xref: /openbmc/linux/drivers/of/base.c (revision 293d5b43)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 
21 #define pr_fmt(fmt)	"OF: " fmt
22 
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_graph.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/proc_fs.h>
33 
34 #include "of_private.h"
35 
36 LIST_HEAD(aliases_lookup);
37 
38 struct device_node *of_root;
39 EXPORT_SYMBOL(of_root);
40 struct device_node *of_chosen;
41 struct device_node *of_aliases;
42 struct device_node *of_stdout;
43 static const char *of_stdout_options;
44 
45 struct kset *of_kset;
46 
47 /*
48  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
49  * This mutex must be held whenever modifications are being made to the
50  * device tree. The of_{attach,detach}_node() and
51  * of_{add,remove,update}_property() helpers make sure this happens.
52  */
53 DEFINE_MUTEX(of_mutex);
54 
55 /* use when traversing tree through the child, sibling,
56  * or parent members of struct device_node.
57  */
58 DEFINE_RAW_SPINLOCK(devtree_lock);
59 
60 int of_n_addr_cells(struct device_node *np)
61 {
62 	const __be32 *ip;
63 
64 	do {
65 		if (np->parent)
66 			np = np->parent;
67 		ip = of_get_property(np, "#address-cells", NULL);
68 		if (ip)
69 			return be32_to_cpup(ip);
70 	} while (np->parent);
71 	/* No #address-cells property for the root node */
72 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75 
76 int of_n_size_cells(struct device_node *np)
77 {
78 	const __be32 *ip;
79 
80 	do {
81 		if (np->parent)
82 			np = np->parent;
83 		ip = of_get_property(np, "#size-cells", NULL);
84 		if (ip)
85 			return be32_to_cpup(ip);
86 	} while (np->parent);
87 	/* No #size-cells property for the root node */
88 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
89 }
90 EXPORT_SYMBOL(of_n_size_cells);
91 
92 #ifdef CONFIG_NUMA
93 int __weak of_node_to_nid(struct device_node *np)
94 {
95 	return NUMA_NO_NODE;
96 }
97 #endif
98 
99 #ifndef CONFIG_OF_DYNAMIC
100 static void of_node_release(struct kobject *kobj)
101 {
102 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
103 }
104 #endif /* CONFIG_OF_DYNAMIC */
105 
106 struct kobj_type of_node_ktype = {
107 	.release = of_node_release,
108 };
109 
110 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
111 				struct bin_attribute *bin_attr, char *buf,
112 				loff_t offset, size_t count)
113 {
114 	struct property *pp = container_of(bin_attr, struct property, attr);
115 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
116 }
117 
118 /* always return newly allocated name, caller must free after use */
119 static const char *safe_name(struct kobject *kobj, const char *orig_name)
120 {
121 	const char *name = orig_name;
122 	struct kernfs_node *kn;
123 	int i = 0;
124 
125 	/* don't be a hero. After 16 tries give up */
126 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
127 		sysfs_put(kn);
128 		if (name != orig_name)
129 			kfree(name);
130 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
131 	}
132 
133 	if (name == orig_name) {
134 		name = kstrdup(orig_name, GFP_KERNEL);
135 	} else {
136 		pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
137 			kobject_name(kobj), name);
138 	}
139 	return name;
140 }
141 
142 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
143 {
144 	int rc;
145 
146 	/* Important: Don't leak passwords */
147 	bool secure = strncmp(pp->name, "security-", 9) == 0;
148 
149 	if (!IS_ENABLED(CONFIG_SYSFS))
150 		return 0;
151 
152 	if (!of_kset || !of_node_is_attached(np))
153 		return 0;
154 
155 	sysfs_bin_attr_init(&pp->attr);
156 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
157 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
158 	pp->attr.size = secure ? 0 : pp->length;
159 	pp->attr.read = of_node_property_read;
160 
161 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
162 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
163 	return rc;
164 }
165 
166 int __of_attach_node_sysfs(struct device_node *np)
167 {
168 	const char *name;
169 	struct kobject *parent;
170 	struct property *pp;
171 	int rc;
172 
173 	if (!IS_ENABLED(CONFIG_SYSFS))
174 		return 0;
175 
176 	if (!of_kset)
177 		return 0;
178 
179 	np->kobj.kset = of_kset;
180 	if (!np->parent) {
181 		/* Nodes without parents are new top level trees */
182 		name = safe_name(&of_kset->kobj, "base");
183 		parent = NULL;
184 	} else {
185 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
186 		parent = &np->parent->kobj;
187 	}
188 	if (!name)
189 		return -ENOMEM;
190 	rc = kobject_add(&np->kobj, parent, "%s", name);
191 	kfree(name);
192 	if (rc)
193 		return rc;
194 
195 	for_each_property_of_node(np, pp)
196 		__of_add_property_sysfs(np, pp);
197 
198 	return 0;
199 }
200 
201 void __init of_core_init(void)
202 {
203 	struct device_node *np;
204 
205 	/* Create the kset, and register existing nodes */
206 	mutex_lock(&of_mutex);
207 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
208 	if (!of_kset) {
209 		mutex_unlock(&of_mutex);
210 		pr_err("failed to register existing nodes\n");
211 		return;
212 	}
213 	for_each_of_allnodes(np)
214 		__of_attach_node_sysfs(np);
215 	mutex_unlock(&of_mutex);
216 
217 	/* Symlink in /proc as required by userspace ABI */
218 	if (of_root)
219 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
220 }
221 
222 static struct property *__of_find_property(const struct device_node *np,
223 					   const char *name, int *lenp)
224 {
225 	struct property *pp;
226 
227 	if (!np)
228 		return NULL;
229 
230 	for (pp = np->properties; pp; pp = pp->next) {
231 		if (of_prop_cmp(pp->name, name) == 0) {
232 			if (lenp)
233 				*lenp = pp->length;
234 			break;
235 		}
236 	}
237 
238 	return pp;
239 }
240 
241 struct property *of_find_property(const struct device_node *np,
242 				  const char *name,
243 				  int *lenp)
244 {
245 	struct property *pp;
246 	unsigned long flags;
247 
248 	raw_spin_lock_irqsave(&devtree_lock, flags);
249 	pp = __of_find_property(np, name, lenp);
250 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
251 
252 	return pp;
253 }
254 EXPORT_SYMBOL(of_find_property);
255 
256 struct device_node *__of_find_all_nodes(struct device_node *prev)
257 {
258 	struct device_node *np;
259 	if (!prev) {
260 		np = of_root;
261 	} else if (prev->child) {
262 		np = prev->child;
263 	} else {
264 		/* Walk back up looking for a sibling, or the end of the structure */
265 		np = prev;
266 		while (np->parent && !np->sibling)
267 			np = np->parent;
268 		np = np->sibling; /* Might be null at the end of the tree */
269 	}
270 	return np;
271 }
272 
273 /**
274  * of_find_all_nodes - Get next node in global list
275  * @prev:	Previous node or NULL to start iteration
276  *		of_node_put() will be called on it
277  *
278  * Returns a node pointer with refcount incremented, use
279  * of_node_put() on it when done.
280  */
281 struct device_node *of_find_all_nodes(struct device_node *prev)
282 {
283 	struct device_node *np;
284 	unsigned long flags;
285 
286 	raw_spin_lock_irqsave(&devtree_lock, flags);
287 	np = __of_find_all_nodes(prev);
288 	of_node_get(np);
289 	of_node_put(prev);
290 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
291 	return np;
292 }
293 EXPORT_SYMBOL(of_find_all_nodes);
294 
295 /*
296  * Find a property with a given name for a given node
297  * and return the value.
298  */
299 const void *__of_get_property(const struct device_node *np,
300 			      const char *name, int *lenp)
301 {
302 	struct property *pp = __of_find_property(np, name, lenp);
303 
304 	return pp ? pp->value : NULL;
305 }
306 
307 /*
308  * Find a property with a given name for a given node
309  * and return the value.
310  */
311 const void *of_get_property(const struct device_node *np, const char *name,
312 			    int *lenp)
313 {
314 	struct property *pp = of_find_property(np, name, lenp);
315 
316 	return pp ? pp->value : NULL;
317 }
318 EXPORT_SYMBOL(of_get_property);
319 
320 /*
321  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
322  *
323  * @cpu: logical cpu index of a core/thread
324  * @phys_id: physical identifier of a core/thread
325  *
326  * CPU logical to physical index mapping is architecture specific.
327  * However this __weak function provides a default match of physical
328  * id to logical cpu index. phys_id provided here is usually values read
329  * from the device tree which must match the hardware internal registers.
330  *
331  * Returns true if the physical identifier and the logical cpu index
332  * correspond to the same core/thread, false otherwise.
333  */
334 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
335 {
336 	return (u32)phys_id == cpu;
337 }
338 
339 /**
340  * Checks if the given "prop_name" property holds the physical id of the
341  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
342  * NULL, local thread number within the core is returned in it.
343  */
344 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
345 			const char *prop_name, int cpu, unsigned int *thread)
346 {
347 	const __be32 *cell;
348 	int ac, prop_len, tid;
349 	u64 hwid;
350 
351 	ac = of_n_addr_cells(cpun);
352 	cell = of_get_property(cpun, prop_name, &prop_len);
353 	if (!cell || !ac)
354 		return false;
355 	prop_len /= sizeof(*cell) * ac;
356 	for (tid = 0; tid < prop_len; tid++) {
357 		hwid = of_read_number(cell, ac);
358 		if (arch_match_cpu_phys_id(cpu, hwid)) {
359 			if (thread)
360 				*thread = tid;
361 			return true;
362 		}
363 		cell += ac;
364 	}
365 	return false;
366 }
367 
368 /*
369  * arch_find_n_match_cpu_physical_id - See if the given device node is
370  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
371  * else false.  If 'thread' is non-NULL, the local thread number within the
372  * core is returned in it.
373  */
374 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
375 					      int cpu, unsigned int *thread)
376 {
377 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
378 	 * for thread ids on PowerPC. If it doesn't exist fallback to
379 	 * standard "reg" property.
380 	 */
381 	if (IS_ENABLED(CONFIG_PPC) &&
382 	    __of_find_n_match_cpu_property(cpun,
383 					   "ibm,ppc-interrupt-server#s",
384 					   cpu, thread))
385 		return true;
386 
387 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
388 }
389 
390 /**
391  * of_get_cpu_node - Get device node associated with the given logical CPU
392  *
393  * @cpu: CPU number(logical index) for which device node is required
394  * @thread: if not NULL, local thread number within the physical core is
395  *          returned
396  *
397  * The main purpose of this function is to retrieve the device node for the
398  * given logical CPU index. It should be used to initialize the of_node in
399  * cpu device. Once of_node in cpu device is populated, all the further
400  * references can use that instead.
401  *
402  * CPU logical to physical index mapping is architecture specific and is built
403  * before booting secondary cores. This function uses arch_match_cpu_phys_id
404  * which can be overridden by architecture specific implementation.
405  *
406  * Returns a node pointer for the logical cpu with refcount incremented, use
407  * of_node_put() on it when done. Returns NULL if not found.
408  */
409 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
410 {
411 	struct device_node *cpun;
412 
413 	for_each_node_by_type(cpun, "cpu") {
414 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
415 			return cpun;
416 	}
417 	return NULL;
418 }
419 EXPORT_SYMBOL(of_get_cpu_node);
420 
421 /**
422  * __of_device_is_compatible() - Check if the node matches given constraints
423  * @device: pointer to node
424  * @compat: required compatible string, NULL or "" for any match
425  * @type: required device_type value, NULL or "" for any match
426  * @name: required node name, NULL or "" for any match
427  *
428  * Checks if the given @compat, @type and @name strings match the
429  * properties of the given @device. A constraints can be skipped by
430  * passing NULL or an empty string as the constraint.
431  *
432  * Returns 0 for no match, and a positive integer on match. The return
433  * value is a relative score with larger values indicating better
434  * matches. The score is weighted for the most specific compatible value
435  * to get the highest score. Matching type is next, followed by matching
436  * name. Practically speaking, this results in the following priority
437  * order for matches:
438  *
439  * 1. specific compatible && type && name
440  * 2. specific compatible && type
441  * 3. specific compatible && name
442  * 4. specific compatible
443  * 5. general compatible && type && name
444  * 6. general compatible && type
445  * 7. general compatible && name
446  * 8. general compatible
447  * 9. type && name
448  * 10. type
449  * 11. name
450  */
451 static int __of_device_is_compatible(const struct device_node *device,
452 				     const char *compat, const char *type, const char *name)
453 {
454 	struct property *prop;
455 	const char *cp;
456 	int index = 0, score = 0;
457 
458 	/* Compatible match has highest priority */
459 	if (compat && compat[0]) {
460 		prop = __of_find_property(device, "compatible", NULL);
461 		for (cp = of_prop_next_string(prop, NULL); cp;
462 		     cp = of_prop_next_string(prop, cp), index++) {
463 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
464 				score = INT_MAX/2 - (index << 2);
465 				break;
466 			}
467 		}
468 		if (!score)
469 			return 0;
470 	}
471 
472 	/* Matching type is better than matching name */
473 	if (type && type[0]) {
474 		if (!device->type || of_node_cmp(type, device->type))
475 			return 0;
476 		score += 2;
477 	}
478 
479 	/* Matching name is a bit better than not */
480 	if (name && name[0]) {
481 		if (!device->name || of_node_cmp(name, device->name))
482 			return 0;
483 		score++;
484 	}
485 
486 	return score;
487 }
488 
489 /** Checks if the given "compat" string matches one of the strings in
490  * the device's "compatible" property
491  */
492 int of_device_is_compatible(const struct device_node *device,
493 		const char *compat)
494 {
495 	unsigned long flags;
496 	int res;
497 
498 	raw_spin_lock_irqsave(&devtree_lock, flags);
499 	res = __of_device_is_compatible(device, compat, NULL, NULL);
500 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
501 	return res;
502 }
503 EXPORT_SYMBOL(of_device_is_compatible);
504 
505 /** Checks if the device is compatible with any of the entries in
506  *  a NULL terminated array of strings. Returns the best match
507  *  score or 0.
508  */
509 int of_device_compatible_match(struct device_node *device,
510 			       const char *const *compat)
511 {
512 	unsigned int tmp, score = 0;
513 
514 	if (!compat)
515 		return 0;
516 
517 	while (*compat) {
518 		tmp = of_device_is_compatible(device, *compat);
519 		if (tmp > score)
520 			score = tmp;
521 		compat++;
522 	}
523 
524 	return score;
525 }
526 
527 /**
528  * of_machine_is_compatible - Test root of device tree for a given compatible value
529  * @compat: compatible string to look for in root node's compatible property.
530  *
531  * Returns a positive integer if the root node has the given value in its
532  * compatible property.
533  */
534 int of_machine_is_compatible(const char *compat)
535 {
536 	struct device_node *root;
537 	int rc = 0;
538 
539 	root = of_find_node_by_path("/");
540 	if (root) {
541 		rc = of_device_is_compatible(root, compat);
542 		of_node_put(root);
543 	}
544 	return rc;
545 }
546 EXPORT_SYMBOL(of_machine_is_compatible);
547 
548 /**
549  *  __of_device_is_available - check if a device is available for use
550  *
551  *  @device: Node to check for availability, with locks already held
552  *
553  *  Returns true if the status property is absent or set to "okay" or "ok",
554  *  false otherwise
555  */
556 static bool __of_device_is_available(const struct device_node *device)
557 {
558 	const char *status;
559 	int statlen;
560 
561 	if (!device)
562 		return false;
563 
564 	status = __of_get_property(device, "status", &statlen);
565 	if (status == NULL)
566 		return true;
567 
568 	if (statlen > 0) {
569 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
570 			return true;
571 	}
572 
573 	return false;
574 }
575 
576 /**
577  *  of_device_is_available - check if a device is available for use
578  *
579  *  @device: Node to check for availability
580  *
581  *  Returns true if the status property is absent or set to "okay" or "ok",
582  *  false otherwise
583  */
584 bool of_device_is_available(const struct device_node *device)
585 {
586 	unsigned long flags;
587 	bool res;
588 
589 	raw_spin_lock_irqsave(&devtree_lock, flags);
590 	res = __of_device_is_available(device);
591 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
592 	return res;
593 
594 }
595 EXPORT_SYMBOL(of_device_is_available);
596 
597 /**
598  *  of_device_is_big_endian - check if a device has BE registers
599  *
600  *  @device: Node to check for endianness
601  *
602  *  Returns true if the device has a "big-endian" property, or if the kernel
603  *  was compiled for BE *and* the device has a "native-endian" property.
604  *  Returns false otherwise.
605  *
606  *  Callers would nominally use ioread32be/iowrite32be if
607  *  of_device_is_big_endian() == true, or readl/writel otherwise.
608  */
609 bool of_device_is_big_endian(const struct device_node *device)
610 {
611 	if (of_property_read_bool(device, "big-endian"))
612 		return true;
613 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
614 	    of_property_read_bool(device, "native-endian"))
615 		return true;
616 	return false;
617 }
618 EXPORT_SYMBOL(of_device_is_big_endian);
619 
620 /**
621  *	of_get_parent - Get a node's parent if any
622  *	@node:	Node to get parent
623  *
624  *	Returns a node pointer with refcount incremented, use
625  *	of_node_put() on it when done.
626  */
627 struct device_node *of_get_parent(const struct device_node *node)
628 {
629 	struct device_node *np;
630 	unsigned long flags;
631 
632 	if (!node)
633 		return NULL;
634 
635 	raw_spin_lock_irqsave(&devtree_lock, flags);
636 	np = of_node_get(node->parent);
637 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
638 	return np;
639 }
640 EXPORT_SYMBOL(of_get_parent);
641 
642 /**
643  *	of_get_next_parent - Iterate to a node's parent
644  *	@node:	Node to get parent of
645  *
646  *	This is like of_get_parent() except that it drops the
647  *	refcount on the passed node, making it suitable for iterating
648  *	through a node's parents.
649  *
650  *	Returns a node pointer with refcount incremented, use
651  *	of_node_put() on it when done.
652  */
653 struct device_node *of_get_next_parent(struct device_node *node)
654 {
655 	struct device_node *parent;
656 	unsigned long flags;
657 
658 	if (!node)
659 		return NULL;
660 
661 	raw_spin_lock_irqsave(&devtree_lock, flags);
662 	parent = of_node_get(node->parent);
663 	of_node_put(node);
664 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
665 	return parent;
666 }
667 EXPORT_SYMBOL(of_get_next_parent);
668 
669 static struct device_node *__of_get_next_child(const struct device_node *node,
670 						struct device_node *prev)
671 {
672 	struct device_node *next;
673 
674 	if (!node)
675 		return NULL;
676 
677 	next = prev ? prev->sibling : node->child;
678 	for (; next; next = next->sibling)
679 		if (of_node_get(next))
680 			break;
681 	of_node_put(prev);
682 	return next;
683 }
684 #define __for_each_child_of_node(parent, child) \
685 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
686 	     child = __of_get_next_child(parent, child))
687 
688 /**
689  *	of_get_next_child - Iterate a node childs
690  *	@node:	parent node
691  *	@prev:	previous child of the parent node, or NULL to get first
692  *
693  *	Returns a node pointer with refcount incremented, use of_node_put() on
694  *	it when done. Returns NULL when prev is the last child. Decrements the
695  *	refcount of prev.
696  */
697 struct device_node *of_get_next_child(const struct device_node *node,
698 	struct device_node *prev)
699 {
700 	struct device_node *next;
701 	unsigned long flags;
702 
703 	raw_spin_lock_irqsave(&devtree_lock, flags);
704 	next = __of_get_next_child(node, prev);
705 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
706 	return next;
707 }
708 EXPORT_SYMBOL(of_get_next_child);
709 
710 /**
711  *	of_get_next_available_child - Find the next available child node
712  *	@node:	parent node
713  *	@prev:	previous child of the parent node, or NULL to get first
714  *
715  *      This function is like of_get_next_child(), except that it
716  *      automatically skips any disabled nodes (i.e. status = "disabled").
717  */
718 struct device_node *of_get_next_available_child(const struct device_node *node,
719 	struct device_node *prev)
720 {
721 	struct device_node *next;
722 	unsigned long flags;
723 
724 	if (!node)
725 		return NULL;
726 
727 	raw_spin_lock_irqsave(&devtree_lock, flags);
728 	next = prev ? prev->sibling : node->child;
729 	for (; next; next = next->sibling) {
730 		if (!__of_device_is_available(next))
731 			continue;
732 		if (of_node_get(next))
733 			break;
734 	}
735 	of_node_put(prev);
736 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
737 	return next;
738 }
739 EXPORT_SYMBOL(of_get_next_available_child);
740 
741 /**
742  *	of_get_child_by_name - Find the child node by name for a given parent
743  *	@node:	parent node
744  *	@name:	child name to look for.
745  *
746  *      This function looks for child node for given matching name
747  *
748  *	Returns a node pointer if found, with refcount incremented, use
749  *	of_node_put() on it when done.
750  *	Returns NULL if node is not found.
751  */
752 struct device_node *of_get_child_by_name(const struct device_node *node,
753 				const char *name)
754 {
755 	struct device_node *child;
756 
757 	for_each_child_of_node(node, child)
758 		if (child->name && (of_node_cmp(child->name, name) == 0))
759 			break;
760 	return child;
761 }
762 EXPORT_SYMBOL(of_get_child_by_name);
763 
764 static struct device_node *__of_find_node_by_path(struct device_node *parent,
765 						const char *path)
766 {
767 	struct device_node *child;
768 	int len;
769 
770 	len = strcspn(path, "/:");
771 	if (!len)
772 		return NULL;
773 
774 	__for_each_child_of_node(parent, child) {
775 		const char *name = strrchr(child->full_name, '/');
776 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
777 			continue;
778 		name++;
779 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
780 			return child;
781 	}
782 	return NULL;
783 }
784 
785 /**
786  *	of_find_node_opts_by_path - Find a node matching a full OF path
787  *	@path: Either the full path to match, or if the path does not
788  *	       start with '/', the name of a property of the /aliases
789  *	       node (an alias).  In the case of an alias, the node
790  *	       matching the alias' value will be returned.
791  *	@opts: Address of a pointer into which to store the start of
792  *	       an options string appended to the end of the path with
793  *	       a ':' separator.
794  *
795  *	Valid paths:
796  *		/foo/bar	Full path
797  *		foo		Valid alias
798  *		foo/bar		Valid alias + relative path
799  *
800  *	Returns a node pointer with refcount incremented, use
801  *	of_node_put() on it when done.
802  */
803 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
804 {
805 	struct device_node *np = NULL;
806 	struct property *pp;
807 	unsigned long flags;
808 	const char *separator = strchr(path, ':');
809 
810 	if (opts)
811 		*opts = separator ? separator + 1 : NULL;
812 
813 	if (strcmp(path, "/") == 0)
814 		return of_node_get(of_root);
815 
816 	/* The path could begin with an alias */
817 	if (*path != '/') {
818 		int len;
819 		const char *p = separator;
820 
821 		if (!p)
822 			p = strchrnul(path, '/');
823 		len = p - path;
824 
825 		/* of_aliases must not be NULL */
826 		if (!of_aliases)
827 			return NULL;
828 
829 		for_each_property_of_node(of_aliases, pp) {
830 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
831 				np = of_find_node_by_path(pp->value);
832 				break;
833 			}
834 		}
835 		if (!np)
836 			return NULL;
837 		path = p;
838 	}
839 
840 	/* Step down the tree matching path components */
841 	raw_spin_lock_irqsave(&devtree_lock, flags);
842 	if (!np)
843 		np = of_node_get(of_root);
844 	while (np && *path == '/') {
845 		path++; /* Increment past '/' delimiter */
846 		np = __of_find_node_by_path(np, path);
847 		path = strchrnul(path, '/');
848 		if (separator && separator < path)
849 			break;
850 	}
851 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
852 	return np;
853 }
854 EXPORT_SYMBOL(of_find_node_opts_by_path);
855 
856 /**
857  *	of_find_node_by_name - Find a node by its "name" property
858  *	@from:	The node to start searching from or NULL, the node
859  *		you pass will not be searched, only the next one
860  *		will; typically, you pass what the previous call
861  *		returned. of_node_put() will be called on it
862  *	@name:	The name string to match against
863  *
864  *	Returns a node pointer with refcount incremented, use
865  *	of_node_put() on it when done.
866  */
867 struct device_node *of_find_node_by_name(struct device_node *from,
868 	const char *name)
869 {
870 	struct device_node *np;
871 	unsigned long flags;
872 
873 	raw_spin_lock_irqsave(&devtree_lock, flags);
874 	for_each_of_allnodes_from(from, np)
875 		if (np->name && (of_node_cmp(np->name, name) == 0)
876 		    && of_node_get(np))
877 			break;
878 	of_node_put(from);
879 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
880 	return np;
881 }
882 EXPORT_SYMBOL(of_find_node_by_name);
883 
884 /**
885  *	of_find_node_by_type - Find a node by its "device_type" property
886  *	@from:	The node to start searching from, or NULL to start searching
887  *		the entire device tree. The node you pass will not be
888  *		searched, only the next one will; typically, you pass
889  *		what the previous call returned. of_node_put() will be
890  *		called on from for you.
891  *	@type:	The type string to match against
892  *
893  *	Returns a node pointer with refcount incremented, use
894  *	of_node_put() on it when done.
895  */
896 struct device_node *of_find_node_by_type(struct device_node *from,
897 	const char *type)
898 {
899 	struct device_node *np;
900 	unsigned long flags;
901 
902 	raw_spin_lock_irqsave(&devtree_lock, flags);
903 	for_each_of_allnodes_from(from, np)
904 		if (np->type && (of_node_cmp(np->type, type) == 0)
905 		    && of_node_get(np))
906 			break;
907 	of_node_put(from);
908 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
909 	return np;
910 }
911 EXPORT_SYMBOL(of_find_node_by_type);
912 
913 /**
914  *	of_find_compatible_node - Find a node based on type and one of the
915  *                                tokens in its "compatible" property
916  *	@from:		The node to start searching from or NULL, the node
917  *			you pass will not be searched, only the next one
918  *			will; typically, you pass what the previous call
919  *			returned. of_node_put() will be called on it
920  *	@type:		The type string to match "device_type" or NULL to ignore
921  *	@compatible:	The string to match to one of the tokens in the device
922  *			"compatible" list.
923  *
924  *	Returns a node pointer with refcount incremented, use
925  *	of_node_put() on it when done.
926  */
927 struct device_node *of_find_compatible_node(struct device_node *from,
928 	const char *type, const char *compatible)
929 {
930 	struct device_node *np;
931 	unsigned long flags;
932 
933 	raw_spin_lock_irqsave(&devtree_lock, flags);
934 	for_each_of_allnodes_from(from, np)
935 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
936 		    of_node_get(np))
937 			break;
938 	of_node_put(from);
939 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
940 	return np;
941 }
942 EXPORT_SYMBOL(of_find_compatible_node);
943 
944 /**
945  *	of_find_node_with_property - Find a node which has a property with
946  *                                   the given name.
947  *	@from:		The node to start searching from or NULL, the node
948  *			you pass will not be searched, only the next one
949  *			will; typically, you pass what the previous call
950  *			returned. of_node_put() will be called on it
951  *	@prop_name:	The name of the property to look for.
952  *
953  *	Returns a node pointer with refcount incremented, use
954  *	of_node_put() on it when done.
955  */
956 struct device_node *of_find_node_with_property(struct device_node *from,
957 	const char *prop_name)
958 {
959 	struct device_node *np;
960 	struct property *pp;
961 	unsigned long flags;
962 
963 	raw_spin_lock_irqsave(&devtree_lock, flags);
964 	for_each_of_allnodes_from(from, np) {
965 		for (pp = np->properties; pp; pp = pp->next) {
966 			if (of_prop_cmp(pp->name, prop_name) == 0) {
967 				of_node_get(np);
968 				goto out;
969 			}
970 		}
971 	}
972 out:
973 	of_node_put(from);
974 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 	return np;
976 }
977 EXPORT_SYMBOL(of_find_node_with_property);
978 
979 static
980 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
981 					   const struct device_node *node)
982 {
983 	const struct of_device_id *best_match = NULL;
984 	int score, best_score = 0;
985 
986 	if (!matches)
987 		return NULL;
988 
989 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
990 		score = __of_device_is_compatible(node, matches->compatible,
991 						  matches->type, matches->name);
992 		if (score > best_score) {
993 			best_match = matches;
994 			best_score = score;
995 		}
996 	}
997 
998 	return best_match;
999 }
1000 
1001 /**
1002  * of_match_node - Tell if a device_node has a matching of_match structure
1003  *	@matches:	array of of device match structures to search in
1004  *	@node:		the of device structure to match against
1005  *
1006  *	Low level utility function used by device matching.
1007  */
1008 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1009 					 const struct device_node *node)
1010 {
1011 	const struct of_device_id *match;
1012 	unsigned long flags;
1013 
1014 	raw_spin_lock_irqsave(&devtree_lock, flags);
1015 	match = __of_match_node(matches, node);
1016 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1017 	return match;
1018 }
1019 EXPORT_SYMBOL(of_match_node);
1020 
1021 /**
1022  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1023  *					  match table.
1024  *	@from:		The node to start searching from or NULL, the node
1025  *			you pass will not be searched, only the next one
1026  *			will; typically, you pass what the previous call
1027  *			returned. of_node_put() will be called on it
1028  *	@matches:	array of of device match structures to search in
1029  *	@match		Updated to point at the matches entry which matched
1030  *
1031  *	Returns a node pointer with refcount incremented, use
1032  *	of_node_put() on it when done.
1033  */
1034 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1035 					const struct of_device_id *matches,
1036 					const struct of_device_id **match)
1037 {
1038 	struct device_node *np;
1039 	const struct of_device_id *m;
1040 	unsigned long flags;
1041 
1042 	if (match)
1043 		*match = NULL;
1044 
1045 	raw_spin_lock_irqsave(&devtree_lock, flags);
1046 	for_each_of_allnodes_from(from, np) {
1047 		m = __of_match_node(matches, np);
1048 		if (m && of_node_get(np)) {
1049 			if (match)
1050 				*match = m;
1051 			break;
1052 		}
1053 	}
1054 	of_node_put(from);
1055 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1056 	return np;
1057 }
1058 EXPORT_SYMBOL(of_find_matching_node_and_match);
1059 
1060 /**
1061  * of_modalias_node - Lookup appropriate modalias for a device node
1062  * @node:	pointer to a device tree node
1063  * @modalias:	Pointer to buffer that modalias value will be copied into
1064  * @len:	Length of modalias value
1065  *
1066  * Based on the value of the compatible property, this routine will attempt
1067  * to choose an appropriate modalias value for a particular device tree node.
1068  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1069  * from the first entry in the compatible list property.
1070  *
1071  * This routine returns 0 on success, <0 on failure.
1072  */
1073 int of_modalias_node(struct device_node *node, char *modalias, int len)
1074 {
1075 	const char *compatible, *p;
1076 	int cplen;
1077 
1078 	compatible = of_get_property(node, "compatible", &cplen);
1079 	if (!compatible || strlen(compatible) > cplen)
1080 		return -ENODEV;
1081 	p = strchr(compatible, ',');
1082 	strlcpy(modalias, p ? p + 1 : compatible, len);
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(of_modalias_node);
1086 
1087 /**
1088  * of_find_node_by_phandle - Find a node given a phandle
1089  * @handle:	phandle of the node to find
1090  *
1091  * Returns a node pointer with refcount incremented, use
1092  * of_node_put() on it when done.
1093  */
1094 struct device_node *of_find_node_by_phandle(phandle handle)
1095 {
1096 	struct device_node *np;
1097 	unsigned long flags;
1098 
1099 	if (!handle)
1100 		return NULL;
1101 
1102 	raw_spin_lock_irqsave(&devtree_lock, flags);
1103 	for_each_of_allnodes(np)
1104 		if (np->phandle == handle)
1105 			break;
1106 	of_node_get(np);
1107 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1108 	return np;
1109 }
1110 EXPORT_SYMBOL(of_find_node_by_phandle);
1111 
1112 /**
1113  * of_property_count_elems_of_size - Count the number of elements in a property
1114  *
1115  * @np:		device node from which the property value is to be read.
1116  * @propname:	name of the property to be searched.
1117  * @elem_size:	size of the individual element
1118  *
1119  * Search for a property in a device node and count the number of elements of
1120  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1121  * property does not exist or its length does not match a multiple of elem_size
1122  * and -ENODATA if the property does not have a value.
1123  */
1124 int of_property_count_elems_of_size(const struct device_node *np,
1125 				const char *propname, int elem_size)
1126 {
1127 	struct property *prop = of_find_property(np, propname, NULL);
1128 
1129 	if (!prop)
1130 		return -EINVAL;
1131 	if (!prop->value)
1132 		return -ENODATA;
1133 
1134 	if (prop->length % elem_size != 0) {
1135 		pr_err("size of %s in node %s is not a multiple of %d\n",
1136 		       propname, np->full_name, elem_size);
1137 		return -EINVAL;
1138 	}
1139 
1140 	return prop->length / elem_size;
1141 }
1142 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1143 
1144 /**
1145  * of_find_property_value_of_size
1146  *
1147  * @np:		device node from which the property value is to be read.
1148  * @propname:	name of the property to be searched.
1149  * @len:	requested length of property value
1150  *
1151  * Search for a property in a device node and valid the requested size.
1152  * Returns the property value on success, -EINVAL if the property does not
1153  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1154  * property data isn't large enough.
1155  *
1156  */
1157 static void *of_find_property_value_of_size(const struct device_node *np,
1158 			const char *propname, u32 len)
1159 {
1160 	struct property *prop = of_find_property(np, propname, NULL);
1161 
1162 	if (!prop)
1163 		return ERR_PTR(-EINVAL);
1164 	if (!prop->value)
1165 		return ERR_PTR(-ENODATA);
1166 	if (len > prop->length)
1167 		return ERR_PTR(-EOVERFLOW);
1168 
1169 	return prop->value;
1170 }
1171 
1172 /**
1173  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1174  *
1175  * @np:		device node from which the property value is to be read.
1176  * @propname:	name of the property to be searched.
1177  * @index:	index of the u32 in the list of values
1178  * @out_value:	pointer to return value, modified only if no error.
1179  *
1180  * Search for a property in a device node and read nth 32-bit value from
1181  * it. Returns 0 on success, -EINVAL if the property does not exist,
1182  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1183  * property data isn't large enough.
1184  *
1185  * The out_value is modified only if a valid u32 value can be decoded.
1186  */
1187 int of_property_read_u32_index(const struct device_node *np,
1188 				       const char *propname,
1189 				       u32 index, u32 *out_value)
1190 {
1191 	const u32 *val = of_find_property_value_of_size(np, propname,
1192 					((index + 1) * sizeof(*out_value)));
1193 
1194 	if (IS_ERR(val))
1195 		return PTR_ERR(val);
1196 
1197 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1201 
1202 /**
1203  * of_property_read_u8_array - Find and read an array of u8 from a property.
1204  *
1205  * @np:		device node from which the property value is to be read.
1206  * @propname:	name of the property to be searched.
1207  * @out_values:	pointer to return value, modified only if return value is 0.
1208  * @sz:		number of array elements to read
1209  *
1210  * Search for a property in a device node and read 8-bit value(s) from
1211  * it. Returns 0 on success, -EINVAL if the property does not exist,
1212  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1213  * property data isn't large enough.
1214  *
1215  * dts entry of array should be like:
1216  *	property = /bits/ 8 <0x50 0x60 0x70>;
1217  *
1218  * The out_values is modified only if a valid u8 value can be decoded.
1219  */
1220 int of_property_read_u8_array(const struct device_node *np,
1221 			const char *propname, u8 *out_values, size_t sz)
1222 {
1223 	const u8 *val = of_find_property_value_of_size(np, propname,
1224 						(sz * sizeof(*out_values)));
1225 
1226 	if (IS_ERR(val))
1227 		return PTR_ERR(val);
1228 
1229 	while (sz--)
1230 		*out_values++ = *val++;
1231 	return 0;
1232 }
1233 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1234 
1235 /**
1236  * of_property_read_u16_array - Find and read an array of u16 from a property.
1237  *
1238  * @np:		device node from which the property value is to be read.
1239  * @propname:	name of the property to be searched.
1240  * @out_values:	pointer to return value, modified only if return value is 0.
1241  * @sz:		number of array elements to read
1242  *
1243  * Search for a property in a device node and read 16-bit value(s) from
1244  * it. Returns 0 on success, -EINVAL if the property does not exist,
1245  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1246  * property data isn't large enough.
1247  *
1248  * dts entry of array should be like:
1249  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1250  *
1251  * The out_values is modified only if a valid u16 value can be decoded.
1252  */
1253 int of_property_read_u16_array(const struct device_node *np,
1254 			const char *propname, u16 *out_values, size_t sz)
1255 {
1256 	const __be16 *val = of_find_property_value_of_size(np, propname,
1257 						(sz * sizeof(*out_values)));
1258 
1259 	if (IS_ERR(val))
1260 		return PTR_ERR(val);
1261 
1262 	while (sz--)
1263 		*out_values++ = be16_to_cpup(val++);
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1267 
1268 /**
1269  * of_property_read_u32_array - Find and read an array of 32 bit integers
1270  * from a property.
1271  *
1272  * @np:		device node from which the property value is to be read.
1273  * @propname:	name of the property to be searched.
1274  * @out_values:	pointer to return value, modified only if return value is 0.
1275  * @sz:		number of array elements to read
1276  *
1277  * Search for a property in a device node and read 32-bit value(s) from
1278  * it. Returns 0 on success, -EINVAL if the property does not exist,
1279  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1280  * property data isn't large enough.
1281  *
1282  * The out_values is modified only if a valid u32 value can be decoded.
1283  */
1284 int of_property_read_u32_array(const struct device_node *np,
1285 			       const char *propname, u32 *out_values,
1286 			       size_t sz)
1287 {
1288 	const __be32 *val = of_find_property_value_of_size(np, propname,
1289 						(sz * sizeof(*out_values)));
1290 
1291 	if (IS_ERR(val))
1292 		return PTR_ERR(val);
1293 
1294 	while (sz--)
1295 		*out_values++ = be32_to_cpup(val++);
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1299 
1300 /**
1301  * of_property_read_u64 - Find and read a 64 bit integer from a property
1302  * @np:		device node from which the property value is to be read.
1303  * @propname:	name of the property to be searched.
1304  * @out_value:	pointer to return value, modified only if return value is 0.
1305  *
1306  * Search for a property in a device node and read a 64-bit value from
1307  * it. Returns 0 on success, -EINVAL if the property does not exist,
1308  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1309  * property data isn't large enough.
1310  *
1311  * The out_value is modified only if a valid u64 value can be decoded.
1312  */
1313 int of_property_read_u64(const struct device_node *np, const char *propname,
1314 			 u64 *out_value)
1315 {
1316 	const __be32 *val = of_find_property_value_of_size(np, propname,
1317 						sizeof(*out_value));
1318 
1319 	if (IS_ERR(val))
1320 		return PTR_ERR(val);
1321 
1322 	*out_value = of_read_number(val, 2);
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(of_property_read_u64);
1326 
1327 /**
1328  * of_property_read_u64_array - Find and read an array of 64 bit integers
1329  * from a property.
1330  *
1331  * @np:		device node from which the property value is to be read.
1332  * @propname:	name of the property to be searched.
1333  * @out_values:	pointer to return value, modified only if return value is 0.
1334  * @sz:		number of array elements to read
1335  *
1336  * Search for a property in a device node and read 64-bit value(s) from
1337  * it. Returns 0 on success, -EINVAL if the property does not exist,
1338  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1339  * property data isn't large enough.
1340  *
1341  * The out_values is modified only if a valid u64 value can be decoded.
1342  */
1343 int of_property_read_u64_array(const struct device_node *np,
1344 			       const char *propname, u64 *out_values,
1345 			       size_t sz)
1346 {
1347 	const __be32 *val = of_find_property_value_of_size(np, propname,
1348 						(sz * sizeof(*out_values)));
1349 
1350 	if (IS_ERR(val))
1351 		return PTR_ERR(val);
1352 
1353 	while (sz--) {
1354 		*out_values++ = of_read_number(val, 2);
1355 		val += 2;
1356 	}
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1360 
1361 /**
1362  * of_property_read_string - Find and read a string from a property
1363  * @np:		device node from which the property value is to be read.
1364  * @propname:	name of the property to be searched.
1365  * @out_string:	pointer to null terminated return string, modified only if
1366  *		return value is 0.
1367  *
1368  * Search for a property in a device tree node and retrieve a null
1369  * terminated string value (pointer to data, not a copy). Returns 0 on
1370  * success, -EINVAL if the property does not exist, -ENODATA if property
1371  * does not have a value, and -EILSEQ if the string is not null-terminated
1372  * within the length of the property data.
1373  *
1374  * The out_string pointer is modified only if a valid string can be decoded.
1375  */
1376 int of_property_read_string(const struct device_node *np, const char *propname,
1377 				const char **out_string)
1378 {
1379 	const struct property *prop = of_find_property(np, propname, NULL);
1380 	if (!prop)
1381 		return -EINVAL;
1382 	if (!prop->value)
1383 		return -ENODATA;
1384 	if (strnlen(prop->value, prop->length) >= prop->length)
1385 		return -EILSEQ;
1386 	*out_string = prop->value;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(of_property_read_string);
1390 
1391 /**
1392  * of_property_match_string() - Find string in a list and return index
1393  * @np: pointer to node containing string list property
1394  * @propname: string list property name
1395  * @string: pointer to string to search for in string list
1396  *
1397  * This function searches a string list property and returns the index
1398  * of a specific string value.
1399  */
1400 int of_property_match_string(const struct device_node *np, const char *propname,
1401 			     const char *string)
1402 {
1403 	const struct property *prop = of_find_property(np, propname, NULL);
1404 	size_t l;
1405 	int i;
1406 	const char *p, *end;
1407 
1408 	if (!prop)
1409 		return -EINVAL;
1410 	if (!prop->value)
1411 		return -ENODATA;
1412 
1413 	p = prop->value;
1414 	end = p + prop->length;
1415 
1416 	for (i = 0; p < end; i++, p += l) {
1417 		l = strnlen(p, end - p) + 1;
1418 		if (p + l > end)
1419 			return -EILSEQ;
1420 		pr_debug("comparing %s with %s\n", string, p);
1421 		if (strcmp(string, p) == 0)
1422 			return i; /* Found it; return index */
1423 	}
1424 	return -ENODATA;
1425 }
1426 EXPORT_SYMBOL_GPL(of_property_match_string);
1427 
1428 /**
1429  * of_property_read_string_helper() - Utility helper for parsing string properties
1430  * @np:		device node from which the property value is to be read.
1431  * @propname:	name of the property to be searched.
1432  * @out_strs:	output array of string pointers.
1433  * @sz:		number of array elements to read.
1434  * @skip:	Number of strings to skip over at beginning of list.
1435  *
1436  * Don't call this function directly. It is a utility helper for the
1437  * of_property_read_string*() family of functions.
1438  */
1439 int of_property_read_string_helper(const struct device_node *np,
1440 				   const char *propname, const char **out_strs,
1441 				   size_t sz, int skip)
1442 {
1443 	const struct property *prop = of_find_property(np, propname, NULL);
1444 	int l = 0, i = 0;
1445 	const char *p, *end;
1446 
1447 	if (!prop)
1448 		return -EINVAL;
1449 	if (!prop->value)
1450 		return -ENODATA;
1451 	p = prop->value;
1452 	end = p + prop->length;
1453 
1454 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1455 		l = strnlen(p, end - p) + 1;
1456 		if (p + l > end)
1457 			return -EILSEQ;
1458 		if (out_strs && i >= skip)
1459 			*out_strs++ = p;
1460 	}
1461 	i -= skip;
1462 	return i <= 0 ? -ENODATA : i;
1463 }
1464 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1465 
1466 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1467 {
1468 	int i;
1469 	printk("%s %s", msg, of_node_full_name(args->np));
1470 	for (i = 0; i < args->args_count; i++)
1471 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1472 	printk("\n");
1473 }
1474 
1475 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1476 		const struct device_node *np,
1477 		const char *list_name,
1478 		const char *cells_name,
1479 		int cell_count)
1480 {
1481 	const __be32 *list;
1482 	int size;
1483 
1484 	memset(it, 0, sizeof(*it));
1485 
1486 	list = of_get_property(np, list_name, &size);
1487 	if (!list)
1488 		return -ENOENT;
1489 
1490 	it->cells_name = cells_name;
1491 	it->cell_count = cell_count;
1492 	it->parent = np;
1493 	it->list_end = list + size / sizeof(*list);
1494 	it->phandle_end = list;
1495 	it->cur = list;
1496 
1497 	return 0;
1498 }
1499 
1500 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1501 {
1502 	uint32_t count = 0;
1503 
1504 	if (it->node) {
1505 		of_node_put(it->node);
1506 		it->node = NULL;
1507 	}
1508 
1509 	if (!it->cur || it->phandle_end >= it->list_end)
1510 		return -ENOENT;
1511 
1512 	it->cur = it->phandle_end;
1513 
1514 	/* If phandle is 0, then it is an empty entry with no arguments. */
1515 	it->phandle = be32_to_cpup(it->cur++);
1516 
1517 	if (it->phandle) {
1518 
1519 		/*
1520 		 * Find the provider node and parse the #*-cells property to
1521 		 * determine the argument length.
1522 		 */
1523 		it->node = of_find_node_by_phandle(it->phandle);
1524 
1525 		if (it->cells_name) {
1526 			if (!it->node) {
1527 				pr_err("%s: could not find phandle\n",
1528 				       it->parent->full_name);
1529 				goto err;
1530 			}
1531 
1532 			if (of_property_read_u32(it->node, it->cells_name,
1533 						 &count)) {
1534 				pr_err("%s: could not get %s for %s\n",
1535 				       it->parent->full_name,
1536 				       it->cells_name,
1537 				       it->node->full_name);
1538 				goto err;
1539 			}
1540 		} else {
1541 			count = it->cell_count;
1542 		}
1543 
1544 		/*
1545 		 * Make sure that the arguments actually fit in the remaining
1546 		 * property data length
1547 		 */
1548 		if (it->cur + count > it->list_end) {
1549 			pr_err("%s: arguments longer than property\n",
1550 			       it->parent->full_name);
1551 			goto err;
1552 		}
1553 	}
1554 
1555 	it->phandle_end = it->cur + count;
1556 	it->cur_count = count;
1557 
1558 	return 0;
1559 
1560 err:
1561 	if (it->node) {
1562 		of_node_put(it->node);
1563 		it->node = NULL;
1564 	}
1565 
1566 	return -EINVAL;
1567 }
1568 
1569 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1570 			     uint32_t *args,
1571 			     int size)
1572 {
1573 	int i, count;
1574 
1575 	count = it->cur_count;
1576 
1577 	if (WARN_ON(size < count))
1578 		count = size;
1579 
1580 	for (i = 0; i < count; i++)
1581 		args[i] = be32_to_cpup(it->cur++);
1582 
1583 	return count;
1584 }
1585 
1586 static int __of_parse_phandle_with_args(const struct device_node *np,
1587 					const char *list_name,
1588 					const char *cells_name,
1589 					int cell_count, int index,
1590 					struct of_phandle_args *out_args)
1591 {
1592 	struct of_phandle_iterator it;
1593 	int rc, cur_index = 0;
1594 
1595 	/* Loop over the phandles until all the requested entry is found */
1596 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1597 		/*
1598 		 * All of the error cases bail out of the loop, so at
1599 		 * this point, the parsing is successful. If the requested
1600 		 * index matches, then fill the out_args structure and return,
1601 		 * or return -ENOENT for an empty entry.
1602 		 */
1603 		rc = -ENOENT;
1604 		if (cur_index == index) {
1605 			if (!it.phandle)
1606 				goto err;
1607 
1608 			if (out_args) {
1609 				int c;
1610 
1611 				c = of_phandle_iterator_args(&it,
1612 							     out_args->args,
1613 							     MAX_PHANDLE_ARGS);
1614 				out_args->np = it.node;
1615 				out_args->args_count = c;
1616 			} else {
1617 				of_node_put(it.node);
1618 			}
1619 
1620 			/* Found it! return success */
1621 			return 0;
1622 		}
1623 
1624 		cur_index++;
1625 	}
1626 
1627 	/*
1628 	 * Unlock node before returning result; will be one of:
1629 	 * -ENOENT : index is for empty phandle
1630 	 * -EINVAL : parsing error on data
1631 	 */
1632 
1633  err:
1634 	if (it.node)
1635 		of_node_put(it.node);
1636 	return rc;
1637 }
1638 
1639 /**
1640  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1641  * @np: Pointer to device node holding phandle property
1642  * @phandle_name: Name of property holding a phandle value
1643  * @index: For properties holding a table of phandles, this is the index into
1644  *         the table
1645  *
1646  * Returns the device_node pointer with refcount incremented.  Use
1647  * of_node_put() on it when done.
1648  */
1649 struct device_node *of_parse_phandle(const struct device_node *np,
1650 				     const char *phandle_name, int index)
1651 {
1652 	struct of_phandle_args args;
1653 
1654 	if (index < 0)
1655 		return NULL;
1656 
1657 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1658 					 index, &args))
1659 		return NULL;
1660 
1661 	return args.np;
1662 }
1663 EXPORT_SYMBOL(of_parse_phandle);
1664 
1665 /**
1666  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1667  * @np:		pointer to a device tree node containing a list
1668  * @list_name:	property name that contains a list
1669  * @cells_name:	property name that specifies phandles' arguments count
1670  * @index:	index of a phandle to parse out
1671  * @out_args:	optional pointer to output arguments structure (will be filled)
1672  *
1673  * This function is useful to parse lists of phandles and their arguments.
1674  * Returns 0 on success and fills out_args, on error returns appropriate
1675  * errno value.
1676  *
1677  * Caller is responsible to call of_node_put() on the returned out_args->np
1678  * pointer.
1679  *
1680  * Example:
1681  *
1682  * phandle1: node1 {
1683  *	#list-cells = <2>;
1684  * }
1685  *
1686  * phandle2: node2 {
1687  *	#list-cells = <1>;
1688  * }
1689  *
1690  * node3 {
1691  *	list = <&phandle1 1 2 &phandle2 3>;
1692  * }
1693  *
1694  * To get a device_node of the `node2' node you may call this:
1695  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1696  */
1697 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1698 				const char *cells_name, int index,
1699 				struct of_phandle_args *out_args)
1700 {
1701 	if (index < 0)
1702 		return -EINVAL;
1703 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1704 					    index, out_args);
1705 }
1706 EXPORT_SYMBOL(of_parse_phandle_with_args);
1707 
1708 /**
1709  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1710  * @np:		pointer to a device tree node containing a list
1711  * @list_name:	property name that contains a list
1712  * @cell_count: number of argument cells following the phandle
1713  * @index:	index of a phandle to parse out
1714  * @out_args:	optional pointer to output arguments structure (will be filled)
1715  *
1716  * This function is useful to parse lists of phandles and their arguments.
1717  * Returns 0 on success and fills out_args, on error returns appropriate
1718  * errno value.
1719  *
1720  * Caller is responsible to call of_node_put() on the returned out_args->np
1721  * pointer.
1722  *
1723  * Example:
1724  *
1725  * phandle1: node1 {
1726  * }
1727  *
1728  * phandle2: node2 {
1729  * }
1730  *
1731  * node3 {
1732  *	list = <&phandle1 0 2 &phandle2 2 3>;
1733  * }
1734  *
1735  * To get a device_node of the `node2' node you may call this:
1736  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1737  */
1738 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1739 				const char *list_name, int cell_count,
1740 				int index, struct of_phandle_args *out_args)
1741 {
1742 	if (index < 0)
1743 		return -EINVAL;
1744 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1745 					   index, out_args);
1746 }
1747 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1748 
1749 /**
1750  * of_count_phandle_with_args() - Find the number of phandles references in a property
1751  * @np:		pointer to a device tree node containing a list
1752  * @list_name:	property name that contains a list
1753  * @cells_name:	property name that specifies phandles' arguments count
1754  *
1755  * Returns the number of phandle + argument tuples within a property. It
1756  * is a typical pattern to encode a list of phandle and variable
1757  * arguments into a single property. The number of arguments is encoded
1758  * by a property in the phandle-target node. For example, a gpios
1759  * property would contain a list of GPIO specifies consisting of a
1760  * phandle and 1 or more arguments. The number of arguments are
1761  * determined by the #gpio-cells property in the node pointed to by the
1762  * phandle.
1763  */
1764 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1765 				const char *cells_name)
1766 {
1767 	struct of_phandle_iterator it;
1768 	int rc, cur_index = 0;
1769 
1770 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1771 	if (rc)
1772 		return rc;
1773 
1774 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1775 		cur_index += 1;
1776 
1777 	if (rc != -ENOENT)
1778 		return rc;
1779 
1780 	return cur_index;
1781 }
1782 EXPORT_SYMBOL(of_count_phandle_with_args);
1783 
1784 /**
1785  * __of_add_property - Add a property to a node without lock operations
1786  */
1787 int __of_add_property(struct device_node *np, struct property *prop)
1788 {
1789 	struct property **next;
1790 
1791 	prop->next = NULL;
1792 	next = &np->properties;
1793 	while (*next) {
1794 		if (strcmp(prop->name, (*next)->name) == 0)
1795 			/* duplicate ! don't insert it */
1796 			return -EEXIST;
1797 
1798 		next = &(*next)->next;
1799 	}
1800 	*next = prop;
1801 
1802 	return 0;
1803 }
1804 
1805 /**
1806  * of_add_property - Add a property to a node
1807  */
1808 int of_add_property(struct device_node *np, struct property *prop)
1809 {
1810 	unsigned long flags;
1811 	int rc;
1812 
1813 	mutex_lock(&of_mutex);
1814 
1815 	raw_spin_lock_irqsave(&devtree_lock, flags);
1816 	rc = __of_add_property(np, prop);
1817 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1818 
1819 	if (!rc)
1820 		__of_add_property_sysfs(np, prop);
1821 
1822 	mutex_unlock(&of_mutex);
1823 
1824 	if (!rc)
1825 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1826 
1827 	return rc;
1828 }
1829 
1830 int __of_remove_property(struct device_node *np, struct property *prop)
1831 {
1832 	struct property **next;
1833 
1834 	for (next = &np->properties; *next; next = &(*next)->next) {
1835 		if (*next == prop)
1836 			break;
1837 	}
1838 	if (*next == NULL)
1839 		return -ENODEV;
1840 
1841 	/* found the node */
1842 	*next = prop->next;
1843 	prop->next = np->deadprops;
1844 	np->deadprops = prop;
1845 
1846 	return 0;
1847 }
1848 
1849 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1850 {
1851 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1852 	kfree(prop->attr.attr.name);
1853 }
1854 
1855 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1856 {
1857 	if (!IS_ENABLED(CONFIG_SYSFS))
1858 		return;
1859 
1860 	/* at early boot, bail here and defer setup to of_init() */
1861 	if (of_kset && of_node_is_attached(np))
1862 		__of_sysfs_remove_bin_file(np, prop);
1863 }
1864 
1865 /**
1866  * of_remove_property - Remove a property from a node.
1867  *
1868  * Note that we don't actually remove it, since we have given out
1869  * who-knows-how-many pointers to the data using get-property.
1870  * Instead we just move the property to the "dead properties"
1871  * list, so it won't be found any more.
1872  */
1873 int of_remove_property(struct device_node *np, struct property *prop)
1874 {
1875 	unsigned long flags;
1876 	int rc;
1877 
1878 	if (!prop)
1879 		return -ENODEV;
1880 
1881 	mutex_lock(&of_mutex);
1882 
1883 	raw_spin_lock_irqsave(&devtree_lock, flags);
1884 	rc = __of_remove_property(np, prop);
1885 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1886 
1887 	if (!rc)
1888 		__of_remove_property_sysfs(np, prop);
1889 
1890 	mutex_unlock(&of_mutex);
1891 
1892 	if (!rc)
1893 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1894 
1895 	return rc;
1896 }
1897 
1898 int __of_update_property(struct device_node *np, struct property *newprop,
1899 		struct property **oldpropp)
1900 {
1901 	struct property **next, *oldprop;
1902 
1903 	for (next = &np->properties; *next; next = &(*next)->next) {
1904 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1905 			break;
1906 	}
1907 	*oldpropp = oldprop = *next;
1908 
1909 	if (oldprop) {
1910 		/* replace the node */
1911 		newprop->next = oldprop->next;
1912 		*next = newprop;
1913 		oldprop->next = np->deadprops;
1914 		np->deadprops = oldprop;
1915 	} else {
1916 		/* new node */
1917 		newprop->next = NULL;
1918 		*next = newprop;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1925 		struct property *oldprop)
1926 {
1927 	if (!IS_ENABLED(CONFIG_SYSFS))
1928 		return;
1929 
1930 	/* At early boot, bail out and defer setup to of_init() */
1931 	if (!of_kset)
1932 		return;
1933 
1934 	if (oldprop)
1935 		__of_sysfs_remove_bin_file(np, oldprop);
1936 	__of_add_property_sysfs(np, newprop);
1937 }
1938 
1939 /*
1940  * of_update_property - Update a property in a node, if the property does
1941  * not exist, add it.
1942  *
1943  * Note that we don't actually remove it, since we have given out
1944  * who-knows-how-many pointers to the data using get-property.
1945  * Instead we just move the property to the "dead properties" list,
1946  * and add the new property to the property list
1947  */
1948 int of_update_property(struct device_node *np, struct property *newprop)
1949 {
1950 	struct property *oldprop;
1951 	unsigned long flags;
1952 	int rc;
1953 
1954 	if (!newprop->name)
1955 		return -EINVAL;
1956 
1957 	mutex_lock(&of_mutex);
1958 
1959 	raw_spin_lock_irqsave(&devtree_lock, flags);
1960 	rc = __of_update_property(np, newprop, &oldprop);
1961 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1962 
1963 	if (!rc)
1964 		__of_update_property_sysfs(np, newprop, oldprop);
1965 
1966 	mutex_unlock(&of_mutex);
1967 
1968 	if (!rc)
1969 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1970 
1971 	return rc;
1972 }
1973 
1974 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1975 			 int id, const char *stem, int stem_len)
1976 {
1977 	ap->np = np;
1978 	ap->id = id;
1979 	strncpy(ap->stem, stem, stem_len);
1980 	ap->stem[stem_len] = 0;
1981 	list_add_tail(&ap->link, &aliases_lookup);
1982 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1983 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1984 }
1985 
1986 /**
1987  * of_alias_scan - Scan all properties of the 'aliases' node
1988  *
1989  * The function scans all the properties of the 'aliases' node and populates
1990  * the global lookup table with the properties.  It returns the
1991  * number of alias properties found, or an error code in case of failure.
1992  *
1993  * @dt_alloc:	An allocator that provides a virtual address to memory
1994  *		for storing the resulting tree
1995  */
1996 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1997 {
1998 	struct property *pp;
1999 
2000 	of_aliases = of_find_node_by_path("/aliases");
2001 	of_chosen = of_find_node_by_path("/chosen");
2002 	if (of_chosen == NULL)
2003 		of_chosen = of_find_node_by_path("/chosen@0");
2004 
2005 	if (of_chosen) {
2006 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2007 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2008 		if (!name)
2009 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2010 		if (IS_ENABLED(CONFIG_PPC) && !name)
2011 			name = of_get_property(of_aliases, "stdout", NULL);
2012 		if (name)
2013 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2014 	}
2015 
2016 	if (!of_aliases)
2017 		return;
2018 
2019 	for_each_property_of_node(of_aliases, pp) {
2020 		const char *start = pp->name;
2021 		const char *end = start + strlen(start);
2022 		struct device_node *np;
2023 		struct alias_prop *ap;
2024 		int id, len;
2025 
2026 		/* Skip those we do not want to proceed */
2027 		if (!strcmp(pp->name, "name") ||
2028 		    !strcmp(pp->name, "phandle") ||
2029 		    !strcmp(pp->name, "linux,phandle"))
2030 			continue;
2031 
2032 		np = of_find_node_by_path(pp->value);
2033 		if (!np)
2034 			continue;
2035 
2036 		/* walk the alias backwards to extract the id and work out
2037 		 * the 'stem' string */
2038 		while (isdigit(*(end-1)) && end > start)
2039 			end--;
2040 		len = end - start;
2041 
2042 		if (kstrtoint(end, 10, &id) < 0)
2043 			continue;
2044 
2045 		/* Allocate an alias_prop with enough space for the stem */
2046 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2047 		if (!ap)
2048 			continue;
2049 		memset(ap, 0, sizeof(*ap) + len + 1);
2050 		ap->alias = start;
2051 		of_alias_add(ap, np, id, start, len);
2052 	}
2053 }
2054 
2055 /**
2056  * of_alias_get_id - Get alias id for the given device_node
2057  * @np:		Pointer to the given device_node
2058  * @stem:	Alias stem of the given device_node
2059  *
2060  * The function travels the lookup table to get the alias id for the given
2061  * device_node and alias stem.  It returns the alias id if found.
2062  */
2063 int of_alias_get_id(struct device_node *np, const char *stem)
2064 {
2065 	struct alias_prop *app;
2066 	int id = -ENODEV;
2067 
2068 	mutex_lock(&of_mutex);
2069 	list_for_each_entry(app, &aliases_lookup, link) {
2070 		if (strcmp(app->stem, stem) != 0)
2071 			continue;
2072 
2073 		if (np == app->np) {
2074 			id = app->id;
2075 			break;
2076 		}
2077 	}
2078 	mutex_unlock(&of_mutex);
2079 
2080 	return id;
2081 }
2082 EXPORT_SYMBOL_GPL(of_alias_get_id);
2083 
2084 /**
2085  * of_alias_get_highest_id - Get highest alias id for the given stem
2086  * @stem:	Alias stem to be examined
2087  *
2088  * The function travels the lookup table to get the highest alias id for the
2089  * given alias stem.  It returns the alias id if found.
2090  */
2091 int of_alias_get_highest_id(const char *stem)
2092 {
2093 	struct alias_prop *app;
2094 	int id = -ENODEV;
2095 
2096 	mutex_lock(&of_mutex);
2097 	list_for_each_entry(app, &aliases_lookup, link) {
2098 		if (strcmp(app->stem, stem) != 0)
2099 			continue;
2100 
2101 		if (app->id > id)
2102 			id = app->id;
2103 	}
2104 	mutex_unlock(&of_mutex);
2105 
2106 	return id;
2107 }
2108 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2109 
2110 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2111 			       u32 *pu)
2112 {
2113 	const void *curv = cur;
2114 
2115 	if (!prop)
2116 		return NULL;
2117 
2118 	if (!cur) {
2119 		curv = prop->value;
2120 		goto out_val;
2121 	}
2122 
2123 	curv += sizeof(*cur);
2124 	if (curv >= prop->value + prop->length)
2125 		return NULL;
2126 
2127 out_val:
2128 	*pu = be32_to_cpup(curv);
2129 	return curv;
2130 }
2131 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2132 
2133 const char *of_prop_next_string(struct property *prop, const char *cur)
2134 {
2135 	const void *curv = cur;
2136 
2137 	if (!prop)
2138 		return NULL;
2139 
2140 	if (!cur)
2141 		return prop->value;
2142 
2143 	curv += strlen(cur) + 1;
2144 	if (curv >= prop->value + prop->length)
2145 		return NULL;
2146 
2147 	return curv;
2148 }
2149 EXPORT_SYMBOL_GPL(of_prop_next_string);
2150 
2151 /**
2152  * of_console_check() - Test and setup console for DT setup
2153  * @dn - Pointer to device node
2154  * @name - Name to use for preferred console without index. ex. "ttyS"
2155  * @index - Index to use for preferred console.
2156  *
2157  * Check if the given device node matches the stdout-path property in the
2158  * /chosen node. If it does then register it as the preferred console and return
2159  * TRUE. Otherwise return FALSE.
2160  */
2161 bool of_console_check(struct device_node *dn, char *name, int index)
2162 {
2163 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2164 		return false;
2165 	return !add_preferred_console(name, index,
2166 				      kstrdup(of_stdout_options, GFP_KERNEL));
2167 }
2168 EXPORT_SYMBOL_GPL(of_console_check);
2169 
2170 /**
2171  *	of_find_next_cache_node - Find a node's subsidiary cache
2172  *	@np:	node of type "cpu" or "cache"
2173  *
2174  *	Returns a node pointer with refcount incremented, use
2175  *	of_node_put() on it when done.  Caller should hold a reference
2176  *	to np.
2177  */
2178 struct device_node *of_find_next_cache_node(const struct device_node *np)
2179 {
2180 	struct device_node *child;
2181 	const phandle *handle;
2182 
2183 	handle = of_get_property(np, "l2-cache", NULL);
2184 	if (!handle)
2185 		handle = of_get_property(np, "next-level-cache", NULL);
2186 
2187 	if (handle)
2188 		return of_find_node_by_phandle(be32_to_cpup(handle));
2189 
2190 	/* OF on pmac has nodes instead of properties named "l2-cache"
2191 	 * beneath CPU nodes.
2192 	 */
2193 	if (!strcmp(np->type, "cpu"))
2194 		for_each_child_of_node(np, child)
2195 			if (!strcmp(child->type, "cache"))
2196 				return child;
2197 
2198 	return NULL;
2199 }
2200 
2201 /**
2202  * of_graph_parse_endpoint() - parse common endpoint node properties
2203  * @node: pointer to endpoint device_node
2204  * @endpoint: pointer to the OF endpoint data structure
2205  *
2206  * The caller should hold a reference to @node.
2207  */
2208 int of_graph_parse_endpoint(const struct device_node *node,
2209 			    struct of_endpoint *endpoint)
2210 {
2211 	struct device_node *port_node = of_get_parent(node);
2212 
2213 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2214 		  __func__, node->full_name);
2215 
2216 	memset(endpoint, 0, sizeof(*endpoint));
2217 
2218 	endpoint->local_node = node;
2219 	/*
2220 	 * It doesn't matter whether the two calls below succeed.
2221 	 * If they don't then the default value 0 is used.
2222 	 */
2223 	of_property_read_u32(port_node, "reg", &endpoint->port);
2224 	of_property_read_u32(node, "reg", &endpoint->id);
2225 
2226 	of_node_put(port_node);
2227 
2228 	return 0;
2229 }
2230 EXPORT_SYMBOL(of_graph_parse_endpoint);
2231 
2232 /**
2233  * of_graph_get_port_by_id() - get the port matching a given id
2234  * @parent: pointer to the parent device node
2235  * @id: id of the port
2236  *
2237  * Return: A 'port' node pointer with refcount incremented. The caller
2238  * has to use of_node_put() on it when done.
2239  */
2240 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2241 {
2242 	struct device_node *node, *port;
2243 
2244 	node = of_get_child_by_name(parent, "ports");
2245 	if (node)
2246 		parent = node;
2247 
2248 	for_each_child_of_node(parent, port) {
2249 		u32 port_id = 0;
2250 
2251 		if (of_node_cmp(port->name, "port") != 0)
2252 			continue;
2253 		of_property_read_u32(port, "reg", &port_id);
2254 		if (id == port_id)
2255 			break;
2256 	}
2257 
2258 	of_node_put(node);
2259 
2260 	return port;
2261 }
2262 EXPORT_SYMBOL(of_graph_get_port_by_id);
2263 
2264 /**
2265  * of_graph_get_next_endpoint() - get next endpoint node
2266  * @parent: pointer to the parent device node
2267  * @prev: previous endpoint node, or NULL to get first
2268  *
2269  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2270  * of the passed @prev node is decremented.
2271  */
2272 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2273 					struct device_node *prev)
2274 {
2275 	struct device_node *endpoint;
2276 	struct device_node *port;
2277 
2278 	if (!parent)
2279 		return NULL;
2280 
2281 	/*
2282 	 * Start by locating the port node. If no previous endpoint is specified
2283 	 * search for the first port node, otherwise get the previous endpoint
2284 	 * parent port node.
2285 	 */
2286 	if (!prev) {
2287 		struct device_node *node;
2288 
2289 		node = of_get_child_by_name(parent, "ports");
2290 		if (node)
2291 			parent = node;
2292 
2293 		port = of_get_child_by_name(parent, "port");
2294 		of_node_put(node);
2295 
2296 		if (!port) {
2297 			pr_err("graph: no port node found in %s\n",
2298 			       parent->full_name);
2299 			return NULL;
2300 		}
2301 	} else {
2302 		port = of_get_parent(prev);
2303 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2304 			      __func__, prev->full_name))
2305 			return NULL;
2306 	}
2307 
2308 	while (1) {
2309 		/*
2310 		 * Now that we have a port node, get the next endpoint by
2311 		 * getting the next child. If the previous endpoint is NULL this
2312 		 * will return the first child.
2313 		 */
2314 		endpoint = of_get_next_child(port, prev);
2315 		if (endpoint) {
2316 			of_node_put(port);
2317 			return endpoint;
2318 		}
2319 
2320 		/* No more endpoints under this port, try the next one. */
2321 		prev = NULL;
2322 
2323 		do {
2324 			port = of_get_next_child(parent, port);
2325 			if (!port)
2326 				return NULL;
2327 		} while (of_node_cmp(port->name, "port"));
2328 	}
2329 }
2330 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2331 
2332 /**
2333  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2334  * @parent: pointer to the parent device node
2335  * @port_reg: identifier (value of reg property) of the parent port node
2336  * @reg: identifier (value of reg property) of the endpoint node
2337  *
2338  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2339  * is the child of a port node identified by port_reg. reg and port_reg are
2340  * ignored when they are -1.
2341  */
2342 struct device_node *of_graph_get_endpoint_by_regs(
2343 	const struct device_node *parent, int port_reg, int reg)
2344 {
2345 	struct of_endpoint endpoint;
2346 	struct device_node *node, *prev_node = NULL;
2347 
2348 	while (1) {
2349 		node = of_graph_get_next_endpoint(parent, prev_node);
2350 		of_node_put(prev_node);
2351 		if (!node)
2352 			break;
2353 
2354 		of_graph_parse_endpoint(node, &endpoint);
2355 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2356 			((reg == -1) || (endpoint.id == reg)))
2357 			return node;
2358 
2359 		prev_node = node;
2360 	}
2361 
2362 	return NULL;
2363 }
2364 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2365 
2366 /**
2367  * of_graph_get_remote_port_parent() - get remote port's parent node
2368  * @node: pointer to a local endpoint device_node
2369  *
2370  * Return: Remote device node associated with remote endpoint node linked
2371  *	   to @node. Use of_node_put() on it when done.
2372  */
2373 struct device_node *of_graph_get_remote_port_parent(
2374 			       const struct device_node *node)
2375 {
2376 	struct device_node *np;
2377 	unsigned int depth;
2378 
2379 	/* Get remote endpoint node. */
2380 	np = of_parse_phandle(node, "remote-endpoint", 0);
2381 
2382 	/* Walk 3 levels up only if there is 'ports' node. */
2383 	for (depth = 3; depth && np; depth--) {
2384 		np = of_get_next_parent(np);
2385 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2386 			break;
2387 	}
2388 	return np;
2389 }
2390 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2391 
2392 /**
2393  * of_graph_get_remote_port() - get remote port node
2394  * @node: pointer to a local endpoint device_node
2395  *
2396  * Return: Remote port node associated with remote endpoint node linked
2397  *	   to @node. Use of_node_put() on it when done.
2398  */
2399 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2400 {
2401 	struct device_node *np;
2402 
2403 	/* Get remote endpoint node. */
2404 	np = of_parse_phandle(node, "remote-endpoint", 0);
2405 	if (!np)
2406 		return NULL;
2407 	return of_get_next_parent(np);
2408 }
2409 EXPORT_SYMBOL(of_graph_get_remote_port);
2410