be32_to_cpup(it->cur++);
1236 
1237 	return count;
1238 }
1239 
1240 int __of_parse_phandle_with_args(const struct device_node *np,
1241 				 const char *list_name,
1242 				 const char *cells_name,
1243 				 int cell_count, int index,
1244 				 struct of_phandle_args *out_args)
1245 {
1246 	struct of_phandle_iterator it;
1247 	int rc, cur_index = 0;
1248 
1249 	if (index < 0)
1250 		return -EINVAL;
1251 
1252 	/* Loop over the phandles until all the requested entry is found */
1253 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254 		/*
1255 		 * All of the error cases bail out of the loop, so at
1256 		 * this point, the parsing is successful. If the requested
1257 		 * index matches, then fill the out_args structure and return,
1258 		 * or return -ENOENT for an empty entry.
1259 		 */
1260 		rc = -ENOENT;
1261 		if (cur_index == index) {
1262 			if (!it.phandle)
1263 				goto err;
1264 
1265 			if (out_args) {
1266 				int c;
1267 
1268 				c = of_phandle_iterator_args(&it,
1269 							     out_args->args,
1270 							     MAX_PHANDLE_ARGS);
1271 				out_args->np = it.node;
1272 				out_args->args_count = c;
1273 			} else {
1274 				of_node_put(it.node);
1275 			}
1276 
1277 			/* Found it! return success */
1278 			return 0;
1279 		}
1280 
1281 		cur_index++;
1282 	}
1283 
1284 	/*
1285 	 * Unlock node before returning result; will be one of:
1286 	 * -ENOENT : index is for empty phandle
1287 	 * -EINVAL : parsing error on data
1288 	 */
1289 
1290  err:
1291 	of_node_put(it.node);
1292 	return rc;
1293 }
1294 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1295 
1296 /**
1297  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1298  * @np:		pointer to a device tree node containing a list
1299  * @list_name:	property name that contains a list
1300  * @stem_name:	stem of property names that specify phandles' arguments count
1301  * @index:	index of a phandle to parse out
1302  * @out_args:	optional pointer to output arguments structure (will be filled)
1303  *
1304  * This function is useful to parse lists of phandles and their arguments.
1305  * Returns 0 on success and fills out_args, on error returns appropriate errno
1306  * value. The difference between this function and of_parse_phandle_with_args()
1307  * is that this API remaps a phandle if the node the phandle points to has
1308  * a <@stem_name>-map property.
1309  *
1310  * Caller is responsible to call of_node_put() on the returned out_args->np
1311  * pointer.
1312  *
1313  * Example::
1314  *
1315  *  phandle1: node1 {
1316  *  	#list-cells = <2>;
1317  *  };
1318  *
1319  *  phandle2: node2 {
1320  *  	#list-cells = <1>;
1321  *  };
1322  *
1323  *  phandle3: node3 {
1324  *  	#list-cells = <1>;
1325  *  	list-map = <0 &phandle2 3>,
1326  *  		   <1 &phandle2 2>,
1327  *  		   <2 &phandle1 5 1>;
1328  *  	list-map-mask = <0x3>;
1329  *  };
1330  *
1331  *  node4 {
1332  *  	list = <&phandle1 1 2 &phandle3 0>;
1333  *  };
1334  *
1335  * To get a device_node of the ``node2`` node you may call this:
1336  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1337  */
1338 int of_parse_phandle_with_args_map(const struct device_node *np,
1339 				   const char *list_name,
1340 				   const char *stem_name,
1341 				   int index, struct of_phandle_args *out_args)
1342 {
1343 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1344 	char *pass_name = NULL;
1345 	struct device_node *cur, *new = NULL;
1346 	const __be32 *map, *mask, *pass;
1347 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1348 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1349 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1350 	const __be32 *match_array = initial_match_array;
1351 	int i, ret, map_len, match;
1352 	u32 list_size, new_size;
1353 
1354 	if (index < 0)
1355 		return -EINVAL;
1356 
1357 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1358 	if (!cells_name)
1359 		return -ENOMEM;
1360 
1361 	ret = -ENOMEM;
1362 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1363 	if (!map_name)
1364 		goto free;
1365 
1366 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1367 	if (!mask_name)
1368 		goto free;
1369 
1370 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1371 	if (!pass_name)
1372 		goto free;
1373 
1374 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1375 					   out_args);
1376 	if (ret)
1377 		goto free;
1378 
1379 	/* Get the #<list>-cells property */
1380 	cur = out_args->np;
1381 	ret = of_property_read_u32(cur, cells_name, &list_size);
1382 	if (ret < 0)
1383 		goto put;
1384 
1385 	/* Precalculate the match array - this simplifies match loop */
1386 	for (i = 0; i < list_size; i++)
1387 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1388 
1389 	ret = -EINVAL;
1390 	while (cur) {
1391 		/* Get the <list>-map property */
1392 		map = of_get_property(cur, map_name, &map_len);
1393 		if (!map) {
1394 			ret = 0;
1395 			goto free;
1396 		}
1397 		map_len /= sizeof(u32);
1398 
1399 		/* Get the <list>-map-mask property (optional) */
1400 		mask = of_get_property(cur, mask_name, NULL);
1401 		if (!mask)
1402 			mask = dummy_mask;
1403 		/* Iterate through <list>-map property */
1404 		match = 0;
1405 		while (map_len > (list_size + 1) && !match) {
1406 			/* Compare specifiers */
1407 			match = 1;
1408 			for (i = 0; i < list_size; i++, map_len--)
1409 				match &= !((match_array[i] ^ *map++) & mask[i]);
1410 
1411 			of_node_put(new);
1412 			new = of_find_node_by_phandle(be32_to_cpup(map));
1413 			map++;
1414 			map_len--;
1415 
1416 			/* Check if not found */
1417 			if (!new)
1418 				goto put;
1419 
1420 			if (!of_device_is_available(new))
1421 				match = 0;
1422 
1423 			ret = of_property_read_u32(new, cells_name, &new_size);
1424 			if (ret)
1425 				goto put;
1426 
1427 			/* Check for malformed properties */
1428 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1429 				goto put;
1430 			if (map_len < new_size)
1431 				goto put;
1432 
1433 			/* Move forward by new node's #<list>-cells amount */
1434 			map += new_size;
1435 			map_len -= new_size;
1436 		}
1437 		if (!match)
1438 			goto put;
1439 
1440 		/* Get the <list>-map-pass-thru property (optional) */
1441 		pass = of_get_property(cur, pass_name, NULL);
1442 		if (!pass)
1443 			pass = dummy_pass;
1444 
1445 		/*
1446 		 * Successfully parsed a <list>-map translation; copy new
1447 		 * specifier into the out_args structure, keeping the
1448 		 * bits specified in <list>-map-pass-thru.
1449 		 */
1450 		match_array = map - new_size;
1451 		for (i = 0; i < new_size; i++) {
1452 			__be32 val = *(map - new_size + i);
1453 
1454 			if (i < list_size) {
1455 				val &= ~pass[i];
1456 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1457 			}
1458 
1459 			out_args->args[i] = be32_to_cpu(val);
1460 		}
1461 		out_args->args_count = list_size = new_size;
1462 		/* Iterate again with new provider */
1463 		out_args->np = new;
1464 		of_node_put(cur);
1465 		cur = new;
1466 	}
1467 put:
1468 	of_node_put(cur);
1469 	of_node_put(new);
1470 free:
1471 	kfree(mask_name);
1472 	kfree(map_name);
1473 	kfree(cells_name);
1474 	kfree(pass_name);
1475 
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1479 
1480 /**
1481  * of_count_phandle_with_args() - Find the number of phandles references in a property
1482  * @np:		pointer to a device tree node containing a list
1483  * @list_name:	property name that contains a list
1484  * @cells_name:	property name that specifies phandles' arguments count
1485  *
1486  * Return: The number of phandle + argument tuples within a property. It
1487  * is a typical pattern to encode a list of phandle and variable
1488  * arguments into a single property. The number of arguments is encoded
1489  * by a property in the phandle-target node. For example, a gpios
1490  * property would contain a list of GPIO specifies consisting of a
1491  * phandle and 1 or more arguments. The number of arguments are
1492  * determined by the #gpio-cells property in the node pointed to by the
1493  * phandle.
1494  */
1495 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1496 				const char *cells_name)
1497 {
1498 	struct of_phandle_iterator it;
1499 	int rc, cur_index = 0;
1500 
1501 	/*
1502 	 * If cells_name is NULL we assume a cell count of 0. This makes
1503 	 * counting the phandles trivial as each 32bit word in the list is a
1504 	 * phandle and no arguments are to consider. So we don't iterate through
1505 	 * the list but just use the length to determine the phandle count.
1506 	 */
1507 	if (!cells_name) {
1508 		const __be32 *list;
1509 		int size;
1510 
1511 		list = of_get_property(np, list_name, &size);
1512 		if (!list)
1513 			return -ENOENT;
1514 
1515 		return size / sizeof(*list);
1516 	}
1517 
1518 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1519 	if (rc)
1520 		return rc;
1521 
1522 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1523 		cur_index += 1;
1524 
1525 	if (rc != -ENOENT)
1526 		return rc;
1527 
1528 	return cur_index;
1529 }
1530 EXPORT_SYMBOL(of_count_phandle_with_args);
1531 
1532 /**
1533  * __of_add_property - Add a property to a node without lock operations
1534  * @np:		Caller's Device Node
1535  * @prop:	Property to add
1536  */
1537 int __of_add_property(struct device_node *np, struct property *prop)
1538 {
1539 	struct property **next;
1540 
1541 	prop->next = NULL;
1542 	next = &np->properties;
1543 	while (*next) {
1544 		if (strcmp(prop->name, (*next)->name) == 0)
1545 			/* duplicate ! don't insert it */
1546 			return -EEXIST;
1547 
1548 		next = &(*next)->next;
1549 	}
1550 	*next = prop;
1551 
1552 	return 0;
1553 }
1554 
1555 /**
1556  * of_add_property - Add a property to a node
1557  * @np:		Caller's Device Node
1558  * @prop:	Property to add
1559  */
1560 int of_add_property(struct device_node *np, struct property *prop)
1561 {
1562 	unsigned long flags;
1563 	int rc;
1564 
1565 	mutex_lock(&of_mutex);
1566 
1567 	raw_spin_lock_irqsave(&devtree_lock, flags);
1568 	rc = __of_add_property(np, prop);
1569 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1570 
1571 	if (!rc)
1572 		__of_add_property_sysfs(np, prop);
1573 
1574 	mutex_unlock(&of_mutex);
1575 
1576 	if (!rc)
1577 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1578 
1579 	return rc;
1580 }
1581 EXPORT_SYMBOL_GPL(of_add_property);
1582 
1583 int __of_remove_property(struct device_node *np, struct property *prop)
1584 {
1585 	struct property **next;
1586 
1587 	for (next = &np->properties; *next; next = &(*next)->next) {
1588 		if (*next == prop)
1589 			break;
1590 	}
1591 	if (*next == NULL)
1592 		return -ENODEV;
1593 
1594 	/* found the node */
1595 	*next = prop->next;
1596 	prop->next = np->deadprops;
1597 	np->deadprops = prop;
1598 
1599 	return 0;
1600 }
1601 
1602 /**
1603  * of_remove_property - Remove a property from a node.
1604  * @np:		Caller's Device Node
1605  * @prop:	Property to remove
1606  *
1607  * Note that we don't actually remove it, since we have given out
1608  * who-knows-how-many pointers to the data using get-property.
1609  * Instead we just move the property to the "dead properties"
1610  * list, so it won't be found any more.
1611  */
1612 int of_remove_property(struct device_node *np, struct property *prop)
1613 {
1614 	unsigned long flags;
1615 	int rc;
1616 
1617 	if (!prop)
1618 		return -ENODEV;
1619 
1620 	mutex_lock(&of_mutex);
1621 
1622 	raw_spin_lock_irqsave(&devtree_lock, flags);
1623 	rc = __of_remove_property(np, prop);
1624 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1625 
1626 	if (!rc)
1627 		__of_remove_property_sysfs(np, prop);
1628 
1629 	mutex_unlock(&of_mutex);
1630 
1631 	if (!rc)
1632 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1633 
1634 	return rc;
1635 }
1636 EXPORT_SYMBOL_GPL(of_remove_property);
1637 
1638 int __of_update_property(struct device_node *np, struct property *newprop,
1639 		struct property **oldpropp)
1640 {
1641 	struct property **next, *oldprop;
1642 
1643 	for (next = &np->properties; *next; next = &(*next)->next) {
1644 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1645 			break;
1646 	}
1647 	*oldpropp = oldprop = *next;
1648 
1649 	if (oldprop) {
1650 		/* replace the node */
1651 		newprop->next = oldprop->next;
1652 		*next = newprop;
1653 		oldprop->next = np->deadprops;
1654 		np->deadprops = oldprop;
1655 	} else {
1656 		/* new node */
1657 		newprop->next = NULL;
1658 		*next = newprop;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 /*
1665  * of_update_property - Update a property in a node, if the property does
1666  * not exist, add it.
1667  *
1668  * Note that we don't actually remove it, since we have given out
1669  * who-knows-how-many pointers to the data using get-property.
1670  * Instead we just move the property to the "dead properties" list,
1671  * and add the new property to the property list
1672  */
1673 int of_update_property(struct device_node *np, struct property *newprop)
1674 {
1675 	struct property *oldprop;
1676 	unsigned long flags;
1677 	int rc;
1678 
1679 	if (!newprop->name)
1680 		return -EINVAL;
1681 
1682 	mutex_lock(&of_mutex);
1683 
1684 	raw_spin_lock_irqsave(&devtree_lock, flags);
1685 	rc = __of_update_property(np, newprop, &oldprop);
1686 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1687 
1688 	if (!rc)
1689 		__of_update_property_sysfs(np, newprop, oldprop);
1690 
1691 	mutex_unlock(&of_mutex);
1692 
1693 	if (!rc)
1694 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1695 
1696 	return rc;
1697 }
1698 
1699 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1700 			 int id, const char *stem, int stem_len)
1701 {
1702 	ap->np = np;
1703 	ap->id = id;
1704 	strscpy(ap->stem, stem, stem_len + 1);
1705 	list_add_tail(&ap->link, &aliases_lookup);
1706 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1707 		 ap->alias, ap->stem, ap->id, np);
1708 }
1709 
1710 /**
1711  * of_alias_scan - Scan all properties of the 'aliases' node
1712  * @dt_alloc:	An allocator that provides a virtual address to memory
1713  *		for storing the resulting tree
1714  *
1715  * The function scans all the properties of the 'aliases' node and populates
1716  * the global lookup table with the properties.  It returns the
1717  * number of alias properties found, or an error code in case of failure.
1718  */
1719 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1720 {
1721 	struct property *pp;
1722 
1723 	of_aliases = of_find_node_by_path("/aliases");
1724 	of_chosen = of_find_node_by_path("/chosen");
1725 	if (of_chosen == NULL)
1726 		of_chosen = of_find_node_by_path("/chosen@0");
1727 
1728 	if (of_chosen) {
1729 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1730 		const char *name = NULL;
1731 
1732 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1733 			of_property_read_string(of_chosen, "linux,stdout-path",
1734 						&name);
1735 		if (IS_ENABLED(CONFIG_PPC) && !name)
1736 			of_property_read_string(of_aliases, "stdout", &name);
1737 		if (name)
1738 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1739 		if (of_stdout)
1740 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1741 	}
1742 
1743 	if (!of_aliases)
1744 		return;
1745 
1746 	for_each_property_of_node(of_aliases, pp) {
1747 		const char *start = pp->name;
1748 		const char *end = start + strlen(start);
1749 		struct device_node *np;
1750 		struct alias_prop *ap;
1751 		int id, len;
1752 
1753 		/* Skip those we do not want to proceed */
1754 		if (!strcmp(pp->name, "name") ||
1755 		    !strcmp(pp->name, "phandle") ||
1756 		    !strcmp(pp->name, "linux,phandle"))
1757 			continue;
1758 
1759 		np = of_find_node_by_path(pp->value);
1760 		if (!np)
1761 			continue;
1762 
1763 		/* walk the alias backwards to extract the id and work out
1764 		 * the 'stem' string */
1765 		while (isdigit(*(end-1)) && end > start)
1766 			end--;
1767 		len = end - start;
1768 
1769 		if (kstrtoint(end, 10, &id) < 0)
1770 			continue;
1771 
1772 		/* Allocate an alias_prop with enough space for the stem */
1773 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1774 		if (!ap)
1775 			continue;
1776 		memset(ap, 0, sizeof(*ap) + len + 1);
1777 		ap->alias = start;
1778 		of_alias_add(ap, np, id, start, len);
1779 	}
1780 }
1781 
1782 /**
1783  * of_alias_get_id - Get alias id for the given device_node
1784  * @np:		Pointer to the given device_node
1785  * @stem:	Alias stem of the given device_node
1786  *
1787  * The function travels the lookup table to get the alias id for the given
1788  * device_node and alias stem.
1789  *
1790  * Return: The alias id if found.
1791  */
1792 int of_alias_get_id(struct device_node *np, const char *stem)
1793 {
1794 	struct alias_prop *app;
1795 	int id = -ENODEV;
1796 
1797 	mutex_lock(&of_mutex);
1798 	list_for_each_entry(app, &aliases_lookup, link) {
1799 		if (strcmp(app->stem, stem) != 0)
1800 			continue;
1801 
1802 		if (np == app->np) {
1803 			id = app->id;
1804 			break;
1805 		}
1806 	}
1807 	mutex_unlock(&of_mutex);
1808 
1809 	return id;
1810 }
1811 EXPORT_SYMBOL_GPL(of_alias_get_id);
1812 
1813 /**
1814  * of_alias_get_highest_id - Get highest alias id for the given stem
1815  * @stem:	Alias stem to be examined
1816  *
1817  * The function travels the lookup table to get the highest alias id for the
1818  * given alias stem.  It returns the alias id if found.
1819  */
1820 int of_alias_get_highest_id(const char *stem)
1821 {
1822 	struct alias_prop *app;
1823 	int id = -ENODEV;
1824 
1825 	mutex_lock(&of_mutex);
1826 	list_for_each_entry(app, &aliases_lookup, link) {
1827 		if (strcmp(app->stem, stem) != 0)
1828 			continue;
1829 
1830 		if (app->id > id)
1831 			id = app->id;
1832 	}
1833 	mutex_unlock(&of_mutex);
1834 
1835 	return id;
1836 }
1837 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1838 
1839 /**
1840  * of_console_check() - Test and setup console for DT setup
1841  * @dn: Pointer to device node
1842  * @name: Name to use for preferred console without index. ex. "ttyS"
1843  * @index: Index to use for preferred console.
1844  *
1845  * Check if the given device node matches the stdout-path property in the
1846  * /chosen node. If it does then register it as the preferred console.
1847  *
1848  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1849  */
1850 bool of_console_check(struct device_node *dn, char *name, int index)
1851 {
1852 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1853 		return false;
1854 
1855 	/*
1856 	 * XXX: cast `options' to char pointer to suppress complication
1857 	 * warnings: printk, UART and console drivers expect char pointer.
1858 	 */
1859 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1860 }
1861 EXPORT_SYMBOL_GPL(of_console_check);
1862 
1863 /**
1864  * of_find_next_cache_node - Find a node's subsidiary cache
1865  * @np:	node of type "cpu" or "cache"
1866  *
1867  * Return: A node pointer with refcount incremented, use
1868  * of_node_put() on it when done.  Caller should hold a reference
1869  * to np.
1870  */
1871 struct device_node *of_find_next_cache_node(const struct device_node *np)
1872 {
1873 	struct device_node *child, *cache_node;
1874 
1875 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1876 	if (!cache_node)
1877 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1878 
1879 	if (cache_node)
1880 		return cache_node;
1881 
1882 	/* OF on pmac has nodes instead of properties named "l2-cache"
1883 	 * beneath CPU nodes.
1884 	 */
1885 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1886 		for_each_child_of_node(np, child)
1887 			if (of_node_is_type(child, "cache"))
1888 				return child;
1889 
1890 	return NULL;
1891 }
1892 
1893 /**
1894  * of_find_last_cache_level - Find the level at which the last cache is
1895  * 		present for the given logical cpu
1896  *
1897  * @cpu: cpu number(logical index) for which the last cache level is needed
1898  *
1899  * Return: The level at which the last cache is present. It is exactly
1900  * same as  the total number of cache levels for the given logical cpu.
1901  */
1902 int of_find_last_cache_level(unsigned int cpu)
1903 {
1904 	u32 cache_level = 0;
1905 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1906 
1907 	while (np) {
1908 		of_node_put(prev);
1909 		prev = np;
1910 		np = of_find_next_cache_node(np);
1911 	}
1912 
1913 	of_property_read_u32(prev, "cache-level", &cache_level);
1914 	of_node_put(prev);
1915 
1916 	return cache_level;
1917 }
1918 
1919 /**
1920  * of_map_id - Translate an ID through a downstream mapping.
1921  * @np: root complex device node.
1922  * @id: device ID to map.
1923  * @map_name: property name of the map to use.
1924  * @map_mask_name: optional property name of the mask to use.
1925  * @target: optional pointer to a target device node.
1926  * @id_out: optional pointer to receive the translated ID.
1927  *
1928  * Given a device ID, look up the appropriate implementation-defined
1929  * platform ID and/or the target device which receives transactions on that
1930  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1931  * @id_out may be NULL if only the other is required. If @target points to
1932  * a non-NULL device node pointer, only entries targeting that node will be
1933  * matched; if it points to a NULL value, it will receive the device node of
1934  * the first matching target phandle, with a reference held.
1935  *
1936  * Return: 0 on success or a standard error code on failure.
1937  */
1938 int of_map_id(struct device_node *np, u32 id,
1939 	       const char *map_name, const char *map_mask_name,
1940 	       struct device_node **target, u32 *id_out)
1941 {
1942 	u32 map_mask, masked_id;
1943 	int map_len;
1944 	const __be32 *map = NULL;
1945 
1946 	if (!np || !map_name || (!target && !id_out))
1947 		return -EINVAL;
1948 
1949 	map = of_get_property(np, map_name, &map_len);
1950 	if (!map) {
1951 		if (target)
1952 			return -ENODEV;
1953 		/* Otherwise, no map implies no translation */
1954 		*id_out = id;
1955 		return 0;
1956 	}
1957 
1958 	if (!map_len || map_len % (4 * sizeof(*map))) {
1959 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
1960 			map_name, map_len);
1961 		return -EINVAL;
1962 	}
1963 
1964 	/* The default is to select all bits. */
1965 	map_mask = 0xffffffff;
1966 
1967 	/*
1968 	 * Can be overridden by "{iommu,msi}-map-mask" property.
1969 	 * If of_property_read_u32() fails, the default is used.
1970 	 */
1971 	if (map_mask_name)
1972 		of_property_read_u32(np, map_mask_name, &map_mask);
1973 
1974 	masked_id = map_mask & id;
1975 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
1976 		struct device_node *phandle_node;
1977 		u32 id_base = be32_to_cpup(map + 0);
1978 		u32 phandle = be32_to_cpup(map + 1);
1979 		u32 out_base = be32_to_cpup(map + 2);
1980 		u32 id_len = be32_to_cpup(map + 3);
1981 
1982 		if (id_base & ~map_mask) {
1983 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
1984 				np, map_name, map_name,
1985 				map_mask, id_base);
1986 			return -EFAULT;
1987 		}
1988 
1989 		if (masked_id < id_base || masked_id >= id_base + id_len)
1990 			continue;
1991 
1992 		phandle_node = of_find_node_by_phandle(phandle);
1993 		if (!phandle_node)
1994 			return -ENODEV;
1995 
1996 		if (target) {
1997 			if (*target)
1998 				of_node_put(phandle_node);
1999 			else
2000 				*target = phandle_node;
2001 
2002 			if (*target != phandle_node)
2003 				continue;
2004 		}
2005 
2006 		if (id_out)
2007 			*id_out = masked_id - id_base + out_base;
2008 
2009 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2010 			np, map_name, map_mask, id_base, out_base,
2011 			id_len, id, masked_id - id_base + out_base);
2012 		return 0;
2013 	}
2014 
2015 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2016 		id, target && *target ? *target : NULL);
2017 
2018 	/* Bypasses translation */
2019 	if (id_out)
2020 		*id_out = id;
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(of_map_id);
2024