1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 EXPORT_SYMBOL(of_chosen); 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 171 /* Create the kset, and register existing nodes */ 172 mutex_lock(&of_mutex); 173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 174 if (!of_kset) { 175 mutex_unlock(&of_mutex); 176 pr_err("failed to register existing nodes\n"); 177 return; 178 } 179 for_each_of_allnodes(np) { 180 __of_attach_node_sysfs(np); 181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 183 } 184 mutex_unlock(&of_mutex); 185 186 /* Symlink in /proc as required by userspace ABI */ 187 if (of_root) 188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 189 } 190 191 static struct property *__of_find_property(const struct device_node *np, 192 const char *name, int *lenp) 193 { 194 struct property *pp; 195 196 if (!np) 197 return NULL; 198 199 for (pp = np->properties; pp; pp = pp->next) { 200 if (of_prop_cmp(pp->name, name) == 0) { 201 if (lenp) 202 *lenp = pp->length; 203 break; 204 } 205 } 206 207 return pp; 208 } 209 210 struct property *of_find_property(const struct device_node *np, 211 const char *name, 212 int *lenp) 213 { 214 struct property *pp; 215 unsigned long flags; 216 217 raw_spin_lock_irqsave(&devtree_lock, flags); 218 pp = __of_find_property(np, name, lenp); 219 raw_spin_unlock_irqrestore(&devtree_lock, flags); 220 221 return pp; 222 } 223 EXPORT_SYMBOL(of_find_property); 224 225 struct device_node *__of_find_all_nodes(struct device_node *prev) 226 { 227 struct device_node *np; 228 if (!prev) { 229 np = of_root; 230 } else if (prev->child) { 231 np = prev->child; 232 } else { 233 /* Walk back up looking for a sibling, or the end of the structure */ 234 np = prev; 235 while (np->parent && !np->sibling) 236 np = np->parent; 237 np = np->sibling; /* Might be null at the end of the tree */ 238 } 239 return np; 240 } 241 242 /** 243 * of_find_all_nodes - Get next node in global list 244 * @prev: Previous node or NULL to start iteration 245 * of_node_put() will be called on it 246 * 247 * Return: A node pointer with refcount incremented, use 248 * of_node_put() on it when done. 249 */ 250 struct device_node *of_find_all_nodes(struct device_node *prev) 251 { 252 struct device_node *np; 253 unsigned long flags; 254 255 raw_spin_lock_irqsave(&devtree_lock, flags); 256 np = __of_find_all_nodes(prev); 257 of_node_get(np); 258 of_node_put(prev); 259 raw_spin_unlock_irqrestore(&devtree_lock, flags); 260 return np; 261 } 262 EXPORT_SYMBOL(of_find_all_nodes); 263 264 /* 265 * Find a property with a given name for a given node 266 * and return the value. 267 */ 268 const void *__of_get_property(const struct device_node *np, 269 const char *name, int *lenp) 270 { 271 struct property *pp = __of_find_property(np, name, lenp); 272 273 return pp ? pp->value : NULL; 274 } 275 276 /* 277 * Find a property with a given name for a given node 278 * and return the value. 279 */ 280 const void *of_get_property(const struct device_node *np, const char *name, 281 int *lenp) 282 { 283 struct property *pp = of_find_property(np, name, lenp); 284 285 return pp ? pp->value : NULL; 286 } 287 EXPORT_SYMBOL(of_get_property); 288 289 /** 290 * of_get_cpu_hwid - Get the hardware ID from a CPU device node 291 * 292 * @cpun: CPU number(logical index) for which device node is required 293 * @thread: The local thread number to get the hardware ID for. 294 * 295 * Return: The hardware ID for the CPU node or ~0ULL if not found. 296 */ 297 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread) 298 { 299 const __be32 *cell; 300 int ac, len; 301 302 ac = of_n_addr_cells(cpun); 303 cell = of_get_property(cpun, "reg", &len); 304 if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len)) 305 return ~0ULL; 306 307 cell += ac * thread; 308 return of_read_number(cell, ac); 309 } 310 311 /* 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 313 * 314 * @cpu: logical cpu index of a core/thread 315 * @phys_id: physical identifier of a core/thread 316 * 317 * CPU logical to physical index mapping is architecture specific. 318 * However this __weak function provides a default match of physical 319 * id to logical cpu index. phys_id provided here is usually values read 320 * from the device tree which must match the hardware internal registers. 321 * 322 * Returns true if the physical identifier and the logical cpu index 323 * correspond to the same core/thread, false otherwise. 324 */ 325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 326 { 327 return (u32)phys_id == cpu; 328 } 329 330 /* 331 * Checks if the given "prop_name" property holds the physical id of the 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 333 * NULL, local thread number within the core is returned in it. 334 */ 335 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 336 const char *prop_name, int cpu, unsigned int *thread) 337 { 338 const __be32 *cell; 339 int ac, prop_len, tid; 340 u64 hwid; 341 342 ac = of_n_addr_cells(cpun); 343 cell = of_get_property(cpun, prop_name, &prop_len); 344 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 345 return true; 346 if (!cell || !ac) 347 return false; 348 prop_len /= sizeof(*cell) * ac; 349 for (tid = 0; tid < prop_len; tid++) { 350 hwid = of_read_number(cell, ac); 351 if (arch_match_cpu_phys_id(cpu, hwid)) { 352 if (thread) 353 *thread = tid; 354 return true; 355 } 356 cell += ac; 357 } 358 return false; 359 } 360 361 /* 362 * arch_find_n_match_cpu_physical_id - See if the given device node is 363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 364 * else false. If 'thread' is non-NULL, the local thread number within the 365 * core is returned in it. 366 */ 367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 368 int cpu, unsigned int *thread) 369 { 370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 371 * for thread ids on PowerPC. If it doesn't exist fallback to 372 * standard "reg" property. 373 */ 374 if (IS_ENABLED(CONFIG_PPC) && 375 __of_find_n_match_cpu_property(cpun, 376 "ibm,ppc-interrupt-server#s", 377 cpu, thread)) 378 return true; 379 380 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 381 } 382 383 /** 384 * of_get_cpu_node - Get device node associated with the given logical CPU 385 * 386 * @cpu: CPU number(logical index) for which device node is required 387 * @thread: if not NULL, local thread number within the physical core is 388 * returned 389 * 390 * The main purpose of this function is to retrieve the device node for the 391 * given logical CPU index. It should be used to initialize the of_node in 392 * cpu device. Once of_node in cpu device is populated, all the further 393 * references can use that instead. 394 * 395 * CPU logical to physical index mapping is architecture specific and is built 396 * before booting secondary cores. This function uses arch_match_cpu_phys_id 397 * which can be overridden by architecture specific implementation. 398 * 399 * Return: A node pointer for the logical cpu with refcount incremented, use 400 * of_node_put() on it when done. Returns NULL if not found. 401 */ 402 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 403 { 404 struct device_node *cpun; 405 406 for_each_of_cpu_node(cpun) { 407 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 408 return cpun; 409 } 410 return NULL; 411 } 412 EXPORT_SYMBOL(of_get_cpu_node); 413 414 /** 415 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 416 * 417 * @cpu_node: Pointer to the device_node for CPU. 418 * 419 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the 420 * CPU is not found. 421 */ 422 int of_cpu_node_to_id(struct device_node *cpu_node) 423 { 424 int cpu; 425 bool found = false; 426 struct device_node *np; 427 428 for_each_possible_cpu(cpu) { 429 np = of_cpu_device_node_get(cpu); 430 found = (cpu_node == np); 431 of_node_put(np); 432 if (found) 433 return cpu; 434 } 435 436 return -ENODEV; 437 } 438 EXPORT_SYMBOL(of_cpu_node_to_id); 439 440 /** 441 * of_get_cpu_state_node - Get CPU's idle state node at the given index 442 * 443 * @cpu_node: The device node for the CPU 444 * @index: The index in the list of the idle states 445 * 446 * Two generic methods can be used to describe a CPU's idle states, either via 447 * a flattened description through the "cpu-idle-states" binding or via the 448 * hierarchical layout, using the "power-domains" and the "domain-idle-states" 449 * bindings. This function check for both and returns the idle state node for 450 * the requested index. 451 * 452 * Return: An idle state node if found at @index. The refcount is incremented 453 * for it, so call of_node_put() on it when done. Returns NULL if not found. 454 */ 455 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, 456 int index) 457 { 458 struct of_phandle_args args; 459 int err; 460 461 err = of_parse_phandle_with_args(cpu_node, "power-domains", 462 "#power-domain-cells", 0, &args); 463 if (!err) { 464 struct device_node *state_node = 465 of_parse_phandle(args.np, "domain-idle-states", index); 466 467 of_node_put(args.np); 468 if (state_node) 469 return state_node; 470 } 471 472 return of_parse_phandle(cpu_node, "cpu-idle-states", index); 473 } 474 EXPORT_SYMBOL(of_get_cpu_state_node); 475 476 /** 477 * __of_device_is_compatible() - Check if the node matches given constraints 478 * @device: pointer to node 479 * @compat: required compatible string, NULL or "" for any match 480 * @type: required device_type value, NULL or "" for any match 481 * @name: required node name, NULL or "" for any match 482 * 483 * Checks if the given @compat, @type and @name strings match the 484 * properties of the given @device. A constraints can be skipped by 485 * passing NULL or an empty string as the constraint. 486 * 487 * Returns 0 for no match, and a positive integer on match. The return 488 * value is a relative score with larger values indicating better 489 * matches. The score is weighted for the most specific compatible value 490 * to get the highest score. Matching type is next, followed by matching 491 * name. Practically speaking, this results in the following priority 492 * order for matches: 493 * 494 * 1. specific compatible && type && name 495 * 2. specific compatible && type 496 * 3. specific compatible && name 497 * 4. specific compatible 498 * 5. general compatible && type && name 499 * 6. general compatible && type 500 * 7. general compatible && name 501 * 8. general compatible 502 * 9. type && name 503 * 10. type 504 * 11. name 505 */ 506 static int __of_device_is_compatible(const struct device_node *device, 507 const char *compat, const char *type, const char *name) 508 { 509 struct property *prop; 510 const char *cp; 511 int index = 0, score = 0; 512 513 /* Compatible match has highest priority */ 514 if (compat && compat[0]) { 515 prop = __of_find_property(device, "compatible", NULL); 516 for (cp = of_prop_next_string(prop, NULL); cp; 517 cp = of_prop_next_string(prop, cp), index++) { 518 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 519 score = INT_MAX/2 - (index << 2); 520 break; 521 } 522 } 523 if (!score) 524 return 0; 525 } 526 527 /* Matching type is better than matching name */ 528 if (type && type[0]) { 529 if (!__of_node_is_type(device, type)) 530 return 0; 531 score += 2; 532 } 533 534 /* Matching name is a bit better than not */ 535 if (name && name[0]) { 536 if (!of_node_name_eq(device, name)) 537 return 0; 538 score++; 539 } 540 541 return score; 542 } 543 544 /** Checks if the given "compat" string matches one of the strings in 545 * the device's "compatible" property 546 */ 547 int of_device_is_compatible(const struct device_node *device, 548 const char *compat) 549 { 550 unsigned long flags; 551 int res; 552 553 raw_spin_lock_irqsave(&devtree_lock, flags); 554 res = __of_device_is_compatible(device, compat, NULL, NULL); 555 raw_spin_unlock_irqrestore(&devtree_lock, flags); 556 return res; 557 } 558 EXPORT_SYMBOL(of_device_is_compatible); 559 560 /** Checks if the device is compatible with any of the entries in 561 * a NULL terminated array of strings. Returns the best match 562 * score or 0. 563 */ 564 int of_device_compatible_match(struct device_node *device, 565 const char *const *compat) 566 { 567 unsigned int tmp, score = 0; 568 569 if (!compat) 570 return 0; 571 572 while (*compat) { 573 tmp = of_device_is_compatible(device, *compat); 574 if (tmp > score) 575 score = tmp; 576 compat++; 577 } 578 579 return score; 580 } 581 582 /** 583 * of_machine_is_compatible - Test root of device tree for a given compatible value 584 * @compat: compatible string to look for in root node's compatible property. 585 * 586 * Return: A positive integer if the root node has the given value in its 587 * compatible property. 588 */ 589 int of_machine_is_compatible(const char *compat) 590 { 591 struct device_node *root; 592 int rc = 0; 593 594 root = of_find_node_by_path("/"); 595 if (root) { 596 rc = of_device_is_compatible(root, compat); 597 of_node_put(root); 598 } 599 return rc; 600 } 601 EXPORT_SYMBOL(of_machine_is_compatible); 602 603 /** 604 * __of_device_is_available - check if a device is available for use 605 * 606 * @device: Node to check for availability, with locks already held 607 * 608 * Return: True if the status property is absent or set to "okay" or "ok", 609 * false otherwise 610 */ 611 static bool __of_device_is_available(const struct device_node *device) 612 { 613 const char *status; 614 int statlen; 615 616 if (!device) 617 return false; 618 619 status = __of_get_property(device, "status", &statlen); 620 if (status == NULL) 621 return true; 622 623 if (statlen > 0) { 624 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 625 return true; 626 } 627 628 return false; 629 } 630 631 /** 632 * of_device_is_available - check if a device is available for use 633 * 634 * @device: Node to check for availability 635 * 636 * Return: True if the status property is absent or set to "okay" or "ok", 637 * false otherwise 638 */ 639 bool of_device_is_available(const struct device_node *device) 640 { 641 unsigned long flags; 642 bool res; 643 644 raw_spin_lock_irqsave(&devtree_lock, flags); 645 res = __of_device_is_available(device); 646 raw_spin_unlock_irqrestore(&devtree_lock, flags); 647 return res; 648 649 } 650 EXPORT_SYMBOL(of_device_is_available); 651 652 /** 653 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 654 * 655 * @device: Node to check status for, with locks already held 656 * 657 * Return: True if the status property is set to "fail" or "fail-..." (for any 658 * error code suffix), false otherwise 659 */ 660 static bool __of_device_is_fail(const struct device_node *device) 661 { 662 const char *status; 663 664 if (!device) 665 return false; 666 667 status = __of_get_property(device, "status", NULL); 668 if (status == NULL) 669 return false; 670 671 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5); 672 } 673 674 /** 675 * of_device_is_big_endian - check if a device has BE registers 676 * 677 * @device: Node to check for endianness 678 * 679 * Return: True if the device has a "big-endian" property, or if the kernel 680 * was compiled for BE *and* the device has a "native-endian" property. 681 * Returns false otherwise. 682 * 683 * Callers would nominally use ioread32be/iowrite32be if 684 * of_device_is_big_endian() == true, or readl/writel otherwise. 685 */ 686 bool of_device_is_big_endian(const struct device_node *device) 687 { 688 if (of_property_read_bool(device, "big-endian")) 689 return true; 690 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 691 of_property_read_bool(device, "native-endian")) 692 return true; 693 return false; 694 } 695 EXPORT_SYMBOL(of_device_is_big_endian); 696 697 /** 698 * of_get_parent - Get a node's parent if any 699 * @node: Node to get parent 700 * 701 * Return: A node pointer with refcount incremented, use 702 * of_node_put() on it when done. 703 */ 704 struct device_node *of_get_parent(const struct device_node *node) 705 { 706 struct device_node *np; 707 unsigned long flags; 708 709 if (!node) 710 return NULL; 711 712 raw_spin_lock_irqsave(&devtree_lock, flags); 713 np = of_node_get(node->parent); 714 raw_spin_unlock_irqrestore(&devtree_lock, flags); 715 return np; 716 } 717 EXPORT_SYMBOL(of_get_parent); 718 719 /** 720 * of_get_next_parent - Iterate to a node's parent 721 * @node: Node to get parent of 722 * 723 * This is like of_get_parent() except that it drops the 724 * refcount on the passed node, making it suitable for iterating 725 * through a node's parents. 726 * 727 * Return: A node pointer with refcount incremented, use 728 * of_node_put() on it when done. 729 */ 730 struct device_node *of_get_next_parent(struct device_node *node) 731 { 732 struct device_node *parent; 733 unsigned long flags; 734 735 if (!node) 736 return NULL; 737 738 raw_spin_lock_irqsave(&devtree_lock, flags); 739 parent = of_node_get(node->parent); 740 of_node_put(node); 741 raw_spin_unlock_irqrestore(&devtree_lock, flags); 742 return parent; 743 } 744 EXPORT_SYMBOL(of_get_next_parent); 745 746 static struct device_node *__of_get_next_child(const struct device_node *node, 747 struct device_node *prev) 748 { 749 struct device_node *next; 750 751 if (!node) 752 return NULL; 753 754 next = prev ? prev->sibling : node->child; 755 of_node_get(next); 756 of_node_put(prev); 757 return next; 758 } 759 #define __for_each_child_of_node(parent, child) \ 760 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 761 child = __of_get_next_child(parent, child)) 762 763 /** 764 * of_get_next_child - Iterate a node childs 765 * @node: parent node 766 * @prev: previous child of the parent node, or NULL to get first 767 * 768 * Return: A node pointer with refcount incremented, use of_node_put() on 769 * it when done. Returns NULL when prev is the last child. Decrements the 770 * refcount of prev. 771 */ 772 struct device_node *of_get_next_child(const struct device_node *node, 773 struct device_node *prev) 774 { 775 struct device_node *next; 776 unsigned long flags; 777 778 raw_spin_lock_irqsave(&devtree_lock, flags); 779 next = __of_get_next_child(node, prev); 780 raw_spin_unlock_irqrestore(&devtree_lock, flags); 781 return next; 782 } 783 EXPORT_SYMBOL(of_get_next_child); 784 785 /** 786 * of_get_next_available_child - Find the next available child node 787 * @node: parent node 788 * @prev: previous child of the parent node, or NULL to get first 789 * 790 * This function is like of_get_next_child(), except that it 791 * automatically skips any disabled nodes (i.e. status = "disabled"). 792 */ 793 struct device_node *of_get_next_available_child(const struct device_node *node, 794 struct device_node *prev) 795 { 796 struct device_node *next; 797 unsigned long flags; 798 799 if (!node) 800 return NULL; 801 802 raw_spin_lock_irqsave(&devtree_lock, flags); 803 next = prev ? prev->sibling : node->child; 804 for (; next; next = next->sibling) { 805 if (!__of_device_is_available(next)) 806 continue; 807 if (of_node_get(next)) 808 break; 809 } 810 of_node_put(prev); 811 raw_spin_unlock_irqrestore(&devtree_lock, flags); 812 return next; 813 } 814 EXPORT_SYMBOL(of_get_next_available_child); 815 816 /** 817 * of_get_next_cpu_node - Iterate on cpu nodes 818 * @prev: previous child of the /cpus node, or NULL to get first 819 * 820 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 821 * will be skipped. 822 * 823 * Return: A cpu node pointer with refcount incremented, use of_node_put() 824 * on it when done. Returns NULL when prev is the last child. Decrements 825 * the refcount of prev. 826 */ 827 struct device_node *of_get_next_cpu_node(struct device_node *prev) 828 { 829 struct device_node *next = NULL; 830 unsigned long flags; 831 struct device_node *node; 832 833 if (!prev) 834 node = of_find_node_by_path("/cpus"); 835 836 raw_spin_lock_irqsave(&devtree_lock, flags); 837 if (prev) 838 next = prev->sibling; 839 else if (node) { 840 next = node->child; 841 of_node_put(node); 842 } 843 for (; next; next = next->sibling) { 844 if (__of_device_is_fail(next)) 845 continue; 846 if (!(of_node_name_eq(next, "cpu") || 847 __of_node_is_type(next, "cpu"))) 848 continue; 849 if (of_node_get(next)) 850 break; 851 } 852 of_node_put(prev); 853 raw_spin_unlock_irqrestore(&devtree_lock, flags); 854 return next; 855 } 856 EXPORT_SYMBOL(of_get_next_cpu_node); 857 858 /** 859 * of_get_compatible_child - Find compatible child node 860 * @parent: parent node 861 * @compatible: compatible string 862 * 863 * Lookup child node whose compatible property contains the given compatible 864 * string. 865 * 866 * Return: a node pointer with refcount incremented, use of_node_put() on it 867 * when done; or NULL if not found. 868 */ 869 struct device_node *of_get_compatible_child(const struct device_node *parent, 870 const char *compatible) 871 { 872 struct device_node *child; 873 874 for_each_child_of_node(parent, child) { 875 if (of_device_is_compatible(child, compatible)) 876 break; 877 } 878 879 return child; 880 } 881 EXPORT_SYMBOL(of_get_compatible_child); 882 883 /** 884 * of_get_child_by_name - Find the child node by name for a given parent 885 * @node: parent node 886 * @name: child name to look for. 887 * 888 * This function looks for child node for given matching name 889 * 890 * Return: A node pointer if found, with refcount incremented, use 891 * of_node_put() on it when done. 892 * Returns NULL if node is not found. 893 */ 894 struct device_node *of_get_child_by_name(const struct device_node *node, 895 const char *name) 896 { 897 struct device_node *child; 898 899 for_each_child_of_node(node, child) 900 if (of_node_name_eq(child, name)) 901 break; 902 return child; 903 } 904 EXPORT_SYMBOL(of_get_child_by_name); 905 906 struct device_node *__of_find_node_by_path(struct device_node *parent, 907 const char *path) 908 { 909 struct device_node *child; 910 int len; 911 912 len = strcspn(path, "/:"); 913 if (!len) 914 return NULL; 915 916 __for_each_child_of_node(parent, child) { 917 const char *name = kbasename(child->full_name); 918 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 919 return child; 920 } 921 return NULL; 922 } 923 924 struct device_node *__of_find_node_by_full_path(struct device_node *node, 925 const char *path) 926 { 927 const char *separator = strchr(path, ':'); 928 929 while (node && *path == '/') { 930 struct device_node *tmp = node; 931 932 path++; /* Increment past '/' delimiter */ 933 node = __of_find_node_by_path(node, path); 934 of_node_put(tmp); 935 path = strchrnul(path, '/'); 936 if (separator && separator < path) 937 break; 938 } 939 return node; 940 } 941 942 /** 943 * of_find_node_opts_by_path - Find a node matching a full OF path 944 * @path: Either the full path to match, or if the path does not 945 * start with '/', the name of a property of the /aliases 946 * node (an alias). In the case of an alias, the node 947 * matching the alias' value will be returned. 948 * @opts: Address of a pointer into which to store the start of 949 * an options string appended to the end of the path with 950 * a ':' separator. 951 * 952 * Valid paths: 953 * * /foo/bar Full path 954 * * foo Valid alias 955 * * foo/bar Valid alias + relative path 956 * 957 * Return: A node pointer with refcount incremented, use 958 * of_node_put() on it when done. 959 */ 960 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 961 { 962 struct device_node *np = NULL; 963 struct property *pp; 964 unsigned long flags; 965 const char *separator = strchr(path, ':'); 966 967 if (opts) 968 *opts = separator ? separator + 1 : NULL; 969 970 if (strcmp(path, "/") == 0) 971 return of_node_get(of_root); 972 973 /* The path could begin with an alias */ 974 if (*path != '/') { 975 int len; 976 const char *p = separator; 977 978 if (!p) 979 p = strchrnul(path, '/'); 980 len = p - path; 981 982 /* of_aliases must not be NULL */ 983 if (!of_aliases) 984 return NULL; 985 986 for_each_property_of_node(of_aliases, pp) { 987 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 988 np = of_find_node_by_path(pp->value); 989 break; 990 } 991 } 992 if (!np) 993 return NULL; 994 path = p; 995 } 996 997 /* Step down the tree matching path components */ 998 raw_spin_lock_irqsave(&devtree_lock, flags); 999 if (!np) 1000 np = of_node_get(of_root); 1001 np = __of_find_node_by_full_path(np, path); 1002 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1003 return np; 1004 } 1005 EXPORT_SYMBOL(of_find_node_opts_by_path); 1006 1007 /** 1008 * of_find_node_by_name - Find a node by its "name" property 1009 * @from: The node to start searching from or NULL; the node 1010 * you pass will not be searched, only the next one 1011 * will. Typically, you pass what the previous call 1012 * returned. of_node_put() will be called on @from. 1013 * @name: The name string to match against 1014 * 1015 * Return: A node pointer with refcount incremented, use 1016 * of_node_put() on it when done. 1017 */ 1018 struct device_node *of_find_node_by_name(struct device_node *from, 1019 const char *name) 1020 { 1021 struct device_node *np; 1022 unsigned long flags; 1023 1024 raw_spin_lock_irqsave(&devtree_lock, flags); 1025 for_each_of_allnodes_from(from, np) 1026 if (of_node_name_eq(np, name) && of_node_get(np)) 1027 break; 1028 of_node_put(from); 1029 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1030 return np; 1031 } 1032 EXPORT_SYMBOL(of_find_node_by_name); 1033 1034 /** 1035 * of_find_node_by_type - Find a node by its "device_type" property 1036 * @from: The node to start searching from, or NULL to start searching 1037 * the entire device tree. The node you pass will not be 1038 * searched, only the next one will; typically, you pass 1039 * what the previous call returned. of_node_put() will be 1040 * called on from for you. 1041 * @type: The type string to match against 1042 * 1043 * Return: A node pointer with refcount incremented, use 1044 * of_node_put() on it when done. 1045 */ 1046 struct device_node *of_find_node_by_type(struct device_node *from, 1047 const char *type) 1048 { 1049 struct device_node *np; 1050 unsigned long flags; 1051 1052 raw_spin_lock_irqsave(&devtree_lock, flags); 1053 for_each_of_allnodes_from(from, np) 1054 if (__of_node_is_type(np, type) && of_node_get(np)) 1055 break; 1056 of_node_put(from); 1057 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1058 return np; 1059 } 1060 EXPORT_SYMBOL(of_find_node_by_type); 1061 1062 /** 1063 * of_find_compatible_node - Find a node based on type and one of the 1064 * tokens in its "compatible" property 1065 * @from: The node to start searching from or NULL, the node 1066 * you pass will not be searched, only the next one 1067 * will; typically, you pass what the previous call 1068 * returned. of_node_put() will be called on it 1069 * @type: The type string to match "device_type" or NULL to ignore 1070 * @compatible: The string to match to one of the tokens in the device 1071 * "compatible" list. 1072 * 1073 * Return: A node pointer with refcount incremented, use 1074 * of_node_put() on it when done. 1075 */ 1076 struct device_node *of_find_compatible_node(struct device_node *from, 1077 const char *type, const char *compatible) 1078 { 1079 struct device_node *np; 1080 unsigned long flags; 1081 1082 raw_spin_lock_irqsave(&devtree_lock, flags); 1083 for_each_of_allnodes_from(from, np) 1084 if (__of_device_is_compatible(np, compatible, type, NULL) && 1085 of_node_get(np)) 1086 break; 1087 of_node_put(from); 1088 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1089 return np; 1090 } 1091 EXPORT_SYMBOL(of_find_compatible_node); 1092 1093 /** 1094 * of_find_node_with_property - Find a node which has a property with 1095 * the given name. 1096 * @from: The node to start searching from or NULL, the node 1097 * you pass will not be searched, only the next one 1098 * will; typically, you pass what the previous call 1099 * returned. of_node_put() will be called on it 1100 * @prop_name: The name of the property to look for. 1101 * 1102 * Return: A node pointer with refcount incremented, use 1103 * of_node_put() on it when done. 1104 */ 1105 struct device_node *of_find_node_with_property(struct device_node *from, 1106 const char *prop_name) 1107 { 1108 struct device_node *np; 1109 struct property *pp; 1110 unsigned long flags; 1111 1112 raw_spin_lock_irqsave(&devtree_lock, flags); 1113 for_each_of_allnodes_from(from, np) { 1114 for (pp = np->properties; pp; pp = pp->next) { 1115 if (of_prop_cmp(pp->name, prop_name) == 0) { 1116 of_node_get(np); 1117 goto out; 1118 } 1119 } 1120 } 1121 out: 1122 of_node_put(from); 1123 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1124 return np; 1125 } 1126 EXPORT_SYMBOL(of_find_node_with_property); 1127 1128 static 1129 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1130 const struct device_node *node) 1131 { 1132 const struct of_device_id *best_match = NULL; 1133 int score, best_score = 0; 1134 1135 if (!matches) 1136 return NULL; 1137 1138 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1139 score = __of_device_is_compatible(node, matches->compatible, 1140 matches->type, matches->name); 1141 if (score > best_score) { 1142 best_match = matches; 1143 best_score = score; 1144 } 1145 } 1146 1147 return best_match; 1148 } 1149 1150 /** 1151 * of_match_node - Tell if a device_node has a matching of_match structure 1152 * @matches: array of of device match structures to search in 1153 * @node: the of device structure to match against 1154 * 1155 * Low level utility function used by device matching. 1156 */ 1157 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1158 const struct device_node *node) 1159 { 1160 const struct of_device_id *match; 1161 unsigned long flags; 1162 1163 raw_spin_lock_irqsave(&devtree_lock, flags); 1164 match = __of_match_node(matches, node); 1165 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1166 return match; 1167 } 1168 EXPORT_SYMBOL(of_match_node); 1169 1170 /** 1171 * of_find_matching_node_and_match - Find a node based on an of_device_id 1172 * match table. 1173 * @from: The node to start searching from or NULL, the node 1174 * you pass will not be searched, only the next one 1175 * will; typically, you pass what the previous call 1176 * returned. of_node_put() will be called on it 1177 * @matches: array of of device match structures to search in 1178 * @match: Updated to point at the matches entry which matched 1179 * 1180 * Return: A node pointer with refcount incremented, use 1181 * of_node_put() on it when done. 1182 */ 1183 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1184 const struct of_device_id *matches, 1185 const struct of_device_id **match) 1186 { 1187 struct device_node *np; 1188 const struct of_device_id *m; 1189 unsigned long flags; 1190 1191 if (match) 1192 *match = NULL; 1193 1194 raw_spin_lock_irqsave(&devtree_lock, flags); 1195 for_each_of_allnodes_from(from, np) { 1196 m = __of_match_node(matches, np); 1197 if (m && of_node_get(np)) { 1198 if (match) 1199 *match = m; 1200 break; 1201 } 1202 } 1203 of_node_put(from); 1204 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1205 return np; 1206 } 1207 EXPORT_SYMBOL(of_find_matching_node_and_match); 1208 1209 /** 1210 * of_modalias_node - Lookup appropriate modalias for a device node 1211 * @node: pointer to a device tree node 1212 * @modalias: Pointer to buffer that modalias value will be copied into 1213 * @len: Length of modalias value 1214 * 1215 * Based on the value of the compatible property, this routine will attempt 1216 * to choose an appropriate modalias value for a particular device tree node. 1217 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1218 * from the first entry in the compatible list property. 1219 * 1220 * Return: This routine returns 0 on success, <0 on failure. 1221 */ 1222 int of_modalias_node(struct device_node *node, char *modalias, int len) 1223 { 1224 const char *compatible, *p; 1225 int cplen; 1226 1227 compatible = of_get_property(node, "compatible", &cplen); 1228 if (!compatible || strlen(compatible) > cplen) 1229 return -ENODEV; 1230 p = strchr(compatible, ','); 1231 strlcpy(modalias, p ? p + 1 : compatible, len); 1232 return 0; 1233 } 1234 EXPORT_SYMBOL_GPL(of_modalias_node); 1235 1236 /** 1237 * of_find_node_by_phandle - Find a node given a phandle 1238 * @handle: phandle of the node to find 1239 * 1240 * Return: A node pointer with refcount incremented, use 1241 * of_node_put() on it when done. 1242 */ 1243 struct device_node *of_find_node_by_phandle(phandle handle) 1244 { 1245 struct device_node *np = NULL; 1246 unsigned long flags; 1247 u32 handle_hash; 1248 1249 if (!handle) 1250 return NULL; 1251 1252 handle_hash = of_phandle_cache_hash(handle); 1253 1254 raw_spin_lock_irqsave(&devtree_lock, flags); 1255 1256 if (phandle_cache[handle_hash] && 1257 handle == phandle_cache[handle_hash]->phandle) 1258 np = phandle_cache[handle_hash]; 1259 1260 if (!np) { 1261 for_each_of_allnodes(np) 1262 if (np->phandle == handle && 1263 !of_node_check_flag(np, OF_DETACHED)) { 1264 phandle_cache[handle_hash] = np; 1265 break; 1266 } 1267 } 1268 1269 of_node_get(np); 1270 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1271 return np; 1272 } 1273 EXPORT_SYMBOL(of_find_node_by_phandle); 1274 1275 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1276 { 1277 int i; 1278 printk("%s %pOF", msg, args->np); 1279 for (i = 0; i < args->args_count; i++) { 1280 const char delim = i ? ',' : ':'; 1281 1282 pr_cont("%c%08x", delim, args->args[i]); 1283 } 1284 pr_cont("\n"); 1285 } 1286 1287 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1288 const struct device_node *np, 1289 const char *list_name, 1290 const char *cells_name, 1291 int cell_count) 1292 { 1293 const __be32 *list; 1294 int size; 1295 1296 memset(it, 0, sizeof(*it)); 1297 1298 /* 1299 * one of cell_count or cells_name must be provided to determine the 1300 * argument length. 1301 */ 1302 if (cell_count < 0 && !cells_name) 1303 return -EINVAL; 1304 1305 list = of_get_property(np, list_name, &size); 1306 if (!list) 1307 return -ENOENT; 1308 1309 it->cells_name = cells_name; 1310 it->cell_count = cell_count; 1311 it->parent = np; 1312 it->list_end = list + size / sizeof(*list); 1313 it->phandle_end = list; 1314 it->cur = list; 1315 1316 return 0; 1317 } 1318 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1319 1320 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1321 { 1322 uint32_t count = 0; 1323 1324 if (it->node) { 1325 of_node_put(it->node); 1326 it->node = NULL; 1327 } 1328 1329 if (!it->cur || it->phandle_end >= it->list_end) 1330 return -ENOENT; 1331 1332 it->cur = it->phandle_end; 1333 1334 /* If phandle is 0, then it is an empty entry with no arguments. */ 1335 it->phandle = be32_to_cpup(it->cur++); 1336 1337 if (it->phandle) { 1338 1339 /* 1340 * Find the provider node and parse the #*-cells property to 1341 * determine the argument length. 1342 */ 1343 it->node = of_find_node_by_phandle(it->phandle); 1344 1345 if (it->cells_name) { 1346 if (!it->node) { 1347 pr_err("%pOF: could not find phandle %d\n", 1348 it->parent, it->phandle); 1349 goto err; 1350 } 1351 1352 if (of_property_read_u32(it->node, it->cells_name, 1353 &count)) { 1354 /* 1355 * If both cell_count and cells_name is given, 1356 * fall back to cell_count in absence 1357 * of the cells_name property 1358 */ 1359 if (it->cell_count >= 0) { 1360 count = it->cell_count; 1361 } else { 1362 pr_err("%pOF: could not get %s for %pOF\n", 1363 it->parent, 1364 it->cells_name, 1365 it->node); 1366 goto err; 1367 } 1368 } 1369 } else { 1370 count = it->cell_count; 1371 } 1372 1373 /* 1374 * Make sure that the arguments actually fit in the remaining 1375 * property data length 1376 */ 1377 if (it->cur + count > it->list_end) { 1378 if (it->cells_name) 1379 pr_err("%pOF: %s = %d found %td\n", 1380 it->parent, it->cells_name, 1381 count, it->list_end - it->cur); 1382 else 1383 pr_err("%pOF: phandle %s needs %d, found %td\n", 1384 it->parent, of_node_full_name(it->node), 1385 count, it->list_end - it->cur); 1386 goto err; 1387 } 1388 } 1389 1390 it->phandle_end = it->cur + count; 1391 it->cur_count = count; 1392 1393 return 0; 1394 1395 err: 1396 if (it->node) { 1397 of_node_put(it->node); 1398 it->node = NULL; 1399 } 1400 1401 return -EINVAL; 1402 } 1403 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1404 1405 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1406 uint32_t *args, 1407 int size) 1408 { 1409 int i, count; 1410 1411 count = it->cur_count; 1412 1413 if (WARN_ON(size < count)) 1414 count = size; 1415 1416 for (i = 0; i < count; i++) 1417 args[i] = be32_to_cpup(it->cur++); 1418 1419 return count; 1420 } 1421 1422 int __of_parse_phandle_with_args(const struct device_node *np, 1423 const char *list_name, 1424 const char *cells_name, 1425 int cell_count, int index, 1426 struct of_phandle_args *out_args) 1427 { 1428 struct of_phandle_iterator it; 1429 int rc, cur_index = 0; 1430 1431 if (index < 0) 1432 return -EINVAL; 1433 1434 /* Loop over the phandles until all the requested entry is found */ 1435 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1436 /* 1437 * All of the error cases bail out of the loop, so at 1438 * this point, the parsing is successful. If the requested 1439 * index matches, then fill the out_args structure and return, 1440 * or return -ENOENT for an empty entry. 1441 */ 1442 rc = -ENOENT; 1443 if (cur_index == index) { 1444 if (!it.phandle) 1445 goto err; 1446 1447 if (out_args) { 1448 int c; 1449 1450 c = of_phandle_iterator_args(&it, 1451 out_args->args, 1452 MAX_PHANDLE_ARGS); 1453 out_args->np = it.node; 1454 out_args->args_count = c; 1455 } else { 1456 of_node_put(it.node); 1457 } 1458 1459 /* Found it! return success */ 1460 return 0; 1461 } 1462 1463 cur_index++; 1464 } 1465 1466 /* 1467 * Unlock node before returning result; will be one of: 1468 * -ENOENT : index is for empty phandle 1469 * -EINVAL : parsing error on data 1470 */ 1471 1472 err: 1473 of_node_put(it.node); 1474 return rc; 1475 } 1476 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1477 1478 /** 1479 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1480 * @np: pointer to a device tree node containing a list 1481 * @list_name: property name that contains a list 1482 * @stem_name: stem of property names that specify phandles' arguments count 1483 * @index: index of a phandle to parse out 1484 * @out_args: optional pointer to output arguments structure (will be filled) 1485 * 1486 * This function is useful to parse lists of phandles and their arguments. 1487 * Returns 0 on success and fills out_args, on error returns appropriate errno 1488 * value. The difference between this function and of_parse_phandle_with_args() 1489 * is that this API remaps a phandle if the node the phandle points to has 1490 * a <@stem_name>-map property. 1491 * 1492 * Caller is responsible to call of_node_put() on the returned out_args->np 1493 * pointer. 1494 * 1495 * Example:: 1496 * 1497 * phandle1: node1 { 1498 * #list-cells = <2>; 1499 * }; 1500 * 1501 * phandle2: node2 { 1502 * #list-cells = <1>; 1503 * }; 1504 * 1505 * phandle3: node3 { 1506 * #list-cells = <1>; 1507 * list-map = <0 &phandle2 3>, 1508 * <1 &phandle2 2>, 1509 * <2 &phandle1 5 1>; 1510 * list-map-mask = <0x3>; 1511 * }; 1512 * 1513 * node4 { 1514 * list = <&phandle1 1 2 &phandle3 0>; 1515 * }; 1516 * 1517 * To get a device_node of the ``node2`` node you may call this: 1518 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1519 */ 1520 int of_parse_phandle_with_args_map(const struct device_node *np, 1521 const char *list_name, 1522 const char *stem_name, 1523 int index, struct of_phandle_args *out_args) 1524 { 1525 char *cells_name, *map_name = NULL, *mask_name = NULL; 1526 char *pass_name = NULL; 1527 struct device_node *cur, *new = NULL; 1528 const __be32 *map, *mask, *pass; 1529 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1530 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1531 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1532 const __be32 *match_array = initial_match_array; 1533 int i, ret, map_len, match; 1534 u32 list_size, new_size; 1535 1536 if (index < 0) 1537 return -EINVAL; 1538 1539 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1540 if (!cells_name) 1541 return -ENOMEM; 1542 1543 ret = -ENOMEM; 1544 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1545 if (!map_name) 1546 goto free; 1547 1548 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1549 if (!mask_name) 1550 goto free; 1551 1552 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1553 if (!pass_name) 1554 goto free; 1555 1556 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1557 out_args); 1558 if (ret) 1559 goto free; 1560 1561 /* Get the #<list>-cells property */ 1562 cur = out_args->np; 1563 ret = of_property_read_u32(cur, cells_name, &list_size); 1564 if (ret < 0) 1565 goto put; 1566 1567 /* Precalculate the match array - this simplifies match loop */ 1568 for (i = 0; i < list_size; i++) 1569 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1570 1571 ret = -EINVAL; 1572 while (cur) { 1573 /* Get the <list>-map property */ 1574 map = of_get_property(cur, map_name, &map_len); 1575 if (!map) { 1576 ret = 0; 1577 goto free; 1578 } 1579 map_len /= sizeof(u32); 1580 1581 /* Get the <list>-map-mask property (optional) */ 1582 mask = of_get_property(cur, mask_name, NULL); 1583 if (!mask) 1584 mask = dummy_mask; 1585 /* Iterate through <list>-map property */ 1586 match = 0; 1587 while (map_len > (list_size + 1) && !match) { 1588 /* Compare specifiers */ 1589 match = 1; 1590 for (i = 0; i < list_size; i++, map_len--) 1591 match &= !((match_array[i] ^ *map++) & mask[i]); 1592 1593 of_node_put(new); 1594 new = of_find_node_by_phandle(be32_to_cpup(map)); 1595 map++; 1596 map_len--; 1597 1598 /* Check if not found */ 1599 if (!new) 1600 goto put; 1601 1602 if (!of_device_is_available(new)) 1603 match = 0; 1604 1605 ret = of_property_read_u32(new, cells_name, &new_size); 1606 if (ret) 1607 goto put; 1608 1609 /* Check for malformed properties */ 1610 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1611 goto put; 1612 if (map_len < new_size) 1613 goto put; 1614 1615 /* Move forward by new node's #<list>-cells amount */ 1616 map += new_size; 1617 map_len -= new_size; 1618 } 1619 if (!match) 1620 goto put; 1621 1622 /* Get the <list>-map-pass-thru property (optional) */ 1623 pass = of_get_property(cur, pass_name, NULL); 1624 if (!pass) 1625 pass = dummy_pass; 1626 1627 /* 1628 * Successfully parsed a <list>-map translation; copy new 1629 * specifier into the out_args structure, keeping the 1630 * bits specified in <list>-map-pass-thru. 1631 */ 1632 match_array = map - new_size; 1633 for (i = 0; i < new_size; i++) { 1634 __be32 val = *(map - new_size + i); 1635 1636 if (i < list_size) { 1637 val &= ~pass[i]; 1638 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1639 } 1640 1641 out_args->args[i] = be32_to_cpu(val); 1642 } 1643 out_args->args_count = list_size = new_size; 1644 /* Iterate again with new provider */ 1645 out_args->np = new; 1646 of_node_put(cur); 1647 cur = new; 1648 } 1649 put: 1650 of_node_put(cur); 1651 of_node_put(new); 1652 free: 1653 kfree(mask_name); 1654 kfree(map_name); 1655 kfree(cells_name); 1656 kfree(pass_name); 1657 1658 return ret; 1659 } 1660 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1661 1662 /** 1663 * of_count_phandle_with_args() - Find the number of phandles references in a property 1664 * @np: pointer to a device tree node containing a list 1665 * @list_name: property name that contains a list 1666 * @cells_name: property name that specifies phandles' arguments count 1667 * 1668 * Return: The number of phandle + argument tuples within a property. It 1669 * is a typical pattern to encode a list of phandle and variable 1670 * arguments into a single property. The number of arguments is encoded 1671 * by a property in the phandle-target node. For example, a gpios 1672 * property would contain a list of GPIO specifies consisting of a 1673 * phandle and 1 or more arguments. The number of arguments are 1674 * determined by the #gpio-cells property in the node pointed to by the 1675 * phandle. 1676 */ 1677 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1678 const char *cells_name) 1679 { 1680 struct of_phandle_iterator it; 1681 int rc, cur_index = 0; 1682 1683 /* 1684 * If cells_name is NULL we assume a cell count of 0. This makes 1685 * counting the phandles trivial as each 32bit word in the list is a 1686 * phandle and no arguments are to consider. So we don't iterate through 1687 * the list but just use the length to determine the phandle count. 1688 */ 1689 if (!cells_name) { 1690 const __be32 *list; 1691 int size; 1692 1693 list = of_get_property(np, list_name, &size); 1694 if (!list) 1695 return -ENOENT; 1696 1697 return size / sizeof(*list); 1698 } 1699 1700 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1701 if (rc) 1702 return rc; 1703 1704 while ((rc = of_phandle_iterator_next(&it)) == 0) 1705 cur_index += 1; 1706 1707 if (rc != -ENOENT) 1708 return rc; 1709 1710 return cur_index; 1711 } 1712 EXPORT_SYMBOL(of_count_phandle_with_args); 1713 1714 /** 1715 * __of_add_property - Add a property to a node without lock operations 1716 * @np: Caller's Device Node 1717 * @prop: Property to add 1718 */ 1719 int __of_add_property(struct device_node *np, struct property *prop) 1720 { 1721 struct property **next; 1722 1723 prop->next = NULL; 1724 next = &np->properties; 1725 while (*next) { 1726 if (strcmp(prop->name, (*next)->name) == 0) 1727 /* duplicate ! don't insert it */ 1728 return -EEXIST; 1729 1730 next = &(*next)->next; 1731 } 1732 *next = prop; 1733 1734 return 0; 1735 } 1736 1737 /** 1738 * of_add_property - Add a property to a node 1739 * @np: Caller's Device Node 1740 * @prop: Property to add 1741 */ 1742 int of_add_property(struct device_node *np, struct property *prop) 1743 { 1744 unsigned long flags; 1745 int rc; 1746 1747 mutex_lock(&of_mutex); 1748 1749 raw_spin_lock_irqsave(&devtree_lock, flags); 1750 rc = __of_add_property(np, prop); 1751 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1752 1753 if (!rc) 1754 __of_add_property_sysfs(np, prop); 1755 1756 mutex_unlock(&of_mutex); 1757 1758 if (!rc) 1759 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1760 1761 return rc; 1762 } 1763 EXPORT_SYMBOL_GPL(of_add_property); 1764 1765 int __of_remove_property(struct device_node *np, struct property *prop) 1766 { 1767 struct property **next; 1768 1769 for (next = &np->properties; *next; next = &(*next)->next) { 1770 if (*next == prop) 1771 break; 1772 } 1773 if (*next == NULL) 1774 return -ENODEV; 1775 1776 /* found the node */ 1777 *next = prop->next; 1778 prop->next = np->deadprops; 1779 np->deadprops = prop; 1780 1781 return 0; 1782 } 1783 1784 /** 1785 * of_remove_property - Remove a property from a node. 1786 * @np: Caller's Device Node 1787 * @prop: Property to remove 1788 * 1789 * Note that we don't actually remove it, since we have given out 1790 * who-knows-how-many pointers to the data using get-property. 1791 * Instead we just move the property to the "dead properties" 1792 * list, so it won't be found any more. 1793 */ 1794 int of_remove_property(struct device_node *np, struct property *prop) 1795 { 1796 unsigned long flags; 1797 int rc; 1798 1799 if (!prop) 1800 return -ENODEV; 1801 1802 mutex_lock(&of_mutex); 1803 1804 raw_spin_lock_irqsave(&devtree_lock, flags); 1805 rc = __of_remove_property(np, prop); 1806 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1807 1808 if (!rc) 1809 __of_remove_property_sysfs(np, prop); 1810 1811 mutex_unlock(&of_mutex); 1812 1813 if (!rc) 1814 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1815 1816 return rc; 1817 } 1818 EXPORT_SYMBOL_GPL(of_remove_property); 1819 1820 int __of_update_property(struct device_node *np, struct property *newprop, 1821 struct property **oldpropp) 1822 { 1823 struct property **next, *oldprop; 1824 1825 for (next = &np->properties; *next; next = &(*next)->next) { 1826 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1827 break; 1828 } 1829 *oldpropp = oldprop = *next; 1830 1831 if (oldprop) { 1832 /* replace the node */ 1833 newprop->next = oldprop->next; 1834 *next = newprop; 1835 oldprop->next = np->deadprops; 1836 np->deadprops = oldprop; 1837 } else { 1838 /* new node */ 1839 newprop->next = NULL; 1840 *next = newprop; 1841 } 1842 1843 return 0; 1844 } 1845 1846 /* 1847 * of_update_property - Update a property in a node, if the property does 1848 * not exist, add it. 1849 * 1850 * Note that we don't actually remove it, since we have given out 1851 * who-knows-how-many pointers to the data using get-property. 1852 * Instead we just move the property to the "dead properties" list, 1853 * and add the new property to the property list 1854 */ 1855 int of_update_property(struct device_node *np, struct property *newprop) 1856 { 1857 struct property *oldprop; 1858 unsigned long flags; 1859 int rc; 1860 1861 if (!newprop->name) 1862 return -EINVAL; 1863 1864 mutex_lock(&of_mutex); 1865 1866 raw_spin_lock_irqsave(&devtree_lock, flags); 1867 rc = __of_update_property(np, newprop, &oldprop); 1868 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1869 1870 if (!rc) 1871 __of_update_property_sysfs(np, newprop, oldprop); 1872 1873 mutex_unlock(&of_mutex); 1874 1875 if (!rc) 1876 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1877 1878 return rc; 1879 } 1880 1881 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1882 int id, const char *stem, int stem_len) 1883 { 1884 ap->np = np; 1885 ap->id = id; 1886 strncpy(ap->stem, stem, stem_len); 1887 ap->stem[stem_len] = 0; 1888 list_add_tail(&ap->link, &aliases_lookup); 1889 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1890 ap->alias, ap->stem, ap->id, np); 1891 } 1892 1893 /** 1894 * of_alias_scan - Scan all properties of the 'aliases' node 1895 * @dt_alloc: An allocator that provides a virtual address to memory 1896 * for storing the resulting tree 1897 * 1898 * The function scans all the properties of the 'aliases' node and populates 1899 * the global lookup table with the properties. It returns the 1900 * number of alias properties found, or an error code in case of failure. 1901 */ 1902 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1903 { 1904 struct property *pp; 1905 1906 of_aliases = of_find_node_by_path("/aliases"); 1907 of_chosen = of_find_node_by_path("/chosen"); 1908 if (of_chosen == NULL) 1909 of_chosen = of_find_node_by_path("/chosen@0"); 1910 1911 if (of_chosen) { 1912 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1913 const char *name = NULL; 1914 1915 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1916 of_property_read_string(of_chosen, "linux,stdout-path", 1917 &name); 1918 if (IS_ENABLED(CONFIG_PPC) && !name) 1919 of_property_read_string(of_aliases, "stdout", &name); 1920 if (name) 1921 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1922 } 1923 1924 if (!of_aliases) 1925 return; 1926 1927 for_each_property_of_node(of_aliases, pp) { 1928 const char *start = pp->name; 1929 const char *end = start + strlen(start); 1930 struct device_node *np; 1931 struct alias_prop *ap; 1932 int id, len; 1933 1934 /* Skip those we do not want to proceed */ 1935 if (!strcmp(pp->name, "name") || 1936 !strcmp(pp->name, "phandle") || 1937 !strcmp(pp->name, "linux,phandle")) 1938 continue; 1939 1940 np = of_find_node_by_path(pp->value); 1941 if (!np) 1942 continue; 1943 1944 /* walk the alias backwards to extract the id and work out 1945 * the 'stem' string */ 1946 while (isdigit(*(end-1)) && end > start) 1947 end--; 1948 len = end - start; 1949 1950 if (kstrtoint(end, 10, &id) < 0) 1951 continue; 1952 1953 /* Allocate an alias_prop with enough space for the stem */ 1954 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1955 if (!ap) 1956 continue; 1957 memset(ap, 0, sizeof(*ap) + len + 1); 1958 ap->alias = start; 1959 of_alias_add(ap, np, id, start, len); 1960 } 1961 } 1962 1963 /** 1964 * of_alias_get_id - Get alias id for the given device_node 1965 * @np: Pointer to the given device_node 1966 * @stem: Alias stem of the given device_node 1967 * 1968 * The function travels the lookup table to get the alias id for the given 1969 * device_node and alias stem. 1970 * 1971 * Return: The alias id if found. 1972 */ 1973 int of_alias_get_id(struct device_node *np, const char *stem) 1974 { 1975 struct alias_prop *app; 1976 int id = -ENODEV; 1977 1978 mutex_lock(&of_mutex); 1979 list_for_each_entry(app, &aliases_lookup, link) { 1980 if (strcmp(app->stem, stem) != 0) 1981 continue; 1982 1983 if (np == app->np) { 1984 id = app->id; 1985 break; 1986 } 1987 } 1988 mutex_unlock(&of_mutex); 1989 1990 return id; 1991 } 1992 EXPORT_SYMBOL_GPL(of_alias_get_id); 1993 1994 /** 1995 * of_alias_get_highest_id - Get highest alias id for the given stem 1996 * @stem: Alias stem to be examined 1997 * 1998 * The function travels the lookup table to get the highest alias id for the 1999 * given alias stem. It returns the alias id if found. 2000 */ 2001 int of_alias_get_highest_id(const char *stem) 2002 { 2003 struct alias_prop *app; 2004 int id = -ENODEV; 2005 2006 mutex_lock(&of_mutex); 2007 list_for_each_entry(app, &aliases_lookup, link) { 2008 if (strcmp(app->stem, stem) != 0) 2009 continue; 2010 2011 if (app->id > id) 2012 id = app->id; 2013 } 2014 mutex_unlock(&of_mutex); 2015 2016 return id; 2017 } 2018 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2019 2020 /** 2021 * of_console_check() - Test and setup console for DT setup 2022 * @dn: Pointer to device node 2023 * @name: Name to use for preferred console without index. ex. "ttyS" 2024 * @index: Index to use for preferred console. 2025 * 2026 * Check if the given device node matches the stdout-path property in the 2027 * /chosen node. If it does then register it as the preferred console. 2028 * 2029 * Return: TRUE if console successfully setup. Otherwise return FALSE. 2030 */ 2031 bool of_console_check(struct device_node *dn, char *name, int index) 2032 { 2033 if (!dn || dn != of_stdout || console_set_on_cmdline) 2034 return false; 2035 2036 /* 2037 * XXX: cast `options' to char pointer to suppress complication 2038 * warnings: printk, UART and console drivers expect char pointer. 2039 */ 2040 return !add_preferred_console(name, index, (char *)of_stdout_options); 2041 } 2042 EXPORT_SYMBOL_GPL(of_console_check); 2043 2044 /** 2045 * of_find_next_cache_node - Find a node's subsidiary cache 2046 * @np: node of type "cpu" or "cache" 2047 * 2048 * Return: A node pointer with refcount incremented, use 2049 * of_node_put() on it when done. Caller should hold a reference 2050 * to np. 2051 */ 2052 struct device_node *of_find_next_cache_node(const struct device_node *np) 2053 { 2054 struct device_node *child, *cache_node; 2055 2056 cache_node = of_parse_phandle(np, "l2-cache", 0); 2057 if (!cache_node) 2058 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2059 2060 if (cache_node) 2061 return cache_node; 2062 2063 /* OF on pmac has nodes instead of properties named "l2-cache" 2064 * beneath CPU nodes. 2065 */ 2066 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2067 for_each_child_of_node(np, child) 2068 if (of_node_is_type(child, "cache")) 2069 return child; 2070 2071 return NULL; 2072 } 2073 2074 /** 2075 * of_find_last_cache_level - Find the level at which the last cache is 2076 * present for the given logical cpu 2077 * 2078 * @cpu: cpu number(logical index) for which the last cache level is needed 2079 * 2080 * Return: The the level at which the last cache is present. It is exactly 2081 * same as the total number of cache levels for the given logical cpu. 2082 */ 2083 int of_find_last_cache_level(unsigned int cpu) 2084 { 2085 u32 cache_level = 0; 2086 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2087 2088 while (np) { 2089 prev = np; 2090 of_node_put(np); 2091 np = of_find_next_cache_node(np); 2092 } 2093 2094 of_property_read_u32(prev, "cache-level", &cache_level); 2095 2096 return cache_level; 2097 } 2098 2099 /** 2100 * of_map_id - Translate an ID through a downstream mapping. 2101 * @np: root complex device node. 2102 * @id: device ID to map. 2103 * @map_name: property name of the map to use. 2104 * @map_mask_name: optional property name of the mask to use. 2105 * @target: optional pointer to a target device node. 2106 * @id_out: optional pointer to receive the translated ID. 2107 * 2108 * Given a device ID, look up the appropriate implementation-defined 2109 * platform ID and/or the target device which receives transactions on that 2110 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2111 * @id_out may be NULL if only the other is required. If @target points to 2112 * a non-NULL device node pointer, only entries targeting that node will be 2113 * matched; if it points to a NULL value, it will receive the device node of 2114 * the first matching target phandle, with a reference held. 2115 * 2116 * Return: 0 on success or a standard error code on failure. 2117 */ 2118 int of_map_id(struct device_node *np, u32 id, 2119 const char *map_name, const char *map_mask_name, 2120 struct device_node **target, u32 *id_out) 2121 { 2122 u32 map_mask, masked_id; 2123 int map_len; 2124 const __be32 *map = NULL; 2125 2126 if (!np || !map_name || (!target && !id_out)) 2127 return -EINVAL; 2128 2129 map = of_get_property(np, map_name, &map_len); 2130 if (!map) { 2131 if (target) 2132 return -ENODEV; 2133 /* Otherwise, no map implies no translation */ 2134 *id_out = id; 2135 return 0; 2136 } 2137 2138 if (!map_len || map_len % (4 * sizeof(*map))) { 2139 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2140 map_name, map_len); 2141 return -EINVAL; 2142 } 2143 2144 /* The default is to select all bits. */ 2145 map_mask = 0xffffffff; 2146 2147 /* 2148 * Can be overridden by "{iommu,msi}-map-mask" property. 2149 * If of_property_read_u32() fails, the default is used. 2150 */ 2151 if (map_mask_name) 2152 of_property_read_u32(np, map_mask_name, &map_mask); 2153 2154 masked_id = map_mask & id; 2155 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2156 struct device_node *phandle_node; 2157 u32 id_base = be32_to_cpup(map + 0); 2158 u32 phandle = be32_to_cpup(map + 1); 2159 u32 out_base = be32_to_cpup(map + 2); 2160 u32 id_len = be32_to_cpup(map + 3); 2161 2162 if (id_base & ~map_mask) { 2163 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2164 np, map_name, map_name, 2165 map_mask, id_base); 2166 return -EFAULT; 2167 } 2168 2169 if (masked_id < id_base || masked_id >= id_base + id_len) 2170 continue; 2171 2172 phandle_node = of_find_node_by_phandle(phandle); 2173 if (!phandle_node) 2174 return -ENODEV; 2175 2176 if (target) { 2177 if (*target) 2178 of_node_put(phandle_node); 2179 else 2180 *target = phandle_node; 2181 2182 if (*target != phandle_node) 2183 continue; 2184 } 2185 2186 if (id_out) 2187 *id_out = masked_id - id_base + out_base; 2188 2189 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2190 np, map_name, map_mask, id_base, out_base, 2191 id_len, id, masked_id - id_base + out_base); 2192 return 0; 2193 } 2194 2195 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2196 id, target && *target ? *target : NULL); 2197 2198 /* Bypasses translation */ 2199 if (id_out) 2200 *id_out = id; 2201 return 0; 2202 } 2203 EXPORT_SYMBOL_GPL(of_map_id); 2204