xref: /openbmc/linux/drivers/of/base.c (revision 206a81c1)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_graph.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/proc_fs.h>
29 
30 #include "of_private.h"
31 
32 LIST_HEAD(aliases_lookup);
33 
34 struct device_node *of_allnodes;
35 EXPORT_SYMBOL(of_allnodes);
36 struct device_node *of_chosen;
37 struct device_node *of_aliases;
38 static struct device_node *of_stdout;
39 
40 static struct kset *of_kset;
41 
42 /*
43  * Used to protect the of_aliases; but also overloaded to hold off addition of
44  * nodes to sysfs
45  */
46 DEFINE_MUTEX(of_aliases_mutex);
47 
48 /* use when traversing tree through the allnext, child, sibling,
49  * or parent members of struct device_node.
50  */
51 DEFINE_RAW_SPINLOCK(devtree_lock);
52 
53 int of_n_addr_cells(struct device_node *np)
54 {
55 	const __be32 *ip;
56 
57 	do {
58 		if (np->parent)
59 			np = np->parent;
60 		ip = of_get_property(np, "#address-cells", NULL);
61 		if (ip)
62 			return be32_to_cpup(ip);
63 	} while (np->parent);
64 	/* No #address-cells property for the root node */
65 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
66 }
67 EXPORT_SYMBOL(of_n_addr_cells);
68 
69 int of_n_size_cells(struct device_node *np)
70 {
71 	const __be32 *ip;
72 
73 	do {
74 		if (np->parent)
75 			np = np->parent;
76 		ip = of_get_property(np, "#size-cells", NULL);
77 		if (ip)
78 			return be32_to_cpup(ip);
79 	} while (np->parent);
80 	/* No #size-cells property for the root node */
81 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
82 }
83 EXPORT_SYMBOL(of_n_size_cells);
84 
85 #ifdef CONFIG_NUMA
86 int __weak of_node_to_nid(struct device_node *np)
87 {
88 	return numa_node_id();
89 }
90 #endif
91 
92 #if defined(CONFIG_OF_DYNAMIC)
93 /**
94  *	of_node_get - Increment refcount of a node
95  *	@node:	Node to inc refcount, NULL is supported to
96  *		simplify writing of callers
97  *
98  *	Returns node.
99  */
100 struct device_node *of_node_get(struct device_node *node)
101 {
102 	if (node)
103 		kobject_get(&node->kobj);
104 	return node;
105 }
106 EXPORT_SYMBOL(of_node_get);
107 
108 static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
109 {
110 	return container_of(kobj, struct device_node, kobj);
111 }
112 
113 /**
114  *	of_node_release - release a dynamically allocated node
115  *	@kref:  kref element of the node to be released
116  *
117  *	In of_node_put() this function is passed to kref_put()
118  *	as the destructor.
119  */
120 static void of_node_release(struct kobject *kobj)
121 {
122 	struct device_node *node = kobj_to_device_node(kobj);
123 	struct property *prop = node->properties;
124 
125 	/* We should never be releasing nodes that haven't been detached. */
126 	if (!of_node_check_flag(node, OF_DETACHED)) {
127 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
128 		dump_stack();
129 		return;
130 	}
131 
132 	if (!of_node_check_flag(node, OF_DYNAMIC))
133 		return;
134 
135 	while (prop) {
136 		struct property *next = prop->next;
137 		kfree(prop->name);
138 		kfree(prop->value);
139 		kfree(prop);
140 		prop = next;
141 
142 		if (!prop) {
143 			prop = node->deadprops;
144 			node->deadprops = NULL;
145 		}
146 	}
147 	kfree(node->full_name);
148 	kfree(node->data);
149 	kfree(node);
150 }
151 
152 /**
153  *	of_node_put - Decrement refcount of a node
154  *	@node:	Node to dec refcount, NULL is supported to
155  *		simplify writing of callers
156  *
157  */
158 void of_node_put(struct device_node *node)
159 {
160 	if (node)
161 		kobject_put(&node->kobj);
162 }
163 EXPORT_SYMBOL(of_node_put);
164 #else
165 static void of_node_release(struct kobject *kobj)
166 {
167 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
168 }
169 #endif /* CONFIG_OF_DYNAMIC */
170 
171 struct kobj_type of_node_ktype = {
172 	.release = of_node_release,
173 };
174 
175 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
176 				struct bin_attribute *bin_attr, char *buf,
177 				loff_t offset, size_t count)
178 {
179 	struct property *pp = container_of(bin_attr, struct property, attr);
180 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
181 }
182 
183 static const char *safe_name(struct kobject *kobj, const char *orig_name)
184 {
185 	const char *name = orig_name;
186 	struct kernfs_node *kn;
187 	int i = 0;
188 
189 	/* don't be a hero. After 16 tries give up */
190 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
191 		sysfs_put(kn);
192 		if (name != orig_name)
193 			kfree(name);
194 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
195 	}
196 
197 	if (name != orig_name)
198 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
199 			kobject_name(kobj), name);
200 	return name;
201 }
202 
203 static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
204 {
205 	int rc;
206 
207 	/* Important: Don't leak passwords */
208 	bool secure = strncmp(pp->name, "security-", 9) == 0;
209 
210 	sysfs_bin_attr_init(&pp->attr);
211 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
212 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
213 	pp->attr.size = secure ? 0 : pp->length;
214 	pp->attr.read = of_node_property_read;
215 
216 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
217 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
218 	return rc;
219 }
220 
221 static int __of_node_add(struct device_node *np)
222 {
223 	const char *name;
224 	struct property *pp;
225 	int rc;
226 
227 	np->kobj.kset = of_kset;
228 	if (!np->parent) {
229 		/* Nodes without parents are new top level trees */
230 		rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base"));
231 	} else {
232 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
233 		if (!name || !name[0])
234 			return -EINVAL;
235 
236 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
237 	}
238 	if (rc)
239 		return rc;
240 
241 	for_each_property_of_node(np, pp)
242 		__of_add_property_sysfs(np, pp);
243 
244 	return 0;
245 }
246 
247 int of_node_add(struct device_node *np)
248 {
249 	int rc = 0;
250 
251 	BUG_ON(!of_node_is_initialized(np));
252 
253 	/*
254 	 * Grab the mutex here so that in a race condition between of_init() and
255 	 * of_node_add(), node addition will still be consistent.
256 	 */
257 	mutex_lock(&of_aliases_mutex);
258 	if (of_kset)
259 		rc = __of_node_add(np);
260 	else
261 		/* This scenario may be perfectly valid, but report it anyway */
262 		pr_info("of_node_add(%s) before of_init()\n", np->full_name);
263 	mutex_unlock(&of_aliases_mutex);
264 	return rc;
265 }
266 
267 #if defined(CONFIG_OF_DYNAMIC)
268 static void of_node_remove(struct device_node *np)
269 {
270 	struct property *pp;
271 
272 	BUG_ON(!of_node_is_initialized(np));
273 
274 	/* only remove properties if on sysfs */
275 	if (of_node_is_attached(np)) {
276 		for_each_property_of_node(np, pp)
277 			sysfs_remove_bin_file(&np->kobj, &pp->attr);
278 		kobject_del(&np->kobj);
279 	}
280 
281 	/* finally remove the kobj_init ref */
282 	of_node_put(np);
283 }
284 #endif
285 
286 static int __init of_init(void)
287 {
288 	struct device_node *np;
289 
290 	/* Create the kset, and register existing nodes */
291 	mutex_lock(&of_aliases_mutex);
292 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
293 	if (!of_kset) {
294 		mutex_unlock(&of_aliases_mutex);
295 		return -ENOMEM;
296 	}
297 	for_each_of_allnodes(np)
298 		__of_node_add(np);
299 	mutex_unlock(&of_aliases_mutex);
300 
301 	/* Symlink in /proc as required by userspace ABI */
302 	if (of_allnodes)
303 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
304 
305 	return 0;
306 }
307 core_initcall(of_init);
308 
309 static struct property *__of_find_property(const struct device_node *np,
310 					   const char *name, int *lenp)
311 {
312 	struct property *pp;
313 
314 	if (!np)
315 		return NULL;
316 
317 	for (pp = np->properties; pp; pp = pp->next) {
318 		if (of_prop_cmp(pp->name, name) == 0) {
319 			if (lenp)
320 				*lenp = pp->length;
321 			break;
322 		}
323 	}
324 
325 	return pp;
326 }
327 
328 struct property *of_find_property(const struct device_node *np,
329 				  const char *name,
330 				  int *lenp)
331 {
332 	struct property *pp;
333 	unsigned long flags;
334 
335 	raw_spin_lock_irqsave(&devtree_lock, flags);
336 	pp = __of_find_property(np, name, lenp);
337 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
338 
339 	return pp;
340 }
341 EXPORT_SYMBOL(of_find_property);
342 
343 /**
344  * of_find_all_nodes - Get next node in global list
345  * @prev:	Previous node or NULL to start iteration
346  *		of_node_put() will be called on it
347  *
348  * Returns a node pointer with refcount incremented, use
349  * of_node_put() on it when done.
350  */
351 struct device_node *of_find_all_nodes(struct device_node *prev)
352 {
353 	struct device_node *np;
354 	unsigned long flags;
355 
356 	raw_spin_lock_irqsave(&devtree_lock, flags);
357 	np = prev ? prev->allnext : of_allnodes;
358 	for (; np != NULL; np = np->allnext)
359 		if (of_node_get(np))
360 			break;
361 	of_node_put(prev);
362 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
363 	return np;
364 }
365 EXPORT_SYMBOL(of_find_all_nodes);
366 
367 /*
368  * Find a property with a given name for a given node
369  * and return the value.
370  */
371 static const void *__of_get_property(const struct device_node *np,
372 				     const char *name, int *lenp)
373 {
374 	struct property *pp = __of_find_property(np, name, lenp);
375 
376 	return pp ? pp->value : NULL;
377 }
378 
379 /*
380  * Find a property with a given name for a given node
381  * and return the value.
382  */
383 const void *of_get_property(const struct device_node *np, const char *name,
384 			    int *lenp)
385 {
386 	struct property *pp = of_find_property(np, name, lenp);
387 
388 	return pp ? pp->value : NULL;
389 }
390 EXPORT_SYMBOL(of_get_property);
391 
392 /*
393  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
394  *
395  * @cpu: logical cpu index of a core/thread
396  * @phys_id: physical identifier of a core/thread
397  *
398  * CPU logical to physical index mapping is architecture specific.
399  * However this __weak function provides a default match of physical
400  * id to logical cpu index. phys_id provided here is usually values read
401  * from the device tree which must match the hardware internal registers.
402  *
403  * Returns true if the physical identifier and the logical cpu index
404  * correspond to the same core/thread, false otherwise.
405  */
406 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
407 {
408 	return (u32)phys_id == cpu;
409 }
410 
411 /**
412  * Checks if the given "prop_name" property holds the physical id of the
413  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
414  * NULL, local thread number within the core is returned in it.
415  */
416 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
417 			const char *prop_name, int cpu, unsigned int *thread)
418 {
419 	const __be32 *cell;
420 	int ac, prop_len, tid;
421 	u64 hwid;
422 
423 	ac = of_n_addr_cells(cpun);
424 	cell = of_get_property(cpun, prop_name, &prop_len);
425 	if (!cell || !ac)
426 		return false;
427 	prop_len /= sizeof(*cell) * ac;
428 	for (tid = 0; tid < prop_len; tid++) {
429 		hwid = of_read_number(cell, ac);
430 		if (arch_match_cpu_phys_id(cpu, hwid)) {
431 			if (thread)
432 				*thread = tid;
433 			return true;
434 		}
435 		cell += ac;
436 	}
437 	return false;
438 }
439 
440 /*
441  * arch_find_n_match_cpu_physical_id - See if the given device node is
442  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
443  * else false.  If 'thread' is non-NULL, the local thread number within the
444  * core is returned in it.
445  */
446 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
447 					      int cpu, unsigned int *thread)
448 {
449 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
450 	 * for thread ids on PowerPC. If it doesn't exist fallback to
451 	 * standard "reg" property.
452 	 */
453 	if (IS_ENABLED(CONFIG_PPC) &&
454 	    __of_find_n_match_cpu_property(cpun,
455 					   "ibm,ppc-interrupt-server#s",
456 					   cpu, thread))
457 		return true;
458 
459 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
460 		return true;
461 
462 	return false;
463 }
464 
465 /**
466  * of_get_cpu_node - Get device node associated with the given logical CPU
467  *
468  * @cpu: CPU number(logical index) for which device node is required
469  * @thread: if not NULL, local thread number within the physical core is
470  *          returned
471  *
472  * The main purpose of this function is to retrieve the device node for the
473  * given logical CPU index. It should be used to initialize the of_node in
474  * cpu device. Once of_node in cpu device is populated, all the further
475  * references can use that instead.
476  *
477  * CPU logical to physical index mapping is architecture specific and is built
478  * before booting secondary cores. This function uses arch_match_cpu_phys_id
479  * which can be overridden by architecture specific implementation.
480  *
481  * Returns a node pointer for the logical cpu if found, else NULL.
482  */
483 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
484 {
485 	struct device_node *cpun;
486 
487 	for_each_node_by_type(cpun, "cpu") {
488 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
489 			return cpun;
490 	}
491 	return NULL;
492 }
493 EXPORT_SYMBOL(of_get_cpu_node);
494 
495 /**
496  * __of_device_is_compatible() - Check if the node matches given constraints
497  * @device: pointer to node
498  * @compat: required compatible string, NULL or "" for any match
499  * @type: required device_type value, NULL or "" for any match
500  * @name: required node name, NULL or "" for any match
501  *
502  * Checks if the given @compat, @type and @name strings match the
503  * properties of the given @device. A constraints can be skipped by
504  * passing NULL or an empty string as the constraint.
505  *
506  * Returns 0 for no match, and a positive integer on match. The return
507  * value is a relative score with larger values indicating better
508  * matches. The score is weighted for the most specific compatible value
509  * to get the highest score. Matching type is next, followed by matching
510  * name. Practically speaking, this results in the following priority
511  * order for matches:
512  *
513  * 1. specific compatible && type && name
514  * 2. specific compatible && type
515  * 3. specific compatible && name
516  * 4. specific compatible
517  * 5. general compatible && type && name
518  * 6. general compatible && type
519  * 7. general compatible && name
520  * 8. general compatible
521  * 9. type && name
522  * 10. type
523  * 11. name
524  */
525 static int __of_device_is_compatible(const struct device_node *device,
526 				     const char *compat, const char *type, const char *name)
527 {
528 	struct property *prop;
529 	const char *cp;
530 	int index = 0, score = 0;
531 
532 	/* Compatible match has highest priority */
533 	if (compat && compat[0]) {
534 		prop = __of_find_property(device, "compatible", NULL);
535 		for (cp = of_prop_next_string(prop, NULL); cp;
536 		     cp = of_prop_next_string(prop, cp), index++) {
537 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
538 				score = INT_MAX/2 - (index << 2);
539 				break;
540 			}
541 		}
542 		if (!score)
543 			return 0;
544 	}
545 
546 	/* Matching type is better than matching name */
547 	if (type && type[0]) {
548 		if (!device->type || of_node_cmp(type, device->type))
549 			return 0;
550 		score += 2;
551 	}
552 
553 	/* Matching name is a bit better than not */
554 	if (name && name[0]) {
555 		if (!device->name || of_node_cmp(name, device->name))
556 			return 0;
557 		score++;
558 	}
559 
560 	return score;
561 }
562 
563 /** Checks if the given "compat" string matches one of the strings in
564  * the device's "compatible" property
565  */
566 int of_device_is_compatible(const struct device_node *device,
567 		const char *compat)
568 {
569 	unsigned long flags;
570 	int res;
571 
572 	raw_spin_lock_irqsave(&devtree_lock, flags);
573 	res = __of_device_is_compatible(device, compat, NULL, NULL);
574 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
575 	return res;
576 }
577 EXPORT_SYMBOL(of_device_is_compatible);
578 
579 /**
580  * of_machine_is_compatible - Test root of device tree for a given compatible value
581  * @compat: compatible string to look for in root node's compatible property.
582  *
583  * Returns true if the root node has the given value in its
584  * compatible property.
585  */
586 int of_machine_is_compatible(const char *compat)
587 {
588 	struct device_node *root;
589 	int rc = 0;
590 
591 	root = of_find_node_by_path("/");
592 	if (root) {
593 		rc = of_device_is_compatible(root, compat);
594 		of_node_put(root);
595 	}
596 	return rc;
597 }
598 EXPORT_SYMBOL(of_machine_is_compatible);
599 
600 /**
601  *  __of_device_is_available - check if a device is available for use
602  *
603  *  @device: Node to check for availability, with locks already held
604  *
605  *  Returns 1 if the status property is absent or set to "okay" or "ok",
606  *  0 otherwise
607  */
608 static int __of_device_is_available(const struct device_node *device)
609 {
610 	const char *status;
611 	int statlen;
612 
613 	if (!device)
614 		return 0;
615 
616 	status = __of_get_property(device, "status", &statlen);
617 	if (status == NULL)
618 		return 1;
619 
620 	if (statlen > 0) {
621 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
622 			return 1;
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  *  of_device_is_available - check if a device is available for use
630  *
631  *  @device: Node to check for availability
632  *
633  *  Returns 1 if the status property is absent or set to "okay" or "ok",
634  *  0 otherwise
635  */
636 int of_device_is_available(const struct device_node *device)
637 {
638 	unsigned long flags;
639 	int res;
640 
641 	raw_spin_lock_irqsave(&devtree_lock, flags);
642 	res = __of_device_is_available(device);
643 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 	return res;
645 
646 }
647 EXPORT_SYMBOL(of_device_is_available);
648 
649 /**
650  *	of_get_parent - Get a node's parent if any
651  *	@node:	Node to get parent
652  *
653  *	Returns a node pointer with refcount incremented, use
654  *	of_node_put() on it when done.
655  */
656 struct device_node *of_get_parent(const struct device_node *node)
657 {
658 	struct device_node *np;
659 	unsigned long flags;
660 
661 	if (!node)
662 		return NULL;
663 
664 	raw_spin_lock_irqsave(&devtree_lock, flags);
665 	np = of_node_get(node->parent);
666 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
667 	return np;
668 }
669 EXPORT_SYMBOL(of_get_parent);
670 
671 /**
672  *	of_get_next_parent - Iterate to a node's parent
673  *	@node:	Node to get parent of
674  *
675  * 	This is like of_get_parent() except that it drops the
676  * 	refcount on the passed node, making it suitable for iterating
677  * 	through a node's parents.
678  *
679  *	Returns a node pointer with refcount incremented, use
680  *	of_node_put() on it when done.
681  */
682 struct device_node *of_get_next_parent(struct device_node *node)
683 {
684 	struct device_node *parent;
685 	unsigned long flags;
686 
687 	if (!node)
688 		return NULL;
689 
690 	raw_spin_lock_irqsave(&devtree_lock, flags);
691 	parent = of_node_get(node->parent);
692 	of_node_put(node);
693 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 	return parent;
695 }
696 EXPORT_SYMBOL(of_get_next_parent);
697 
698 static struct device_node *__of_get_next_child(const struct device_node *node,
699 						struct device_node *prev)
700 {
701 	struct device_node *next;
702 
703 	if (!node)
704 		return NULL;
705 
706 	next = prev ? prev->sibling : node->child;
707 	for (; next; next = next->sibling)
708 		if (of_node_get(next))
709 			break;
710 	of_node_put(prev);
711 	return next;
712 }
713 #define __for_each_child_of_node(parent, child) \
714 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
715 	     child = __of_get_next_child(parent, child))
716 
717 /**
718  *	of_get_next_child - Iterate a node childs
719  *	@node:	parent node
720  *	@prev:	previous child of the parent node, or NULL to get first
721  *
722  *	Returns a node pointer with refcount incremented, use
723  *	of_node_put() on it when done.
724  */
725 struct device_node *of_get_next_child(const struct device_node *node,
726 	struct device_node *prev)
727 {
728 	struct device_node *next;
729 	unsigned long flags;
730 
731 	raw_spin_lock_irqsave(&devtree_lock, flags);
732 	next = __of_get_next_child(node, prev);
733 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
734 	return next;
735 }
736 EXPORT_SYMBOL(of_get_next_child);
737 
738 /**
739  *	of_get_next_available_child - Find the next available child node
740  *	@node:	parent node
741  *	@prev:	previous child of the parent node, or NULL to get first
742  *
743  *      This function is like of_get_next_child(), except that it
744  *      automatically skips any disabled nodes (i.e. status = "disabled").
745  */
746 struct device_node *of_get_next_available_child(const struct device_node *node,
747 	struct device_node *prev)
748 {
749 	struct device_node *next;
750 	unsigned long flags;
751 
752 	if (!node)
753 		return NULL;
754 
755 	raw_spin_lock_irqsave(&devtree_lock, flags);
756 	next = prev ? prev->sibling : node->child;
757 	for (; next; next = next->sibling) {
758 		if (!__of_device_is_available(next))
759 			continue;
760 		if (of_node_get(next))
761 			break;
762 	}
763 	of_node_put(prev);
764 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
765 	return next;
766 }
767 EXPORT_SYMBOL(of_get_next_available_child);
768 
769 /**
770  *	of_get_child_by_name - Find the child node by name for a given parent
771  *	@node:	parent node
772  *	@name:	child name to look for.
773  *
774  *      This function looks for child node for given matching name
775  *
776  *	Returns a node pointer if found, with refcount incremented, use
777  *	of_node_put() on it when done.
778  *	Returns NULL if node is not found.
779  */
780 struct device_node *of_get_child_by_name(const struct device_node *node,
781 				const char *name)
782 {
783 	struct device_node *child;
784 
785 	for_each_child_of_node(node, child)
786 		if (child->name && (of_node_cmp(child->name, name) == 0))
787 			break;
788 	return child;
789 }
790 EXPORT_SYMBOL(of_get_child_by_name);
791 
792 static struct device_node *__of_find_node_by_path(struct device_node *parent,
793 						const char *path)
794 {
795 	struct device_node *child;
796 	int len = strchrnul(path, '/') - path;
797 
798 	if (!len)
799 		return NULL;
800 
801 	__for_each_child_of_node(parent, child) {
802 		const char *name = strrchr(child->full_name, '/');
803 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
804 			continue;
805 		name++;
806 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
807 			return child;
808 	}
809 	return NULL;
810 }
811 
812 /**
813  *	of_find_node_by_path - Find a node matching a full OF path
814  *	@path: Either the full path to match, or if the path does not
815  *	       start with '/', the name of a property of the /aliases
816  *	       node (an alias).  In the case of an alias, the node
817  *	       matching the alias' value will be returned.
818  *
819  *	Valid paths:
820  *		/foo/bar	Full path
821  *		foo		Valid alias
822  *		foo/bar		Valid alias + relative path
823  *
824  *	Returns a node pointer with refcount incremented, use
825  *	of_node_put() on it when done.
826  */
827 struct device_node *of_find_node_by_path(const char *path)
828 {
829 	struct device_node *np = NULL;
830 	struct property *pp;
831 	unsigned long flags;
832 
833 	if (strcmp(path, "/") == 0)
834 		return of_node_get(of_allnodes);
835 
836 	/* The path could begin with an alias */
837 	if (*path != '/') {
838 		char *p = strchrnul(path, '/');
839 		int len = p - path;
840 
841 		/* of_aliases must not be NULL */
842 		if (!of_aliases)
843 			return NULL;
844 
845 		for_each_property_of_node(of_aliases, pp) {
846 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
847 				np = of_find_node_by_path(pp->value);
848 				break;
849 			}
850 		}
851 		if (!np)
852 			return NULL;
853 		path = p;
854 	}
855 
856 	/* Step down the tree matching path components */
857 	raw_spin_lock_irqsave(&devtree_lock, flags);
858 	if (!np)
859 		np = of_node_get(of_allnodes);
860 	while (np && *path == '/') {
861 		path++; /* Increment past '/' delimiter */
862 		np = __of_find_node_by_path(np, path);
863 		path = strchrnul(path, '/');
864 	}
865 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
866 	return np;
867 }
868 EXPORT_SYMBOL(of_find_node_by_path);
869 
870 /**
871  *	of_find_node_by_name - Find a node by its "name" property
872  *	@from:	The node to start searching from or NULL, the node
873  *		you pass will not be searched, only the next one
874  *		will; typically, you pass what the previous call
875  *		returned. of_node_put() will be called on it
876  *	@name:	The name string to match against
877  *
878  *	Returns a node pointer with refcount incremented, use
879  *	of_node_put() on it when done.
880  */
881 struct device_node *of_find_node_by_name(struct device_node *from,
882 	const char *name)
883 {
884 	struct device_node *np;
885 	unsigned long flags;
886 
887 	raw_spin_lock_irqsave(&devtree_lock, flags);
888 	np = from ? from->allnext : of_allnodes;
889 	for (; np; np = np->allnext)
890 		if (np->name && (of_node_cmp(np->name, name) == 0)
891 		    && of_node_get(np))
892 			break;
893 	of_node_put(from);
894 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
895 	return np;
896 }
897 EXPORT_SYMBOL(of_find_node_by_name);
898 
899 /**
900  *	of_find_node_by_type - Find a node by its "device_type" property
901  *	@from:	The node to start searching from, or NULL to start searching
902  *		the entire device tree. The node you pass will not be
903  *		searched, only the next one will; typically, you pass
904  *		what the previous call returned. of_node_put() will be
905  *		called on from for you.
906  *	@type:	The type string to match against
907  *
908  *	Returns a node pointer with refcount incremented, use
909  *	of_node_put() on it when done.
910  */
911 struct device_node *of_find_node_by_type(struct device_node *from,
912 	const char *type)
913 {
914 	struct device_node *np;
915 	unsigned long flags;
916 
917 	raw_spin_lock_irqsave(&devtree_lock, flags);
918 	np = from ? from->allnext : of_allnodes;
919 	for (; np; np = np->allnext)
920 		if (np->type && (of_node_cmp(np->type, type) == 0)
921 		    && of_node_get(np))
922 			break;
923 	of_node_put(from);
924 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
925 	return np;
926 }
927 EXPORT_SYMBOL(of_find_node_by_type);
928 
929 /**
930  *	of_find_compatible_node - Find a node based on type and one of the
931  *                                tokens in its "compatible" property
932  *	@from:		The node to start searching from or NULL, the node
933  *			you pass will not be searched, only the next one
934  *			will; typically, you pass what the previous call
935  *			returned. of_node_put() will be called on it
936  *	@type:		The type string to match "device_type" or NULL to ignore
937  *	@compatible:	The string to match to one of the tokens in the device
938  *			"compatible" list.
939  *
940  *	Returns a node pointer with refcount incremented, use
941  *	of_node_put() on it when done.
942  */
943 struct device_node *of_find_compatible_node(struct device_node *from,
944 	const char *type, const char *compatible)
945 {
946 	struct device_node *np;
947 	unsigned long flags;
948 
949 	raw_spin_lock_irqsave(&devtree_lock, flags);
950 	np = from ? from->allnext : of_allnodes;
951 	for (; np; np = np->allnext) {
952 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
953 		    of_node_get(np))
954 			break;
955 	}
956 	of_node_put(from);
957 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
958 	return np;
959 }
960 EXPORT_SYMBOL(of_find_compatible_node);
961 
962 /**
963  *	of_find_node_with_property - Find a node which has a property with
964  *                                   the given name.
965  *	@from:		The node to start searching from or NULL, the node
966  *			you pass will not be searched, only the next one
967  *			will; typically, you pass what the previous call
968  *			returned. of_node_put() will be called on it
969  *	@prop_name:	The name of the property to look for.
970  *
971  *	Returns a node pointer with refcount incremented, use
972  *	of_node_put() on it when done.
973  */
974 struct device_node *of_find_node_with_property(struct device_node *from,
975 	const char *prop_name)
976 {
977 	struct device_node *np;
978 	struct property *pp;
979 	unsigned long flags;
980 
981 	raw_spin_lock_irqsave(&devtree_lock, flags);
982 	np = from ? from->allnext : of_allnodes;
983 	for (; np; np = np->allnext) {
984 		for (pp = np->properties; pp; pp = pp->next) {
985 			if (of_prop_cmp(pp->name, prop_name) == 0) {
986 				of_node_get(np);
987 				goto out;
988 			}
989 		}
990 	}
991 out:
992 	of_node_put(from);
993 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
994 	return np;
995 }
996 EXPORT_SYMBOL(of_find_node_with_property);
997 
998 static
999 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1000 					   const struct device_node *node)
1001 {
1002 	const struct of_device_id *best_match = NULL;
1003 	int score, best_score = 0;
1004 
1005 	if (!matches)
1006 		return NULL;
1007 
1008 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1009 		score = __of_device_is_compatible(node, matches->compatible,
1010 						  matches->type, matches->name);
1011 		if (score > best_score) {
1012 			best_match = matches;
1013 			best_score = score;
1014 		}
1015 	}
1016 
1017 	return best_match;
1018 }
1019 
1020 /**
1021  * of_match_node - Tell if an device_node has a matching of_match structure
1022  *	@matches:	array of of device match structures to search in
1023  *	@node:		the of device structure to match against
1024  *
1025  *	Low level utility function used by device matching.
1026  */
1027 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1028 					 const struct device_node *node)
1029 {
1030 	const struct of_device_id *match;
1031 	unsigned long flags;
1032 
1033 	raw_spin_lock_irqsave(&devtree_lock, flags);
1034 	match = __of_match_node(matches, node);
1035 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1036 	return match;
1037 }
1038 EXPORT_SYMBOL(of_match_node);
1039 
1040 /**
1041  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1042  *					  match table.
1043  *	@from:		The node to start searching from or NULL, the node
1044  *			you pass will not be searched, only the next one
1045  *			will; typically, you pass what the previous call
1046  *			returned. of_node_put() will be called on it
1047  *	@matches:	array of of device match structures to search in
1048  *	@match		Updated to point at the matches entry which matched
1049  *
1050  *	Returns a node pointer with refcount incremented, use
1051  *	of_node_put() on it when done.
1052  */
1053 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1054 					const struct of_device_id *matches,
1055 					const struct of_device_id **match)
1056 {
1057 	struct device_node *np;
1058 	const struct of_device_id *m;
1059 	unsigned long flags;
1060 
1061 	if (match)
1062 		*match = NULL;
1063 
1064 	raw_spin_lock_irqsave(&devtree_lock, flags);
1065 	np = from ? from->allnext : of_allnodes;
1066 	for (; np; np = np->allnext) {
1067 		m = __of_match_node(matches, np);
1068 		if (m && of_node_get(np)) {
1069 			if (match)
1070 				*match = m;
1071 			break;
1072 		}
1073 	}
1074 	of_node_put(from);
1075 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076 	return np;
1077 }
1078 EXPORT_SYMBOL(of_find_matching_node_and_match);
1079 
1080 /**
1081  * of_modalias_node - Lookup appropriate modalias for a device node
1082  * @node:	pointer to a device tree node
1083  * @modalias:	Pointer to buffer that modalias value will be copied into
1084  * @len:	Length of modalias value
1085  *
1086  * Based on the value of the compatible property, this routine will attempt
1087  * to choose an appropriate modalias value for a particular device tree node.
1088  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1089  * from the first entry in the compatible list property.
1090  *
1091  * This routine returns 0 on success, <0 on failure.
1092  */
1093 int of_modalias_node(struct device_node *node, char *modalias, int len)
1094 {
1095 	const char *compatible, *p;
1096 	int cplen;
1097 
1098 	compatible = of_get_property(node, "compatible", &cplen);
1099 	if (!compatible || strlen(compatible) > cplen)
1100 		return -ENODEV;
1101 	p = strchr(compatible, ',');
1102 	strlcpy(modalias, p ? p + 1 : compatible, len);
1103 	return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(of_modalias_node);
1106 
1107 /**
1108  * of_find_node_by_phandle - Find a node given a phandle
1109  * @handle:	phandle of the node to find
1110  *
1111  * Returns a node pointer with refcount incremented, use
1112  * of_node_put() on it when done.
1113  */
1114 struct device_node *of_find_node_by_phandle(phandle handle)
1115 {
1116 	struct device_node *np;
1117 	unsigned long flags;
1118 
1119 	raw_spin_lock_irqsave(&devtree_lock, flags);
1120 	for (np = of_allnodes; np; np = np->allnext)
1121 		if (np->phandle == handle)
1122 			break;
1123 	of_node_get(np);
1124 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125 	return np;
1126 }
1127 EXPORT_SYMBOL(of_find_node_by_phandle);
1128 
1129 /**
1130  * of_property_count_elems_of_size - Count the number of elements in a property
1131  *
1132  * @np:		device node from which the property value is to be read.
1133  * @propname:	name of the property to be searched.
1134  * @elem_size:	size of the individual element
1135  *
1136  * Search for a property in a device node and count the number of elements of
1137  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1138  * property does not exist or its length does not match a multiple of elem_size
1139  * and -ENODATA if the property does not have a value.
1140  */
1141 int of_property_count_elems_of_size(const struct device_node *np,
1142 				const char *propname, int elem_size)
1143 {
1144 	struct property *prop = of_find_property(np, propname, NULL);
1145 
1146 	if (!prop)
1147 		return -EINVAL;
1148 	if (!prop->value)
1149 		return -ENODATA;
1150 
1151 	if (prop->length % elem_size != 0) {
1152 		pr_err("size of %s in node %s is not a multiple of %d\n",
1153 		       propname, np->full_name, elem_size);
1154 		return -EINVAL;
1155 	}
1156 
1157 	return prop->length / elem_size;
1158 }
1159 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1160 
1161 /**
1162  * of_find_property_value_of_size
1163  *
1164  * @np:		device node from which the property value is to be read.
1165  * @propname:	name of the property to be searched.
1166  * @len:	requested length of property value
1167  *
1168  * Search for a property in a device node and valid the requested size.
1169  * Returns the property value on success, -EINVAL if the property does not
1170  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1171  * property data isn't large enough.
1172  *
1173  */
1174 static void *of_find_property_value_of_size(const struct device_node *np,
1175 			const char *propname, u32 len)
1176 {
1177 	struct property *prop = of_find_property(np, propname, NULL);
1178 
1179 	if (!prop)
1180 		return ERR_PTR(-EINVAL);
1181 	if (!prop->value)
1182 		return ERR_PTR(-ENODATA);
1183 	if (len > prop->length)
1184 		return ERR_PTR(-EOVERFLOW);
1185 
1186 	return prop->value;
1187 }
1188 
1189 /**
1190  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1191  *
1192  * @np:		device node from which the property value is to be read.
1193  * @propname:	name of the property to be searched.
1194  * @index:	index of the u32 in the list of values
1195  * @out_value:	pointer to return value, modified only if no error.
1196  *
1197  * Search for a property in a device node and read nth 32-bit value from
1198  * it. Returns 0 on success, -EINVAL if the property does not exist,
1199  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1200  * property data isn't large enough.
1201  *
1202  * The out_value is modified only if a valid u32 value can be decoded.
1203  */
1204 int of_property_read_u32_index(const struct device_node *np,
1205 				       const char *propname,
1206 				       u32 index, u32 *out_value)
1207 {
1208 	const u32 *val = of_find_property_value_of_size(np, propname,
1209 					((index + 1) * sizeof(*out_value)));
1210 
1211 	if (IS_ERR(val))
1212 		return PTR_ERR(val);
1213 
1214 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1215 	return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1218 
1219 /**
1220  * of_property_read_u8_array - Find and read an array of u8 from a property.
1221  *
1222  * @np:		device node from which the property value is to be read.
1223  * @propname:	name of the property to be searched.
1224  * @out_values:	pointer to return value, modified only if return value is 0.
1225  * @sz:		number of array elements to read
1226  *
1227  * Search for a property in a device node and read 8-bit value(s) from
1228  * it. Returns 0 on success, -EINVAL if the property does not exist,
1229  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1230  * property data isn't large enough.
1231  *
1232  * dts entry of array should be like:
1233  *	property = /bits/ 8 <0x50 0x60 0x70>;
1234  *
1235  * The out_values is modified only if a valid u8 value can be decoded.
1236  */
1237 int of_property_read_u8_array(const struct device_node *np,
1238 			const char *propname, u8 *out_values, size_t sz)
1239 {
1240 	const u8 *val = of_find_property_value_of_size(np, propname,
1241 						(sz * sizeof(*out_values)));
1242 
1243 	if (IS_ERR(val))
1244 		return PTR_ERR(val);
1245 
1246 	while (sz--)
1247 		*out_values++ = *val++;
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1251 
1252 /**
1253  * of_property_read_u16_array - Find and read an array of u16 from a property.
1254  *
1255  * @np:		device node from which the property value is to be read.
1256  * @propname:	name of the property to be searched.
1257  * @out_values:	pointer to return value, modified only if return value is 0.
1258  * @sz:		number of array elements to read
1259  *
1260  * Search for a property in a device node and read 16-bit value(s) from
1261  * it. Returns 0 on success, -EINVAL if the property does not exist,
1262  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1263  * property data isn't large enough.
1264  *
1265  * dts entry of array should be like:
1266  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1267  *
1268  * The out_values is modified only if a valid u16 value can be decoded.
1269  */
1270 int of_property_read_u16_array(const struct device_node *np,
1271 			const char *propname, u16 *out_values, size_t sz)
1272 {
1273 	const __be16 *val = of_find_property_value_of_size(np, propname,
1274 						(sz * sizeof(*out_values)));
1275 
1276 	if (IS_ERR(val))
1277 		return PTR_ERR(val);
1278 
1279 	while (sz--)
1280 		*out_values++ = be16_to_cpup(val++);
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1284 
1285 /**
1286  * of_property_read_u32_array - Find and read an array of 32 bit integers
1287  * from a property.
1288  *
1289  * @np:		device node from which the property value is to be read.
1290  * @propname:	name of the property to be searched.
1291  * @out_values:	pointer to return value, modified only if return value is 0.
1292  * @sz:		number of array elements to read
1293  *
1294  * Search for a property in a device node and read 32-bit value(s) from
1295  * it. Returns 0 on success, -EINVAL if the property does not exist,
1296  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1297  * property data isn't large enough.
1298  *
1299  * The out_values is modified only if a valid u32 value can be decoded.
1300  */
1301 int of_property_read_u32_array(const struct device_node *np,
1302 			       const char *propname, u32 *out_values,
1303 			       size_t sz)
1304 {
1305 	const __be32 *val = of_find_property_value_of_size(np, propname,
1306 						(sz * sizeof(*out_values)));
1307 
1308 	if (IS_ERR(val))
1309 		return PTR_ERR(val);
1310 
1311 	while (sz--)
1312 		*out_values++ = be32_to_cpup(val++);
1313 	return 0;
1314 }
1315 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1316 
1317 /**
1318  * of_property_read_u64 - Find and read a 64 bit integer from a property
1319  * @np:		device node from which the property value is to be read.
1320  * @propname:	name of the property to be searched.
1321  * @out_value:	pointer to return value, modified only if return value is 0.
1322  *
1323  * Search for a property in a device node and read a 64-bit value from
1324  * it. Returns 0 on success, -EINVAL if the property does not exist,
1325  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1326  * property data isn't large enough.
1327  *
1328  * The out_value is modified only if a valid u64 value can be decoded.
1329  */
1330 int of_property_read_u64(const struct device_node *np, const char *propname,
1331 			 u64 *out_value)
1332 {
1333 	const __be32 *val = of_find_property_value_of_size(np, propname,
1334 						sizeof(*out_value));
1335 
1336 	if (IS_ERR(val))
1337 		return PTR_ERR(val);
1338 
1339 	*out_value = of_read_number(val, 2);
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(of_property_read_u64);
1343 
1344 /**
1345  * of_property_read_string - Find and read a string from a property
1346  * @np:		device node from which the property value is to be read.
1347  * @propname:	name of the property to be searched.
1348  * @out_string:	pointer to null terminated return string, modified only if
1349  *		return value is 0.
1350  *
1351  * Search for a property in a device tree node and retrieve a null
1352  * terminated string value (pointer to data, not a copy). Returns 0 on
1353  * success, -EINVAL if the property does not exist, -ENODATA if property
1354  * does not have a value, and -EILSEQ if the string is not null-terminated
1355  * within the length of the property data.
1356  *
1357  * The out_string pointer is modified only if a valid string can be decoded.
1358  */
1359 int of_property_read_string(struct device_node *np, const char *propname,
1360 				const char **out_string)
1361 {
1362 	struct property *prop = of_find_property(np, propname, NULL);
1363 	if (!prop)
1364 		return -EINVAL;
1365 	if (!prop->value)
1366 		return -ENODATA;
1367 	if (strnlen(prop->value, prop->length) >= prop->length)
1368 		return -EILSEQ;
1369 	*out_string = prop->value;
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(of_property_read_string);
1373 
1374 /**
1375  * of_property_read_string_index - Find and read a string from a multiple
1376  * strings property.
1377  * @np:		device node from which the property value is to be read.
1378  * @propname:	name of the property to be searched.
1379  * @index:	index of the string in the list of strings
1380  * @out_string:	pointer to null terminated return string, modified only if
1381  *		return value is 0.
1382  *
1383  * Search for a property in a device tree node and retrieve a null
1384  * terminated string value (pointer to data, not a copy) in the list of strings
1385  * contained in that property.
1386  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1387  * property does not have a value, and -EILSEQ if the string is not
1388  * null-terminated within the length of the property data.
1389  *
1390  * The out_string pointer is modified only if a valid string can be decoded.
1391  */
1392 int of_property_read_string_index(struct device_node *np, const char *propname,
1393 				  int index, const char **output)
1394 {
1395 	struct property *prop = of_find_property(np, propname, NULL);
1396 	int i = 0;
1397 	size_t l = 0, total = 0;
1398 	const char *p;
1399 
1400 	if (!prop)
1401 		return -EINVAL;
1402 	if (!prop->value)
1403 		return -ENODATA;
1404 	if (strnlen(prop->value, prop->length) >= prop->length)
1405 		return -EILSEQ;
1406 
1407 	p = prop->value;
1408 
1409 	for (i = 0; total < prop->length; total += l, p += l) {
1410 		l = strlen(p) + 1;
1411 		if (i++ == index) {
1412 			*output = p;
1413 			return 0;
1414 		}
1415 	}
1416 	return -ENODATA;
1417 }
1418 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1419 
1420 /**
1421  * of_property_match_string() - Find string in a list and return index
1422  * @np: pointer to node containing string list property
1423  * @propname: string list property name
1424  * @string: pointer to string to search for in string list
1425  *
1426  * This function searches a string list property and returns the index
1427  * of a specific string value.
1428  */
1429 int of_property_match_string(struct device_node *np, const char *propname,
1430 			     const char *string)
1431 {
1432 	struct property *prop = of_find_property(np, propname, NULL);
1433 	size_t l;
1434 	int i;
1435 	const char *p, *end;
1436 
1437 	if (!prop)
1438 		return -EINVAL;
1439 	if (!prop->value)
1440 		return -ENODATA;
1441 
1442 	p = prop->value;
1443 	end = p + prop->length;
1444 
1445 	for (i = 0; p < end; i++, p += l) {
1446 		l = strlen(p) + 1;
1447 		if (p + l > end)
1448 			return -EILSEQ;
1449 		pr_debug("comparing %s with %s\n", string, p);
1450 		if (strcmp(string, p) == 0)
1451 			return i; /* Found it; return index */
1452 	}
1453 	return -ENODATA;
1454 }
1455 EXPORT_SYMBOL_GPL(of_property_match_string);
1456 
1457 /**
1458  * of_property_count_strings - Find and return the number of strings from a
1459  * multiple strings property.
1460  * @np:		device node from which the property value is to be read.
1461  * @propname:	name of the property to be searched.
1462  *
1463  * Search for a property in a device tree node and retrieve the number of null
1464  * terminated string contain in it. Returns the number of strings on
1465  * success, -EINVAL if the property does not exist, -ENODATA if property
1466  * does not have a value, and -EILSEQ if the string is not null-terminated
1467  * within the length of the property data.
1468  */
1469 int of_property_count_strings(struct device_node *np, const char *propname)
1470 {
1471 	struct property *prop = of_find_property(np, propname, NULL);
1472 	int i = 0;
1473 	size_t l = 0, total = 0;
1474 	const char *p;
1475 
1476 	if (!prop)
1477 		return -EINVAL;
1478 	if (!prop->value)
1479 		return -ENODATA;
1480 	if (strnlen(prop->value, prop->length) >= prop->length)
1481 		return -EILSEQ;
1482 
1483 	p = prop->value;
1484 
1485 	for (i = 0; total < prop->length; total += l, p += l, i++)
1486 		l = strlen(p) + 1;
1487 
1488 	return i;
1489 }
1490 EXPORT_SYMBOL_GPL(of_property_count_strings);
1491 
1492 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1493 {
1494 	int i;
1495 	printk("%s %s", msg, of_node_full_name(args->np));
1496 	for (i = 0; i < args->args_count; i++)
1497 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1498 	printk("\n");
1499 }
1500 
1501 static int __of_parse_phandle_with_args(const struct device_node *np,
1502 					const char *list_name,
1503 					const char *cells_name,
1504 					int cell_count, int index,
1505 					struct of_phandle_args *out_args)
1506 {
1507 	const __be32 *list, *list_end;
1508 	int rc = 0, size, cur_index = 0;
1509 	uint32_t count = 0;
1510 	struct device_node *node = NULL;
1511 	phandle phandle;
1512 
1513 	/* Retrieve the phandle list property */
1514 	list = of_get_property(np, list_name, &size);
1515 	if (!list)
1516 		return -ENOENT;
1517 	list_end = list + size / sizeof(*list);
1518 
1519 	/* Loop over the phandles until all the requested entry is found */
1520 	while (list < list_end) {
1521 		rc = -EINVAL;
1522 		count = 0;
1523 
1524 		/*
1525 		 * If phandle is 0, then it is an empty entry with no
1526 		 * arguments.  Skip forward to the next entry.
1527 		 */
1528 		phandle = be32_to_cpup(list++);
1529 		if (phandle) {
1530 			/*
1531 			 * Find the provider node and parse the #*-cells
1532 			 * property to determine the argument length.
1533 			 *
1534 			 * This is not needed if the cell count is hard-coded
1535 			 * (i.e. cells_name not set, but cell_count is set),
1536 			 * except when we're going to return the found node
1537 			 * below.
1538 			 */
1539 			if (cells_name || cur_index == index) {
1540 				node = of_find_node_by_phandle(phandle);
1541 				if (!node) {
1542 					pr_err("%s: could not find phandle\n",
1543 						np->full_name);
1544 					goto err;
1545 				}
1546 			}
1547 
1548 			if (cells_name) {
1549 				if (of_property_read_u32(node, cells_name,
1550 							 &count)) {
1551 					pr_err("%s: could not get %s for %s\n",
1552 						np->full_name, cells_name,
1553 						node->full_name);
1554 					goto err;
1555 				}
1556 			} else {
1557 				count = cell_count;
1558 			}
1559 
1560 			/*
1561 			 * Make sure that the arguments actually fit in the
1562 			 * remaining property data length
1563 			 */
1564 			if (list + count > list_end) {
1565 				pr_err("%s: arguments longer than property\n",
1566 					 np->full_name);
1567 				goto err;
1568 			}
1569 		}
1570 
1571 		/*
1572 		 * All of the error cases above bail out of the loop, so at
1573 		 * this point, the parsing is successful. If the requested
1574 		 * index matches, then fill the out_args structure and return,
1575 		 * or return -ENOENT for an empty entry.
1576 		 */
1577 		rc = -ENOENT;
1578 		if (cur_index == index) {
1579 			if (!phandle)
1580 				goto err;
1581 
1582 			if (out_args) {
1583 				int i;
1584 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1585 					count = MAX_PHANDLE_ARGS;
1586 				out_args->np = node;
1587 				out_args->args_count = count;
1588 				for (i = 0; i < count; i++)
1589 					out_args->args[i] = be32_to_cpup(list++);
1590 			} else {
1591 				of_node_put(node);
1592 			}
1593 
1594 			/* Found it! return success */
1595 			return 0;
1596 		}
1597 
1598 		of_node_put(node);
1599 		node = NULL;
1600 		list += count;
1601 		cur_index++;
1602 	}
1603 
1604 	/*
1605 	 * Unlock node before returning result; will be one of:
1606 	 * -ENOENT : index is for empty phandle
1607 	 * -EINVAL : parsing error on data
1608 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1609 	 */
1610 	rc = index < 0 ? cur_index : -ENOENT;
1611  err:
1612 	if (node)
1613 		of_node_put(node);
1614 	return rc;
1615 }
1616 
1617 /**
1618  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1619  * @np: Pointer to device node holding phandle property
1620  * @phandle_name: Name of property holding a phandle value
1621  * @index: For properties holding a table of phandles, this is the index into
1622  *         the table
1623  *
1624  * Returns the device_node pointer with refcount incremented.  Use
1625  * of_node_put() on it when done.
1626  */
1627 struct device_node *of_parse_phandle(const struct device_node *np,
1628 				     const char *phandle_name, int index)
1629 {
1630 	struct of_phandle_args args;
1631 
1632 	if (index < 0)
1633 		return NULL;
1634 
1635 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1636 					 index, &args))
1637 		return NULL;
1638 
1639 	return args.np;
1640 }
1641 EXPORT_SYMBOL(of_parse_phandle);
1642 
1643 /**
1644  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1645  * @np:		pointer to a device tree node containing a list
1646  * @list_name:	property name that contains a list
1647  * @cells_name:	property name that specifies phandles' arguments count
1648  * @index:	index of a phandle to parse out
1649  * @out_args:	optional pointer to output arguments structure (will be filled)
1650  *
1651  * This function is useful to parse lists of phandles and their arguments.
1652  * Returns 0 on success and fills out_args, on error returns appropriate
1653  * errno value.
1654  *
1655  * Caller is responsible to call of_node_put() on the returned out_args->node
1656  * pointer.
1657  *
1658  * Example:
1659  *
1660  * phandle1: node1 {
1661  * 	#list-cells = <2>;
1662  * }
1663  *
1664  * phandle2: node2 {
1665  * 	#list-cells = <1>;
1666  * }
1667  *
1668  * node3 {
1669  * 	list = <&phandle1 1 2 &phandle2 3>;
1670  * }
1671  *
1672  * To get a device_node of the `node2' node you may call this:
1673  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1674  */
1675 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1676 				const char *cells_name, int index,
1677 				struct of_phandle_args *out_args)
1678 {
1679 	if (index < 0)
1680 		return -EINVAL;
1681 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1682 					    index, out_args);
1683 }
1684 EXPORT_SYMBOL(of_parse_phandle_with_args);
1685 
1686 /**
1687  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1688  * @np:		pointer to a device tree node containing a list
1689  * @list_name:	property name that contains a list
1690  * @cell_count: number of argument cells following the phandle
1691  * @index:	index of a phandle to parse out
1692  * @out_args:	optional pointer to output arguments structure (will be filled)
1693  *
1694  * This function is useful to parse lists of phandles and their arguments.
1695  * Returns 0 on success and fills out_args, on error returns appropriate
1696  * errno value.
1697  *
1698  * Caller is responsible to call of_node_put() on the returned out_args->node
1699  * pointer.
1700  *
1701  * Example:
1702  *
1703  * phandle1: node1 {
1704  * }
1705  *
1706  * phandle2: node2 {
1707  * }
1708  *
1709  * node3 {
1710  * 	list = <&phandle1 0 2 &phandle2 2 3>;
1711  * }
1712  *
1713  * To get a device_node of the `node2' node you may call this:
1714  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1715  */
1716 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1717 				const char *list_name, int cell_count,
1718 				int index, struct of_phandle_args *out_args)
1719 {
1720 	if (index < 0)
1721 		return -EINVAL;
1722 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1723 					   index, out_args);
1724 }
1725 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1726 
1727 /**
1728  * of_count_phandle_with_args() - Find the number of phandles references in a property
1729  * @np:		pointer to a device tree node containing a list
1730  * @list_name:	property name that contains a list
1731  * @cells_name:	property name that specifies phandles' arguments count
1732  *
1733  * Returns the number of phandle + argument tuples within a property. It
1734  * is a typical pattern to encode a list of phandle and variable
1735  * arguments into a single property. The number of arguments is encoded
1736  * by a property in the phandle-target node. For example, a gpios
1737  * property would contain a list of GPIO specifies consisting of a
1738  * phandle and 1 or more arguments. The number of arguments are
1739  * determined by the #gpio-cells property in the node pointed to by the
1740  * phandle.
1741  */
1742 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1743 				const char *cells_name)
1744 {
1745 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1746 					    NULL);
1747 }
1748 EXPORT_SYMBOL(of_count_phandle_with_args);
1749 
1750 #if defined(CONFIG_OF_DYNAMIC)
1751 static int of_property_notify(int action, struct device_node *np,
1752 			      struct property *prop)
1753 {
1754 	struct of_prop_reconfig pr;
1755 
1756 	/* only call notifiers if the node is attached */
1757 	if (!of_node_is_attached(np))
1758 		return 0;
1759 
1760 	pr.dn = np;
1761 	pr.prop = prop;
1762 	return of_reconfig_notify(action, &pr);
1763 }
1764 #else
1765 static int of_property_notify(int action, struct device_node *np,
1766 			      struct property *prop)
1767 {
1768 	return 0;
1769 }
1770 #endif
1771 
1772 /**
1773  * __of_add_property - Add a property to a node without lock operations
1774  */
1775 static int __of_add_property(struct device_node *np, struct property *prop)
1776 {
1777 	struct property **next;
1778 
1779 	prop->next = NULL;
1780 	next = &np->properties;
1781 	while (*next) {
1782 		if (strcmp(prop->name, (*next)->name) == 0)
1783 			/* duplicate ! don't insert it */
1784 			return -EEXIST;
1785 
1786 		next = &(*next)->next;
1787 	}
1788 	*next = prop;
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  * of_add_property - Add a property to a node
1795  */
1796 int of_add_property(struct device_node *np, struct property *prop)
1797 {
1798 	unsigned long flags;
1799 	int rc;
1800 
1801 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1802 	if (rc)
1803 		return rc;
1804 
1805 	raw_spin_lock_irqsave(&devtree_lock, flags);
1806 	rc = __of_add_property(np, prop);
1807 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1808 	if (rc)
1809 		return rc;
1810 
1811 	if (of_node_is_attached(np))
1812 		__of_add_property_sysfs(np, prop);
1813 
1814 	return rc;
1815 }
1816 
1817 /**
1818  * of_remove_property - Remove a property from a node.
1819  *
1820  * Note that we don't actually remove it, since we have given out
1821  * who-knows-how-many pointers to the data using get-property.
1822  * Instead we just move the property to the "dead properties"
1823  * list, so it won't be found any more.
1824  */
1825 int of_remove_property(struct device_node *np, struct property *prop)
1826 {
1827 	struct property **next;
1828 	unsigned long flags;
1829 	int found = 0;
1830 	int rc;
1831 
1832 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1833 	if (rc)
1834 		return rc;
1835 
1836 	raw_spin_lock_irqsave(&devtree_lock, flags);
1837 	next = &np->properties;
1838 	while (*next) {
1839 		if (*next == prop) {
1840 			/* found the node */
1841 			*next = prop->next;
1842 			prop->next = np->deadprops;
1843 			np->deadprops = prop;
1844 			found = 1;
1845 			break;
1846 		}
1847 		next = &(*next)->next;
1848 	}
1849 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1850 
1851 	if (!found)
1852 		return -ENODEV;
1853 
1854 	/* at early boot, bail hear and defer setup to of_init() */
1855 	if (!of_kset)
1856 		return 0;
1857 
1858 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1859 
1860 	return 0;
1861 }
1862 
1863 /*
1864  * of_update_property - Update a property in a node, if the property does
1865  * not exist, add it.
1866  *
1867  * Note that we don't actually remove it, since we have given out
1868  * who-knows-how-many pointers to the data using get-property.
1869  * Instead we just move the property to the "dead properties" list,
1870  * and add the new property to the property list
1871  */
1872 int of_update_property(struct device_node *np, struct property *newprop)
1873 {
1874 	struct property **next, *oldprop;
1875 	unsigned long flags;
1876 	int rc;
1877 
1878 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1879 	if (rc)
1880 		return rc;
1881 
1882 	if (!newprop->name)
1883 		return -EINVAL;
1884 
1885 	raw_spin_lock_irqsave(&devtree_lock, flags);
1886 	next = &np->properties;
1887 	oldprop = __of_find_property(np, newprop->name, NULL);
1888 	if (!oldprop) {
1889 		/* add the new node */
1890 		rc = __of_add_property(np, newprop);
1891 	} else while (*next) {
1892 		/* replace the node */
1893 		if (*next == oldprop) {
1894 			newprop->next = oldprop->next;
1895 			*next = newprop;
1896 			oldprop->next = np->deadprops;
1897 			np->deadprops = oldprop;
1898 			break;
1899 		}
1900 		next = &(*next)->next;
1901 	}
1902 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1903 	if (rc)
1904 		return rc;
1905 
1906 	/* At early boot, bail out and defer setup to of_init() */
1907 	if (!of_kset)
1908 		return 0;
1909 
1910 	/* Update the sysfs attribute */
1911 	if (oldprop)
1912 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1913 	__of_add_property_sysfs(np, newprop);
1914 
1915 	return 0;
1916 }
1917 
1918 #if defined(CONFIG_OF_DYNAMIC)
1919 /*
1920  * Support for dynamic device trees.
1921  *
1922  * On some platforms, the device tree can be manipulated at runtime.
1923  * The routines in this section support adding, removing and changing
1924  * device tree nodes.
1925  */
1926 
1927 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1928 
1929 int of_reconfig_notifier_register(struct notifier_block *nb)
1930 {
1931 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1932 }
1933 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1934 
1935 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1936 {
1937 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1938 }
1939 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1940 
1941 int of_reconfig_notify(unsigned long action, void *p)
1942 {
1943 	int rc;
1944 
1945 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1946 	return notifier_to_errno(rc);
1947 }
1948 
1949 /**
1950  * of_attach_node - Plug a device node into the tree and global list.
1951  */
1952 int of_attach_node(struct device_node *np)
1953 {
1954 	unsigned long flags;
1955 	int rc;
1956 
1957 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1958 	if (rc)
1959 		return rc;
1960 
1961 	raw_spin_lock_irqsave(&devtree_lock, flags);
1962 	np->sibling = np->parent->child;
1963 	np->allnext = of_allnodes;
1964 	np->parent->child = np;
1965 	of_allnodes = np;
1966 	of_node_clear_flag(np, OF_DETACHED);
1967 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1968 
1969 	of_node_add(np);
1970 	return 0;
1971 }
1972 
1973 /**
1974  * of_detach_node - "Unplug" a node from the device tree.
1975  *
1976  * The caller must hold a reference to the node.  The memory associated with
1977  * the node is not freed until its refcount goes to zero.
1978  */
1979 int of_detach_node(struct device_node *np)
1980 {
1981 	struct device_node *parent;
1982 	unsigned long flags;
1983 	int rc = 0;
1984 
1985 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1986 	if (rc)
1987 		return rc;
1988 
1989 	raw_spin_lock_irqsave(&devtree_lock, flags);
1990 
1991 	if (of_node_check_flag(np, OF_DETACHED)) {
1992 		/* someone already detached it */
1993 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1994 		return rc;
1995 	}
1996 
1997 	parent = np->parent;
1998 	if (!parent) {
1999 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
2000 		return rc;
2001 	}
2002 
2003 	if (of_allnodes == np)
2004 		of_allnodes = np->allnext;
2005 	else {
2006 		struct device_node *prev;
2007 		for (prev = of_allnodes;
2008 		     prev->allnext != np;
2009 		     prev = prev->allnext)
2010 			;
2011 		prev->allnext = np->allnext;
2012 	}
2013 
2014 	if (parent->child == np)
2015 		parent->child = np->sibling;
2016 	else {
2017 		struct device_node *prevsib;
2018 		for (prevsib = np->parent->child;
2019 		     prevsib->sibling != np;
2020 		     prevsib = prevsib->sibling)
2021 			;
2022 		prevsib->sibling = np->sibling;
2023 	}
2024 
2025 	of_node_set_flag(np, OF_DETACHED);
2026 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
2027 
2028 	of_node_remove(np);
2029 	return rc;
2030 }
2031 #endif /* defined(CONFIG_OF_DYNAMIC) */
2032 
2033 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2034 			 int id, const char *stem, int stem_len)
2035 {
2036 	ap->np = np;
2037 	ap->id = id;
2038 	strncpy(ap->stem, stem, stem_len);
2039 	ap->stem[stem_len] = 0;
2040 	list_add_tail(&ap->link, &aliases_lookup);
2041 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2042 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2043 }
2044 
2045 /**
2046  * of_alias_scan - Scan all properties of 'aliases' node
2047  *
2048  * The function scans all the properties of 'aliases' node and populate
2049  * the the global lookup table with the properties.  It returns the
2050  * number of alias_prop found, or error code in error case.
2051  *
2052  * @dt_alloc:	An allocator that provides a virtual address to memory
2053  *		for the resulting tree
2054  */
2055 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2056 {
2057 	struct property *pp;
2058 
2059 	of_chosen = of_find_node_by_path("/chosen");
2060 	if (of_chosen == NULL)
2061 		of_chosen = of_find_node_by_path("/chosen@0");
2062 
2063 	if (of_chosen) {
2064 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2065 		if (!name)
2066 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2067 		if (name)
2068 			of_stdout = of_find_node_by_path(name);
2069 	}
2070 
2071 	of_aliases = of_find_node_by_path("/aliases");
2072 	if (!of_aliases)
2073 		return;
2074 
2075 	for_each_property_of_node(of_aliases, pp) {
2076 		const char *start = pp->name;
2077 		const char *end = start + strlen(start);
2078 		struct device_node *np;
2079 		struct alias_prop *ap;
2080 		int id, len;
2081 
2082 		/* Skip those we do not want to proceed */
2083 		if (!strcmp(pp->name, "name") ||
2084 		    !strcmp(pp->name, "phandle") ||
2085 		    !strcmp(pp->name, "linux,phandle"))
2086 			continue;
2087 
2088 		np = of_find_node_by_path(pp->value);
2089 		if (!np)
2090 			continue;
2091 
2092 		/* walk the alias backwards to extract the id and work out
2093 		 * the 'stem' string */
2094 		while (isdigit(*(end-1)) && end > start)
2095 			end--;
2096 		len = end - start;
2097 
2098 		if (kstrtoint(end, 10, &id) < 0)
2099 			continue;
2100 
2101 		/* Allocate an alias_prop with enough space for the stem */
2102 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2103 		if (!ap)
2104 			continue;
2105 		memset(ap, 0, sizeof(*ap) + len + 1);
2106 		ap->alias = start;
2107 		of_alias_add(ap, np, id, start, len);
2108 	}
2109 }
2110 
2111 /**
2112  * of_alias_get_id - Get alias id for the given device_node
2113  * @np:		Pointer to the given device_node
2114  * @stem:	Alias stem of the given device_node
2115  *
2116  * The function travels the lookup table to get the alias id for the given
2117  * device_node and alias stem.  It returns the alias id if found.
2118  */
2119 int of_alias_get_id(struct device_node *np, const char *stem)
2120 {
2121 	struct alias_prop *app;
2122 	int id = -ENODEV;
2123 
2124 	mutex_lock(&of_aliases_mutex);
2125 	list_for_each_entry(app, &aliases_lookup, link) {
2126 		if (strcmp(app->stem, stem) != 0)
2127 			continue;
2128 
2129 		if (np == app->np) {
2130 			id = app->id;
2131 			break;
2132 		}
2133 	}
2134 	mutex_unlock(&of_aliases_mutex);
2135 
2136 	return id;
2137 }
2138 EXPORT_SYMBOL_GPL(of_alias_get_id);
2139 
2140 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2141 			       u32 *pu)
2142 {
2143 	const void *curv = cur;
2144 
2145 	if (!prop)
2146 		return NULL;
2147 
2148 	if (!cur) {
2149 		curv = prop->value;
2150 		goto out_val;
2151 	}
2152 
2153 	curv += sizeof(*cur);
2154 	if (curv >= prop->value + prop->length)
2155 		return NULL;
2156 
2157 out_val:
2158 	*pu = be32_to_cpup(curv);
2159 	return curv;
2160 }
2161 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2162 
2163 const char *of_prop_next_string(struct property *prop, const char *cur)
2164 {
2165 	const void *curv = cur;
2166 
2167 	if (!prop)
2168 		return NULL;
2169 
2170 	if (!cur)
2171 		return prop->value;
2172 
2173 	curv += strlen(cur) + 1;
2174 	if (curv >= prop->value + prop->length)
2175 		return NULL;
2176 
2177 	return curv;
2178 }
2179 EXPORT_SYMBOL_GPL(of_prop_next_string);
2180 
2181 /**
2182  * of_device_is_stdout_path - check if a device node matches the
2183  *                            linux,stdout-path property
2184  *
2185  * Check if this device node matches the linux,stdout-path property
2186  * in the chosen node. return true if yes, false otherwise.
2187  */
2188 int of_device_is_stdout_path(struct device_node *dn)
2189 {
2190 	if (!of_stdout)
2191 		return false;
2192 
2193 	return of_stdout == dn;
2194 }
2195 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
2196 
2197 /**
2198  *	of_find_next_cache_node - Find a node's subsidiary cache
2199  *	@np:	node of type "cpu" or "cache"
2200  *
2201  *	Returns a node pointer with refcount incremented, use
2202  *	of_node_put() on it when done.  Caller should hold a reference
2203  *	to np.
2204  */
2205 struct device_node *of_find_next_cache_node(const struct device_node *np)
2206 {
2207 	struct device_node *child;
2208 	const phandle *handle;
2209 
2210 	handle = of_get_property(np, "l2-cache", NULL);
2211 	if (!handle)
2212 		handle = of_get_property(np, "next-level-cache", NULL);
2213 
2214 	if (handle)
2215 		return of_find_node_by_phandle(be32_to_cpup(handle));
2216 
2217 	/* OF on pmac has nodes instead of properties named "l2-cache"
2218 	 * beneath CPU nodes.
2219 	 */
2220 	if (!strcmp(np->type, "cpu"))
2221 		for_each_child_of_node(np, child)
2222 			if (!strcmp(child->type, "cache"))
2223 				return child;
2224 
2225 	return NULL;
2226 }
2227 
2228 /**
2229  * of_graph_parse_endpoint() - parse common endpoint node properties
2230  * @node: pointer to endpoint device_node
2231  * @endpoint: pointer to the OF endpoint data structure
2232  *
2233  * The caller should hold a reference to @node.
2234  */
2235 int of_graph_parse_endpoint(const struct device_node *node,
2236 			    struct of_endpoint *endpoint)
2237 {
2238 	struct device_node *port_node = of_get_parent(node);
2239 
2240 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2241 		  __func__, node->full_name);
2242 
2243 	memset(endpoint, 0, sizeof(*endpoint));
2244 
2245 	endpoint->local_node = node;
2246 	/*
2247 	 * It doesn't matter whether the two calls below succeed.
2248 	 * If they don't then the default value 0 is used.
2249 	 */
2250 	of_property_read_u32(port_node, "reg", &endpoint->port);
2251 	of_property_read_u32(node, "reg", &endpoint->id);
2252 
2253 	of_node_put(port_node);
2254 
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL(of_graph_parse_endpoint);
2258 
2259 /**
2260  * of_graph_get_next_endpoint() - get next endpoint node
2261  * @parent: pointer to the parent device node
2262  * @prev: previous endpoint node, or NULL to get first
2263  *
2264  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2265  * of the passed @prev node is not decremented, the caller have to use
2266  * of_node_put() on it when done.
2267  */
2268 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2269 					struct device_node *prev)
2270 {
2271 	struct device_node *endpoint;
2272 	struct device_node *port;
2273 
2274 	if (!parent)
2275 		return NULL;
2276 
2277 	/*
2278 	 * Start by locating the port node. If no previous endpoint is specified
2279 	 * search for the first port node, otherwise get the previous endpoint
2280 	 * parent port node.
2281 	 */
2282 	if (!prev) {
2283 		struct device_node *node;
2284 
2285 		node = of_get_child_by_name(parent, "ports");
2286 		if (node)
2287 			parent = node;
2288 
2289 		port = of_get_child_by_name(parent, "port");
2290 		of_node_put(node);
2291 
2292 		if (!port) {
2293 			pr_err("%s(): no port node found in %s\n",
2294 			       __func__, parent->full_name);
2295 			return NULL;
2296 		}
2297 	} else {
2298 		port = of_get_parent(prev);
2299 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2300 			      __func__, prev->full_name))
2301 			return NULL;
2302 
2303 		/*
2304 		 * Avoid dropping prev node refcount to 0 when getting the next
2305 		 * child below.
2306 		 */
2307 		of_node_get(prev);
2308 	}
2309 
2310 	while (1) {
2311 		/*
2312 		 * Now that we have a port node, get the next endpoint by
2313 		 * getting the next child. If the previous endpoint is NULL this
2314 		 * will return the first child.
2315 		 */
2316 		endpoint = of_get_next_child(port, prev);
2317 		if (endpoint) {
2318 			of_node_put(port);
2319 			return endpoint;
2320 		}
2321 
2322 		/* No more endpoints under this port, try the next one. */
2323 		prev = NULL;
2324 
2325 		do {
2326 			port = of_get_next_child(parent, port);
2327 			if (!port)
2328 				return NULL;
2329 		} while (of_node_cmp(port->name, "port"));
2330 	}
2331 }
2332 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2333 
2334 /**
2335  * of_graph_get_remote_port_parent() - get remote port's parent node
2336  * @node: pointer to a local endpoint device_node
2337  *
2338  * Return: Remote device node associated with remote endpoint node linked
2339  *	   to @node. Use of_node_put() on it when done.
2340  */
2341 struct device_node *of_graph_get_remote_port_parent(
2342 			       const struct device_node *node)
2343 {
2344 	struct device_node *np;
2345 	unsigned int depth;
2346 
2347 	/* Get remote endpoint node. */
2348 	np = of_parse_phandle(node, "remote-endpoint", 0);
2349 
2350 	/* Walk 3 levels up only if there is 'ports' node. */
2351 	for (depth = 3; depth && np; depth--) {
2352 		np = of_get_next_parent(np);
2353 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2354 			break;
2355 	}
2356 	return np;
2357 }
2358 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2359 
2360 /**
2361  * of_graph_get_remote_port() - get remote port node
2362  * @node: pointer to a local endpoint device_node
2363  *
2364  * Return: Remote port node associated with remote endpoint node linked
2365  *	   to @node. Use of_node_put() on it when done.
2366  */
2367 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2368 {
2369 	struct device_node *np;
2370 
2371 	/* Get remote endpoint node. */
2372 	np = of_parse_phandle(node, "remote-endpoint", 0);
2373 	if (!np)
2374 		return NULL;
2375 	return of_get_next_parent(np);
2376 }
2377 EXPORT_SYMBOL(of_graph_get_remote_port);
2378