1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 do { 94 if (np->parent) 95 np = np->parent; 96 if (!of_property_read_u32(np, "#address-cells", &cells)) 97 return cells; 98 } while (np->parent); 99 /* No #address-cells property for the root node */ 100 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 101 } 102 EXPORT_SYMBOL(of_n_addr_cells); 103 104 int of_n_size_cells(struct device_node *np) 105 { 106 u32 cells; 107 108 do { 109 if (np->parent) 110 np = np->parent; 111 if (!of_property_read_u32(np, "#size-cells", &cells)) 112 return cells; 113 } while (np->parent); 114 /* No #size-cells property for the root node */ 115 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 116 } 117 EXPORT_SYMBOL(of_n_size_cells); 118 119 #ifdef CONFIG_NUMA 120 int __weak of_node_to_nid(struct device_node *np) 121 { 122 return NUMA_NO_NODE; 123 } 124 #endif 125 126 /* 127 * Assumptions behind phandle_cache implementation: 128 * - phandle property values are in a contiguous range of 1..n 129 * 130 * If the assumptions do not hold, then 131 * - the phandle lookup overhead reduction provided by the cache 132 * will likely be less 133 */ 134 135 static struct device_node **phandle_cache; 136 static u32 phandle_cache_mask; 137 138 /* 139 * Caller must hold devtree_lock. 140 */ 141 static void __of_free_phandle_cache(void) 142 { 143 u32 cache_entries = phandle_cache_mask + 1; 144 u32 k; 145 146 if (!phandle_cache) 147 return; 148 149 for (k = 0; k < cache_entries; k++) 150 of_node_put(phandle_cache[k]); 151 152 kfree(phandle_cache); 153 phandle_cache = NULL; 154 } 155 156 int of_free_phandle_cache(void) 157 { 158 unsigned long flags; 159 160 raw_spin_lock_irqsave(&devtree_lock, flags); 161 162 __of_free_phandle_cache(); 163 164 raw_spin_unlock_irqrestore(&devtree_lock, flags); 165 166 return 0; 167 } 168 #if !defined(CONFIG_MODULES) 169 late_initcall_sync(of_free_phandle_cache); 170 #endif 171 172 /* 173 * Caller must hold devtree_lock. 174 */ 175 void __of_free_phandle_cache_entry(phandle handle) 176 { 177 phandle masked_handle; 178 struct device_node *np; 179 180 if (!handle) 181 return; 182 183 masked_handle = handle & phandle_cache_mask; 184 185 if (phandle_cache) { 186 np = phandle_cache[masked_handle]; 187 if (np && handle == np->phandle) { 188 of_node_put(np); 189 phandle_cache[masked_handle] = NULL; 190 } 191 } 192 } 193 194 void of_populate_phandle_cache(void) 195 { 196 unsigned long flags; 197 u32 cache_entries; 198 struct device_node *np; 199 u32 phandles = 0; 200 201 raw_spin_lock_irqsave(&devtree_lock, flags); 202 203 __of_free_phandle_cache(); 204 205 for_each_of_allnodes(np) 206 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 207 phandles++; 208 209 if (!phandles) 210 goto out; 211 212 cache_entries = roundup_pow_of_two(phandles); 213 phandle_cache_mask = cache_entries - 1; 214 215 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), 216 GFP_ATOMIC); 217 if (!phandle_cache) 218 goto out; 219 220 for_each_of_allnodes(np) 221 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) { 222 of_node_get(np); 223 phandle_cache[np->phandle & phandle_cache_mask] = np; 224 } 225 226 out: 227 raw_spin_unlock_irqrestore(&devtree_lock, flags); 228 } 229 230 void __init of_core_init(void) 231 { 232 struct device_node *np; 233 234 of_populate_phandle_cache(); 235 236 /* Create the kset, and register existing nodes */ 237 mutex_lock(&of_mutex); 238 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 239 if (!of_kset) { 240 mutex_unlock(&of_mutex); 241 pr_err("failed to register existing nodes\n"); 242 return; 243 } 244 for_each_of_allnodes(np) 245 __of_attach_node_sysfs(np); 246 mutex_unlock(&of_mutex); 247 248 /* Symlink in /proc as required by userspace ABI */ 249 if (of_root) 250 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 251 } 252 253 static struct property *__of_find_property(const struct device_node *np, 254 const char *name, int *lenp) 255 { 256 struct property *pp; 257 258 if (!np) 259 return NULL; 260 261 for (pp = np->properties; pp; pp = pp->next) { 262 if (of_prop_cmp(pp->name, name) == 0) { 263 if (lenp) 264 *lenp = pp->length; 265 break; 266 } 267 } 268 269 return pp; 270 } 271 272 struct property *of_find_property(const struct device_node *np, 273 const char *name, 274 int *lenp) 275 { 276 struct property *pp; 277 unsigned long flags; 278 279 raw_spin_lock_irqsave(&devtree_lock, flags); 280 pp = __of_find_property(np, name, lenp); 281 raw_spin_unlock_irqrestore(&devtree_lock, flags); 282 283 return pp; 284 } 285 EXPORT_SYMBOL(of_find_property); 286 287 struct device_node *__of_find_all_nodes(struct device_node *prev) 288 { 289 struct device_node *np; 290 if (!prev) { 291 np = of_root; 292 } else if (prev->child) { 293 np = prev->child; 294 } else { 295 /* Walk back up looking for a sibling, or the end of the structure */ 296 np = prev; 297 while (np->parent && !np->sibling) 298 np = np->parent; 299 np = np->sibling; /* Might be null at the end of the tree */ 300 } 301 return np; 302 } 303 304 /** 305 * of_find_all_nodes - Get next node in global list 306 * @prev: Previous node or NULL to start iteration 307 * of_node_put() will be called on it 308 * 309 * Returns a node pointer with refcount incremented, use 310 * of_node_put() on it when done. 311 */ 312 struct device_node *of_find_all_nodes(struct device_node *prev) 313 { 314 struct device_node *np; 315 unsigned long flags; 316 317 raw_spin_lock_irqsave(&devtree_lock, flags); 318 np = __of_find_all_nodes(prev); 319 of_node_get(np); 320 of_node_put(prev); 321 raw_spin_unlock_irqrestore(&devtree_lock, flags); 322 return np; 323 } 324 EXPORT_SYMBOL(of_find_all_nodes); 325 326 /* 327 * Find a property with a given name for a given node 328 * and return the value. 329 */ 330 const void *__of_get_property(const struct device_node *np, 331 const char *name, int *lenp) 332 { 333 struct property *pp = __of_find_property(np, name, lenp); 334 335 return pp ? pp->value : NULL; 336 } 337 338 /* 339 * Find a property with a given name for a given node 340 * and return the value. 341 */ 342 const void *of_get_property(const struct device_node *np, const char *name, 343 int *lenp) 344 { 345 struct property *pp = of_find_property(np, name, lenp); 346 347 return pp ? pp->value : NULL; 348 } 349 EXPORT_SYMBOL(of_get_property); 350 351 /* 352 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 353 * 354 * @cpu: logical cpu index of a core/thread 355 * @phys_id: physical identifier of a core/thread 356 * 357 * CPU logical to physical index mapping is architecture specific. 358 * However this __weak function provides a default match of physical 359 * id to logical cpu index. phys_id provided here is usually values read 360 * from the device tree which must match the hardware internal registers. 361 * 362 * Returns true if the physical identifier and the logical cpu index 363 * correspond to the same core/thread, false otherwise. 364 */ 365 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 366 { 367 return (u32)phys_id == cpu; 368 } 369 370 /** 371 * Checks if the given "prop_name" property holds the physical id of the 372 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 373 * NULL, local thread number within the core is returned in it. 374 */ 375 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 376 const char *prop_name, int cpu, unsigned int *thread) 377 { 378 const __be32 *cell; 379 int ac, prop_len, tid; 380 u64 hwid; 381 382 ac = of_n_addr_cells(cpun); 383 cell = of_get_property(cpun, prop_name, &prop_len); 384 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 385 return true; 386 if (!cell || !ac) 387 return false; 388 prop_len /= sizeof(*cell) * ac; 389 for (tid = 0; tid < prop_len; tid++) { 390 hwid = of_read_number(cell, ac); 391 if (arch_match_cpu_phys_id(cpu, hwid)) { 392 if (thread) 393 *thread = tid; 394 return true; 395 } 396 cell += ac; 397 } 398 return false; 399 } 400 401 /* 402 * arch_find_n_match_cpu_physical_id - See if the given device node is 403 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 404 * else false. If 'thread' is non-NULL, the local thread number within the 405 * core is returned in it. 406 */ 407 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 408 int cpu, unsigned int *thread) 409 { 410 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 411 * for thread ids on PowerPC. If it doesn't exist fallback to 412 * standard "reg" property. 413 */ 414 if (IS_ENABLED(CONFIG_PPC) && 415 __of_find_n_match_cpu_property(cpun, 416 "ibm,ppc-interrupt-server#s", 417 cpu, thread)) 418 return true; 419 420 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 421 } 422 423 /** 424 * of_get_cpu_node - Get device node associated with the given logical CPU 425 * 426 * @cpu: CPU number(logical index) for which device node is required 427 * @thread: if not NULL, local thread number within the physical core is 428 * returned 429 * 430 * The main purpose of this function is to retrieve the device node for the 431 * given logical CPU index. It should be used to initialize the of_node in 432 * cpu device. Once of_node in cpu device is populated, all the further 433 * references can use that instead. 434 * 435 * CPU logical to physical index mapping is architecture specific and is built 436 * before booting secondary cores. This function uses arch_match_cpu_phys_id 437 * which can be overridden by architecture specific implementation. 438 * 439 * Returns a node pointer for the logical cpu with refcount incremented, use 440 * of_node_put() on it when done. Returns NULL if not found. 441 */ 442 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 443 { 444 struct device_node *cpun; 445 446 for_each_of_cpu_node(cpun) { 447 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 448 return cpun; 449 } 450 return NULL; 451 } 452 EXPORT_SYMBOL(of_get_cpu_node); 453 454 /** 455 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 456 * 457 * @cpu_node: Pointer to the device_node for CPU. 458 * 459 * Returns the logical CPU number of the given CPU device_node. 460 * Returns -ENODEV if the CPU is not found. 461 */ 462 int of_cpu_node_to_id(struct device_node *cpu_node) 463 { 464 int cpu; 465 bool found = false; 466 struct device_node *np; 467 468 for_each_possible_cpu(cpu) { 469 np = of_cpu_device_node_get(cpu); 470 found = (cpu_node == np); 471 of_node_put(np); 472 if (found) 473 return cpu; 474 } 475 476 return -ENODEV; 477 } 478 EXPORT_SYMBOL(of_cpu_node_to_id); 479 480 /** 481 * __of_device_is_compatible() - Check if the node matches given constraints 482 * @device: pointer to node 483 * @compat: required compatible string, NULL or "" for any match 484 * @type: required device_type value, NULL or "" for any match 485 * @name: required node name, NULL or "" for any match 486 * 487 * Checks if the given @compat, @type and @name strings match the 488 * properties of the given @device. A constraints can be skipped by 489 * passing NULL or an empty string as the constraint. 490 * 491 * Returns 0 for no match, and a positive integer on match. The return 492 * value is a relative score with larger values indicating better 493 * matches. The score is weighted for the most specific compatible value 494 * to get the highest score. Matching type is next, followed by matching 495 * name. Practically speaking, this results in the following priority 496 * order for matches: 497 * 498 * 1. specific compatible && type && name 499 * 2. specific compatible && type 500 * 3. specific compatible && name 501 * 4. specific compatible 502 * 5. general compatible && type && name 503 * 6. general compatible && type 504 * 7. general compatible && name 505 * 8. general compatible 506 * 9. type && name 507 * 10. type 508 * 11. name 509 */ 510 static int __of_device_is_compatible(const struct device_node *device, 511 const char *compat, const char *type, const char *name) 512 { 513 struct property *prop; 514 const char *cp; 515 int index = 0, score = 0; 516 517 /* Compatible match has highest priority */ 518 if (compat && compat[0]) { 519 prop = __of_find_property(device, "compatible", NULL); 520 for (cp = of_prop_next_string(prop, NULL); cp; 521 cp = of_prop_next_string(prop, cp), index++) { 522 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 523 score = INT_MAX/2 - (index << 2); 524 break; 525 } 526 } 527 if (!score) 528 return 0; 529 } 530 531 /* Matching type is better than matching name */ 532 if (type && type[0]) { 533 if (!__of_node_is_type(device, type)) 534 return 0; 535 score += 2; 536 } 537 538 /* Matching name is a bit better than not */ 539 if (name && name[0]) { 540 if (!of_node_name_eq(device, name)) 541 return 0; 542 score++; 543 } 544 545 return score; 546 } 547 548 /** Checks if the given "compat" string matches one of the strings in 549 * the device's "compatible" property 550 */ 551 int of_device_is_compatible(const struct device_node *device, 552 const char *compat) 553 { 554 unsigned long flags; 555 int res; 556 557 raw_spin_lock_irqsave(&devtree_lock, flags); 558 res = __of_device_is_compatible(device, compat, NULL, NULL); 559 raw_spin_unlock_irqrestore(&devtree_lock, flags); 560 return res; 561 } 562 EXPORT_SYMBOL(of_device_is_compatible); 563 564 /** Checks if the device is compatible with any of the entries in 565 * a NULL terminated array of strings. Returns the best match 566 * score or 0. 567 */ 568 int of_device_compatible_match(struct device_node *device, 569 const char *const *compat) 570 { 571 unsigned int tmp, score = 0; 572 573 if (!compat) 574 return 0; 575 576 while (*compat) { 577 tmp = of_device_is_compatible(device, *compat); 578 if (tmp > score) 579 score = tmp; 580 compat++; 581 } 582 583 return score; 584 } 585 586 /** 587 * of_machine_is_compatible - Test root of device tree for a given compatible value 588 * @compat: compatible string to look for in root node's compatible property. 589 * 590 * Returns a positive integer if the root node has the given value in its 591 * compatible property. 592 */ 593 int of_machine_is_compatible(const char *compat) 594 { 595 struct device_node *root; 596 int rc = 0; 597 598 root = of_find_node_by_path("/"); 599 if (root) { 600 rc = of_device_is_compatible(root, compat); 601 of_node_put(root); 602 } 603 return rc; 604 } 605 EXPORT_SYMBOL(of_machine_is_compatible); 606 607 /** 608 * __of_device_is_available - check if a device is available for use 609 * 610 * @device: Node to check for availability, with locks already held 611 * 612 * Returns true if the status property is absent or set to "okay" or "ok", 613 * false otherwise 614 */ 615 static bool __of_device_is_available(const struct device_node *device) 616 { 617 const char *status; 618 int statlen; 619 620 if (!device) 621 return false; 622 623 status = __of_get_property(device, "status", &statlen); 624 if (status == NULL) 625 return true; 626 627 if (statlen > 0) { 628 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 629 return true; 630 } 631 632 return false; 633 } 634 635 /** 636 * of_device_is_available - check if a device is available for use 637 * 638 * @device: Node to check for availability 639 * 640 * Returns true if the status property is absent or set to "okay" or "ok", 641 * false otherwise 642 */ 643 bool of_device_is_available(const struct device_node *device) 644 { 645 unsigned long flags; 646 bool res; 647 648 raw_spin_lock_irqsave(&devtree_lock, flags); 649 res = __of_device_is_available(device); 650 raw_spin_unlock_irqrestore(&devtree_lock, flags); 651 return res; 652 653 } 654 EXPORT_SYMBOL(of_device_is_available); 655 656 /** 657 * of_device_is_big_endian - check if a device has BE registers 658 * 659 * @device: Node to check for endianness 660 * 661 * Returns true if the device has a "big-endian" property, or if the kernel 662 * was compiled for BE *and* the device has a "native-endian" property. 663 * Returns false otherwise. 664 * 665 * Callers would nominally use ioread32be/iowrite32be if 666 * of_device_is_big_endian() == true, or readl/writel otherwise. 667 */ 668 bool of_device_is_big_endian(const struct device_node *device) 669 { 670 if (of_property_read_bool(device, "big-endian")) 671 return true; 672 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 673 of_property_read_bool(device, "native-endian")) 674 return true; 675 return false; 676 } 677 EXPORT_SYMBOL(of_device_is_big_endian); 678 679 /** 680 * of_get_parent - Get a node's parent if any 681 * @node: Node to get parent 682 * 683 * Returns a node pointer with refcount incremented, use 684 * of_node_put() on it when done. 685 */ 686 struct device_node *of_get_parent(const struct device_node *node) 687 { 688 struct device_node *np; 689 unsigned long flags; 690 691 if (!node) 692 return NULL; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 np = of_node_get(node->parent); 696 raw_spin_unlock_irqrestore(&devtree_lock, flags); 697 return np; 698 } 699 EXPORT_SYMBOL(of_get_parent); 700 701 /** 702 * of_get_next_parent - Iterate to a node's parent 703 * @node: Node to get parent of 704 * 705 * This is like of_get_parent() except that it drops the 706 * refcount on the passed node, making it suitable for iterating 707 * through a node's parents. 708 * 709 * Returns a node pointer with refcount incremented, use 710 * of_node_put() on it when done. 711 */ 712 struct device_node *of_get_next_parent(struct device_node *node) 713 { 714 struct device_node *parent; 715 unsigned long flags; 716 717 if (!node) 718 return NULL; 719 720 raw_spin_lock_irqsave(&devtree_lock, flags); 721 parent = of_node_get(node->parent); 722 of_node_put(node); 723 raw_spin_unlock_irqrestore(&devtree_lock, flags); 724 return parent; 725 } 726 EXPORT_SYMBOL(of_get_next_parent); 727 728 static struct device_node *__of_get_next_child(const struct device_node *node, 729 struct device_node *prev) 730 { 731 struct device_node *next; 732 733 if (!node) 734 return NULL; 735 736 next = prev ? prev->sibling : node->child; 737 for (; next; next = next->sibling) 738 if (of_node_get(next)) 739 break; 740 of_node_put(prev); 741 return next; 742 } 743 #define __for_each_child_of_node(parent, child) \ 744 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 745 child = __of_get_next_child(parent, child)) 746 747 /** 748 * of_get_next_child - Iterate a node childs 749 * @node: parent node 750 * @prev: previous child of the parent node, or NULL to get first 751 * 752 * Returns a node pointer with refcount incremented, use of_node_put() on 753 * it when done. Returns NULL when prev is the last child. Decrements the 754 * refcount of prev. 755 */ 756 struct device_node *of_get_next_child(const struct device_node *node, 757 struct device_node *prev) 758 { 759 struct device_node *next; 760 unsigned long flags; 761 762 raw_spin_lock_irqsave(&devtree_lock, flags); 763 next = __of_get_next_child(node, prev); 764 raw_spin_unlock_irqrestore(&devtree_lock, flags); 765 return next; 766 } 767 EXPORT_SYMBOL(of_get_next_child); 768 769 /** 770 * of_get_next_available_child - Find the next available child node 771 * @node: parent node 772 * @prev: previous child of the parent node, or NULL to get first 773 * 774 * This function is like of_get_next_child(), except that it 775 * automatically skips any disabled nodes (i.e. status = "disabled"). 776 */ 777 struct device_node *of_get_next_available_child(const struct device_node *node, 778 struct device_node *prev) 779 { 780 struct device_node *next; 781 unsigned long flags; 782 783 if (!node) 784 return NULL; 785 786 raw_spin_lock_irqsave(&devtree_lock, flags); 787 next = prev ? prev->sibling : node->child; 788 for (; next; next = next->sibling) { 789 if (!__of_device_is_available(next)) 790 continue; 791 if (of_node_get(next)) 792 break; 793 } 794 of_node_put(prev); 795 raw_spin_unlock_irqrestore(&devtree_lock, flags); 796 return next; 797 } 798 EXPORT_SYMBOL(of_get_next_available_child); 799 800 /** 801 * of_get_next_cpu_node - Iterate on cpu nodes 802 * @prev: previous child of the /cpus node, or NULL to get first 803 * 804 * Returns a cpu node pointer with refcount incremented, use of_node_put() 805 * on it when done. Returns NULL when prev is the last child. Decrements 806 * the refcount of prev. 807 */ 808 struct device_node *of_get_next_cpu_node(struct device_node *prev) 809 { 810 struct device_node *next = NULL; 811 unsigned long flags; 812 struct device_node *node; 813 814 if (!prev) 815 node = of_find_node_by_path("/cpus"); 816 817 raw_spin_lock_irqsave(&devtree_lock, flags); 818 if (prev) 819 next = prev->sibling; 820 else if (node) { 821 next = node->child; 822 of_node_put(node); 823 } 824 for (; next; next = next->sibling) { 825 if (!(of_node_name_eq(next, "cpu") || 826 __of_node_is_type(next, "cpu"))) 827 continue; 828 if (of_node_get(next)) 829 break; 830 } 831 of_node_put(prev); 832 raw_spin_unlock_irqrestore(&devtree_lock, flags); 833 return next; 834 } 835 EXPORT_SYMBOL(of_get_next_cpu_node); 836 837 /** 838 * of_get_compatible_child - Find compatible child node 839 * @parent: parent node 840 * @compatible: compatible string 841 * 842 * Lookup child node whose compatible property contains the given compatible 843 * string. 844 * 845 * Returns a node pointer with refcount incremented, use of_node_put() on it 846 * when done; or NULL if not found. 847 */ 848 struct device_node *of_get_compatible_child(const struct device_node *parent, 849 const char *compatible) 850 { 851 struct device_node *child; 852 853 for_each_child_of_node(parent, child) { 854 if (of_device_is_compatible(child, compatible)) 855 break; 856 } 857 858 return child; 859 } 860 EXPORT_SYMBOL(of_get_compatible_child); 861 862 /** 863 * of_get_child_by_name - Find the child node by name for a given parent 864 * @node: parent node 865 * @name: child name to look for. 866 * 867 * This function looks for child node for given matching name 868 * 869 * Returns a node pointer if found, with refcount incremented, use 870 * of_node_put() on it when done. 871 * Returns NULL if node is not found. 872 */ 873 struct device_node *of_get_child_by_name(const struct device_node *node, 874 const char *name) 875 { 876 struct device_node *child; 877 878 for_each_child_of_node(node, child) 879 if (of_node_name_eq(child, name)) 880 break; 881 return child; 882 } 883 EXPORT_SYMBOL(of_get_child_by_name); 884 885 struct device_node *__of_find_node_by_path(struct device_node *parent, 886 const char *path) 887 { 888 struct device_node *child; 889 int len; 890 891 len = strcspn(path, "/:"); 892 if (!len) 893 return NULL; 894 895 __for_each_child_of_node(parent, child) { 896 const char *name = kbasename(child->full_name); 897 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 898 return child; 899 } 900 return NULL; 901 } 902 903 struct device_node *__of_find_node_by_full_path(struct device_node *node, 904 const char *path) 905 { 906 const char *separator = strchr(path, ':'); 907 908 while (node && *path == '/') { 909 struct device_node *tmp = node; 910 911 path++; /* Increment past '/' delimiter */ 912 node = __of_find_node_by_path(node, path); 913 of_node_put(tmp); 914 path = strchrnul(path, '/'); 915 if (separator && separator < path) 916 break; 917 } 918 return node; 919 } 920 921 /** 922 * of_find_node_opts_by_path - Find a node matching a full OF path 923 * @path: Either the full path to match, or if the path does not 924 * start with '/', the name of a property of the /aliases 925 * node (an alias). In the case of an alias, the node 926 * matching the alias' value will be returned. 927 * @opts: Address of a pointer into which to store the start of 928 * an options string appended to the end of the path with 929 * a ':' separator. 930 * 931 * Valid paths: 932 * /foo/bar Full path 933 * foo Valid alias 934 * foo/bar Valid alias + relative path 935 * 936 * Returns a node pointer with refcount incremented, use 937 * of_node_put() on it when done. 938 */ 939 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 940 { 941 struct device_node *np = NULL; 942 struct property *pp; 943 unsigned long flags; 944 const char *separator = strchr(path, ':'); 945 946 if (opts) 947 *opts = separator ? separator + 1 : NULL; 948 949 if (strcmp(path, "/") == 0) 950 return of_node_get(of_root); 951 952 /* The path could begin with an alias */ 953 if (*path != '/') { 954 int len; 955 const char *p = separator; 956 957 if (!p) 958 p = strchrnul(path, '/'); 959 len = p - path; 960 961 /* of_aliases must not be NULL */ 962 if (!of_aliases) 963 return NULL; 964 965 for_each_property_of_node(of_aliases, pp) { 966 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 967 np = of_find_node_by_path(pp->value); 968 break; 969 } 970 } 971 if (!np) 972 return NULL; 973 path = p; 974 } 975 976 /* Step down the tree matching path components */ 977 raw_spin_lock_irqsave(&devtree_lock, flags); 978 if (!np) 979 np = of_node_get(of_root); 980 np = __of_find_node_by_full_path(np, path); 981 raw_spin_unlock_irqrestore(&devtree_lock, flags); 982 return np; 983 } 984 EXPORT_SYMBOL(of_find_node_opts_by_path); 985 986 /** 987 * of_find_node_by_name - Find a node by its "name" property 988 * @from: The node to start searching from or NULL; the node 989 * you pass will not be searched, only the next one 990 * will. Typically, you pass what the previous call 991 * returned. of_node_put() will be called on @from. 992 * @name: The name string to match against 993 * 994 * Returns a node pointer with refcount incremented, use 995 * of_node_put() on it when done. 996 */ 997 struct device_node *of_find_node_by_name(struct device_node *from, 998 const char *name) 999 { 1000 struct device_node *np; 1001 unsigned long flags; 1002 1003 raw_spin_lock_irqsave(&devtree_lock, flags); 1004 for_each_of_allnodes_from(from, np) 1005 if (of_node_name_eq(np, name) && of_node_get(np)) 1006 break; 1007 of_node_put(from); 1008 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1009 return np; 1010 } 1011 EXPORT_SYMBOL(of_find_node_by_name); 1012 1013 /** 1014 * of_find_node_by_type - Find a node by its "device_type" property 1015 * @from: The node to start searching from, or NULL to start searching 1016 * the entire device tree. The node you pass will not be 1017 * searched, only the next one will; typically, you pass 1018 * what the previous call returned. of_node_put() will be 1019 * called on from for you. 1020 * @type: The type string to match against 1021 * 1022 * Returns a node pointer with refcount incremented, use 1023 * of_node_put() on it when done. 1024 */ 1025 struct device_node *of_find_node_by_type(struct device_node *from, 1026 const char *type) 1027 { 1028 struct device_node *np; 1029 unsigned long flags; 1030 1031 raw_spin_lock_irqsave(&devtree_lock, flags); 1032 for_each_of_allnodes_from(from, np) 1033 if (__of_node_is_type(np, type) && of_node_get(np)) 1034 break; 1035 of_node_put(from); 1036 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1037 return np; 1038 } 1039 EXPORT_SYMBOL(of_find_node_by_type); 1040 1041 /** 1042 * of_find_compatible_node - Find a node based on type and one of the 1043 * tokens in its "compatible" property 1044 * @from: The node to start searching from or NULL, the node 1045 * you pass will not be searched, only the next one 1046 * will; typically, you pass what the previous call 1047 * returned. of_node_put() will be called on it 1048 * @type: The type string to match "device_type" or NULL to ignore 1049 * @compatible: The string to match to one of the tokens in the device 1050 * "compatible" list. 1051 * 1052 * Returns a node pointer with refcount incremented, use 1053 * of_node_put() on it when done. 1054 */ 1055 struct device_node *of_find_compatible_node(struct device_node *from, 1056 const char *type, const char *compatible) 1057 { 1058 struct device_node *np; 1059 unsigned long flags; 1060 1061 raw_spin_lock_irqsave(&devtree_lock, flags); 1062 for_each_of_allnodes_from(from, np) 1063 if (__of_device_is_compatible(np, compatible, type, NULL) && 1064 of_node_get(np)) 1065 break; 1066 of_node_put(from); 1067 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1068 return np; 1069 } 1070 EXPORT_SYMBOL(of_find_compatible_node); 1071 1072 /** 1073 * of_find_node_with_property - Find a node which has a property with 1074 * the given name. 1075 * @from: The node to start searching from or NULL, the node 1076 * you pass will not be searched, only the next one 1077 * will; typically, you pass what the previous call 1078 * returned. of_node_put() will be called on it 1079 * @prop_name: The name of the property to look for. 1080 * 1081 * Returns a node pointer with refcount incremented, use 1082 * of_node_put() on it when done. 1083 */ 1084 struct device_node *of_find_node_with_property(struct device_node *from, 1085 const char *prop_name) 1086 { 1087 struct device_node *np; 1088 struct property *pp; 1089 unsigned long flags; 1090 1091 raw_spin_lock_irqsave(&devtree_lock, flags); 1092 for_each_of_allnodes_from(from, np) { 1093 for (pp = np->properties; pp; pp = pp->next) { 1094 if (of_prop_cmp(pp->name, prop_name) == 0) { 1095 of_node_get(np); 1096 goto out; 1097 } 1098 } 1099 } 1100 out: 1101 of_node_put(from); 1102 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1103 return np; 1104 } 1105 EXPORT_SYMBOL(of_find_node_with_property); 1106 1107 static 1108 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1109 const struct device_node *node) 1110 { 1111 const struct of_device_id *best_match = NULL; 1112 int score, best_score = 0; 1113 1114 if (!matches) 1115 return NULL; 1116 1117 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1118 score = __of_device_is_compatible(node, matches->compatible, 1119 matches->type, matches->name); 1120 if (score > best_score) { 1121 best_match = matches; 1122 best_score = score; 1123 } 1124 } 1125 1126 return best_match; 1127 } 1128 1129 /** 1130 * of_match_node - Tell if a device_node has a matching of_match structure 1131 * @matches: array of of device match structures to search in 1132 * @node: the of device structure to match against 1133 * 1134 * Low level utility function used by device matching. 1135 */ 1136 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1137 const struct device_node *node) 1138 { 1139 const struct of_device_id *match; 1140 unsigned long flags; 1141 1142 raw_spin_lock_irqsave(&devtree_lock, flags); 1143 match = __of_match_node(matches, node); 1144 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1145 return match; 1146 } 1147 EXPORT_SYMBOL(of_match_node); 1148 1149 /** 1150 * of_find_matching_node_and_match - Find a node based on an of_device_id 1151 * match table. 1152 * @from: The node to start searching from or NULL, the node 1153 * you pass will not be searched, only the next one 1154 * will; typically, you pass what the previous call 1155 * returned. of_node_put() will be called on it 1156 * @matches: array of of device match structures to search in 1157 * @match Updated to point at the matches entry which matched 1158 * 1159 * Returns a node pointer with refcount incremented, use 1160 * of_node_put() on it when done. 1161 */ 1162 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1163 const struct of_device_id *matches, 1164 const struct of_device_id **match) 1165 { 1166 struct device_node *np; 1167 const struct of_device_id *m; 1168 unsigned long flags; 1169 1170 if (match) 1171 *match = NULL; 1172 1173 raw_spin_lock_irqsave(&devtree_lock, flags); 1174 for_each_of_allnodes_from(from, np) { 1175 m = __of_match_node(matches, np); 1176 if (m && of_node_get(np)) { 1177 if (match) 1178 *match = m; 1179 break; 1180 } 1181 } 1182 of_node_put(from); 1183 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1184 return np; 1185 } 1186 EXPORT_SYMBOL(of_find_matching_node_and_match); 1187 1188 /** 1189 * of_modalias_node - Lookup appropriate modalias for a device node 1190 * @node: pointer to a device tree node 1191 * @modalias: Pointer to buffer that modalias value will be copied into 1192 * @len: Length of modalias value 1193 * 1194 * Based on the value of the compatible property, this routine will attempt 1195 * to choose an appropriate modalias value for a particular device tree node. 1196 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1197 * from the first entry in the compatible list property. 1198 * 1199 * This routine returns 0 on success, <0 on failure. 1200 */ 1201 int of_modalias_node(struct device_node *node, char *modalias, int len) 1202 { 1203 const char *compatible, *p; 1204 int cplen; 1205 1206 compatible = of_get_property(node, "compatible", &cplen); 1207 if (!compatible || strlen(compatible) > cplen) 1208 return -ENODEV; 1209 p = strchr(compatible, ','); 1210 strlcpy(modalias, p ? p + 1 : compatible, len); 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(of_modalias_node); 1214 1215 /** 1216 * of_find_node_by_phandle - Find a node given a phandle 1217 * @handle: phandle of the node to find 1218 * 1219 * Returns a node pointer with refcount incremented, use 1220 * of_node_put() on it when done. 1221 */ 1222 struct device_node *of_find_node_by_phandle(phandle handle) 1223 { 1224 struct device_node *np = NULL; 1225 unsigned long flags; 1226 phandle masked_handle; 1227 1228 if (!handle) 1229 return NULL; 1230 1231 raw_spin_lock_irqsave(&devtree_lock, flags); 1232 1233 masked_handle = handle & phandle_cache_mask; 1234 1235 if (phandle_cache) { 1236 if (phandle_cache[masked_handle] && 1237 handle == phandle_cache[masked_handle]->phandle) 1238 np = phandle_cache[masked_handle]; 1239 if (np && of_node_check_flag(np, OF_DETACHED)) { 1240 WARN_ON(1); /* did not uncache np on node removal */ 1241 of_node_put(np); 1242 phandle_cache[masked_handle] = NULL; 1243 np = NULL; 1244 } 1245 } 1246 1247 if (!np) { 1248 for_each_of_allnodes(np) 1249 if (np->phandle == handle && 1250 !of_node_check_flag(np, OF_DETACHED)) { 1251 if (phandle_cache) { 1252 /* will put when removed from cache */ 1253 of_node_get(np); 1254 phandle_cache[masked_handle] = np; 1255 } 1256 break; 1257 } 1258 } 1259 1260 of_node_get(np); 1261 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1262 return np; 1263 } 1264 EXPORT_SYMBOL(of_find_node_by_phandle); 1265 1266 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1267 { 1268 int i; 1269 printk("%s %pOF", msg, args->np); 1270 for (i = 0; i < args->args_count; i++) { 1271 const char delim = i ? ',' : ':'; 1272 1273 pr_cont("%c%08x", delim, args->args[i]); 1274 } 1275 pr_cont("\n"); 1276 } 1277 1278 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1279 const struct device_node *np, 1280 const char *list_name, 1281 const char *cells_name, 1282 int cell_count) 1283 { 1284 const __be32 *list; 1285 int size; 1286 1287 memset(it, 0, sizeof(*it)); 1288 1289 /* 1290 * one of cell_count or cells_name must be provided to determine the 1291 * argument length. 1292 */ 1293 if (cell_count < 0 && !cells_name) 1294 return -EINVAL; 1295 1296 list = of_get_property(np, list_name, &size); 1297 if (!list) 1298 return -ENOENT; 1299 1300 it->cells_name = cells_name; 1301 it->cell_count = cell_count; 1302 it->parent = np; 1303 it->list_end = list + size / sizeof(*list); 1304 it->phandle_end = list; 1305 it->cur = list; 1306 1307 return 0; 1308 } 1309 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1310 1311 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1312 { 1313 uint32_t count = 0; 1314 1315 if (it->node) { 1316 of_node_put(it->node); 1317 it->node = NULL; 1318 } 1319 1320 if (!it->cur || it->phandle_end >= it->list_end) 1321 return -ENOENT; 1322 1323 it->cur = it->phandle_end; 1324 1325 /* If phandle is 0, then it is an empty entry with no arguments. */ 1326 it->phandle = be32_to_cpup(it->cur++); 1327 1328 if (it->phandle) { 1329 1330 /* 1331 * Find the provider node and parse the #*-cells property to 1332 * determine the argument length. 1333 */ 1334 it->node = of_find_node_by_phandle(it->phandle); 1335 1336 if (it->cells_name) { 1337 if (!it->node) { 1338 pr_err("%pOF: could not find phandle\n", 1339 it->parent); 1340 goto err; 1341 } 1342 1343 if (of_property_read_u32(it->node, it->cells_name, 1344 &count)) { 1345 /* 1346 * If both cell_count and cells_name is given, 1347 * fall back to cell_count in absence 1348 * of the cells_name property 1349 */ 1350 if (it->cell_count >= 0) { 1351 count = it->cell_count; 1352 } else { 1353 pr_err("%pOF: could not get %s for %pOF\n", 1354 it->parent, 1355 it->cells_name, 1356 it->node); 1357 goto err; 1358 } 1359 } 1360 } else { 1361 count = it->cell_count; 1362 } 1363 1364 /* 1365 * Make sure that the arguments actually fit in the remaining 1366 * property data length 1367 */ 1368 if (it->cur + count > it->list_end) { 1369 pr_err("%pOF: %s = %d found %d\n", 1370 it->parent, it->cells_name, 1371 count, it->cell_count); 1372 goto err; 1373 } 1374 } 1375 1376 it->phandle_end = it->cur + count; 1377 it->cur_count = count; 1378 1379 return 0; 1380 1381 err: 1382 if (it->node) { 1383 of_node_put(it->node); 1384 it->node = NULL; 1385 } 1386 1387 return -EINVAL; 1388 } 1389 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1390 1391 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1392 uint32_t *args, 1393 int size) 1394 { 1395 int i, count; 1396 1397 count = it->cur_count; 1398 1399 if (WARN_ON(size < count)) 1400 count = size; 1401 1402 for (i = 0; i < count; i++) 1403 args[i] = be32_to_cpup(it->cur++); 1404 1405 return count; 1406 } 1407 1408 static int __of_parse_phandle_with_args(const struct device_node *np, 1409 const char *list_name, 1410 const char *cells_name, 1411 int cell_count, int index, 1412 struct of_phandle_args *out_args) 1413 { 1414 struct of_phandle_iterator it; 1415 int rc, cur_index = 0; 1416 1417 /* Loop over the phandles until all the requested entry is found */ 1418 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1419 /* 1420 * All of the error cases bail out of the loop, so at 1421 * this point, the parsing is successful. If the requested 1422 * index matches, then fill the out_args structure and return, 1423 * or return -ENOENT for an empty entry. 1424 */ 1425 rc = -ENOENT; 1426 if (cur_index == index) { 1427 if (!it.phandle) 1428 goto err; 1429 1430 if (out_args) { 1431 int c; 1432 1433 c = of_phandle_iterator_args(&it, 1434 out_args->args, 1435 MAX_PHANDLE_ARGS); 1436 out_args->np = it.node; 1437 out_args->args_count = c; 1438 } else { 1439 of_node_put(it.node); 1440 } 1441 1442 /* Found it! return success */ 1443 return 0; 1444 } 1445 1446 cur_index++; 1447 } 1448 1449 /* 1450 * Unlock node before returning result; will be one of: 1451 * -ENOENT : index is for empty phandle 1452 * -EINVAL : parsing error on data 1453 */ 1454 1455 err: 1456 of_node_put(it.node); 1457 return rc; 1458 } 1459 1460 /** 1461 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1462 * @np: Pointer to device node holding phandle property 1463 * @phandle_name: Name of property holding a phandle value 1464 * @index: For properties holding a table of phandles, this is the index into 1465 * the table 1466 * 1467 * Returns the device_node pointer with refcount incremented. Use 1468 * of_node_put() on it when done. 1469 */ 1470 struct device_node *of_parse_phandle(const struct device_node *np, 1471 const char *phandle_name, int index) 1472 { 1473 struct of_phandle_args args; 1474 1475 if (index < 0) 1476 return NULL; 1477 1478 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1479 index, &args)) 1480 return NULL; 1481 1482 return args.np; 1483 } 1484 EXPORT_SYMBOL(of_parse_phandle); 1485 1486 /** 1487 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1488 * @np: pointer to a device tree node containing a list 1489 * @list_name: property name that contains a list 1490 * @cells_name: property name that specifies phandles' arguments count 1491 * @index: index of a phandle to parse out 1492 * @out_args: optional pointer to output arguments structure (will be filled) 1493 * 1494 * This function is useful to parse lists of phandles and their arguments. 1495 * Returns 0 on success and fills out_args, on error returns appropriate 1496 * errno value. 1497 * 1498 * Caller is responsible to call of_node_put() on the returned out_args->np 1499 * pointer. 1500 * 1501 * Example: 1502 * 1503 * phandle1: node1 { 1504 * #list-cells = <2>; 1505 * } 1506 * 1507 * phandle2: node2 { 1508 * #list-cells = <1>; 1509 * } 1510 * 1511 * node3 { 1512 * list = <&phandle1 1 2 &phandle2 3>; 1513 * } 1514 * 1515 * To get a device_node of the `node2' node you may call this: 1516 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1517 */ 1518 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1519 const char *cells_name, int index, 1520 struct of_phandle_args *out_args) 1521 { 1522 int cell_count = -1; 1523 1524 if (index < 0) 1525 return -EINVAL; 1526 1527 /* If cells_name is NULL we assume a cell count of 0 */ 1528 if (!cells_name) 1529 cell_count = 0; 1530 1531 return __of_parse_phandle_with_args(np, list_name, cells_name, 1532 cell_count, index, out_args); 1533 } 1534 EXPORT_SYMBOL(of_parse_phandle_with_args); 1535 1536 /** 1537 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1538 * @np: pointer to a device tree node containing a list 1539 * @list_name: property name that contains a list 1540 * @stem_name: stem of property names that specify phandles' arguments count 1541 * @index: index of a phandle to parse out 1542 * @out_args: optional pointer to output arguments structure (will be filled) 1543 * 1544 * This function is useful to parse lists of phandles and their arguments. 1545 * Returns 0 on success and fills out_args, on error returns appropriate errno 1546 * value. The difference between this function and of_parse_phandle_with_args() 1547 * is that this API remaps a phandle if the node the phandle points to has 1548 * a <@stem_name>-map property. 1549 * 1550 * Caller is responsible to call of_node_put() on the returned out_args->np 1551 * pointer. 1552 * 1553 * Example: 1554 * 1555 * phandle1: node1 { 1556 * #list-cells = <2>; 1557 * } 1558 * 1559 * phandle2: node2 { 1560 * #list-cells = <1>; 1561 * } 1562 * 1563 * phandle3: node3 { 1564 * #list-cells = <1>; 1565 * list-map = <0 &phandle2 3>, 1566 * <1 &phandle2 2>, 1567 * <2 &phandle1 5 1>; 1568 * list-map-mask = <0x3>; 1569 * }; 1570 * 1571 * node4 { 1572 * list = <&phandle1 1 2 &phandle3 0>; 1573 * } 1574 * 1575 * To get a device_node of the `node2' node you may call this: 1576 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1577 */ 1578 int of_parse_phandle_with_args_map(const struct device_node *np, 1579 const char *list_name, 1580 const char *stem_name, 1581 int index, struct of_phandle_args *out_args) 1582 { 1583 char *cells_name, *map_name = NULL, *mask_name = NULL; 1584 char *pass_name = NULL; 1585 struct device_node *cur, *new = NULL; 1586 const __be32 *map, *mask, *pass; 1587 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1588 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1589 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1590 const __be32 *match_array = initial_match_array; 1591 int i, ret, map_len, match; 1592 u32 list_size, new_size; 1593 1594 if (index < 0) 1595 return -EINVAL; 1596 1597 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1598 if (!cells_name) 1599 return -ENOMEM; 1600 1601 ret = -ENOMEM; 1602 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1603 if (!map_name) 1604 goto free; 1605 1606 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1607 if (!mask_name) 1608 goto free; 1609 1610 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1611 if (!pass_name) 1612 goto free; 1613 1614 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1615 out_args); 1616 if (ret) 1617 goto free; 1618 1619 /* Get the #<list>-cells property */ 1620 cur = out_args->np; 1621 ret = of_property_read_u32(cur, cells_name, &list_size); 1622 if (ret < 0) 1623 goto put; 1624 1625 /* Precalculate the match array - this simplifies match loop */ 1626 for (i = 0; i < list_size; i++) 1627 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1628 1629 ret = -EINVAL; 1630 while (cur) { 1631 /* Get the <list>-map property */ 1632 map = of_get_property(cur, map_name, &map_len); 1633 if (!map) { 1634 ret = 0; 1635 goto free; 1636 } 1637 map_len /= sizeof(u32); 1638 1639 /* Get the <list>-map-mask property (optional) */ 1640 mask = of_get_property(cur, mask_name, NULL); 1641 if (!mask) 1642 mask = dummy_mask; 1643 /* Iterate through <list>-map property */ 1644 match = 0; 1645 while (map_len > (list_size + 1) && !match) { 1646 /* Compare specifiers */ 1647 match = 1; 1648 for (i = 0; i < list_size; i++, map_len--) 1649 match &= !((match_array[i] ^ *map++) & mask[i]); 1650 1651 of_node_put(new); 1652 new = of_find_node_by_phandle(be32_to_cpup(map)); 1653 map++; 1654 map_len--; 1655 1656 /* Check if not found */ 1657 if (!new) 1658 goto put; 1659 1660 if (!of_device_is_available(new)) 1661 match = 0; 1662 1663 ret = of_property_read_u32(new, cells_name, &new_size); 1664 if (ret) 1665 goto put; 1666 1667 /* Check for malformed properties */ 1668 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1669 goto put; 1670 if (map_len < new_size) 1671 goto put; 1672 1673 /* Move forward by new node's #<list>-cells amount */ 1674 map += new_size; 1675 map_len -= new_size; 1676 } 1677 if (!match) 1678 goto put; 1679 1680 /* Get the <list>-map-pass-thru property (optional) */ 1681 pass = of_get_property(cur, pass_name, NULL); 1682 if (!pass) 1683 pass = dummy_pass; 1684 1685 /* 1686 * Successfully parsed a <list>-map translation; copy new 1687 * specifier into the out_args structure, keeping the 1688 * bits specified in <list>-map-pass-thru. 1689 */ 1690 match_array = map - new_size; 1691 for (i = 0; i < new_size; i++) { 1692 __be32 val = *(map - new_size + i); 1693 1694 if (i < list_size) { 1695 val &= ~pass[i]; 1696 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1697 } 1698 1699 out_args->args[i] = be32_to_cpu(val); 1700 } 1701 out_args->args_count = list_size = new_size; 1702 /* Iterate again with new provider */ 1703 out_args->np = new; 1704 of_node_put(cur); 1705 cur = new; 1706 } 1707 put: 1708 of_node_put(cur); 1709 of_node_put(new); 1710 free: 1711 kfree(mask_name); 1712 kfree(map_name); 1713 kfree(cells_name); 1714 kfree(pass_name); 1715 1716 return ret; 1717 } 1718 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1719 1720 /** 1721 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1722 * @np: pointer to a device tree node containing a list 1723 * @list_name: property name that contains a list 1724 * @cell_count: number of argument cells following the phandle 1725 * @index: index of a phandle to parse out 1726 * @out_args: optional pointer to output arguments structure (will be filled) 1727 * 1728 * This function is useful to parse lists of phandles and their arguments. 1729 * Returns 0 on success and fills out_args, on error returns appropriate 1730 * errno value. 1731 * 1732 * Caller is responsible to call of_node_put() on the returned out_args->np 1733 * pointer. 1734 * 1735 * Example: 1736 * 1737 * phandle1: node1 { 1738 * } 1739 * 1740 * phandle2: node2 { 1741 * } 1742 * 1743 * node3 { 1744 * list = <&phandle1 0 2 &phandle2 2 3>; 1745 * } 1746 * 1747 * To get a device_node of the `node2' node you may call this: 1748 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1749 */ 1750 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1751 const char *list_name, int cell_count, 1752 int index, struct of_phandle_args *out_args) 1753 { 1754 if (index < 0) 1755 return -EINVAL; 1756 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1757 index, out_args); 1758 } 1759 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1760 1761 /** 1762 * of_count_phandle_with_args() - Find the number of phandles references in a property 1763 * @np: pointer to a device tree node containing a list 1764 * @list_name: property name that contains a list 1765 * @cells_name: property name that specifies phandles' arguments count 1766 * 1767 * Returns the number of phandle + argument tuples within a property. It 1768 * is a typical pattern to encode a list of phandle and variable 1769 * arguments into a single property. The number of arguments is encoded 1770 * by a property in the phandle-target node. For example, a gpios 1771 * property would contain a list of GPIO specifies consisting of a 1772 * phandle and 1 or more arguments. The number of arguments are 1773 * determined by the #gpio-cells property in the node pointed to by the 1774 * phandle. 1775 */ 1776 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1777 const char *cells_name) 1778 { 1779 struct of_phandle_iterator it; 1780 int rc, cur_index = 0; 1781 1782 /* 1783 * If cells_name is NULL we assume a cell count of 0. This makes 1784 * counting the phandles trivial as each 32bit word in the list is a 1785 * phandle and no arguments are to consider. So we don't iterate through 1786 * the list but just use the length to determine the phandle count. 1787 */ 1788 if (!cells_name) { 1789 const __be32 *list; 1790 int size; 1791 1792 list = of_get_property(np, list_name, &size); 1793 if (!list) 1794 return -ENOENT; 1795 1796 return size / sizeof(*list); 1797 } 1798 1799 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1800 if (rc) 1801 return rc; 1802 1803 while ((rc = of_phandle_iterator_next(&it)) == 0) 1804 cur_index += 1; 1805 1806 if (rc != -ENOENT) 1807 return rc; 1808 1809 return cur_index; 1810 } 1811 EXPORT_SYMBOL(of_count_phandle_with_args); 1812 1813 /** 1814 * __of_add_property - Add a property to a node without lock operations 1815 */ 1816 int __of_add_property(struct device_node *np, struct property *prop) 1817 { 1818 struct property **next; 1819 1820 prop->next = NULL; 1821 next = &np->properties; 1822 while (*next) { 1823 if (strcmp(prop->name, (*next)->name) == 0) 1824 /* duplicate ! don't insert it */ 1825 return -EEXIST; 1826 1827 next = &(*next)->next; 1828 } 1829 *next = prop; 1830 1831 return 0; 1832 } 1833 1834 /** 1835 * of_add_property - Add a property to a node 1836 */ 1837 int of_add_property(struct device_node *np, struct property *prop) 1838 { 1839 unsigned long flags; 1840 int rc; 1841 1842 mutex_lock(&of_mutex); 1843 1844 raw_spin_lock_irqsave(&devtree_lock, flags); 1845 rc = __of_add_property(np, prop); 1846 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1847 1848 if (!rc) 1849 __of_add_property_sysfs(np, prop); 1850 1851 mutex_unlock(&of_mutex); 1852 1853 if (!rc) 1854 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1855 1856 return rc; 1857 } 1858 1859 int __of_remove_property(struct device_node *np, struct property *prop) 1860 { 1861 struct property **next; 1862 1863 for (next = &np->properties; *next; next = &(*next)->next) { 1864 if (*next == prop) 1865 break; 1866 } 1867 if (*next == NULL) 1868 return -ENODEV; 1869 1870 /* found the node */ 1871 *next = prop->next; 1872 prop->next = np->deadprops; 1873 np->deadprops = prop; 1874 1875 return 0; 1876 } 1877 1878 /** 1879 * of_remove_property - Remove a property from a node. 1880 * 1881 * Note that we don't actually remove it, since we have given out 1882 * who-knows-how-many pointers to the data using get-property. 1883 * Instead we just move the property to the "dead properties" 1884 * list, so it won't be found any more. 1885 */ 1886 int of_remove_property(struct device_node *np, struct property *prop) 1887 { 1888 unsigned long flags; 1889 int rc; 1890 1891 if (!prop) 1892 return -ENODEV; 1893 1894 mutex_lock(&of_mutex); 1895 1896 raw_spin_lock_irqsave(&devtree_lock, flags); 1897 rc = __of_remove_property(np, prop); 1898 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1899 1900 if (!rc) 1901 __of_remove_property_sysfs(np, prop); 1902 1903 mutex_unlock(&of_mutex); 1904 1905 if (!rc) 1906 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1907 1908 return rc; 1909 } 1910 1911 int __of_update_property(struct device_node *np, struct property *newprop, 1912 struct property **oldpropp) 1913 { 1914 struct property **next, *oldprop; 1915 1916 for (next = &np->properties; *next; next = &(*next)->next) { 1917 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1918 break; 1919 } 1920 *oldpropp = oldprop = *next; 1921 1922 if (oldprop) { 1923 /* replace the node */ 1924 newprop->next = oldprop->next; 1925 *next = newprop; 1926 oldprop->next = np->deadprops; 1927 np->deadprops = oldprop; 1928 } else { 1929 /* new node */ 1930 newprop->next = NULL; 1931 *next = newprop; 1932 } 1933 1934 return 0; 1935 } 1936 1937 /* 1938 * of_update_property - Update a property in a node, if the property does 1939 * not exist, add it. 1940 * 1941 * Note that we don't actually remove it, since we have given out 1942 * who-knows-how-many pointers to the data using get-property. 1943 * Instead we just move the property to the "dead properties" list, 1944 * and add the new property to the property list 1945 */ 1946 int of_update_property(struct device_node *np, struct property *newprop) 1947 { 1948 struct property *oldprop; 1949 unsigned long flags; 1950 int rc; 1951 1952 if (!newprop->name) 1953 return -EINVAL; 1954 1955 mutex_lock(&of_mutex); 1956 1957 raw_spin_lock_irqsave(&devtree_lock, flags); 1958 rc = __of_update_property(np, newprop, &oldprop); 1959 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1960 1961 if (!rc) 1962 __of_update_property_sysfs(np, newprop, oldprop); 1963 1964 mutex_unlock(&of_mutex); 1965 1966 if (!rc) 1967 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1968 1969 return rc; 1970 } 1971 1972 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1973 int id, const char *stem, int stem_len) 1974 { 1975 ap->np = np; 1976 ap->id = id; 1977 strncpy(ap->stem, stem, stem_len); 1978 ap->stem[stem_len] = 0; 1979 list_add_tail(&ap->link, &aliases_lookup); 1980 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1981 ap->alias, ap->stem, ap->id, np); 1982 } 1983 1984 /** 1985 * of_alias_scan - Scan all properties of the 'aliases' node 1986 * 1987 * The function scans all the properties of the 'aliases' node and populates 1988 * the global lookup table with the properties. It returns the 1989 * number of alias properties found, or an error code in case of failure. 1990 * 1991 * @dt_alloc: An allocator that provides a virtual address to memory 1992 * for storing the resulting tree 1993 */ 1994 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1995 { 1996 struct property *pp; 1997 1998 of_aliases = of_find_node_by_path("/aliases"); 1999 of_chosen = of_find_node_by_path("/chosen"); 2000 if (of_chosen == NULL) 2001 of_chosen = of_find_node_by_path("/chosen@0"); 2002 2003 if (of_chosen) { 2004 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 2005 const char *name = NULL; 2006 2007 if (of_property_read_string(of_chosen, "stdout-path", &name)) 2008 of_property_read_string(of_chosen, "linux,stdout-path", 2009 &name); 2010 if (IS_ENABLED(CONFIG_PPC) && !name) 2011 of_property_read_string(of_aliases, "stdout", &name); 2012 if (name) 2013 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2014 } 2015 2016 if (!of_aliases) 2017 return; 2018 2019 for_each_property_of_node(of_aliases, pp) { 2020 const char *start = pp->name; 2021 const char *end = start + strlen(start); 2022 struct device_node *np; 2023 struct alias_prop *ap; 2024 int id, len; 2025 2026 /* Skip those we do not want to proceed */ 2027 if (!strcmp(pp->name, "name") || 2028 !strcmp(pp->name, "phandle") || 2029 !strcmp(pp->name, "linux,phandle")) 2030 continue; 2031 2032 np = of_find_node_by_path(pp->value); 2033 if (!np) 2034 continue; 2035 2036 /* walk the alias backwards to extract the id and work out 2037 * the 'stem' string */ 2038 while (isdigit(*(end-1)) && end > start) 2039 end--; 2040 len = end - start; 2041 2042 if (kstrtoint(end, 10, &id) < 0) 2043 continue; 2044 2045 /* Allocate an alias_prop with enough space for the stem */ 2046 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2047 if (!ap) 2048 continue; 2049 memset(ap, 0, sizeof(*ap) + len + 1); 2050 ap->alias = start; 2051 of_alias_add(ap, np, id, start, len); 2052 } 2053 } 2054 2055 /** 2056 * of_alias_get_id - Get alias id for the given device_node 2057 * @np: Pointer to the given device_node 2058 * @stem: Alias stem of the given device_node 2059 * 2060 * The function travels the lookup table to get the alias id for the given 2061 * device_node and alias stem. It returns the alias id if found. 2062 */ 2063 int of_alias_get_id(struct device_node *np, const char *stem) 2064 { 2065 struct alias_prop *app; 2066 int id = -ENODEV; 2067 2068 mutex_lock(&of_mutex); 2069 list_for_each_entry(app, &aliases_lookup, link) { 2070 if (strcmp(app->stem, stem) != 0) 2071 continue; 2072 2073 if (np == app->np) { 2074 id = app->id; 2075 break; 2076 } 2077 } 2078 mutex_unlock(&of_mutex); 2079 2080 return id; 2081 } 2082 EXPORT_SYMBOL_GPL(of_alias_get_id); 2083 2084 /** 2085 * of_alias_get_alias_list - Get alias list for the given device driver 2086 * @matches: Array of OF device match structures to search in 2087 * @stem: Alias stem of the given device_node 2088 * @bitmap: Bitmap field pointer 2089 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2090 * 2091 * The function travels the lookup table to record alias ids for the given 2092 * device match structures and alias stem. 2093 * 2094 * Return: 0 or -ENOSYS when !CONFIG_OF or 2095 * -EOVERFLOW if alias ID is greater then allocated nbits 2096 */ 2097 int of_alias_get_alias_list(const struct of_device_id *matches, 2098 const char *stem, unsigned long *bitmap, 2099 unsigned int nbits) 2100 { 2101 struct alias_prop *app; 2102 int ret = 0; 2103 2104 /* Zero bitmap field to make sure that all the time it is clean */ 2105 bitmap_zero(bitmap, nbits); 2106 2107 mutex_lock(&of_mutex); 2108 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2109 list_for_each_entry(app, &aliases_lookup, link) { 2110 pr_debug("%s: stem: %s, id: %d\n", 2111 __func__, app->stem, app->id); 2112 2113 if (strcmp(app->stem, stem) != 0) { 2114 pr_debug("%s: stem comparison didn't pass %s\n", 2115 __func__, app->stem); 2116 continue; 2117 } 2118 2119 if (of_match_node(matches, app->np)) { 2120 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2121 2122 if (app->id >= nbits) { 2123 pr_warn("%s: ID %d >= than bitmap field %d\n", 2124 __func__, app->id, nbits); 2125 ret = -EOVERFLOW; 2126 } else { 2127 set_bit(app->id, bitmap); 2128 } 2129 } 2130 } 2131 mutex_unlock(&of_mutex); 2132 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2136 2137 /** 2138 * of_alias_get_highest_id - Get highest alias id for the given stem 2139 * @stem: Alias stem to be examined 2140 * 2141 * The function travels the lookup table to get the highest alias id for the 2142 * given alias stem. It returns the alias id if found. 2143 */ 2144 int of_alias_get_highest_id(const char *stem) 2145 { 2146 struct alias_prop *app; 2147 int id = -ENODEV; 2148 2149 mutex_lock(&of_mutex); 2150 list_for_each_entry(app, &aliases_lookup, link) { 2151 if (strcmp(app->stem, stem) != 0) 2152 continue; 2153 2154 if (app->id > id) 2155 id = app->id; 2156 } 2157 mutex_unlock(&of_mutex); 2158 2159 return id; 2160 } 2161 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2162 2163 /** 2164 * of_console_check() - Test and setup console for DT setup 2165 * @dn - Pointer to device node 2166 * @name - Name to use for preferred console without index. ex. "ttyS" 2167 * @index - Index to use for preferred console. 2168 * 2169 * Check if the given device node matches the stdout-path property in the 2170 * /chosen node. If it does then register it as the preferred console and return 2171 * TRUE. Otherwise return FALSE. 2172 */ 2173 bool of_console_check(struct device_node *dn, char *name, int index) 2174 { 2175 if (!dn || dn != of_stdout || console_set_on_cmdline) 2176 return false; 2177 2178 /* 2179 * XXX: cast `options' to char pointer to suppress complication 2180 * warnings: printk, UART and console drivers expect char pointer. 2181 */ 2182 return !add_preferred_console(name, index, (char *)of_stdout_options); 2183 } 2184 EXPORT_SYMBOL_GPL(of_console_check); 2185 2186 /** 2187 * of_find_next_cache_node - Find a node's subsidiary cache 2188 * @np: node of type "cpu" or "cache" 2189 * 2190 * Returns a node pointer with refcount incremented, use 2191 * of_node_put() on it when done. Caller should hold a reference 2192 * to np. 2193 */ 2194 struct device_node *of_find_next_cache_node(const struct device_node *np) 2195 { 2196 struct device_node *child, *cache_node; 2197 2198 cache_node = of_parse_phandle(np, "l2-cache", 0); 2199 if (!cache_node) 2200 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2201 2202 if (cache_node) 2203 return cache_node; 2204 2205 /* OF on pmac has nodes instead of properties named "l2-cache" 2206 * beneath CPU nodes. 2207 */ 2208 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2209 for_each_child_of_node(np, child) 2210 if (of_node_is_type(child, "cache")) 2211 return child; 2212 2213 return NULL; 2214 } 2215 2216 /** 2217 * of_find_last_cache_level - Find the level at which the last cache is 2218 * present for the given logical cpu 2219 * 2220 * @cpu: cpu number(logical index) for which the last cache level is needed 2221 * 2222 * Returns the the level at which the last cache is present. It is exactly 2223 * same as the total number of cache levels for the given logical cpu. 2224 */ 2225 int of_find_last_cache_level(unsigned int cpu) 2226 { 2227 u32 cache_level = 0; 2228 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2229 2230 while (np) { 2231 prev = np; 2232 of_node_put(np); 2233 np = of_find_next_cache_node(np); 2234 } 2235 2236 of_property_read_u32(prev, "cache-level", &cache_level); 2237 2238 return cache_level; 2239 } 2240 2241 /** 2242 * of_map_rid - Translate a requester ID through a downstream mapping. 2243 * @np: root complex device node. 2244 * @rid: device requester ID to map. 2245 * @map_name: property name of the map to use. 2246 * @map_mask_name: optional property name of the mask to use. 2247 * @target: optional pointer to a target device node. 2248 * @id_out: optional pointer to receive the translated ID. 2249 * 2250 * Given a device requester ID, look up the appropriate implementation-defined 2251 * platform ID and/or the target device which receives transactions on that 2252 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2253 * @id_out may be NULL if only the other is required. If @target points to 2254 * a non-NULL device node pointer, only entries targeting that node will be 2255 * matched; if it points to a NULL value, it will receive the device node of 2256 * the first matching target phandle, with a reference held. 2257 * 2258 * Return: 0 on success or a standard error code on failure. 2259 */ 2260 int of_map_rid(struct device_node *np, u32 rid, 2261 const char *map_name, const char *map_mask_name, 2262 struct device_node **target, u32 *id_out) 2263 { 2264 u32 map_mask, masked_rid; 2265 int map_len; 2266 const __be32 *map = NULL; 2267 2268 if (!np || !map_name || (!target && !id_out)) 2269 return -EINVAL; 2270 2271 map = of_get_property(np, map_name, &map_len); 2272 if (!map) { 2273 if (target) 2274 return -ENODEV; 2275 /* Otherwise, no map implies no translation */ 2276 *id_out = rid; 2277 return 0; 2278 } 2279 2280 if (!map_len || map_len % (4 * sizeof(*map))) { 2281 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2282 map_name, map_len); 2283 return -EINVAL; 2284 } 2285 2286 /* The default is to select all bits. */ 2287 map_mask = 0xffffffff; 2288 2289 /* 2290 * Can be overridden by "{iommu,msi}-map-mask" property. 2291 * If of_property_read_u32() fails, the default is used. 2292 */ 2293 if (map_mask_name) 2294 of_property_read_u32(np, map_mask_name, &map_mask); 2295 2296 masked_rid = map_mask & rid; 2297 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2298 struct device_node *phandle_node; 2299 u32 rid_base = be32_to_cpup(map + 0); 2300 u32 phandle = be32_to_cpup(map + 1); 2301 u32 out_base = be32_to_cpup(map + 2); 2302 u32 rid_len = be32_to_cpup(map + 3); 2303 2304 if (rid_base & ~map_mask) { 2305 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n", 2306 np, map_name, map_name, 2307 map_mask, rid_base); 2308 return -EFAULT; 2309 } 2310 2311 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len) 2312 continue; 2313 2314 phandle_node = of_find_node_by_phandle(phandle); 2315 if (!phandle_node) 2316 return -ENODEV; 2317 2318 if (target) { 2319 if (*target) 2320 of_node_put(phandle_node); 2321 else 2322 *target = phandle_node; 2323 2324 if (*target != phandle_node) 2325 continue; 2326 } 2327 2328 if (id_out) 2329 *id_out = masked_rid - rid_base + out_base; 2330 2331 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n", 2332 np, map_name, map_mask, rid_base, out_base, 2333 rid_len, rid, masked_rid - rid_base + out_base); 2334 return 0; 2335 } 2336 2337 pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name, 2338 rid, target && *target ? *target : NULL); 2339 2340 /* Bypasses translation */ 2341 if (id_out) 2342 *id_out = rid; 2343 return 0; 2344 } 2345 EXPORT_SYMBOL_GPL(of_map_rid); 2346