xref: /openbmc/linux/drivers/of/base.c (revision 3098f5eb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 /*
139  * Assumptions behind phandle_cache implementation:
140  *   - phandle property values are in a contiguous range of 1..n
141  *
142  * If the assumptions do not hold, then
143  *   - the phandle lookup overhead reduction provided by the cache
144  *     will likely be less
145  */
146 
147 static struct device_node **phandle_cache;
148 static u32 phandle_cache_mask;
149 
150 /*
151  * Caller must hold devtree_lock.
152  */
153 static void __of_free_phandle_cache(void)
154 {
155 	u32 cache_entries = phandle_cache_mask + 1;
156 	u32 k;
157 
158 	if (!phandle_cache)
159 		return;
160 
161 	for (k = 0; k < cache_entries; k++)
162 		of_node_put(phandle_cache[k]);
163 
164 	kfree(phandle_cache);
165 	phandle_cache = NULL;
166 }
167 
168 int of_free_phandle_cache(void)
169 {
170 	unsigned long flags;
171 
172 	raw_spin_lock_irqsave(&devtree_lock, flags);
173 
174 	__of_free_phandle_cache();
175 
176 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
177 
178 	return 0;
179 }
180 #if !defined(CONFIG_MODULES)
181 late_initcall_sync(of_free_phandle_cache);
182 #endif
183 
184 /*
185  * Caller must hold devtree_lock.
186  */
187 void __of_free_phandle_cache_entry(phandle handle)
188 {
189 	phandle masked_handle;
190 	struct device_node *np;
191 
192 	if (!handle)
193 		return;
194 
195 	masked_handle = handle & phandle_cache_mask;
196 
197 	if (phandle_cache) {
198 		np = phandle_cache[masked_handle];
199 		if (np && handle == np->phandle) {
200 			of_node_put(np);
201 			phandle_cache[masked_handle] = NULL;
202 		}
203 	}
204 }
205 
206 void of_populate_phandle_cache(void)
207 {
208 	unsigned long flags;
209 	u32 cache_entries;
210 	struct device_node *np;
211 	u32 phandles = 0;
212 
213 	raw_spin_lock_irqsave(&devtree_lock, flags);
214 
215 	__of_free_phandle_cache();
216 
217 	for_each_of_allnodes(np)
218 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
219 			phandles++;
220 
221 	if (!phandles)
222 		goto out;
223 
224 	cache_entries = roundup_pow_of_two(phandles);
225 	phandle_cache_mask = cache_entries - 1;
226 
227 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
228 				GFP_ATOMIC);
229 	if (!phandle_cache)
230 		goto out;
231 
232 	for_each_of_allnodes(np)
233 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
234 			of_node_get(np);
235 			phandle_cache[np->phandle & phandle_cache_mask] = np;
236 		}
237 
238 out:
239 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
240 }
241 
242 void __init of_core_init(void)
243 {
244 	struct device_node *np;
245 
246 	of_populate_phandle_cache();
247 
248 	/* Create the kset, and register existing nodes */
249 	mutex_lock(&of_mutex);
250 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
251 	if (!of_kset) {
252 		mutex_unlock(&of_mutex);
253 		pr_err("failed to register existing nodes\n");
254 		return;
255 	}
256 	for_each_of_allnodes(np)
257 		__of_attach_node_sysfs(np);
258 	mutex_unlock(&of_mutex);
259 
260 	/* Symlink in /proc as required by userspace ABI */
261 	if (of_root)
262 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
263 }
264 
265 static struct property *__of_find_property(const struct device_node *np,
266 					   const char *name, int *lenp)
267 {
268 	struct property *pp;
269 
270 	if (!np)
271 		return NULL;
272 
273 	for (pp = np->properties; pp; pp = pp->next) {
274 		if (of_prop_cmp(pp->name, name) == 0) {
275 			if (lenp)
276 				*lenp = pp->length;
277 			break;
278 		}
279 	}
280 
281 	return pp;
282 }
283 
284 struct property *of_find_property(const struct device_node *np,
285 				  const char *name,
286 				  int *lenp)
287 {
288 	struct property *pp;
289 	unsigned long flags;
290 
291 	raw_spin_lock_irqsave(&devtree_lock, flags);
292 	pp = __of_find_property(np, name, lenp);
293 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
294 
295 	return pp;
296 }
297 EXPORT_SYMBOL(of_find_property);
298 
299 struct device_node *__of_find_all_nodes(struct device_node *prev)
300 {
301 	struct device_node *np;
302 	if (!prev) {
303 		np = of_root;
304 	} else if (prev->child) {
305 		np = prev->child;
306 	} else {
307 		/* Walk back up looking for a sibling, or the end of the structure */
308 		np = prev;
309 		while (np->parent && !np->sibling)
310 			np = np->parent;
311 		np = np->sibling; /* Might be null at the end of the tree */
312 	}
313 	return np;
314 }
315 
316 /**
317  * of_find_all_nodes - Get next node in global list
318  * @prev:	Previous node or NULL to start iteration
319  *		of_node_put() will be called on it
320  *
321  * Returns a node pointer with refcount incremented, use
322  * of_node_put() on it when done.
323  */
324 struct device_node *of_find_all_nodes(struct device_node *prev)
325 {
326 	struct device_node *np;
327 	unsigned long flags;
328 
329 	raw_spin_lock_irqsave(&devtree_lock, flags);
330 	np = __of_find_all_nodes(prev);
331 	of_node_get(np);
332 	of_node_put(prev);
333 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
334 	return np;
335 }
336 EXPORT_SYMBOL(of_find_all_nodes);
337 
338 /*
339  * Find a property with a given name for a given node
340  * and return the value.
341  */
342 const void *__of_get_property(const struct device_node *np,
343 			      const char *name, int *lenp)
344 {
345 	struct property *pp = __of_find_property(np, name, lenp);
346 
347 	return pp ? pp->value : NULL;
348 }
349 
350 /*
351  * Find a property with a given name for a given node
352  * and return the value.
353  */
354 const void *of_get_property(const struct device_node *np, const char *name,
355 			    int *lenp)
356 {
357 	struct property *pp = of_find_property(np, name, lenp);
358 
359 	return pp ? pp->value : NULL;
360 }
361 EXPORT_SYMBOL(of_get_property);
362 
363 /*
364  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
365  *
366  * @cpu: logical cpu index of a core/thread
367  * @phys_id: physical identifier of a core/thread
368  *
369  * CPU logical to physical index mapping is architecture specific.
370  * However this __weak function provides a default match of physical
371  * id to logical cpu index. phys_id provided here is usually values read
372  * from the device tree which must match the hardware internal registers.
373  *
374  * Returns true if the physical identifier and the logical cpu index
375  * correspond to the same core/thread, false otherwise.
376  */
377 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
378 {
379 	return (u32)phys_id == cpu;
380 }
381 
382 /**
383  * Checks if the given "prop_name" property holds the physical id of the
384  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
385  * NULL, local thread number within the core is returned in it.
386  */
387 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
388 			const char *prop_name, int cpu, unsigned int *thread)
389 {
390 	const __be32 *cell;
391 	int ac, prop_len, tid;
392 	u64 hwid;
393 
394 	ac = of_n_addr_cells(cpun);
395 	cell = of_get_property(cpun, prop_name, &prop_len);
396 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
397 		return true;
398 	if (!cell || !ac)
399 		return false;
400 	prop_len /= sizeof(*cell) * ac;
401 	for (tid = 0; tid < prop_len; tid++) {
402 		hwid = of_read_number(cell, ac);
403 		if (arch_match_cpu_phys_id(cpu, hwid)) {
404 			if (thread)
405 				*thread = tid;
406 			return true;
407 		}
408 		cell += ac;
409 	}
410 	return false;
411 }
412 
413 /*
414  * arch_find_n_match_cpu_physical_id - See if the given device node is
415  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
416  * else false.  If 'thread' is non-NULL, the local thread number within the
417  * core is returned in it.
418  */
419 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
420 					      int cpu, unsigned int *thread)
421 {
422 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
423 	 * for thread ids on PowerPC. If it doesn't exist fallback to
424 	 * standard "reg" property.
425 	 */
426 	if (IS_ENABLED(CONFIG_PPC) &&
427 	    __of_find_n_match_cpu_property(cpun,
428 					   "ibm,ppc-interrupt-server#s",
429 					   cpu, thread))
430 		return true;
431 
432 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
433 }
434 
435 /**
436  * of_get_cpu_node - Get device node associated with the given logical CPU
437  *
438  * @cpu: CPU number(logical index) for which device node is required
439  * @thread: if not NULL, local thread number within the physical core is
440  *          returned
441  *
442  * The main purpose of this function is to retrieve the device node for the
443  * given logical CPU index. It should be used to initialize the of_node in
444  * cpu device. Once of_node in cpu device is populated, all the further
445  * references can use that instead.
446  *
447  * CPU logical to physical index mapping is architecture specific and is built
448  * before booting secondary cores. This function uses arch_match_cpu_phys_id
449  * which can be overridden by architecture specific implementation.
450  *
451  * Returns a node pointer for the logical cpu with refcount incremented, use
452  * of_node_put() on it when done. Returns NULL if not found.
453  */
454 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
455 {
456 	struct device_node *cpun;
457 
458 	for_each_of_cpu_node(cpun) {
459 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
460 			return cpun;
461 	}
462 	return NULL;
463 }
464 EXPORT_SYMBOL(of_get_cpu_node);
465 
466 /**
467  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
468  *
469  * @cpu_node: Pointer to the device_node for CPU.
470  *
471  * Returns the logical CPU number of the given CPU device_node.
472  * Returns -ENODEV if the CPU is not found.
473  */
474 int of_cpu_node_to_id(struct device_node *cpu_node)
475 {
476 	int cpu;
477 	bool found = false;
478 	struct device_node *np;
479 
480 	for_each_possible_cpu(cpu) {
481 		np = of_cpu_device_node_get(cpu);
482 		found = (cpu_node == np);
483 		of_node_put(np);
484 		if (found)
485 			return cpu;
486 	}
487 
488 	return -ENODEV;
489 }
490 EXPORT_SYMBOL(of_cpu_node_to_id);
491 
492 /**
493  * __of_device_is_compatible() - Check if the node matches given constraints
494  * @device: pointer to node
495  * @compat: required compatible string, NULL or "" for any match
496  * @type: required device_type value, NULL or "" for any match
497  * @name: required node name, NULL or "" for any match
498  *
499  * Checks if the given @compat, @type and @name strings match the
500  * properties of the given @device. A constraints can be skipped by
501  * passing NULL or an empty string as the constraint.
502  *
503  * Returns 0 for no match, and a positive integer on match. The return
504  * value is a relative score with larger values indicating better
505  * matches. The score is weighted for the most specific compatible value
506  * to get the highest score. Matching type is next, followed by matching
507  * name. Practically speaking, this results in the following priority
508  * order for matches:
509  *
510  * 1. specific compatible && type && name
511  * 2. specific compatible && type
512  * 3. specific compatible && name
513  * 4. specific compatible
514  * 5. general compatible && type && name
515  * 6. general compatible && type
516  * 7. general compatible && name
517  * 8. general compatible
518  * 9. type && name
519  * 10. type
520  * 11. name
521  */
522 static int __of_device_is_compatible(const struct device_node *device,
523 				     const char *compat, const char *type, const char *name)
524 {
525 	struct property *prop;
526 	const char *cp;
527 	int index = 0, score = 0;
528 
529 	/* Compatible match has highest priority */
530 	if (compat && compat[0]) {
531 		prop = __of_find_property(device, "compatible", NULL);
532 		for (cp = of_prop_next_string(prop, NULL); cp;
533 		     cp = of_prop_next_string(prop, cp), index++) {
534 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
535 				score = INT_MAX/2 - (index << 2);
536 				break;
537 			}
538 		}
539 		if (!score)
540 			return 0;
541 	}
542 
543 	/* Matching type is better than matching name */
544 	if (type && type[0]) {
545 		if (!__of_node_is_type(device, type))
546 			return 0;
547 		score += 2;
548 	}
549 
550 	/* Matching name is a bit better than not */
551 	if (name && name[0]) {
552 		if (!of_node_name_eq(device, name))
553 			return 0;
554 		score++;
555 	}
556 
557 	return score;
558 }
559 
560 /** Checks if the given "compat" string matches one of the strings in
561  * the device's "compatible" property
562  */
563 int of_device_is_compatible(const struct device_node *device,
564 		const char *compat)
565 {
566 	unsigned long flags;
567 	int res;
568 
569 	raw_spin_lock_irqsave(&devtree_lock, flags);
570 	res = __of_device_is_compatible(device, compat, NULL, NULL);
571 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
572 	return res;
573 }
574 EXPORT_SYMBOL(of_device_is_compatible);
575 
576 /** Checks if the device is compatible with any of the entries in
577  *  a NULL terminated array of strings. Returns the best match
578  *  score or 0.
579  */
580 int of_device_compatible_match(struct device_node *device,
581 			       const char *const *compat)
582 {
583 	unsigned int tmp, score = 0;
584 
585 	if (!compat)
586 		return 0;
587 
588 	while (*compat) {
589 		tmp = of_device_is_compatible(device, *compat);
590 		if (tmp > score)
591 			score = tmp;
592 		compat++;
593 	}
594 
595 	return score;
596 }
597 
598 /**
599  * of_machine_is_compatible - Test root of device tree for a given compatible value
600  * @compat: compatible string to look for in root node's compatible property.
601  *
602  * Returns a positive integer if the root node has the given value in its
603  * compatible property.
604  */
605 int of_machine_is_compatible(const char *compat)
606 {
607 	struct device_node *root;
608 	int rc = 0;
609 
610 	root = of_find_node_by_path("/");
611 	if (root) {
612 		rc = of_device_is_compatible(root, compat);
613 		of_node_put(root);
614 	}
615 	return rc;
616 }
617 EXPORT_SYMBOL(of_machine_is_compatible);
618 
619 /**
620  *  __of_device_is_available - check if a device is available for use
621  *
622  *  @device: Node to check for availability, with locks already held
623  *
624  *  Returns true if the status property is absent or set to "okay" or "ok",
625  *  false otherwise
626  */
627 static bool __of_device_is_available(const struct device_node *device)
628 {
629 	const char *status;
630 	int statlen;
631 
632 	if (!device)
633 		return false;
634 
635 	status = __of_get_property(device, "status", &statlen);
636 	if (status == NULL)
637 		return true;
638 
639 	if (statlen > 0) {
640 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
641 			return true;
642 	}
643 
644 	return false;
645 }
646 
647 /**
648  *  of_device_is_available - check if a device is available for use
649  *
650  *  @device: Node to check for availability
651  *
652  *  Returns true if the status property is absent or set to "okay" or "ok",
653  *  false otherwise
654  */
655 bool of_device_is_available(const struct device_node *device)
656 {
657 	unsigned long flags;
658 	bool res;
659 
660 	raw_spin_lock_irqsave(&devtree_lock, flags);
661 	res = __of_device_is_available(device);
662 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
663 	return res;
664 
665 }
666 EXPORT_SYMBOL(of_device_is_available);
667 
668 /**
669  *  of_device_is_big_endian - check if a device has BE registers
670  *
671  *  @device: Node to check for endianness
672  *
673  *  Returns true if the device has a "big-endian" property, or if the kernel
674  *  was compiled for BE *and* the device has a "native-endian" property.
675  *  Returns false otherwise.
676  *
677  *  Callers would nominally use ioread32be/iowrite32be if
678  *  of_device_is_big_endian() == true, or readl/writel otherwise.
679  */
680 bool of_device_is_big_endian(const struct device_node *device)
681 {
682 	if (of_property_read_bool(device, "big-endian"))
683 		return true;
684 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
685 	    of_property_read_bool(device, "native-endian"))
686 		return true;
687 	return false;
688 }
689 EXPORT_SYMBOL(of_device_is_big_endian);
690 
691 /**
692  *	of_get_parent - Get a node's parent if any
693  *	@node:	Node to get parent
694  *
695  *	Returns a node pointer with refcount incremented, use
696  *	of_node_put() on it when done.
697  */
698 struct device_node *of_get_parent(const struct device_node *node)
699 {
700 	struct device_node *np;
701 	unsigned long flags;
702 
703 	if (!node)
704 		return NULL;
705 
706 	raw_spin_lock_irqsave(&devtree_lock, flags);
707 	np = of_node_get(node->parent);
708 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
709 	return np;
710 }
711 EXPORT_SYMBOL(of_get_parent);
712 
713 /**
714  *	of_get_next_parent - Iterate to a node's parent
715  *	@node:	Node to get parent of
716  *
717  *	This is like of_get_parent() except that it drops the
718  *	refcount on the passed node, making it suitable for iterating
719  *	through a node's parents.
720  *
721  *	Returns a node pointer with refcount incremented, use
722  *	of_node_put() on it when done.
723  */
724 struct device_node *of_get_next_parent(struct device_node *node)
725 {
726 	struct device_node *parent;
727 	unsigned long flags;
728 
729 	if (!node)
730 		return NULL;
731 
732 	raw_spin_lock_irqsave(&devtree_lock, flags);
733 	parent = of_node_get(node->parent);
734 	of_node_put(node);
735 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
736 	return parent;
737 }
738 EXPORT_SYMBOL(of_get_next_parent);
739 
740 static struct device_node *__of_get_next_child(const struct device_node *node,
741 						struct device_node *prev)
742 {
743 	struct device_node *next;
744 
745 	if (!node)
746 		return NULL;
747 
748 	next = prev ? prev->sibling : node->child;
749 	for (; next; next = next->sibling)
750 		if (of_node_get(next))
751 			break;
752 	of_node_put(prev);
753 	return next;
754 }
755 #define __for_each_child_of_node(parent, child) \
756 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
757 	     child = __of_get_next_child(parent, child))
758 
759 /**
760  *	of_get_next_child - Iterate a node childs
761  *	@node:	parent node
762  *	@prev:	previous child of the parent node, or NULL to get first
763  *
764  *	Returns a node pointer with refcount incremented, use of_node_put() on
765  *	it when done. Returns NULL when prev is the last child. Decrements the
766  *	refcount of prev.
767  */
768 struct device_node *of_get_next_child(const struct device_node *node,
769 	struct device_node *prev)
770 {
771 	struct device_node *next;
772 	unsigned long flags;
773 
774 	raw_spin_lock_irqsave(&devtree_lock, flags);
775 	next = __of_get_next_child(node, prev);
776 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
777 	return next;
778 }
779 EXPORT_SYMBOL(of_get_next_child);
780 
781 /**
782  *	of_get_next_available_child - Find the next available child node
783  *	@node:	parent node
784  *	@prev:	previous child of the parent node, or NULL to get first
785  *
786  *      This function is like of_get_next_child(), except that it
787  *      automatically skips any disabled nodes (i.e. status = "disabled").
788  */
789 struct device_node *of_get_next_available_child(const struct device_node *node,
790 	struct device_node *prev)
791 {
792 	struct device_node *next;
793 	unsigned long flags;
794 
795 	if (!node)
796 		return NULL;
797 
798 	raw_spin_lock_irqsave(&devtree_lock, flags);
799 	next = prev ? prev->sibling : node->child;
800 	for (; next; next = next->sibling) {
801 		if (!__of_device_is_available(next))
802 			continue;
803 		if (of_node_get(next))
804 			break;
805 	}
806 	of_node_put(prev);
807 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
808 	return next;
809 }
810 EXPORT_SYMBOL(of_get_next_available_child);
811 
812 /**
813  *	of_get_next_cpu_node - Iterate on cpu nodes
814  *	@prev:	previous child of the /cpus node, or NULL to get first
815  *
816  *	Returns a cpu node pointer with refcount incremented, use of_node_put()
817  *	on it when done. Returns NULL when prev is the last child. Decrements
818  *	the refcount of prev.
819  */
820 struct device_node *of_get_next_cpu_node(struct device_node *prev)
821 {
822 	struct device_node *next = NULL;
823 	unsigned long flags;
824 	struct device_node *node;
825 
826 	if (!prev)
827 		node = of_find_node_by_path("/cpus");
828 
829 	raw_spin_lock_irqsave(&devtree_lock, flags);
830 	if (prev)
831 		next = prev->sibling;
832 	else if (node) {
833 		next = node->child;
834 		of_node_put(node);
835 	}
836 	for (; next; next = next->sibling) {
837 		if (!(of_node_name_eq(next, "cpu") ||
838 		      __of_node_is_type(next, "cpu")))
839 			continue;
840 		if (of_node_get(next))
841 			break;
842 	}
843 	of_node_put(prev);
844 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
845 	return next;
846 }
847 EXPORT_SYMBOL(of_get_next_cpu_node);
848 
849 /**
850  * of_get_compatible_child - Find compatible child node
851  * @parent:	parent node
852  * @compatible:	compatible string
853  *
854  * Lookup child node whose compatible property contains the given compatible
855  * string.
856  *
857  * Returns a node pointer with refcount incremented, use of_node_put() on it
858  * when done; or NULL if not found.
859  */
860 struct device_node *of_get_compatible_child(const struct device_node *parent,
861 				const char *compatible)
862 {
863 	struct device_node *child;
864 
865 	for_each_child_of_node(parent, child) {
866 		if (of_device_is_compatible(child, compatible))
867 			break;
868 	}
869 
870 	return child;
871 }
872 EXPORT_SYMBOL(of_get_compatible_child);
873 
874 /**
875  *	of_get_child_by_name - Find the child node by name for a given parent
876  *	@node:	parent node
877  *	@name:	child name to look for.
878  *
879  *      This function looks for child node for given matching name
880  *
881  *	Returns a node pointer if found, with refcount incremented, use
882  *	of_node_put() on it when done.
883  *	Returns NULL if node is not found.
884  */
885 struct device_node *of_get_child_by_name(const struct device_node *node,
886 				const char *name)
887 {
888 	struct device_node *child;
889 
890 	for_each_child_of_node(node, child)
891 		if (of_node_name_eq(child, name))
892 			break;
893 	return child;
894 }
895 EXPORT_SYMBOL(of_get_child_by_name);
896 
897 struct device_node *__of_find_node_by_path(struct device_node *parent,
898 						const char *path)
899 {
900 	struct device_node *child;
901 	int len;
902 
903 	len = strcspn(path, "/:");
904 	if (!len)
905 		return NULL;
906 
907 	__for_each_child_of_node(parent, child) {
908 		const char *name = kbasename(child->full_name);
909 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
910 			return child;
911 	}
912 	return NULL;
913 }
914 
915 struct device_node *__of_find_node_by_full_path(struct device_node *node,
916 						const char *path)
917 {
918 	const char *separator = strchr(path, ':');
919 
920 	while (node && *path == '/') {
921 		struct device_node *tmp = node;
922 
923 		path++; /* Increment past '/' delimiter */
924 		node = __of_find_node_by_path(node, path);
925 		of_node_put(tmp);
926 		path = strchrnul(path, '/');
927 		if (separator && separator < path)
928 			break;
929 	}
930 	return node;
931 }
932 
933 /**
934  *	of_find_node_opts_by_path - Find a node matching a full OF path
935  *	@path: Either the full path to match, or if the path does not
936  *	       start with '/', the name of a property of the /aliases
937  *	       node (an alias).  In the case of an alias, the node
938  *	       matching the alias' value will be returned.
939  *	@opts: Address of a pointer into which to store the start of
940  *	       an options string appended to the end of the path with
941  *	       a ':' separator.
942  *
943  *	Valid paths:
944  *		/foo/bar	Full path
945  *		foo		Valid alias
946  *		foo/bar		Valid alias + relative path
947  *
948  *	Returns a node pointer with refcount incremented, use
949  *	of_node_put() on it when done.
950  */
951 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
952 {
953 	struct device_node *np = NULL;
954 	struct property *pp;
955 	unsigned long flags;
956 	const char *separator = strchr(path, ':');
957 
958 	if (opts)
959 		*opts = separator ? separator + 1 : NULL;
960 
961 	if (strcmp(path, "/") == 0)
962 		return of_node_get(of_root);
963 
964 	/* The path could begin with an alias */
965 	if (*path != '/') {
966 		int len;
967 		const char *p = separator;
968 
969 		if (!p)
970 			p = strchrnul(path, '/');
971 		len = p - path;
972 
973 		/* of_aliases must not be NULL */
974 		if (!of_aliases)
975 			return NULL;
976 
977 		for_each_property_of_node(of_aliases, pp) {
978 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
979 				np = of_find_node_by_path(pp->value);
980 				break;
981 			}
982 		}
983 		if (!np)
984 			return NULL;
985 		path = p;
986 	}
987 
988 	/* Step down the tree matching path components */
989 	raw_spin_lock_irqsave(&devtree_lock, flags);
990 	if (!np)
991 		np = of_node_get(of_root);
992 	np = __of_find_node_by_full_path(np, path);
993 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
994 	return np;
995 }
996 EXPORT_SYMBOL(of_find_node_opts_by_path);
997 
998 /**
999  *	of_find_node_by_name - Find a node by its "name" property
1000  *	@from:	The node to start searching from or NULL; the node
1001  *		you pass will not be searched, only the next one
1002  *		will. Typically, you pass what the previous call
1003  *		returned. of_node_put() will be called on @from.
1004  *	@name:	The name string to match against
1005  *
1006  *	Returns a node pointer with refcount incremented, use
1007  *	of_node_put() on it when done.
1008  */
1009 struct device_node *of_find_node_by_name(struct device_node *from,
1010 	const char *name)
1011 {
1012 	struct device_node *np;
1013 	unsigned long flags;
1014 
1015 	raw_spin_lock_irqsave(&devtree_lock, flags);
1016 	for_each_of_allnodes_from(from, np)
1017 		if (of_node_name_eq(np, name) && of_node_get(np))
1018 			break;
1019 	of_node_put(from);
1020 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 	return np;
1022 }
1023 EXPORT_SYMBOL(of_find_node_by_name);
1024 
1025 /**
1026  *	of_find_node_by_type - Find a node by its "device_type" property
1027  *	@from:	The node to start searching from, or NULL to start searching
1028  *		the entire device tree. The node you pass will not be
1029  *		searched, only the next one will; typically, you pass
1030  *		what the previous call returned. of_node_put() will be
1031  *		called on from for you.
1032  *	@type:	The type string to match against
1033  *
1034  *	Returns a node pointer with refcount incremented, use
1035  *	of_node_put() on it when done.
1036  */
1037 struct device_node *of_find_node_by_type(struct device_node *from,
1038 	const char *type)
1039 {
1040 	struct device_node *np;
1041 	unsigned long flags;
1042 
1043 	raw_spin_lock_irqsave(&devtree_lock, flags);
1044 	for_each_of_allnodes_from(from, np)
1045 		if (__of_node_is_type(np, type) && of_node_get(np))
1046 			break;
1047 	of_node_put(from);
1048 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1049 	return np;
1050 }
1051 EXPORT_SYMBOL(of_find_node_by_type);
1052 
1053 /**
1054  *	of_find_compatible_node - Find a node based on type and one of the
1055  *                                tokens in its "compatible" property
1056  *	@from:		The node to start searching from or NULL, the node
1057  *			you pass will not be searched, only the next one
1058  *			will; typically, you pass what the previous call
1059  *			returned. of_node_put() will be called on it
1060  *	@type:		The type string to match "device_type" or NULL to ignore
1061  *	@compatible:	The string to match to one of the tokens in the device
1062  *			"compatible" list.
1063  *
1064  *	Returns a node pointer with refcount incremented, use
1065  *	of_node_put() on it when done.
1066  */
1067 struct device_node *of_find_compatible_node(struct device_node *from,
1068 	const char *type, const char *compatible)
1069 {
1070 	struct device_node *np;
1071 	unsigned long flags;
1072 
1073 	raw_spin_lock_irqsave(&devtree_lock, flags);
1074 	for_each_of_allnodes_from(from, np)
1075 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1076 		    of_node_get(np))
1077 			break;
1078 	of_node_put(from);
1079 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1080 	return np;
1081 }
1082 EXPORT_SYMBOL(of_find_compatible_node);
1083 
1084 /**
1085  *	of_find_node_with_property - Find a node which has a property with
1086  *                                   the given name.
1087  *	@from:		The node to start searching from or NULL, the node
1088  *			you pass will not be searched, only the next one
1089  *			will; typically, you pass what the previous call
1090  *			returned. of_node_put() will be called on it
1091  *	@prop_name:	The name of the property to look for.
1092  *
1093  *	Returns a node pointer with refcount incremented, use
1094  *	of_node_put() on it when done.
1095  */
1096 struct device_node *of_find_node_with_property(struct device_node *from,
1097 	const char *prop_name)
1098 {
1099 	struct device_node *np;
1100 	struct property *pp;
1101 	unsigned long flags;
1102 
1103 	raw_spin_lock_irqsave(&devtree_lock, flags);
1104 	for_each_of_allnodes_from(from, np) {
1105 		for (pp = np->properties; pp; pp = pp->next) {
1106 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1107 				of_node_get(np);
1108 				goto out;
1109 			}
1110 		}
1111 	}
1112 out:
1113 	of_node_put(from);
1114 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1115 	return np;
1116 }
1117 EXPORT_SYMBOL(of_find_node_with_property);
1118 
1119 static
1120 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1121 					   const struct device_node *node)
1122 {
1123 	const struct of_device_id *best_match = NULL;
1124 	int score, best_score = 0;
1125 
1126 	if (!matches)
1127 		return NULL;
1128 
1129 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1130 		score = __of_device_is_compatible(node, matches->compatible,
1131 						  matches->type, matches->name);
1132 		if (score > best_score) {
1133 			best_match = matches;
1134 			best_score = score;
1135 		}
1136 	}
1137 
1138 	return best_match;
1139 }
1140 
1141 /**
1142  * of_match_node - Tell if a device_node has a matching of_match structure
1143  *	@matches:	array of of device match structures to search in
1144  *	@node:		the of device structure to match against
1145  *
1146  *	Low level utility function used by device matching.
1147  */
1148 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1149 					 const struct device_node *node)
1150 {
1151 	const struct of_device_id *match;
1152 	unsigned long flags;
1153 
1154 	raw_spin_lock_irqsave(&devtree_lock, flags);
1155 	match = __of_match_node(matches, node);
1156 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157 	return match;
1158 }
1159 EXPORT_SYMBOL(of_match_node);
1160 
1161 /**
1162  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1163  *					  match table.
1164  *	@from:		The node to start searching from or NULL, the node
1165  *			you pass will not be searched, only the next one
1166  *			will; typically, you pass what the previous call
1167  *			returned. of_node_put() will be called on it
1168  *	@matches:	array of of device match structures to search in
1169  *	@match		Updated to point at the matches entry which matched
1170  *
1171  *	Returns a node pointer with refcount incremented, use
1172  *	of_node_put() on it when done.
1173  */
1174 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1175 					const struct of_device_id *matches,
1176 					const struct of_device_id **match)
1177 {
1178 	struct device_node *np;
1179 	const struct of_device_id *m;
1180 	unsigned long flags;
1181 
1182 	if (match)
1183 		*match = NULL;
1184 
1185 	raw_spin_lock_irqsave(&devtree_lock, flags);
1186 	for_each_of_allnodes_from(from, np) {
1187 		m = __of_match_node(matches, np);
1188 		if (m && of_node_get(np)) {
1189 			if (match)
1190 				*match = m;
1191 			break;
1192 		}
1193 	}
1194 	of_node_put(from);
1195 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1196 	return np;
1197 }
1198 EXPORT_SYMBOL(of_find_matching_node_and_match);
1199 
1200 /**
1201  * of_modalias_node - Lookup appropriate modalias for a device node
1202  * @node:	pointer to a device tree node
1203  * @modalias:	Pointer to buffer that modalias value will be copied into
1204  * @len:	Length of modalias value
1205  *
1206  * Based on the value of the compatible property, this routine will attempt
1207  * to choose an appropriate modalias value for a particular device tree node.
1208  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1209  * from the first entry in the compatible list property.
1210  *
1211  * This routine returns 0 on success, <0 on failure.
1212  */
1213 int of_modalias_node(struct device_node *node, char *modalias, int len)
1214 {
1215 	const char *compatible, *p;
1216 	int cplen;
1217 
1218 	compatible = of_get_property(node, "compatible", &cplen);
1219 	if (!compatible || strlen(compatible) > cplen)
1220 		return -ENODEV;
1221 	p = strchr(compatible, ',');
1222 	strlcpy(modalias, p ? p + 1 : compatible, len);
1223 	return 0;
1224 }
1225 EXPORT_SYMBOL_GPL(of_modalias_node);
1226 
1227 /**
1228  * of_find_node_by_phandle - Find a node given a phandle
1229  * @handle:	phandle of the node to find
1230  *
1231  * Returns a node pointer with refcount incremented, use
1232  * of_node_put() on it when done.
1233  */
1234 struct device_node *of_find_node_by_phandle(phandle handle)
1235 {
1236 	struct device_node *np = NULL;
1237 	unsigned long flags;
1238 	phandle masked_handle;
1239 
1240 	if (!handle)
1241 		return NULL;
1242 
1243 	raw_spin_lock_irqsave(&devtree_lock, flags);
1244 
1245 	masked_handle = handle & phandle_cache_mask;
1246 
1247 	if (phandle_cache) {
1248 		if (phandle_cache[masked_handle] &&
1249 		    handle == phandle_cache[masked_handle]->phandle)
1250 			np = phandle_cache[masked_handle];
1251 		if (np && of_node_check_flag(np, OF_DETACHED)) {
1252 			WARN_ON(1); /* did not uncache np on node removal */
1253 			of_node_put(np);
1254 			phandle_cache[masked_handle] = NULL;
1255 			np = NULL;
1256 		}
1257 	}
1258 
1259 	if (!np) {
1260 		for_each_of_allnodes(np)
1261 			if (np->phandle == handle &&
1262 			    !of_node_check_flag(np, OF_DETACHED)) {
1263 				if (phandle_cache) {
1264 					/* will put when removed from cache */
1265 					of_node_get(np);
1266 					phandle_cache[masked_handle] = np;
1267 				}
1268 				break;
1269 			}
1270 	}
1271 
1272 	of_node_get(np);
1273 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1274 	return np;
1275 }
1276 EXPORT_SYMBOL(of_find_node_by_phandle);
1277 
1278 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1279 {
1280 	int i;
1281 	printk("%s %pOF", msg, args->np);
1282 	for (i = 0; i < args->args_count; i++) {
1283 		const char delim = i ? ',' : ':';
1284 
1285 		pr_cont("%c%08x", delim, args->args[i]);
1286 	}
1287 	pr_cont("\n");
1288 }
1289 
1290 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1291 		const struct device_node *np,
1292 		const char *list_name,
1293 		const char *cells_name,
1294 		int cell_count)
1295 {
1296 	const __be32 *list;
1297 	int size;
1298 
1299 	memset(it, 0, sizeof(*it));
1300 
1301 	/*
1302 	 * one of cell_count or cells_name must be provided to determine the
1303 	 * argument length.
1304 	 */
1305 	if (cell_count < 0 && !cells_name)
1306 		return -EINVAL;
1307 
1308 	list = of_get_property(np, list_name, &size);
1309 	if (!list)
1310 		return -ENOENT;
1311 
1312 	it->cells_name = cells_name;
1313 	it->cell_count = cell_count;
1314 	it->parent = np;
1315 	it->list_end = list + size / sizeof(*list);
1316 	it->phandle_end = list;
1317 	it->cur = list;
1318 
1319 	return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1322 
1323 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1324 {
1325 	uint32_t count = 0;
1326 
1327 	if (it->node) {
1328 		of_node_put(it->node);
1329 		it->node = NULL;
1330 	}
1331 
1332 	if (!it->cur || it->phandle_end >= it->list_end)
1333 		return -ENOENT;
1334 
1335 	it->cur = it->phandle_end;
1336 
1337 	/* If phandle is 0, then it is an empty entry with no arguments. */
1338 	it->phandle = be32_to_cpup(it->cur++);
1339 
1340 	if (it->phandle) {
1341 
1342 		/*
1343 		 * Find the provider node and parse the #*-cells property to
1344 		 * determine the argument length.
1345 		 */
1346 		it->node = of_find_node_by_phandle(it->phandle);
1347 
1348 		if (it->cells_name) {
1349 			if (!it->node) {
1350 				pr_err("%pOF: could not find phandle\n",
1351 				       it->parent);
1352 				goto err;
1353 			}
1354 
1355 			if (of_property_read_u32(it->node, it->cells_name,
1356 						 &count)) {
1357 				/*
1358 				 * If both cell_count and cells_name is given,
1359 				 * fall back to cell_count in absence
1360 				 * of the cells_name property
1361 				 */
1362 				if (it->cell_count >= 0) {
1363 					count = it->cell_count;
1364 				} else {
1365 					pr_err("%pOF: could not get %s for %pOF\n",
1366 					       it->parent,
1367 					       it->cells_name,
1368 					       it->node);
1369 					goto err;
1370 				}
1371 			}
1372 		} else {
1373 			count = it->cell_count;
1374 		}
1375 
1376 		/*
1377 		 * Make sure that the arguments actually fit in the remaining
1378 		 * property data length
1379 		 */
1380 		if (it->cur + count > it->list_end) {
1381 			pr_err("%pOF: %s = %d found %d\n",
1382 			       it->parent, it->cells_name,
1383 			       count, it->cell_count);
1384 			goto err;
1385 		}
1386 	}
1387 
1388 	it->phandle_end = it->cur + count;
1389 	it->cur_count = count;
1390 
1391 	return 0;
1392 
1393 err:
1394 	if (it->node) {
1395 		of_node_put(it->node);
1396 		it->node = NULL;
1397 	}
1398 
1399 	return -EINVAL;
1400 }
1401 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1402 
1403 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1404 			     uint32_t *args,
1405 			     int size)
1406 {
1407 	int i, count;
1408 
1409 	count = it->cur_count;
1410 
1411 	if (WARN_ON(size < count))
1412 		count = size;
1413 
1414 	for (i = 0; i < count; i++)
1415 		args[i] = be32_to_cpup(it->cur++);
1416 
1417 	return count;
1418 }
1419 
1420 static int __of_parse_phandle_with_args(const struct device_node *np,
1421 					const char *list_name,
1422 					const char *cells_name,
1423 					int cell_count, int index,
1424 					struct of_phandle_args *out_args)
1425 {
1426 	struct of_phandle_iterator it;
1427 	int rc, cur_index = 0;
1428 
1429 	/* Loop over the phandles until all the requested entry is found */
1430 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1431 		/*
1432 		 * All of the error cases bail out of the loop, so at
1433 		 * this point, the parsing is successful. If the requested
1434 		 * index matches, then fill the out_args structure and return,
1435 		 * or return -ENOENT for an empty entry.
1436 		 */
1437 		rc = -ENOENT;
1438 		if (cur_index == index) {
1439 			if (!it.phandle)
1440 				goto err;
1441 
1442 			if (out_args) {
1443 				int c;
1444 
1445 				c = of_phandle_iterator_args(&it,
1446 							     out_args->args,
1447 							     MAX_PHANDLE_ARGS);
1448 				out_args->np = it.node;
1449 				out_args->args_count = c;
1450 			} else {
1451 				of_node_put(it.node);
1452 			}
1453 
1454 			/* Found it! return success */
1455 			return 0;
1456 		}
1457 
1458 		cur_index++;
1459 	}
1460 
1461 	/*
1462 	 * Unlock node before returning result; will be one of:
1463 	 * -ENOENT : index is for empty phandle
1464 	 * -EINVAL : parsing error on data
1465 	 */
1466 
1467  err:
1468 	of_node_put(it.node);
1469 	return rc;
1470 }
1471 
1472 /**
1473  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1474  * @np: Pointer to device node holding phandle property
1475  * @phandle_name: Name of property holding a phandle value
1476  * @index: For properties holding a table of phandles, this is the index into
1477  *         the table
1478  *
1479  * Returns the device_node pointer with refcount incremented.  Use
1480  * of_node_put() on it when done.
1481  */
1482 struct device_node *of_parse_phandle(const struct device_node *np,
1483 				     const char *phandle_name, int index)
1484 {
1485 	struct of_phandle_args args;
1486 
1487 	if (index < 0)
1488 		return NULL;
1489 
1490 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1491 					 index, &args))
1492 		return NULL;
1493 
1494 	return args.np;
1495 }
1496 EXPORT_SYMBOL(of_parse_phandle);
1497 
1498 /**
1499  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1500  * @np:		pointer to a device tree node containing a list
1501  * @list_name:	property name that contains a list
1502  * @cells_name:	property name that specifies phandles' arguments count
1503  * @index:	index of a phandle to parse out
1504  * @out_args:	optional pointer to output arguments structure (will be filled)
1505  *
1506  * This function is useful to parse lists of phandles and their arguments.
1507  * Returns 0 on success and fills out_args, on error returns appropriate
1508  * errno value.
1509  *
1510  * Caller is responsible to call of_node_put() on the returned out_args->np
1511  * pointer.
1512  *
1513  * Example:
1514  *
1515  * phandle1: node1 {
1516  *	#list-cells = <2>;
1517  * }
1518  *
1519  * phandle2: node2 {
1520  *	#list-cells = <1>;
1521  * }
1522  *
1523  * node3 {
1524  *	list = <&phandle1 1 2 &phandle2 3>;
1525  * }
1526  *
1527  * To get a device_node of the `node2' node you may call this:
1528  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1529  */
1530 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1531 				const char *cells_name, int index,
1532 				struct of_phandle_args *out_args)
1533 {
1534 	int cell_count = -1;
1535 
1536 	if (index < 0)
1537 		return -EINVAL;
1538 
1539 	/* If cells_name is NULL we assume a cell count of 0 */
1540 	if (!cells_name)
1541 		cell_count = 0;
1542 
1543 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1544 					    cell_count, index, out_args);
1545 }
1546 EXPORT_SYMBOL(of_parse_phandle_with_args);
1547 
1548 /**
1549  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1550  * @np:		pointer to a device tree node containing a list
1551  * @list_name:	property name that contains a list
1552  * @stem_name:	stem of property names that specify phandles' arguments count
1553  * @index:	index of a phandle to parse out
1554  * @out_args:	optional pointer to output arguments structure (will be filled)
1555  *
1556  * This function is useful to parse lists of phandles and their arguments.
1557  * Returns 0 on success and fills out_args, on error returns appropriate errno
1558  * value. The difference between this function and of_parse_phandle_with_args()
1559  * is that this API remaps a phandle if the node the phandle points to has
1560  * a <@stem_name>-map property.
1561  *
1562  * Caller is responsible to call of_node_put() on the returned out_args->np
1563  * pointer.
1564  *
1565  * Example:
1566  *
1567  * phandle1: node1 {
1568  *	#list-cells = <2>;
1569  * }
1570  *
1571  * phandle2: node2 {
1572  *	#list-cells = <1>;
1573  * }
1574  *
1575  * phandle3: node3 {
1576  * 	#list-cells = <1>;
1577  * 	list-map = <0 &phandle2 3>,
1578  * 		   <1 &phandle2 2>,
1579  * 		   <2 &phandle1 5 1>;
1580  *	list-map-mask = <0x3>;
1581  * };
1582  *
1583  * node4 {
1584  *	list = <&phandle1 1 2 &phandle3 0>;
1585  * }
1586  *
1587  * To get a device_node of the `node2' node you may call this:
1588  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1589  */
1590 int of_parse_phandle_with_args_map(const struct device_node *np,
1591 				   const char *list_name,
1592 				   const char *stem_name,
1593 				   int index, struct of_phandle_args *out_args)
1594 {
1595 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1596 	char *pass_name = NULL;
1597 	struct device_node *cur, *new = NULL;
1598 	const __be32 *map, *mask, *pass;
1599 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1600 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1601 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1602 	const __be32 *match_array = initial_match_array;
1603 	int i, ret, map_len, match;
1604 	u32 list_size, new_size;
1605 
1606 	if (index < 0)
1607 		return -EINVAL;
1608 
1609 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1610 	if (!cells_name)
1611 		return -ENOMEM;
1612 
1613 	ret = -ENOMEM;
1614 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1615 	if (!map_name)
1616 		goto free;
1617 
1618 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1619 	if (!mask_name)
1620 		goto free;
1621 
1622 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1623 	if (!pass_name)
1624 		goto free;
1625 
1626 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1627 					   out_args);
1628 	if (ret)
1629 		goto free;
1630 
1631 	/* Get the #<list>-cells property */
1632 	cur = out_args->np;
1633 	ret = of_property_read_u32(cur, cells_name, &list_size);
1634 	if (ret < 0)
1635 		goto put;
1636 
1637 	/* Precalculate the match array - this simplifies match loop */
1638 	for (i = 0; i < list_size; i++)
1639 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1640 
1641 	ret = -EINVAL;
1642 	while (cur) {
1643 		/* Get the <list>-map property */
1644 		map = of_get_property(cur, map_name, &map_len);
1645 		if (!map) {
1646 			ret = 0;
1647 			goto free;
1648 		}
1649 		map_len /= sizeof(u32);
1650 
1651 		/* Get the <list>-map-mask property (optional) */
1652 		mask = of_get_property(cur, mask_name, NULL);
1653 		if (!mask)
1654 			mask = dummy_mask;
1655 		/* Iterate through <list>-map property */
1656 		match = 0;
1657 		while (map_len > (list_size + 1) && !match) {
1658 			/* Compare specifiers */
1659 			match = 1;
1660 			for (i = 0; i < list_size; i++, map_len--)
1661 				match &= !((match_array[i] ^ *map++) & mask[i]);
1662 
1663 			of_node_put(new);
1664 			new = of_find_node_by_phandle(be32_to_cpup(map));
1665 			map++;
1666 			map_len--;
1667 
1668 			/* Check if not found */
1669 			if (!new)
1670 				goto put;
1671 
1672 			if (!of_device_is_available(new))
1673 				match = 0;
1674 
1675 			ret = of_property_read_u32(new, cells_name, &new_size);
1676 			if (ret)
1677 				goto put;
1678 
1679 			/* Check for malformed properties */
1680 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1681 				goto put;
1682 			if (map_len < new_size)
1683 				goto put;
1684 
1685 			/* Move forward by new node's #<list>-cells amount */
1686 			map += new_size;
1687 			map_len -= new_size;
1688 		}
1689 		if (!match)
1690 			goto put;
1691 
1692 		/* Get the <list>-map-pass-thru property (optional) */
1693 		pass = of_get_property(cur, pass_name, NULL);
1694 		if (!pass)
1695 			pass = dummy_pass;
1696 
1697 		/*
1698 		 * Successfully parsed a <list>-map translation; copy new
1699 		 * specifier into the out_args structure, keeping the
1700 		 * bits specified in <list>-map-pass-thru.
1701 		 */
1702 		match_array = map - new_size;
1703 		for (i = 0; i < new_size; i++) {
1704 			__be32 val = *(map - new_size + i);
1705 
1706 			if (i < list_size) {
1707 				val &= ~pass[i];
1708 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1709 			}
1710 
1711 			out_args->args[i] = be32_to_cpu(val);
1712 		}
1713 		out_args->args_count = list_size = new_size;
1714 		/* Iterate again with new provider */
1715 		out_args->np = new;
1716 		of_node_put(cur);
1717 		cur = new;
1718 	}
1719 put:
1720 	of_node_put(cur);
1721 	of_node_put(new);
1722 free:
1723 	kfree(mask_name);
1724 	kfree(map_name);
1725 	kfree(cells_name);
1726 	kfree(pass_name);
1727 
1728 	return ret;
1729 }
1730 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1731 
1732 /**
1733  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1734  * @np:		pointer to a device tree node containing a list
1735  * @list_name:	property name that contains a list
1736  * @cell_count: number of argument cells following the phandle
1737  * @index:	index of a phandle to parse out
1738  * @out_args:	optional pointer to output arguments structure (will be filled)
1739  *
1740  * This function is useful to parse lists of phandles and their arguments.
1741  * Returns 0 on success and fills out_args, on error returns appropriate
1742  * errno value.
1743  *
1744  * Caller is responsible to call of_node_put() on the returned out_args->np
1745  * pointer.
1746  *
1747  * Example:
1748  *
1749  * phandle1: node1 {
1750  * }
1751  *
1752  * phandle2: node2 {
1753  * }
1754  *
1755  * node3 {
1756  *	list = <&phandle1 0 2 &phandle2 2 3>;
1757  * }
1758  *
1759  * To get a device_node of the `node2' node you may call this:
1760  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1761  */
1762 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1763 				const char *list_name, int cell_count,
1764 				int index, struct of_phandle_args *out_args)
1765 {
1766 	if (index < 0)
1767 		return -EINVAL;
1768 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1769 					   index, out_args);
1770 }
1771 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1772 
1773 /**
1774  * of_count_phandle_with_args() - Find the number of phandles references in a property
1775  * @np:		pointer to a device tree node containing a list
1776  * @list_name:	property name that contains a list
1777  * @cells_name:	property name that specifies phandles' arguments count
1778  *
1779  * Returns the number of phandle + argument tuples within a property. It
1780  * is a typical pattern to encode a list of phandle and variable
1781  * arguments into a single property. The number of arguments is encoded
1782  * by a property in the phandle-target node. For example, a gpios
1783  * property would contain a list of GPIO specifies consisting of a
1784  * phandle and 1 or more arguments. The number of arguments are
1785  * determined by the #gpio-cells property in the node pointed to by the
1786  * phandle.
1787  */
1788 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1789 				const char *cells_name)
1790 {
1791 	struct of_phandle_iterator it;
1792 	int rc, cur_index = 0;
1793 
1794 	/*
1795 	 * If cells_name is NULL we assume a cell count of 0. This makes
1796 	 * counting the phandles trivial as each 32bit word in the list is a
1797 	 * phandle and no arguments are to consider. So we don't iterate through
1798 	 * the list but just use the length to determine the phandle count.
1799 	 */
1800 	if (!cells_name) {
1801 		const __be32 *list;
1802 		int size;
1803 
1804 		list = of_get_property(np, list_name, &size);
1805 		if (!list)
1806 			return -ENOENT;
1807 
1808 		return size / sizeof(*list);
1809 	}
1810 
1811 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1812 	if (rc)
1813 		return rc;
1814 
1815 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1816 		cur_index += 1;
1817 
1818 	if (rc != -ENOENT)
1819 		return rc;
1820 
1821 	return cur_index;
1822 }
1823 EXPORT_SYMBOL(of_count_phandle_with_args);
1824 
1825 /**
1826  * __of_add_property - Add a property to a node without lock operations
1827  */
1828 int __of_add_property(struct device_node *np, struct property *prop)
1829 {
1830 	struct property **next;
1831 
1832 	prop->next = NULL;
1833 	next = &np->properties;
1834 	while (*next) {
1835 		if (strcmp(prop->name, (*next)->name) == 0)
1836 			/* duplicate ! don't insert it */
1837 			return -EEXIST;
1838 
1839 		next = &(*next)->next;
1840 	}
1841 	*next = prop;
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * of_add_property - Add a property to a node
1848  */
1849 int of_add_property(struct device_node *np, struct property *prop)
1850 {
1851 	unsigned long flags;
1852 	int rc;
1853 
1854 	mutex_lock(&of_mutex);
1855 
1856 	raw_spin_lock_irqsave(&devtree_lock, flags);
1857 	rc = __of_add_property(np, prop);
1858 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1859 
1860 	if (!rc)
1861 		__of_add_property_sysfs(np, prop);
1862 
1863 	mutex_unlock(&of_mutex);
1864 
1865 	if (!rc)
1866 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1867 
1868 	return rc;
1869 }
1870 
1871 int __of_remove_property(struct device_node *np, struct property *prop)
1872 {
1873 	struct property **next;
1874 
1875 	for (next = &np->properties; *next; next = &(*next)->next) {
1876 		if (*next == prop)
1877 			break;
1878 	}
1879 	if (*next == NULL)
1880 		return -ENODEV;
1881 
1882 	/* found the node */
1883 	*next = prop->next;
1884 	prop->next = np->deadprops;
1885 	np->deadprops = prop;
1886 
1887 	return 0;
1888 }
1889 
1890 /**
1891  * of_remove_property - Remove a property from a node.
1892  *
1893  * Note that we don't actually remove it, since we have given out
1894  * who-knows-how-many pointers to the data using get-property.
1895  * Instead we just move the property to the "dead properties"
1896  * list, so it won't be found any more.
1897  */
1898 int of_remove_property(struct device_node *np, struct property *prop)
1899 {
1900 	unsigned long flags;
1901 	int rc;
1902 
1903 	if (!prop)
1904 		return -ENODEV;
1905 
1906 	mutex_lock(&of_mutex);
1907 
1908 	raw_spin_lock_irqsave(&devtree_lock, flags);
1909 	rc = __of_remove_property(np, prop);
1910 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1911 
1912 	if (!rc)
1913 		__of_remove_property_sysfs(np, prop);
1914 
1915 	mutex_unlock(&of_mutex);
1916 
1917 	if (!rc)
1918 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1919 
1920 	return rc;
1921 }
1922 
1923 int __of_update_property(struct device_node *np, struct property *newprop,
1924 		struct property **oldpropp)
1925 {
1926 	struct property **next, *oldprop;
1927 
1928 	for (next = &np->properties; *next; next = &(*next)->next) {
1929 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1930 			break;
1931 	}
1932 	*oldpropp = oldprop = *next;
1933 
1934 	if (oldprop) {
1935 		/* replace the node */
1936 		newprop->next = oldprop->next;
1937 		*next = newprop;
1938 		oldprop->next = np->deadprops;
1939 		np->deadprops = oldprop;
1940 	} else {
1941 		/* new node */
1942 		newprop->next = NULL;
1943 		*next = newprop;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 /*
1950  * of_update_property - Update a property in a node, if the property does
1951  * not exist, add it.
1952  *
1953  * Note that we don't actually remove it, since we have given out
1954  * who-knows-how-many pointers to the data using get-property.
1955  * Instead we just move the property to the "dead properties" list,
1956  * and add the new property to the property list
1957  */
1958 int of_update_property(struct device_node *np, struct property *newprop)
1959 {
1960 	struct property *oldprop;
1961 	unsigned long flags;
1962 	int rc;
1963 
1964 	if (!newprop->name)
1965 		return -EINVAL;
1966 
1967 	mutex_lock(&of_mutex);
1968 
1969 	raw_spin_lock_irqsave(&devtree_lock, flags);
1970 	rc = __of_update_property(np, newprop, &oldprop);
1971 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1972 
1973 	if (!rc)
1974 		__of_update_property_sysfs(np, newprop, oldprop);
1975 
1976 	mutex_unlock(&of_mutex);
1977 
1978 	if (!rc)
1979 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1980 
1981 	return rc;
1982 }
1983 
1984 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1985 			 int id, const char *stem, int stem_len)
1986 {
1987 	ap->np = np;
1988 	ap->id = id;
1989 	strncpy(ap->stem, stem, stem_len);
1990 	ap->stem[stem_len] = 0;
1991 	list_add_tail(&ap->link, &aliases_lookup);
1992 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1993 		 ap->alias, ap->stem, ap->id, np);
1994 }
1995 
1996 /**
1997  * of_alias_scan - Scan all properties of the 'aliases' node
1998  *
1999  * The function scans all the properties of the 'aliases' node and populates
2000  * the global lookup table with the properties.  It returns the
2001  * number of alias properties found, or an error code in case of failure.
2002  *
2003  * @dt_alloc:	An allocator that provides a virtual address to memory
2004  *		for storing the resulting tree
2005  */
2006 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2007 {
2008 	struct property *pp;
2009 
2010 	of_aliases = of_find_node_by_path("/aliases");
2011 	of_chosen = of_find_node_by_path("/chosen");
2012 	if (of_chosen == NULL)
2013 		of_chosen = of_find_node_by_path("/chosen@0");
2014 
2015 	if (of_chosen) {
2016 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2017 		const char *name = NULL;
2018 
2019 		if (of_property_read_string(of_chosen, "stdout-path", &name))
2020 			of_property_read_string(of_chosen, "linux,stdout-path",
2021 						&name);
2022 		if (IS_ENABLED(CONFIG_PPC) && !name)
2023 			of_property_read_string(of_aliases, "stdout", &name);
2024 		if (name)
2025 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2026 	}
2027 
2028 	if (!of_aliases)
2029 		return;
2030 
2031 	for_each_property_of_node(of_aliases, pp) {
2032 		const char *start = pp->name;
2033 		const char *end = start + strlen(start);
2034 		struct device_node *np;
2035 		struct alias_prop *ap;
2036 		int id, len;
2037 
2038 		/* Skip those we do not want to proceed */
2039 		if (!strcmp(pp->name, "name") ||
2040 		    !strcmp(pp->name, "phandle") ||
2041 		    !strcmp(pp->name, "linux,phandle"))
2042 			continue;
2043 
2044 		np = of_find_node_by_path(pp->value);
2045 		if (!np)
2046 			continue;
2047 
2048 		/* walk the alias backwards to extract the id and work out
2049 		 * the 'stem' string */
2050 		while (isdigit(*(end-1)) && end > start)
2051 			end--;
2052 		len = end - start;
2053 
2054 		if (kstrtoint(end, 10, &id) < 0)
2055 			continue;
2056 
2057 		/* Allocate an alias_prop with enough space for the stem */
2058 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2059 		if (!ap)
2060 			continue;
2061 		memset(ap, 0, sizeof(*ap) + len + 1);
2062 		ap->alias = start;
2063 		of_alias_add(ap, np, id, start, len);
2064 	}
2065 }
2066 
2067 /**
2068  * of_alias_get_id - Get alias id for the given device_node
2069  * @np:		Pointer to the given device_node
2070  * @stem:	Alias stem of the given device_node
2071  *
2072  * The function travels the lookup table to get the alias id for the given
2073  * device_node and alias stem.  It returns the alias id if found.
2074  */
2075 int of_alias_get_id(struct device_node *np, const char *stem)
2076 {
2077 	struct alias_prop *app;
2078 	int id = -ENODEV;
2079 
2080 	mutex_lock(&of_mutex);
2081 	list_for_each_entry(app, &aliases_lookup, link) {
2082 		if (strcmp(app->stem, stem) != 0)
2083 			continue;
2084 
2085 		if (np == app->np) {
2086 			id = app->id;
2087 			break;
2088 		}
2089 	}
2090 	mutex_unlock(&of_mutex);
2091 
2092 	return id;
2093 }
2094 EXPORT_SYMBOL_GPL(of_alias_get_id);
2095 
2096 /**
2097  * of_alias_get_alias_list - Get alias list for the given device driver
2098  * @matches:	Array of OF device match structures to search in
2099  * @stem:	Alias stem of the given device_node
2100  * @bitmap:	Bitmap field pointer
2101  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2102  *
2103  * The function travels the lookup table to record alias ids for the given
2104  * device match structures and alias stem.
2105  *
2106  * Return:	0 or -ENOSYS when !CONFIG_OF or
2107  *		-EOVERFLOW if alias ID is greater then allocated nbits
2108  */
2109 int of_alias_get_alias_list(const struct of_device_id *matches,
2110 			     const char *stem, unsigned long *bitmap,
2111 			     unsigned int nbits)
2112 {
2113 	struct alias_prop *app;
2114 	int ret = 0;
2115 
2116 	/* Zero bitmap field to make sure that all the time it is clean */
2117 	bitmap_zero(bitmap, nbits);
2118 
2119 	mutex_lock(&of_mutex);
2120 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2121 	list_for_each_entry(app, &aliases_lookup, link) {
2122 		pr_debug("%s: stem: %s, id: %d\n",
2123 			 __func__, app->stem, app->id);
2124 
2125 		if (strcmp(app->stem, stem) != 0) {
2126 			pr_debug("%s: stem comparison didn't pass %s\n",
2127 				 __func__, app->stem);
2128 			continue;
2129 		}
2130 
2131 		if (of_match_node(matches, app->np)) {
2132 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2133 
2134 			if (app->id >= nbits) {
2135 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2136 					__func__, app->id, nbits);
2137 				ret = -EOVERFLOW;
2138 			} else {
2139 				set_bit(app->id, bitmap);
2140 			}
2141 		}
2142 	}
2143 	mutex_unlock(&of_mutex);
2144 
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2148 
2149 /**
2150  * of_alias_get_highest_id - Get highest alias id for the given stem
2151  * @stem:	Alias stem to be examined
2152  *
2153  * The function travels the lookup table to get the highest alias id for the
2154  * given alias stem.  It returns the alias id if found.
2155  */
2156 int of_alias_get_highest_id(const char *stem)
2157 {
2158 	struct alias_prop *app;
2159 	int id = -ENODEV;
2160 
2161 	mutex_lock(&of_mutex);
2162 	list_for_each_entry(app, &aliases_lookup, link) {
2163 		if (strcmp(app->stem, stem) != 0)
2164 			continue;
2165 
2166 		if (app->id > id)
2167 			id = app->id;
2168 	}
2169 	mutex_unlock(&of_mutex);
2170 
2171 	return id;
2172 }
2173 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2174 
2175 /**
2176  * of_console_check() - Test and setup console for DT setup
2177  * @dn - Pointer to device node
2178  * @name - Name to use for preferred console without index. ex. "ttyS"
2179  * @index - Index to use for preferred console.
2180  *
2181  * Check if the given device node matches the stdout-path property in the
2182  * /chosen node. If it does then register it as the preferred console and return
2183  * TRUE. Otherwise return FALSE.
2184  */
2185 bool of_console_check(struct device_node *dn, char *name, int index)
2186 {
2187 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2188 		return false;
2189 
2190 	/*
2191 	 * XXX: cast `options' to char pointer to suppress complication
2192 	 * warnings: printk, UART and console drivers expect char pointer.
2193 	 */
2194 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2195 }
2196 EXPORT_SYMBOL_GPL(of_console_check);
2197 
2198 /**
2199  *	of_find_next_cache_node - Find a node's subsidiary cache
2200  *	@np:	node of type "cpu" or "cache"
2201  *
2202  *	Returns a node pointer with refcount incremented, use
2203  *	of_node_put() on it when done.  Caller should hold a reference
2204  *	to np.
2205  */
2206 struct device_node *of_find_next_cache_node(const struct device_node *np)
2207 {
2208 	struct device_node *child, *cache_node;
2209 
2210 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2211 	if (!cache_node)
2212 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2213 
2214 	if (cache_node)
2215 		return cache_node;
2216 
2217 	/* OF on pmac has nodes instead of properties named "l2-cache"
2218 	 * beneath CPU nodes.
2219 	 */
2220 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2221 		for_each_child_of_node(np, child)
2222 			if (of_node_is_type(child, "cache"))
2223 				return child;
2224 
2225 	return NULL;
2226 }
2227 
2228 /**
2229  * of_find_last_cache_level - Find the level at which the last cache is
2230  * 		present for the given logical cpu
2231  *
2232  * @cpu: cpu number(logical index) for which the last cache level is needed
2233  *
2234  * Returns the the level at which the last cache is present. It is exactly
2235  * same as  the total number of cache levels for the given logical cpu.
2236  */
2237 int of_find_last_cache_level(unsigned int cpu)
2238 {
2239 	u32 cache_level = 0;
2240 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2241 
2242 	while (np) {
2243 		prev = np;
2244 		of_node_put(np);
2245 		np = of_find_next_cache_node(np);
2246 	}
2247 
2248 	of_property_read_u32(prev, "cache-level", &cache_level);
2249 
2250 	return cache_level;
2251 }
2252 
2253 /**
2254  * of_map_rid - Translate a requester ID through a downstream mapping.
2255  * @np: root complex device node.
2256  * @rid: device requester ID to map.
2257  * @map_name: property name of the map to use.
2258  * @map_mask_name: optional property name of the mask to use.
2259  * @target: optional pointer to a target device node.
2260  * @id_out: optional pointer to receive the translated ID.
2261  *
2262  * Given a device requester ID, look up the appropriate implementation-defined
2263  * platform ID and/or the target device which receives transactions on that
2264  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2265  * @id_out may be NULL if only the other is required. If @target points to
2266  * a non-NULL device node pointer, only entries targeting that node will be
2267  * matched; if it points to a NULL value, it will receive the device node of
2268  * the first matching target phandle, with a reference held.
2269  *
2270  * Return: 0 on success or a standard error code on failure.
2271  */
2272 int of_map_rid(struct device_node *np, u32 rid,
2273 	       const char *map_name, const char *map_mask_name,
2274 	       struct device_node **target, u32 *id_out)
2275 {
2276 	u32 map_mask, masked_rid;
2277 	int map_len;
2278 	const __be32 *map = NULL;
2279 
2280 	if (!np || !map_name || (!target && !id_out))
2281 		return -EINVAL;
2282 
2283 	map = of_get_property(np, map_name, &map_len);
2284 	if (!map) {
2285 		if (target)
2286 			return -ENODEV;
2287 		/* Otherwise, no map implies no translation */
2288 		*id_out = rid;
2289 		return 0;
2290 	}
2291 
2292 	if (!map_len || map_len % (4 * sizeof(*map))) {
2293 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2294 			map_name, map_len);
2295 		return -EINVAL;
2296 	}
2297 
2298 	/* The default is to select all bits. */
2299 	map_mask = 0xffffffff;
2300 
2301 	/*
2302 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2303 	 * If of_property_read_u32() fails, the default is used.
2304 	 */
2305 	if (map_mask_name)
2306 		of_property_read_u32(np, map_mask_name, &map_mask);
2307 
2308 	masked_rid = map_mask & rid;
2309 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2310 		struct device_node *phandle_node;
2311 		u32 rid_base = be32_to_cpup(map + 0);
2312 		u32 phandle = be32_to_cpup(map + 1);
2313 		u32 out_base = be32_to_cpup(map + 2);
2314 		u32 rid_len = be32_to_cpup(map + 3);
2315 
2316 		if (rid_base & ~map_mask) {
2317 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2318 				np, map_name, map_name,
2319 				map_mask, rid_base);
2320 			return -EFAULT;
2321 		}
2322 
2323 		if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2324 			continue;
2325 
2326 		phandle_node = of_find_node_by_phandle(phandle);
2327 		if (!phandle_node)
2328 			return -ENODEV;
2329 
2330 		if (target) {
2331 			if (*target)
2332 				of_node_put(phandle_node);
2333 			else
2334 				*target = phandle_node;
2335 
2336 			if (*target != phandle_node)
2337 				continue;
2338 		}
2339 
2340 		if (id_out)
2341 			*id_out = masked_rid - rid_base + out_base;
2342 
2343 		pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2344 			np, map_name, map_mask, rid_base, out_base,
2345 			rid_len, rid, masked_rid - rid_base + out_base);
2346 		return 0;
2347 	}
2348 
2349 	pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2350 		rid, target && *target ? *target : NULL);
2351 
2352 	/* Bypasses translation */
2353 	if (id_out)
2354 		*id_out = rid;
2355 	return 0;
2356 }
2357 EXPORT_SYMBOL_GPL(of_map_rid);
2358