1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_graph.h> 25 #include <linux/spinlock.h> 26 #include <linux/slab.h> 27 #include <linux/string.h> 28 #include <linux/proc_fs.h> 29 30 #include "of_private.h" 31 32 LIST_HEAD(aliases_lookup); 33 34 struct device_node *of_allnodes; 35 EXPORT_SYMBOL(of_allnodes); 36 struct device_node *of_chosen; 37 struct device_node *of_aliases; 38 static struct device_node *of_stdout; 39 40 static struct kset *of_kset; 41 42 /* 43 * Used to protect the of_aliases; but also overloaded to hold off addition of 44 * nodes to sysfs 45 */ 46 DEFINE_MUTEX(of_aliases_mutex); 47 48 /* use when traversing tree through the allnext, child, sibling, 49 * or parent members of struct device_node. 50 */ 51 DEFINE_RAW_SPINLOCK(devtree_lock); 52 53 int of_n_addr_cells(struct device_node *np) 54 { 55 const __be32 *ip; 56 57 do { 58 if (np->parent) 59 np = np->parent; 60 ip = of_get_property(np, "#address-cells", NULL); 61 if (ip) 62 return be32_to_cpup(ip); 63 } while (np->parent); 64 /* No #address-cells property for the root node */ 65 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 66 } 67 EXPORT_SYMBOL(of_n_addr_cells); 68 69 int of_n_size_cells(struct device_node *np) 70 { 71 const __be32 *ip; 72 73 do { 74 if (np->parent) 75 np = np->parent; 76 ip = of_get_property(np, "#size-cells", NULL); 77 if (ip) 78 return be32_to_cpup(ip); 79 } while (np->parent); 80 /* No #size-cells property for the root node */ 81 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 82 } 83 EXPORT_SYMBOL(of_n_size_cells); 84 85 #ifdef CONFIG_NUMA 86 int __weak of_node_to_nid(struct device_node *np) 87 { 88 return numa_node_id(); 89 } 90 #endif 91 92 #if defined(CONFIG_OF_DYNAMIC) 93 /** 94 * of_node_get - Increment refcount of a node 95 * @node: Node to inc refcount, NULL is supported to 96 * simplify writing of callers 97 * 98 * Returns node. 99 */ 100 struct device_node *of_node_get(struct device_node *node) 101 { 102 if (node) 103 kobject_get(&node->kobj); 104 return node; 105 } 106 EXPORT_SYMBOL(of_node_get); 107 108 static inline struct device_node *kobj_to_device_node(struct kobject *kobj) 109 { 110 return container_of(kobj, struct device_node, kobj); 111 } 112 113 /** 114 * of_node_release - release a dynamically allocated node 115 * @kref: kref element of the node to be released 116 * 117 * In of_node_put() this function is passed to kref_put() 118 * as the destructor. 119 */ 120 static void of_node_release(struct kobject *kobj) 121 { 122 struct device_node *node = kobj_to_device_node(kobj); 123 struct property *prop = node->properties; 124 125 /* We should never be releasing nodes that haven't been detached. */ 126 if (!of_node_check_flag(node, OF_DETACHED)) { 127 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); 128 dump_stack(); 129 return; 130 } 131 132 if (!of_node_check_flag(node, OF_DYNAMIC)) 133 return; 134 135 while (prop) { 136 struct property *next = prop->next; 137 kfree(prop->name); 138 kfree(prop->value); 139 kfree(prop); 140 prop = next; 141 142 if (!prop) { 143 prop = node->deadprops; 144 node->deadprops = NULL; 145 } 146 } 147 kfree(node->full_name); 148 kfree(node->data); 149 kfree(node); 150 } 151 152 /** 153 * of_node_put - Decrement refcount of a node 154 * @node: Node to dec refcount, NULL is supported to 155 * simplify writing of callers 156 * 157 */ 158 void of_node_put(struct device_node *node) 159 { 160 if (node) 161 kobject_put(&node->kobj); 162 } 163 EXPORT_SYMBOL(of_node_put); 164 #else 165 static void of_node_release(struct kobject *kobj) 166 { 167 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 168 } 169 #endif /* CONFIG_OF_DYNAMIC */ 170 171 struct kobj_type of_node_ktype = { 172 .release = of_node_release, 173 }; 174 175 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 176 struct bin_attribute *bin_attr, char *buf, 177 loff_t offset, size_t count) 178 { 179 struct property *pp = container_of(bin_attr, struct property, attr); 180 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 181 } 182 183 static const char *safe_name(struct kobject *kobj, const char *orig_name) 184 { 185 const char *name = orig_name; 186 struct kernfs_node *kn; 187 int i = 0; 188 189 /* don't be a hero. After 16 tries give up */ 190 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 191 sysfs_put(kn); 192 if (name != orig_name) 193 kfree(name); 194 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 195 } 196 197 if (name != orig_name) 198 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 199 kobject_name(kobj), name); 200 return name; 201 } 202 203 static int __of_add_property_sysfs(struct device_node *np, struct property *pp) 204 { 205 int rc; 206 207 /* Important: Don't leak passwords */ 208 bool secure = strncmp(pp->name, "security-", 9) == 0; 209 210 sysfs_bin_attr_init(&pp->attr); 211 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 212 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 213 pp->attr.size = secure ? 0 : pp->length; 214 pp->attr.read = of_node_property_read; 215 216 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 217 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 218 return rc; 219 } 220 221 static int __of_node_add(struct device_node *np) 222 { 223 const char *name; 224 struct property *pp; 225 int rc; 226 227 np->kobj.kset = of_kset; 228 if (!np->parent) { 229 /* Nodes without parents are new top level trees */ 230 rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base")); 231 } else { 232 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 233 if (!name || !name[0]) 234 return -EINVAL; 235 236 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 237 } 238 if (rc) 239 return rc; 240 241 for_each_property_of_node(np, pp) 242 __of_add_property_sysfs(np, pp); 243 244 return 0; 245 } 246 247 int of_node_add(struct device_node *np) 248 { 249 int rc = 0; 250 251 BUG_ON(!of_node_is_initialized(np)); 252 253 /* 254 * Grab the mutex here so that in a race condition between of_init() and 255 * of_node_add(), node addition will still be consistent. 256 */ 257 mutex_lock(&of_aliases_mutex); 258 if (of_kset) 259 rc = __of_node_add(np); 260 else 261 /* This scenario may be perfectly valid, but report it anyway */ 262 pr_info("of_node_add(%s) before of_init()\n", np->full_name); 263 mutex_unlock(&of_aliases_mutex); 264 return rc; 265 } 266 267 #if defined(CONFIG_OF_DYNAMIC) 268 static void of_node_remove(struct device_node *np) 269 { 270 struct property *pp; 271 272 BUG_ON(!of_node_is_initialized(np)); 273 274 /* only remove properties if on sysfs */ 275 if (of_node_is_attached(np)) { 276 for_each_property_of_node(np, pp) 277 sysfs_remove_bin_file(&np->kobj, &pp->attr); 278 kobject_del(&np->kobj); 279 } 280 281 /* finally remove the kobj_init ref */ 282 of_node_put(np); 283 } 284 #endif 285 286 static int __init of_init(void) 287 { 288 struct device_node *np; 289 290 /* Create the kset, and register existing nodes */ 291 mutex_lock(&of_aliases_mutex); 292 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 293 if (!of_kset) { 294 mutex_unlock(&of_aliases_mutex); 295 return -ENOMEM; 296 } 297 for_each_of_allnodes(np) 298 __of_node_add(np); 299 mutex_unlock(&of_aliases_mutex); 300 301 /* Symlink in /proc as required by userspace ABI */ 302 if (of_allnodes) 303 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 304 305 return 0; 306 } 307 core_initcall(of_init); 308 309 static struct property *__of_find_property(const struct device_node *np, 310 const char *name, int *lenp) 311 { 312 struct property *pp; 313 314 if (!np) 315 return NULL; 316 317 for (pp = np->properties; pp; pp = pp->next) { 318 if (of_prop_cmp(pp->name, name) == 0) { 319 if (lenp) 320 *lenp = pp->length; 321 break; 322 } 323 } 324 325 return pp; 326 } 327 328 struct property *of_find_property(const struct device_node *np, 329 const char *name, 330 int *lenp) 331 { 332 struct property *pp; 333 unsigned long flags; 334 335 raw_spin_lock_irqsave(&devtree_lock, flags); 336 pp = __of_find_property(np, name, lenp); 337 raw_spin_unlock_irqrestore(&devtree_lock, flags); 338 339 return pp; 340 } 341 EXPORT_SYMBOL(of_find_property); 342 343 /** 344 * of_find_all_nodes - Get next node in global list 345 * @prev: Previous node or NULL to start iteration 346 * of_node_put() will be called on it 347 * 348 * Returns a node pointer with refcount incremented, use 349 * of_node_put() on it when done. 350 */ 351 struct device_node *of_find_all_nodes(struct device_node *prev) 352 { 353 struct device_node *np; 354 unsigned long flags; 355 356 raw_spin_lock_irqsave(&devtree_lock, flags); 357 np = prev ? prev->allnext : of_allnodes; 358 for (; np != NULL; np = np->allnext) 359 if (of_node_get(np)) 360 break; 361 of_node_put(prev); 362 raw_spin_unlock_irqrestore(&devtree_lock, flags); 363 return np; 364 } 365 EXPORT_SYMBOL(of_find_all_nodes); 366 367 /* 368 * Find a property with a given name for a given node 369 * and return the value. 370 */ 371 static const void *__of_get_property(const struct device_node *np, 372 const char *name, int *lenp) 373 { 374 struct property *pp = __of_find_property(np, name, lenp); 375 376 return pp ? pp->value : NULL; 377 } 378 379 /* 380 * Find a property with a given name for a given node 381 * and return the value. 382 */ 383 const void *of_get_property(const struct device_node *np, const char *name, 384 int *lenp) 385 { 386 struct property *pp = of_find_property(np, name, lenp); 387 388 return pp ? pp->value : NULL; 389 } 390 EXPORT_SYMBOL(of_get_property); 391 392 /* 393 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 394 * 395 * @cpu: logical cpu index of a core/thread 396 * @phys_id: physical identifier of a core/thread 397 * 398 * CPU logical to physical index mapping is architecture specific. 399 * However this __weak function provides a default match of physical 400 * id to logical cpu index. phys_id provided here is usually values read 401 * from the device tree which must match the hardware internal registers. 402 * 403 * Returns true if the physical identifier and the logical cpu index 404 * correspond to the same core/thread, false otherwise. 405 */ 406 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 407 { 408 return (u32)phys_id == cpu; 409 } 410 411 /** 412 * Checks if the given "prop_name" property holds the physical id of the 413 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 414 * NULL, local thread number within the core is returned in it. 415 */ 416 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 417 const char *prop_name, int cpu, unsigned int *thread) 418 { 419 const __be32 *cell; 420 int ac, prop_len, tid; 421 u64 hwid; 422 423 ac = of_n_addr_cells(cpun); 424 cell = of_get_property(cpun, prop_name, &prop_len); 425 if (!cell || !ac) 426 return false; 427 prop_len /= sizeof(*cell) * ac; 428 for (tid = 0; tid < prop_len; tid++) { 429 hwid = of_read_number(cell, ac); 430 if (arch_match_cpu_phys_id(cpu, hwid)) { 431 if (thread) 432 *thread = tid; 433 return true; 434 } 435 cell += ac; 436 } 437 return false; 438 } 439 440 /* 441 * arch_find_n_match_cpu_physical_id - See if the given device node is 442 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 443 * else false. If 'thread' is non-NULL, the local thread number within the 444 * core is returned in it. 445 */ 446 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 447 int cpu, unsigned int *thread) 448 { 449 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 450 * for thread ids on PowerPC. If it doesn't exist fallback to 451 * standard "reg" property. 452 */ 453 if (IS_ENABLED(CONFIG_PPC) && 454 __of_find_n_match_cpu_property(cpun, 455 "ibm,ppc-interrupt-server#s", 456 cpu, thread)) 457 return true; 458 459 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 460 return true; 461 462 return false; 463 } 464 465 /** 466 * of_get_cpu_node - Get device node associated with the given logical CPU 467 * 468 * @cpu: CPU number(logical index) for which device node is required 469 * @thread: if not NULL, local thread number within the physical core is 470 * returned 471 * 472 * The main purpose of this function is to retrieve the device node for the 473 * given logical CPU index. It should be used to initialize the of_node in 474 * cpu device. Once of_node in cpu device is populated, all the further 475 * references can use that instead. 476 * 477 * CPU logical to physical index mapping is architecture specific and is built 478 * before booting secondary cores. This function uses arch_match_cpu_phys_id 479 * which can be overridden by architecture specific implementation. 480 * 481 * Returns a node pointer for the logical cpu if found, else NULL. 482 */ 483 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 484 { 485 struct device_node *cpun; 486 487 for_each_node_by_type(cpun, "cpu") { 488 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 489 return cpun; 490 } 491 return NULL; 492 } 493 EXPORT_SYMBOL(of_get_cpu_node); 494 495 /** 496 * __of_device_is_compatible() - Check if the node matches given constraints 497 * @device: pointer to node 498 * @compat: required compatible string, NULL or "" for any match 499 * @type: required device_type value, NULL or "" for any match 500 * @name: required node name, NULL or "" for any match 501 * 502 * Checks if the given @compat, @type and @name strings match the 503 * properties of the given @device. A constraints can be skipped by 504 * passing NULL or an empty string as the constraint. 505 * 506 * Returns 0 for no match, and a positive integer on match. The return 507 * value is a relative score with larger values indicating better 508 * matches. The score is weighted for the most specific compatible value 509 * to get the highest score. Matching type is next, followed by matching 510 * name. Practically speaking, this results in the following priority 511 * order for matches: 512 * 513 * 1. specific compatible && type && name 514 * 2. specific compatible && type 515 * 3. specific compatible && name 516 * 4. specific compatible 517 * 5. general compatible && type && name 518 * 6. general compatible && type 519 * 7. general compatible && name 520 * 8. general compatible 521 * 9. type && name 522 * 10. type 523 * 11. name 524 */ 525 static int __of_device_is_compatible(const struct device_node *device, 526 const char *compat, const char *type, const char *name) 527 { 528 struct property *prop; 529 const char *cp; 530 int index = 0, score = 0; 531 532 /* Compatible match has highest priority */ 533 if (compat && compat[0]) { 534 prop = __of_find_property(device, "compatible", NULL); 535 for (cp = of_prop_next_string(prop, NULL); cp; 536 cp = of_prop_next_string(prop, cp), index++) { 537 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 538 score = INT_MAX/2 - (index << 2); 539 break; 540 } 541 } 542 if (!score) 543 return 0; 544 } 545 546 /* Matching type is better than matching name */ 547 if (type && type[0]) { 548 if (!device->type || of_node_cmp(type, device->type)) 549 return 0; 550 score += 2; 551 } 552 553 /* Matching name is a bit better than not */ 554 if (name && name[0]) { 555 if (!device->name || of_node_cmp(name, device->name)) 556 return 0; 557 score++; 558 } 559 560 return score; 561 } 562 563 /** Checks if the given "compat" string matches one of the strings in 564 * the device's "compatible" property 565 */ 566 int of_device_is_compatible(const struct device_node *device, 567 const char *compat) 568 { 569 unsigned long flags; 570 int res; 571 572 raw_spin_lock_irqsave(&devtree_lock, flags); 573 res = __of_device_is_compatible(device, compat, NULL, NULL); 574 raw_spin_unlock_irqrestore(&devtree_lock, flags); 575 return res; 576 } 577 EXPORT_SYMBOL(of_device_is_compatible); 578 579 /** 580 * of_machine_is_compatible - Test root of device tree for a given compatible value 581 * @compat: compatible string to look for in root node's compatible property. 582 * 583 * Returns true if the root node has the given value in its 584 * compatible property. 585 */ 586 int of_machine_is_compatible(const char *compat) 587 { 588 struct device_node *root; 589 int rc = 0; 590 591 root = of_find_node_by_path("/"); 592 if (root) { 593 rc = of_device_is_compatible(root, compat); 594 of_node_put(root); 595 } 596 return rc; 597 } 598 EXPORT_SYMBOL(of_machine_is_compatible); 599 600 /** 601 * __of_device_is_available - check if a device is available for use 602 * 603 * @device: Node to check for availability, with locks already held 604 * 605 * Returns 1 if the status property is absent or set to "okay" or "ok", 606 * 0 otherwise 607 */ 608 static int __of_device_is_available(const struct device_node *device) 609 { 610 const char *status; 611 int statlen; 612 613 if (!device) 614 return 0; 615 616 status = __of_get_property(device, "status", &statlen); 617 if (status == NULL) 618 return 1; 619 620 if (statlen > 0) { 621 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 622 return 1; 623 } 624 625 return 0; 626 } 627 628 /** 629 * of_device_is_available - check if a device is available for use 630 * 631 * @device: Node to check for availability 632 * 633 * Returns 1 if the status property is absent or set to "okay" or "ok", 634 * 0 otherwise 635 */ 636 int of_device_is_available(const struct device_node *device) 637 { 638 unsigned long flags; 639 int res; 640 641 raw_spin_lock_irqsave(&devtree_lock, flags); 642 res = __of_device_is_available(device); 643 raw_spin_unlock_irqrestore(&devtree_lock, flags); 644 return res; 645 646 } 647 EXPORT_SYMBOL(of_device_is_available); 648 649 /** 650 * of_get_parent - Get a node's parent if any 651 * @node: Node to get parent 652 * 653 * Returns a node pointer with refcount incremented, use 654 * of_node_put() on it when done. 655 */ 656 struct device_node *of_get_parent(const struct device_node *node) 657 { 658 struct device_node *np; 659 unsigned long flags; 660 661 if (!node) 662 return NULL; 663 664 raw_spin_lock_irqsave(&devtree_lock, flags); 665 np = of_node_get(node->parent); 666 raw_spin_unlock_irqrestore(&devtree_lock, flags); 667 return np; 668 } 669 EXPORT_SYMBOL(of_get_parent); 670 671 /** 672 * of_get_next_parent - Iterate to a node's parent 673 * @node: Node to get parent of 674 * 675 * This is like of_get_parent() except that it drops the 676 * refcount on the passed node, making it suitable for iterating 677 * through a node's parents. 678 * 679 * Returns a node pointer with refcount incremented, use 680 * of_node_put() on it when done. 681 */ 682 struct device_node *of_get_next_parent(struct device_node *node) 683 { 684 struct device_node *parent; 685 unsigned long flags; 686 687 if (!node) 688 return NULL; 689 690 raw_spin_lock_irqsave(&devtree_lock, flags); 691 parent = of_node_get(node->parent); 692 of_node_put(node); 693 raw_spin_unlock_irqrestore(&devtree_lock, flags); 694 return parent; 695 } 696 EXPORT_SYMBOL(of_get_next_parent); 697 698 static struct device_node *__of_get_next_child(const struct device_node *node, 699 struct device_node *prev) 700 { 701 struct device_node *next; 702 703 if (!node) 704 return NULL; 705 706 next = prev ? prev->sibling : node->child; 707 for (; next; next = next->sibling) 708 if (of_node_get(next)) 709 break; 710 of_node_put(prev); 711 return next; 712 } 713 #define __for_each_child_of_node(parent, child) \ 714 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 715 child = __of_get_next_child(parent, child)) 716 717 /** 718 * of_get_next_child - Iterate a node childs 719 * @node: parent node 720 * @prev: previous child of the parent node, or NULL to get first 721 * 722 * Returns a node pointer with refcount incremented, use 723 * of_node_put() on it when done. 724 */ 725 struct device_node *of_get_next_child(const struct device_node *node, 726 struct device_node *prev) 727 { 728 struct device_node *next; 729 unsigned long flags; 730 731 raw_spin_lock_irqsave(&devtree_lock, flags); 732 next = __of_get_next_child(node, prev); 733 raw_spin_unlock_irqrestore(&devtree_lock, flags); 734 return next; 735 } 736 EXPORT_SYMBOL(of_get_next_child); 737 738 /** 739 * of_get_next_available_child - Find the next available child node 740 * @node: parent node 741 * @prev: previous child of the parent node, or NULL to get first 742 * 743 * This function is like of_get_next_child(), except that it 744 * automatically skips any disabled nodes (i.e. status = "disabled"). 745 */ 746 struct device_node *of_get_next_available_child(const struct device_node *node, 747 struct device_node *prev) 748 { 749 struct device_node *next; 750 unsigned long flags; 751 752 if (!node) 753 return NULL; 754 755 raw_spin_lock_irqsave(&devtree_lock, flags); 756 next = prev ? prev->sibling : node->child; 757 for (; next; next = next->sibling) { 758 if (!__of_device_is_available(next)) 759 continue; 760 if (of_node_get(next)) 761 break; 762 } 763 of_node_put(prev); 764 raw_spin_unlock_irqrestore(&devtree_lock, flags); 765 return next; 766 } 767 EXPORT_SYMBOL(of_get_next_available_child); 768 769 /** 770 * of_get_child_by_name - Find the child node by name for a given parent 771 * @node: parent node 772 * @name: child name to look for. 773 * 774 * This function looks for child node for given matching name 775 * 776 * Returns a node pointer if found, with refcount incremented, use 777 * of_node_put() on it when done. 778 * Returns NULL if node is not found. 779 */ 780 struct device_node *of_get_child_by_name(const struct device_node *node, 781 const char *name) 782 { 783 struct device_node *child; 784 785 for_each_child_of_node(node, child) 786 if (child->name && (of_node_cmp(child->name, name) == 0)) 787 break; 788 return child; 789 } 790 EXPORT_SYMBOL(of_get_child_by_name); 791 792 static struct device_node *__of_find_node_by_path(struct device_node *parent, 793 const char *path) 794 { 795 struct device_node *child; 796 int len = strchrnul(path, '/') - path; 797 798 if (!len) 799 return NULL; 800 801 __for_each_child_of_node(parent, child) { 802 const char *name = strrchr(child->full_name, '/'); 803 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 804 continue; 805 name++; 806 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 807 return child; 808 } 809 return NULL; 810 } 811 812 /** 813 * of_find_node_by_path - Find a node matching a full OF path 814 * @path: Either the full path to match, or if the path does not 815 * start with '/', the name of a property of the /aliases 816 * node (an alias). In the case of an alias, the node 817 * matching the alias' value will be returned. 818 * 819 * Valid paths: 820 * /foo/bar Full path 821 * foo Valid alias 822 * foo/bar Valid alias + relative path 823 * 824 * Returns a node pointer with refcount incremented, use 825 * of_node_put() on it when done. 826 */ 827 struct device_node *of_find_node_by_path(const char *path) 828 { 829 struct device_node *np = NULL; 830 struct property *pp; 831 unsigned long flags; 832 833 if (strcmp(path, "/") == 0) 834 return of_node_get(of_allnodes); 835 836 /* The path could begin with an alias */ 837 if (*path != '/') { 838 char *p = strchrnul(path, '/'); 839 int len = p - path; 840 841 /* of_aliases must not be NULL */ 842 if (!of_aliases) 843 return NULL; 844 845 for_each_property_of_node(of_aliases, pp) { 846 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 847 np = of_find_node_by_path(pp->value); 848 break; 849 } 850 } 851 if (!np) 852 return NULL; 853 path = p; 854 } 855 856 /* Step down the tree matching path components */ 857 raw_spin_lock_irqsave(&devtree_lock, flags); 858 if (!np) 859 np = of_node_get(of_allnodes); 860 while (np && *path == '/') { 861 path++; /* Increment past '/' delimiter */ 862 np = __of_find_node_by_path(np, path); 863 path = strchrnul(path, '/'); 864 } 865 raw_spin_unlock_irqrestore(&devtree_lock, flags); 866 return np; 867 } 868 EXPORT_SYMBOL(of_find_node_by_path); 869 870 /** 871 * of_find_node_by_name - Find a node by its "name" property 872 * @from: The node to start searching from or NULL, the node 873 * you pass will not be searched, only the next one 874 * will; typically, you pass what the previous call 875 * returned. of_node_put() will be called on it 876 * @name: The name string to match against 877 * 878 * Returns a node pointer with refcount incremented, use 879 * of_node_put() on it when done. 880 */ 881 struct device_node *of_find_node_by_name(struct device_node *from, 882 const char *name) 883 { 884 struct device_node *np; 885 unsigned long flags; 886 887 raw_spin_lock_irqsave(&devtree_lock, flags); 888 np = from ? from->allnext : of_allnodes; 889 for (; np; np = np->allnext) 890 if (np->name && (of_node_cmp(np->name, name) == 0) 891 && of_node_get(np)) 892 break; 893 of_node_put(from); 894 raw_spin_unlock_irqrestore(&devtree_lock, flags); 895 return np; 896 } 897 EXPORT_SYMBOL(of_find_node_by_name); 898 899 /** 900 * of_find_node_by_type - Find a node by its "device_type" property 901 * @from: The node to start searching from, or NULL to start searching 902 * the entire device tree. The node you pass will not be 903 * searched, only the next one will; typically, you pass 904 * what the previous call returned. of_node_put() will be 905 * called on from for you. 906 * @type: The type string to match against 907 * 908 * Returns a node pointer with refcount incremented, use 909 * of_node_put() on it when done. 910 */ 911 struct device_node *of_find_node_by_type(struct device_node *from, 912 const char *type) 913 { 914 struct device_node *np; 915 unsigned long flags; 916 917 raw_spin_lock_irqsave(&devtree_lock, flags); 918 np = from ? from->allnext : of_allnodes; 919 for (; np; np = np->allnext) 920 if (np->type && (of_node_cmp(np->type, type) == 0) 921 && of_node_get(np)) 922 break; 923 of_node_put(from); 924 raw_spin_unlock_irqrestore(&devtree_lock, flags); 925 return np; 926 } 927 EXPORT_SYMBOL(of_find_node_by_type); 928 929 /** 930 * of_find_compatible_node - Find a node based on type and one of the 931 * tokens in its "compatible" property 932 * @from: The node to start searching from or NULL, the node 933 * you pass will not be searched, only the next one 934 * will; typically, you pass what the previous call 935 * returned. of_node_put() will be called on it 936 * @type: The type string to match "device_type" or NULL to ignore 937 * @compatible: The string to match to one of the tokens in the device 938 * "compatible" list. 939 * 940 * Returns a node pointer with refcount incremented, use 941 * of_node_put() on it when done. 942 */ 943 struct device_node *of_find_compatible_node(struct device_node *from, 944 const char *type, const char *compatible) 945 { 946 struct device_node *np; 947 unsigned long flags; 948 949 raw_spin_lock_irqsave(&devtree_lock, flags); 950 np = from ? from->allnext : of_allnodes; 951 for (; np; np = np->allnext) { 952 if (__of_device_is_compatible(np, compatible, type, NULL) && 953 of_node_get(np)) 954 break; 955 } 956 of_node_put(from); 957 raw_spin_unlock_irqrestore(&devtree_lock, flags); 958 return np; 959 } 960 EXPORT_SYMBOL(of_find_compatible_node); 961 962 /** 963 * of_find_node_with_property - Find a node which has a property with 964 * the given name. 965 * @from: The node to start searching from or NULL, the node 966 * you pass will not be searched, only the next one 967 * will; typically, you pass what the previous call 968 * returned. of_node_put() will be called on it 969 * @prop_name: The name of the property to look for. 970 * 971 * Returns a node pointer with refcount incremented, use 972 * of_node_put() on it when done. 973 */ 974 struct device_node *of_find_node_with_property(struct device_node *from, 975 const char *prop_name) 976 { 977 struct device_node *np; 978 struct property *pp; 979 unsigned long flags; 980 981 raw_spin_lock_irqsave(&devtree_lock, flags); 982 np = from ? from->allnext : of_allnodes; 983 for (; np; np = np->allnext) { 984 for (pp = np->properties; pp; pp = pp->next) { 985 if (of_prop_cmp(pp->name, prop_name) == 0) { 986 of_node_get(np); 987 goto out; 988 } 989 } 990 } 991 out: 992 of_node_put(from); 993 raw_spin_unlock_irqrestore(&devtree_lock, flags); 994 return np; 995 } 996 EXPORT_SYMBOL(of_find_node_with_property); 997 998 static 999 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1000 const struct device_node *node) 1001 { 1002 const struct of_device_id *best_match = NULL; 1003 int score, best_score = 0; 1004 1005 if (!matches) 1006 return NULL; 1007 1008 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1009 score = __of_device_is_compatible(node, matches->compatible, 1010 matches->type, matches->name); 1011 if (score > best_score) { 1012 best_match = matches; 1013 best_score = score; 1014 } 1015 } 1016 1017 return best_match; 1018 } 1019 1020 /** 1021 * of_match_node - Tell if an device_node has a matching of_match structure 1022 * @matches: array of of device match structures to search in 1023 * @node: the of device structure to match against 1024 * 1025 * Low level utility function used by device matching. 1026 */ 1027 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1028 const struct device_node *node) 1029 { 1030 const struct of_device_id *match; 1031 unsigned long flags; 1032 1033 raw_spin_lock_irqsave(&devtree_lock, flags); 1034 match = __of_match_node(matches, node); 1035 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1036 return match; 1037 } 1038 EXPORT_SYMBOL(of_match_node); 1039 1040 /** 1041 * of_find_matching_node_and_match - Find a node based on an of_device_id 1042 * match table. 1043 * @from: The node to start searching from or NULL, the node 1044 * you pass will not be searched, only the next one 1045 * will; typically, you pass what the previous call 1046 * returned. of_node_put() will be called on it 1047 * @matches: array of of device match structures to search in 1048 * @match Updated to point at the matches entry which matched 1049 * 1050 * Returns a node pointer with refcount incremented, use 1051 * of_node_put() on it when done. 1052 */ 1053 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1054 const struct of_device_id *matches, 1055 const struct of_device_id **match) 1056 { 1057 struct device_node *np; 1058 const struct of_device_id *m; 1059 unsigned long flags; 1060 1061 if (match) 1062 *match = NULL; 1063 1064 raw_spin_lock_irqsave(&devtree_lock, flags); 1065 np = from ? from->allnext : of_allnodes; 1066 for (; np; np = np->allnext) { 1067 m = __of_match_node(matches, np); 1068 if (m && of_node_get(np)) { 1069 if (match) 1070 *match = m; 1071 break; 1072 } 1073 } 1074 of_node_put(from); 1075 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1076 return np; 1077 } 1078 EXPORT_SYMBOL(of_find_matching_node_and_match); 1079 1080 /** 1081 * of_modalias_node - Lookup appropriate modalias for a device node 1082 * @node: pointer to a device tree node 1083 * @modalias: Pointer to buffer that modalias value will be copied into 1084 * @len: Length of modalias value 1085 * 1086 * Based on the value of the compatible property, this routine will attempt 1087 * to choose an appropriate modalias value for a particular device tree node. 1088 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1089 * from the first entry in the compatible list property. 1090 * 1091 * This routine returns 0 on success, <0 on failure. 1092 */ 1093 int of_modalias_node(struct device_node *node, char *modalias, int len) 1094 { 1095 const char *compatible, *p; 1096 int cplen; 1097 1098 compatible = of_get_property(node, "compatible", &cplen); 1099 if (!compatible || strlen(compatible) > cplen) 1100 return -ENODEV; 1101 p = strchr(compatible, ','); 1102 strlcpy(modalias, p ? p + 1 : compatible, len); 1103 return 0; 1104 } 1105 EXPORT_SYMBOL_GPL(of_modalias_node); 1106 1107 /** 1108 * of_find_node_by_phandle - Find a node given a phandle 1109 * @handle: phandle of the node to find 1110 * 1111 * Returns a node pointer with refcount incremented, use 1112 * of_node_put() on it when done. 1113 */ 1114 struct device_node *of_find_node_by_phandle(phandle handle) 1115 { 1116 struct device_node *np; 1117 unsigned long flags; 1118 1119 raw_spin_lock_irqsave(&devtree_lock, flags); 1120 for (np = of_allnodes; np; np = np->allnext) 1121 if (np->phandle == handle) 1122 break; 1123 of_node_get(np); 1124 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1125 return np; 1126 } 1127 EXPORT_SYMBOL(of_find_node_by_phandle); 1128 1129 /** 1130 * of_property_count_elems_of_size - Count the number of elements in a property 1131 * 1132 * @np: device node from which the property value is to be read. 1133 * @propname: name of the property to be searched. 1134 * @elem_size: size of the individual element 1135 * 1136 * Search for a property in a device node and count the number of elements of 1137 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1138 * property does not exist or its length does not match a multiple of elem_size 1139 * and -ENODATA if the property does not have a value. 1140 */ 1141 int of_property_count_elems_of_size(const struct device_node *np, 1142 const char *propname, int elem_size) 1143 { 1144 struct property *prop = of_find_property(np, propname, NULL); 1145 1146 if (!prop) 1147 return -EINVAL; 1148 if (!prop->value) 1149 return -ENODATA; 1150 1151 if (prop->length % elem_size != 0) { 1152 pr_err("size of %s in node %s is not a multiple of %d\n", 1153 propname, np->full_name, elem_size); 1154 return -EINVAL; 1155 } 1156 1157 return prop->length / elem_size; 1158 } 1159 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1160 1161 /** 1162 * of_find_property_value_of_size 1163 * 1164 * @np: device node from which the property value is to be read. 1165 * @propname: name of the property to be searched. 1166 * @len: requested length of property value 1167 * 1168 * Search for a property in a device node and valid the requested size. 1169 * Returns the property value on success, -EINVAL if the property does not 1170 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1171 * property data isn't large enough. 1172 * 1173 */ 1174 static void *of_find_property_value_of_size(const struct device_node *np, 1175 const char *propname, u32 len) 1176 { 1177 struct property *prop = of_find_property(np, propname, NULL); 1178 1179 if (!prop) 1180 return ERR_PTR(-EINVAL); 1181 if (!prop->value) 1182 return ERR_PTR(-ENODATA); 1183 if (len > prop->length) 1184 return ERR_PTR(-EOVERFLOW); 1185 1186 return prop->value; 1187 } 1188 1189 /** 1190 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1191 * 1192 * @np: device node from which the property value is to be read. 1193 * @propname: name of the property to be searched. 1194 * @index: index of the u32 in the list of values 1195 * @out_value: pointer to return value, modified only if no error. 1196 * 1197 * Search for a property in a device node and read nth 32-bit value from 1198 * it. Returns 0 on success, -EINVAL if the property does not exist, 1199 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1200 * property data isn't large enough. 1201 * 1202 * The out_value is modified only if a valid u32 value can be decoded. 1203 */ 1204 int of_property_read_u32_index(const struct device_node *np, 1205 const char *propname, 1206 u32 index, u32 *out_value) 1207 { 1208 const u32 *val = of_find_property_value_of_size(np, propname, 1209 ((index + 1) * sizeof(*out_value))); 1210 1211 if (IS_ERR(val)) 1212 return PTR_ERR(val); 1213 1214 *out_value = be32_to_cpup(((__be32 *)val) + index); 1215 return 0; 1216 } 1217 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1218 1219 /** 1220 * of_property_read_u8_array - Find and read an array of u8 from a property. 1221 * 1222 * @np: device node from which the property value is to be read. 1223 * @propname: name of the property to be searched. 1224 * @out_values: pointer to return value, modified only if return value is 0. 1225 * @sz: number of array elements to read 1226 * 1227 * Search for a property in a device node and read 8-bit value(s) from 1228 * it. Returns 0 on success, -EINVAL if the property does not exist, 1229 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1230 * property data isn't large enough. 1231 * 1232 * dts entry of array should be like: 1233 * property = /bits/ 8 <0x50 0x60 0x70>; 1234 * 1235 * The out_values is modified only if a valid u8 value can be decoded. 1236 */ 1237 int of_property_read_u8_array(const struct device_node *np, 1238 const char *propname, u8 *out_values, size_t sz) 1239 { 1240 const u8 *val = of_find_property_value_of_size(np, propname, 1241 (sz * sizeof(*out_values))); 1242 1243 if (IS_ERR(val)) 1244 return PTR_ERR(val); 1245 1246 while (sz--) 1247 *out_values++ = *val++; 1248 return 0; 1249 } 1250 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1251 1252 /** 1253 * of_property_read_u16_array - Find and read an array of u16 from a property. 1254 * 1255 * @np: device node from which the property value is to be read. 1256 * @propname: name of the property to be searched. 1257 * @out_values: pointer to return value, modified only if return value is 0. 1258 * @sz: number of array elements to read 1259 * 1260 * Search for a property in a device node and read 16-bit value(s) from 1261 * it. Returns 0 on success, -EINVAL if the property does not exist, 1262 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1263 * property data isn't large enough. 1264 * 1265 * dts entry of array should be like: 1266 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1267 * 1268 * The out_values is modified only if a valid u16 value can be decoded. 1269 */ 1270 int of_property_read_u16_array(const struct device_node *np, 1271 const char *propname, u16 *out_values, size_t sz) 1272 { 1273 const __be16 *val = of_find_property_value_of_size(np, propname, 1274 (sz * sizeof(*out_values))); 1275 1276 if (IS_ERR(val)) 1277 return PTR_ERR(val); 1278 1279 while (sz--) 1280 *out_values++ = be16_to_cpup(val++); 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1284 1285 /** 1286 * of_property_read_u32_array - Find and read an array of 32 bit integers 1287 * from a property. 1288 * 1289 * @np: device node from which the property value is to be read. 1290 * @propname: name of the property to be searched. 1291 * @out_values: pointer to return value, modified only if return value is 0. 1292 * @sz: number of array elements to read 1293 * 1294 * Search for a property in a device node and read 32-bit value(s) from 1295 * it. Returns 0 on success, -EINVAL if the property does not exist, 1296 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1297 * property data isn't large enough. 1298 * 1299 * The out_values is modified only if a valid u32 value can be decoded. 1300 */ 1301 int of_property_read_u32_array(const struct device_node *np, 1302 const char *propname, u32 *out_values, 1303 size_t sz) 1304 { 1305 const __be32 *val = of_find_property_value_of_size(np, propname, 1306 (sz * sizeof(*out_values))); 1307 1308 if (IS_ERR(val)) 1309 return PTR_ERR(val); 1310 1311 while (sz--) 1312 *out_values++ = be32_to_cpup(val++); 1313 return 0; 1314 } 1315 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1316 1317 /** 1318 * of_property_read_u64 - Find and read a 64 bit integer from a property 1319 * @np: device node from which the property value is to be read. 1320 * @propname: name of the property to be searched. 1321 * @out_value: pointer to return value, modified only if return value is 0. 1322 * 1323 * Search for a property in a device node and read a 64-bit value from 1324 * it. Returns 0 on success, -EINVAL if the property does not exist, 1325 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1326 * property data isn't large enough. 1327 * 1328 * The out_value is modified only if a valid u64 value can be decoded. 1329 */ 1330 int of_property_read_u64(const struct device_node *np, const char *propname, 1331 u64 *out_value) 1332 { 1333 const __be32 *val = of_find_property_value_of_size(np, propname, 1334 sizeof(*out_value)); 1335 1336 if (IS_ERR(val)) 1337 return PTR_ERR(val); 1338 1339 *out_value = of_read_number(val, 2); 1340 return 0; 1341 } 1342 EXPORT_SYMBOL_GPL(of_property_read_u64); 1343 1344 /** 1345 * of_property_read_string - Find and read a string from a property 1346 * @np: device node from which the property value is to be read. 1347 * @propname: name of the property to be searched. 1348 * @out_string: pointer to null terminated return string, modified only if 1349 * return value is 0. 1350 * 1351 * Search for a property in a device tree node and retrieve a null 1352 * terminated string value (pointer to data, not a copy). Returns 0 on 1353 * success, -EINVAL if the property does not exist, -ENODATA if property 1354 * does not have a value, and -EILSEQ if the string is not null-terminated 1355 * within the length of the property data. 1356 * 1357 * The out_string pointer is modified only if a valid string can be decoded. 1358 */ 1359 int of_property_read_string(struct device_node *np, const char *propname, 1360 const char **out_string) 1361 { 1362 struct property *prop = of_find_property(np, propname, NULL); 1363 if (!prop) 1364 return -EINVAL; 1365 if (!prop->value) 1366 return -ENODATA; 1367 if (strnlen(prop->value, prop->length) >= prop->length) 1368 return -EILSEQ; 1369 *out_string = prop->value; 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(of_property_read_string); 1373 1374 /** 1375 * of_property_read_string_index - Find and read a string from a multiple 1376 * strings property. 1377 * @np: device node from which the property value is to be read. 1378 * @propname: name of the property to be searched. 1379 * @index: index of the string in the list of strings 1380 * @out_string: pointer to null terminated return string, modified only if 1381 * return value is 0. 1382 * 1383 * Search for a property in a device tree node and retrieve a null 1384 * terminated string value (pointer to data, not a copy) in the list of strings 1385 * contained in that property. 1386 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if 1387 * property does not have a value, and -EILSEQ if the string is not 1388 * null-terminated within the length of the property data. 1389 * 1390 * The out_string pointer is modified only if a valid string can be decoded. 1391 */ 1392 int of_property_read_string_index(struct device_node *np, const char *propname, 1393 int index, const char **output) 1394 { 1395 struct property *prop = of_find_property(np, propname, NULL); 1396 int i = 0; 1397 size_t l = 0, total = 0; 1398 const char *p; 1399 1400 if (!prop) 1401 return -EINVAL; 1402 if (!prop->value) 1403 return -ENODATA; 1404 if (strnlen(prop->value, prop->length) >= prop->length) 1405 return -EILSEQ; 1406 1407 p = prop->value; 1408 1409 for (i = 0; total < prop->length; total += l, p += l) { 1410 l = strlen(p) + 1; 1411 if (i++ == index) { 1412 *output = p; 1413 return 0; 1414 } 1415 } 1416 return -ENODATA; 1417 } 1418 EXPORT_SYMBOL_GPL(of_property_read_string_index); 1419 1420 /** 1421 * of_property_match_string() - Find string in a list and return index 1422 * @np: pointer to node containing string list property 1423 * @propname: string list property name 1424 * @string: pointer to string to search for in string list 1425 * 1426 * This function searches a string list property and returns the index 1427 * of a specific string value. 1428 */ 1429 int of_property_match_string(struct device_node *np, const char *propname, 1430 const char *string) 1431 { 1432 struct property *prop = of_find_property(np, propname, NULL); 1433 size_t l; 1434 int i; 1435 const char *p, *end; 1436 1437 if (!prop) 1438 return -EINVAL; 1439 if (!prop->value) 1440 return -ENODATA; 1441 1442 p = prop->value; 1443 end = p + prop->length; 1444 1445 for (i = 0; p < end; i++, p += l) { 1446 l = strlen(p) + 1; 1447 if (p + l > end) 1448 return -EILSEQ; 1449 pr_debug("comparing %s with %s\n", string, p); 1450 if (strcmp(string, p) == 0) 1451 return i; /* Found it; return index */ 1452 } 1453 return -ENODATA; 1454 } 1455 EXPORT_SYMBOL_GPL(of_property_match_string); 1456 1457 /** 1458 * of_property_count_strings - Find and return the number of strings from a 1459 * multiple strings property. 1460 * @np: device node from which the property value is to be read. 1461 * @propname: name of the property to be searched. 1462 * 1463 * Search for a property in a device tree node and retrieve the number of null 1464 * terminated string contain in it. Returns the number of strings on 1465 * success, -EINVAL if the property does not exist, -ENODATA if property 1466 * does not have a value, and -EILSEQ if the string is not null-terminated 1467 * within the length of the property data. 1468 */ 1469 int of_property_count_strings(struct device_node *np, const char *propname) 1470 { 1471 struct property *prop = of_find_property(np, propname, NULL); 1472 int i = 0; 1473 size_t l = 0, total = 0; 1474 const char *p; 1475 1476 if (!prop) 1477 return -EINVAL; 1478 if (!prop->value) 1479 return -ENODATA; 1480 if (strnlen(prop->value, prop->length) >= prop->length) 1481 return -EILSEQ; 1482 1483 p = prop->value; 1484 1485 for (i = 0; total < prop->length; total += l, p += l, i++) 1486 l = strlen(p) + 1; 1487 1488 return i; 1489 } 1490 EXPORT_SYMBOL_GPL(of_property_count_strings); 1491 1492 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1493 { 1494 int i; 1495 printk("%s %s", msg, of_node_full_name(args->np)); 1496 for (i = 0; i < args->args_count; i++) 1497 printk(i ? ",%08x" : ":%08x", args->args[i]); 1498 printk("\n"); 1499 } 1500 1501 static int __of_parse_phandle_with_args(const struct device_node *np, 1502 const char *list_name, 1503 const char *cells_name, 1504 int cell_count, int index, 1505 struct of_phandle_args *out_args) 1506 { 1507 const __be32 *list, *list_end; 1508 int rc = 0, size, cur_index = 0; 1509 uint32_t count = 0; 1510 struct device_node *node = NULL; 1511 phandle phandle; 1512 1513 /* Retrieve the phandle list property */ 1514 list = of_get_property(np, list_name, &size); 1515 if (!list) 1516 return -ENOENT; 1517 list_end = list + size / sizeof(*list); 1518 1519 /* Loop over the phandles until all the requested entry is found */ 1520 while (list < list_end) { 1521 rc = -EINVAL; 1522 count = 0; 1523 1524 /* 1525 * If phandle is 0, then it is an empty entry with no 1526 * arguments. Skip forward to the next entry. 1527 */ 1528 phandle = be32_to_cpup(list++); 1529 if (phandle) { 1530 /* 1531 * Find the provider node and parse the #*-cells 1532 * property to determine the argument length. 1533 * 1534 * This is not needed if the cell count is hard-coded 1535 * (i.e. cells_name not set, but cell_count is set), 1536 * except when we're going to return the found node 1537 * below. 1538 */ 1539 if (cells_name || cur_index == index) { 1540 node = of_find_node_by_phandle(phandle); 1541 if (!node) { 1542 pr_err("%s: could not find phandle\n", 1543 np->full_name); 1544 goto err; 1545 } 1546 } 1547 1548 if (cells_name) { 1549 if (of_property_read_u32(node, cells_name, 1550 &count)) { 1551 pr_err("%s: could not get %s for %s\n", 1552 np->full_name, cells_name, 1553 node->full_name); 1554 goto err; 1555 } 1556 } else { 1557 count = cell_count; 1558 } 1559 1560 /* 1561 * Make sure that the arguments actually fit in the 1562 * remaining property data length 1563 */ 1564 if (list + count > list_end) { 1565 pr_err("%s: arguments longer than property\n", 1566 np->full_name); 1567 goto err; 1568 } 1569 } 1570 1571 /* 1572 * All of the error cases above bail out of the loop, so at 1573 * this point, the parsing is successful. If the requested 1574 * index matches, then fill the out_args structure and return, 1575 * or return -ENOENT for an empty entry. 1576 */ 1577 rc = -ENOENT; 1578 if (cur_index == index) { 1579 if (!phandle) 1580 goto err; 1581 1582 if (out_args) { 1583 int i; 1584 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1585 count = MAX_PHANDLE_ARGS; 1586 out_args->np = node; 1587 out_args->args_count = count; 1588 for (i = 0; i < count; i++) 1589 out_args->args[i] = be32_to_cpup(list++); 1590 } else { 1591 of_node_put(node); 1592 } 1593 1594 /* Found it! return success */ 1595 return 0; 1596 } 1597 1598 of_node_put(node); 1599 node = NULL; 1600 list += count; 1601 cur_index++; 1602 } 1603 1604 /* 1605 * Unlock node before returning result; will be one of: 1606 * -ENOENT : index is for empty phandle 1607 * -EINVAL : parsing error on data 1608 * [1..n] : Number of phandle (count mode; when index = -1) 1609 */ 1610 rc = index < 0 ? cur_index : -ENOENT; 1611 err: 1612 if (node) 1613 of_node_put(node); 1614 return rc; 1615 } 1616 1617 /** 1618 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1619 * @np: Pointer to device node holding phandle property 1620 * @phandle_name: Name of property holding a phandle value 1621 * @index: For properties holding a table of phandles, this is the index into 1622 * the table 1623 * 1624 * Returns the device_node pointer with refcount incremented. Use 1625 * of_node_put() on it when done. 1626 */ 1627 struct device_node *of_parse_phandle(const struct device_node *np, 1628 const char *phandle_name, int index) 1629 { 1630 struct of_phandle_args args; 1631 1632 if (index < 0) 1633 return NULL; 1634 1635 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1636 index, &args)) 1637 return NULL; 1638 1639 return args.np; 1640 } 1641 EXPORT_SYMBOL(of_parse_phandle); 1642 1643 /** 1644 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1645 * @np: pointer to a device tree node containing a list 1646 * @list_name: property name that contains a list 1647 * @cells_name: property name that specifies phandles' arguments count 1648 * @index: index of a phandle to parse out 1649 * @out_args: optional pointer to output arguments structure (will be filled) 1650 * 1651 * This function is useful to parse lists of phandles and their arguments. 1652 * Returns 0 on success and fills out_args, on error returns appropriate 1653 * errno value. 1654 * 1655 * Caller is responsible to call of_node_put() on the returned out_args->node 1656 * pointer. 1657 * 1658 * Example: 1659 * 1660 * phandle1: node1 { 1661 * #list-cells = <2>; 1662 * } 1663 * 1664 * phandle2: node2 { 1665 * #list-cells = <1>; 1666 * } 1667 * 1668 * node3 { 1669 * list = <&phandle1 1 2 &phandle2 3>; 1670 * } 1671 * 1672 * To get a device_node of the `node2' node you may call this: 1673 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1674 */ 1675 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1676 const char *cells_name, int index, 1677 struct of_phandle_args *out_args) 1678 { 1679 if (index < 0) 1680 return -EINVAL; 1681 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1682 index, out_args); 1683 } 1684 EXPORT_SYMBOL(of_parse_phandle_with_args); 1685 1686 /** 1687 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1688 * @np: pointer to a device tree node containing a list 1689 * @list_name: property name that contains a list 1690 * @cell_count: number of argument cells following the phandle 1691 * @index: index of a phandle to parse out 1692 * @out_args: optional pointer to output arguments structure (will be filled) 1693 * 1694 * This function is useful to parse lists of phandles and their arguments. 1695 * Returns 0 on success and fills out_args, on error returns appropriate 1696 * errno value. 1697 * 1698 * Caller is responsible to call of_node_put() on the returned out_args->node 1699 * pointer. 1700 * 1701 * Example: 1702 * 1703 * phandle1: node1 { 1704 * } 1705 * 1706 * phandle2: node2 { 1707 * } 1708 * 1709 * node3 { 1710 * list = <&phandle1 0 2 &phandle2 2 3>; 1711 * } 1712 * 1713 * To get a device_node of the `node2' node you may call this: 1714 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1715 */ 1716 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1717 const char *list_name, int cell_count, 1718 int index, struct of_phandle_args *out_args) 1719 { 1720 if (index < 0) 1721 return -EINVAL; 1722 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1723 index, out_args); 1724 } 1725 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1726 1727 /** 1728 * of_count_phandle_with_args() - Find the number of phandles references in a property 1729 * @np: pointer to a device tree node containing a list 1730 * @list_name: property name that contains a list 1731 * @cells_name: property name that specifies phandles' arguments count 1732 * 1733 * Returns the number of phandle + argument tuples within a property. It 1734 * is a typical pattern to encode a list of phandle and variable 1735 * arguments into a single property. The number of arguments is encoded 1736 * by a property in the phandle-target node. For example, a gpios 1737 * property would contain a list of GPIO specifies consisting of a 1738 * phandle and 1 or more arguments. The number of arguments are 1739 * determined by the #gpio-cells property in the node pointed to by the 1740 * phandle. 1741 */ 1742 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1743 const char *cells_name) 1744 { 1745 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1746 NULL); 1747 } 1748 EXPORT_SYMBOL(of_count_phandle_with_args); 1749 1750 #if defined(CONFIG_OF_DYNAMIC) 1751 static int of_property_notify(int action, struct device_node *np, 1752 struct property *prop) 1753 { 1754 struct of_prop_reconfig pr; 1755 1756 /* only call notifiers if the node is attached */ 1757 if (!of_node_is_attached(np)) 1758 return 0; 1759 1760 pr.dn = np; 1761 pr.prop = prop; 1762 return of_reconfig_notify(action, &pr); 1763 } 1764 #else 1765 static int of_property_notify(int action, struct device_node *np, 1766 struct property *prop) 1767 { 1768 return 0; 1769 } 1770 #endif 1771 1772 /** 1773 * __of_add_property - Add a property to a node without lock operations 1774 */ 1775 static int __of_add_property(struct device_node *np, struct property *prop) 1776 { 1777 struct property **next; 1778 1779 prop->next = NULL; 1780 next = &np->properties; 1781 while (*next) { 1782 if (strcmp(prop->name, (*next)->name) == 0) 1783 /* duplicate ! don't insert it */ 1784 return -EEXIST; 1785 1786 next = &(*next)->next; 1787 } 1788 *next = prop; 1789 1790 return 0; 1791 } 1792 1793 /** 1794 * of_add_property - Add a property to a node 1795 */ 1796 int of_add_property(struct device_node *np, struct property *prop) 1797 { 1798 unsigned long flags; 1799 int rc; 1800 1801 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); 1802 if (rc) 1803 return rc; 1804 1805 raw_spin_lock_irqsave(&devtree_lock, flags); 1806 rc = __of_add_property(np, prop); 1807 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1808 if (rc) 1809 return rc; 1810 1811 if (of_node_is_attached(np)) 1812 __of_add_property_sysfs(np, prop); 1813 1814 return rc; 1815 } 1816 1817 /** 1818 * of_remove_property - Remove a property from a node. 1819 * 1820 * Note that we don't actually remove it, since we have given out 1821 * who-knows-how-many pointers to the data using get-property. 1822 * Instead we just move the property to the "dead properties" 1823 * list, so it won't be found any more. 1824 */ 1825 int of_remove_property(struct device_node *np, struct property *prop) 1826 { 1827 struct property **next; 1828 unsigned long flags; 1829 int found = 0; 1830 int rc; 1831 1832 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); 1833 if (rc) 1834 return rc; 1835 1836 raw_spin_lock_irqsave(&devtree_lock, flags); 1837 next = &np->properties; 1838 while (*next) { 1839 if (*next == prop) { 1840 /* found the node */ 1841 *next = prop->next; 1842 prop->next = np->deadprops; 1843 np->deadprops = prop; 1844 found = 1; 1845 break; 1846 } 1847 next = &(*next)->next; 1848 } 1849 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1850 1851 if (!found) 1852 return -ENODEV; 1853 1854 /* at early boot, bail hear and defer setup to of_init() */ 1855 if (!of_kset) 1856 return 0; 1857 1858 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1859 1860 return 0; 1861 } 1862 1863 /* 1864 * of_update_property - Update a property in a node, if the property does 1865 * not exist, add it. 1866 * 1867 * Note that we don't actually remove it, since we have given out 1868 * who-knows-how-many pointers to the data using get-property. 1869 * Instead we just move the property to the "dead properties" list, 1870 * and add the new property to the property list 1871 */ 1872 int of_update_property(struct device_node *np, struct property *newprop) 1873 { 1874 struct property **next, *oldprop; 1875 unsigned long flags; 1876 int rc; 1877 1878 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); 1879 if (rc) 1880 return rc; 1881 1882 if (!newprop->name) 1883 return -EINVAL; 1884 1885 raw_spin_lock_irqsave(&devtree_lock, flags); 1886 next = &np->properties; 1887 oldprop = __of_find_property(np, newprop->name, NULL); 1888 if (!oldprop) { 1889 /* add the new node */ 1890 rc = __of_add_property(np, newprop); 1891 } else while (*next) { 1892 /* replace the node */ 1893 if (*next == oldprop) { 1894 newprop->next = oldprop->next; 1895 *next = newprop; 1896 oldprop->next = np->deadprops; 1897 np->deadprops = oldprop; 1898 break; 1899 } 1900 next = &(*next)->next; 1901 } 1902 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1903 if (rc) 1904 return rc; 1905 1906 /* At early boot, bail out and defer setup to of_init() */ 1907 if (!of_kset) 1908 return 0; 1909 1910 /* Update the sysfs attribute */ 1911 if (oldprop) 1912 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1913 __of_add_property_sysfs(np, newprop); 1914 1915 return 0; 1916 } 1917 1918 #if defined(CONFIG_OF_DYNAMIC) 1919 /* 1920 * Support for dynamic device trees. 1921 * 1922 * On some platforms, the device tree can be manipulated at runtime. 1923 * The routines in this section support adding, removing and changing 1924 * device tree nodes. 1925 */ 1926 1927 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); 1928 1929 int of_reconfig_notifier_register(struct notifier_block *nb) 1930 { 1931 return blocking_notifier_chain_register(&of_reconfig_chain, nb); 1932 } 1933 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); 1934 1935 int of_reconfig_notifier_unregister(struct notifier_block *nb) 1936 { 1937 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); 1938 } 1939 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); 1940 1941 int of_reconfig_notify(unsigned long action, void *p) 1942 { 1943 int rc; 1944 1945 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); 1946 return notifier_to_errno(rc); 1947 } 1948 1949 /** 1950 * of_attach_node - Plug a device node into the tree and global list. 1951 */ 1952 int of_attach_node(struct device_node *np) 1953 { 1954 unsigned long flags; 1955 int rc; 1956 1957 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); 1958 if (rc) 1959 return rc; 1960 1961 raw_spin_lock_irqsave(&devtree_lock, flags); 1962 np->sibling = np->parent->child; 1963 np->allnext = of_allnodes; 1964 np->parent->child = np; 1965 of_allnodes = np; 1966 of_node_clear_flag(np, OF_DETACHED); 1967 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1968 1969 of_node_add(np); 1970 return 0; 1971 } 1972 1973 /** 1974 * of_detach_node - "Unplug" a node from the device tree. 1975 * 1976 * The caller must hold a reference to the node. The memory associated with 1977 * the node is not freed until its refcount goes to zero. 1978 */ 1979 int of_detach_node(struct device_node *np) 1980 { 1981 struct device_node *parent; 1982 unsigned long flags; 1983 int rc = 0; 1984 1985 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); 1986 if (rc) 1987 return rc; 1988 1989 raw_spin_lock_irqsave(&devtree_lock, flags); 1990 1991 if (of_node_check_flag(np, OF_DETACHED)) { 1992 /* someone already detached it */ 1993 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1994 return rc; 1995 } 1996 1997 parent = np->parent; 1998 if (!parent) { 1999 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2000 return rc; 2001 } 2002 2003 if (of_allnodes == np) 2004 of_allnodes = np->allnext; 2005 else { 2006 struct device_node *prev; 2007 for (prev = of_allnodes; 2008 prev->allnext != np; 2009 prev = prev->allnext) 2010 ; 2011 prev->allnext = np->allnext; 2012 } 2013 2014 if (parent->child == np) 2015 parent->child = np->sibling; 2016 else { 2017 struct device_node *prevsib; 2018 for (prevsib = np->parent->child; 2019 prevsib->sibling != np; 2020 prevsib = prevsib->sibling) 2021 ; 2022 prevsib->sibling = np->sibling; 2023 } 2024 2025 of_node_set_flag(np, OF_DETACHED); 2026 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2027 2028 of_node_remove(np); 2029 return rc; 2030 } 2031 #endif /* defined(CONFIG_OF_DYNAMIC) */ 2032 2033 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 2034 int id, const char *stem, int stem_len) 2035 { 2036 ap->np = np; 2037 ap->id = id; 2038 strncpy(ap->stem, stem, stem_len); 2039 ap->stem[stem_len] = 0; 2040 list_add_tail(&ap->link, &aliases_lookup); 2041 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 2042 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 2043 } 2044 2045 /** 2046 * of_alias_scan - Scan all properties of 'aliases' node 2047 * 2048 * The function scans all the properties of 'aliases' node and populate 2049 * the the global lookup table with the properties. It returns the 2050 * number of alias_prop found, or error code in error case. 2051 * 2052 * @dt_alloc: An allocator that provides a virtual address to memory 2053 * for the resulting tree 2054 */ 2055 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2056 { 2057 struct property *pp; 2058 2059 of_chosen = of_find_node_by_path("/chosen"); 2060 if (of_chosen == NULL) 2061 of_chosen = of_find_node_by_path("/chosen@0"); 2062 2063 if (of_chosen) { 2064 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 2065 if (!name) 2066 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 2067 if (name) 2068 of_stdout = of_find_node_by_path(name); 2069 } 2070 2071 of_aliases = of_find_node_by_path("/aliases"); 2072 if (!of_aliases) 2073 return; 2074 2075 for_each_property_of_node(of_aliases, pp) { 2076 const char *start = pp->name; 2077 const char *end = start + strlen(start); 2078 struct device_node *np; 2079 struct alias_prop *ap; 2080 int id, len; 2081 2082 /* Skip those we do not want to proceed */ 2083 if (!strcmp(pp->name, "name") || 2084 !strcmp(pp->name, "phandle") || 2085 !strcmp(pp->name, "linux,phandle")) 2086 continue; 2087 2088 np = of_find_node_by_path(pp->value); 2089 if (!np) 2090 continue; 2091 2092 /* walk the alias backwards to extract the id and work out 2093 * the 'stem' string */ 2094 while (isdigit(*(end-1)) && end > start) 2095 end--; 2096 len = end - start; 2097 2098 if (kstrtoint(end, 10, &id) < 0) 2099 continue; 2100 2101 /* Allocate an alias_prop with enough space for the stem */ 2102 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 2103 if (!ap) 2104 continue; 2105 memset(ap, 0, sizeof(*ap) + len + 1); 2106 ap->alias = start; 2107 of_alias_add(ap, np, id, start, len); 2108 } 2109 } 2110 2111 /** 2112 * of_alias_get_id - Get alias id for the given device_node 2113 * @np: Pointer to the given device_node 2114 * @stem: Alias stem of the given device_node 2115 * 2116 * The function travels the lookup table to get the alias id for the given 2117 * device_node and alias stem. It returns the alias id if found. 2118 */ 2119 int of_alias_get_id(struct device_node *np, const char *stem) 2120 { 2121 struct alias_prop *app; 2122 int id = -ENODEV; 2123 2124 mutex_lock(&of_aliases_mutex); 2125 list_for_each_entry(app, &aliases_lookup, link) { 2126 if (strcmp(app->stem, stem) != 0) 2127 continue; 2128 2129 if (np == app->np) { 2130 id = app->id; 2131 break; 2132 } 2133 } 2134 mutex_unlock(&of_aliases_mutex); 2135 2136 return id; 2137 } 2138 EXPORT_SYMBOL_GPL(of_alias_get_id); 2139 2140 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2141 u32 *pu) 2142 { 2143 const void *curv = cur; 2144 2145 if (!prop) 2146 return NULL; 2147 2148 if (!cur) { 2149 curv = prop->value; 2150 goto out_val; 2151 } 2152 2153 curv += sizeof(*cur); 2154 if (curv >= prop->value + prop->length) 2155 return NULL; 2156 2157 out_val: 2158 *pu = be32_to_cpup(curv); 2159 return curv; 2160 } 2161 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2162 2163 const char *of_prop_next_string(struct property *prop, const char *cur) 2164 { 2165 const void *curv = cur; 2166 2167 if (!prop) 2168 return NULL; 2169 2170 if (!cur) 2171 return prop->value; 2172 2173 curv += strlen(cur) + 1; 2174 if (curv >= prop->value + prop->length) 2175 return NULL; 2176 2177 return curv; 2178 } 2179 EXPORT_SYMBOL_GPL(of_prop_next_string); 2180 2181 /** 2182 * of_device_is_stdout_path - check if a device node matches the 2183 * linux,stdout-path property 2184 * 2185 * Check if this device node matches the linux,stdout-path property 2186 * in the chosen node. return true if yes, false otherwise. 2187 */ 2188 int of_device_is_stdout_path(struct device_node *dn) 2189 { 2190 if (!of_stdout) 2191 return false; 2192 2193 return of_stdout == dn; 2194 } 2195 EXPORT_SYMBOL_GPL(of_device_is_stdout_path); 2196 2197 /** 2198 * of_find_next_cache_node - Find a node's subsidiary cache 2199 * @np: node of type "cpu" or "cache" 2200 * 2201 * Returns a node pointer with refcount incremented, use 2202 * of_node_put() on it when done. Caller should hold a reference 2203 * to np. 2204 */ 2205 struct device_node *of_find_next_cache_node(const struct device_node *np) 2206 { 2207 struct device_node *child; 2208 const phandle *handle; 2209 2210 handle = of_get_property(np, "l2-cache", NULL); 2211 if (!handle) 2212 handle = of_get_property(np, "next-level-cache", NULL); 2213 2214 if (handle) 2215 return of_find_node_by_phandle(be32_to_cpup(handle)); 2216 2217 /* OF on pmac has nodes instead of properties named "l2-cache" 2218 * beneath CPU nodes. 2219 */ 2220 if (!strcmp(np->type, "cpu")) 2221 for_each_child_of_node(np, child) 2222 if (!strcmp(child->type, "cache")) 2223 return child; 2224 2225 return NULL; 2226 } 2227 2228 /** 2229 * of_graph_parse_endpoint() - parse common endpoint node properties 2230 * @node: pointer to endpoint device_node 2231 * @endpoint: pointer to the OF endpoint data structure 2232 * 2233 * The caller should hold a reference to @node. 2234 */ 2235 int of_graph_parse_endpoint(const struct device_node *node, 2236 struct of_endpoint *endpoint) 2237 { 2238 struct device_node *port_node = of_get_parent(node); 2239 2240 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2241 __func__, node->full_name); 2242 2243 memset(endpoint, 0, sizeof(*endpoint)); 2244 2245 endpoint->local_node = node; 2246 /* 2247 * It doesn't matter whether the two calls below succeed. 2248 * If they don't then the default value 0 is used. 2249 */ 2250 of_property_read_u32(port_node, "reg", &endpoint->port); 2251 of_property_read_u32(node, "reg", &endpoint->id); 2252 2253 of_node_put(port_node); 2254 2255 return 0; 2256 } 2257 EXPORT_SYMBOL(of_graph_parse_endpoint); 2258 2259 /** 2260 * of_graph_get_next_endpoint() - get next endpoint node 2261 * @parent: pointer to the parent device node 2262 * @prev: previous endpoint node, or NULL to get first 2263 * 2264 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2265 * of the passed @prev node is not decremented, the caller have to use 2266 * of_node_put() on it when done. 2267 */ 2268 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2269 struct device_node *prev) 2270 { 2271 struct device_node *endpoint; 2272 struct device_node *port; 2273 2274 if (!parent) 2275 return NULL; 2276 2277 /* 2278 * Start by locating the port node. If no previous endpoint is specified 2279 * search for the first port node, otherwise get the previous endpoint 2280 * parent port node. 2281 */ 2282 if (!prev) { 2283 struct device_node *node; 2284 2285 node = of_get_child_by_name(parent, "ports"); 2286 if (node) 2287 parent = node; 2288 2289 port = of_get_child_by_name(parent, "port"); 2290 of_node_put(node); 2291 2292 if (!port) { 2293 pr_err("%s(): no port node found in %s\n", 2294 __func__, parent->full_name); 2295 return NULL; 2296 } 2297 } else { 2298 port = of_get_parent(prev); 2299 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2300 __func__, prev->full_name)) 2301 return NULL; 2302 2303 /* 2304 * Avoid dropping prev node refcount to 0 when getting the next 2305 * child below. 2306 */ 2307 of_node_get(prev); 2308 } 2309 2310 while (1) { 2311 /* 2312 * Now that we have a port node, get the next endpoint by 2313 * getting the next child. If the previous endpoint is NULL this 2314 * will return the first child. 2315 */ 2316 endpoint = of_get_next_child(port, prev); 2317 if (endpoint) { 2318 of_node_put(port); 2319 return endpoint; 2320 } 2321 2322 /* No more endpoints under this port, try the next one. */ 2323 prev = NULL; 2324 2325 do { 2326 port = of_get_next_child(parent, port); 2327 if (!port) 2328 return NULL; 2329 } while (of_node_cmp(port->name, "port")); 2330 } 2331 } 2332 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2333 2334 /** 2335 * of_graph_get_remote_port_parent() - get remote port's parent node 2336 * @node: pointer to a local endpoint device_node 2337 * 2338 * Return: Remote device node associated with remote endpoint node linked 2339 * to @node. Use of_node_put() on it when done. 2340 */ 2341 struct device_node *of_graph_get_remote_port_parent( 2342 const struct device_node *node) 2343 { 2344 struct device_node *np; 2345 unsigned int depth; 2346 2347 /* Get remote endpoint node. */ 2348 np = of_parse_phandle(node, "remote-endpoint", 0); 2349 2350 /* Walk 3 levels up only if there is 'ports' node. */ 2351 for (depth = 3; depth && np; depth--) { 2352 np = of_get_next_parent(np); 2353 if (depth == 2 && of_node_cmp(np->name, "ports")) 2354 break; 2355 } 2356 return np; 2357 } 2358 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2359 2360 /** 2361 * of_graph_get_remote_port() - get remote port node 2362 * @node: pointer to a local endpoint device_node 2363 * 2364 * Return: Remote port node associated with remote endpoint node linked 2365 * to @node. Use of_node_put() on it when done. 2366 */ 2367 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2368 { 2369 struct device_node *np; 2370 2371 /* Get remote endpoint node. */ 2372 np = of_parse_phandle(node, "remote-endpoint", 0); 2373 if (!np) 2374 return NULL; 2375 return of_get_next_parent(np); 2376 } 2377 EXPORT_SYMBOL(of_graph_get_remote_port); 2378