1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 EXPORT_SYMBOL(of_chosen); 40 struct device_node *of_aliases; 41 struct device_node *of_stdout; 42 static const char *of_stdout_options; 43 44 struct kset *of_kset; 45 46 /* 47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 48 * This mutex must be held whenever modifications are being made to the 49 * device tree. The of_{attach,detach}_node() and 50 * of_{add,remove,update}_property() helpers make sure this happens. 51 */ 52 DEFINE_MUTEX(of_mutex); 53 54 /* use when traversing tree through the child, sibling, 55 * or parent members of struct device_node. 56 */ 57 DEFINE_RAW_SPINLOCK(devtree_lock); 58 59 bool of_node_name_eq(const struct device_node *np, const char *name) 60 { 61 const char *node_name; 62 size_t len; 63 64 if (!np) 65 return false; 66 67 node_name = kbasename(np->full_name); 68 len = strchrnul(node_name, '@') - node_name; 69 70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 71 } 72 EXPORT_SYMBOL(of_node_name_eq); 73 74 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 75 { 76 if (!np) 77 return false; 78 79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 80 } 81 EXPORT_SYMBOL(of_node_name_prefix); 82 83 static bool __of_node_is_type(const struct device_node *np, const char *type) 84 { 85 const char *match = __of_get_property(np, "device_type", NULL); 86 87 return np && match && type && !strcmp(match, type); 88 } 89 90 int of_bus_n_addr_cells(struct device_node *np) 91 { 92 u32 cells; 93 94 for (; np; np = np->parent) 95 if (!of_property_read_u32(np, "#address-cells", &cells)) 96 return cells; 97 98 /* No #address-cells property for the root node */ 99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 100 } 101 102 int of_n_addr_cells(struct device_node *np) 103 { 104 if (np->parent) 105 np = np->parent; 106 107 return of_bus_n_addr_cells(np); 108 } 109 EXPORT_SYMBOL(of_n_addr_cells); 110 111 int of_bus_n_size_cells(struct device_node *np) 112 { 113 u32 cells; 114 115 for (; np; np = np->parent) 116 if (!of_property_read_u32(np, "#size-cells", &cells)) 117 return cells; 118 119 /* No #size-cells property for the root node */ 120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 121 } 122 123 int of_n_size_cells(struct device_node *np) 124 { 125 if (np->parent) 126 np = np->parent; 127 128 return of_bus_n_size_cells(np); 129 } 130 EXPORT_SYMBOL(of_n_size_cells); 131 132 #ifdef CONFIG_NUMA 133 int __weak of_node_to_nid(struct device_node *np) 134 { 135 return NUMA_NO_NODE; 136 } 137 #endif 138 139 #define OF_PHANDLE_CACHE_BITS 7 140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 141 142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 143 144 static u32 of_phandle_cache_hash(phandle handle) 145 { 146 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 147 } 148 149 /* 150 * Caller must hold devtree_lock. 151 */ 152 void __of_phandle_cache_inv_entry(phandle handle) 153 { 154 u32 handle_hash; 155 struct device_node *np; 156 157 if (!handle) 158 return; 159 160 handle_hash = of_phandle_cache_hash(handle); 161 162 np = phandle_cache[handle_hash]; 163 if (np && handle == np->phandle) 164 phandle_cache[handle_hash] = NULL; 165 } 166 167 void __init of_core_init(void) 168 { 169 struct device_node *np; 170 171 172 /* Create the kset, and register existing nodes */ 173 mutex_lock(&of_mutex); 174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 175 if (!of_kset) { 176 mutex_unlock(&of_mutex); 177 pr_err("failed to register existing nodes\n"); 178 return; 179 } 180 for_each_of_allnodes(np) { 181 __of_attach_node_sysfs(np); 182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 184 } 185 mutex_unlock(&of_mutex); 186 187 /* Symlink in /proc as required by userspace ABI */ 188 if (of_root) 189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 190 } 191 192 static struct property *__of_find_property(const struct device_node *np, 193 const char *name, int *lenp) 194 { 195 struct property *pp; 196 197 if (!np) 198 return NULL; 199 200 for (pp = np->properties; pp; pp = pp->next) { 201 if (of_prop_cmp(pp->name, name) == 0) { 202 if (lenp) 203 *lenp = pp->length; 204 break; 205 } 206 } 207 208 return pp; 209 } 210 211 struct property *of_find_property(const struct device_node *np, 212 const char *name, 213 int *lenp) 214 { 215 struct property *pp; 216 unsigned long flags; 217 218 raw_spin_lock_irqsave(&devtree_lock, flags); 219 pp = __of_find_property(np, name, lenp); 220 raw_spin_unlock_irqrestore(&devtree_lock, flags); 221 222 return pp; 223 } 224 EXPORT_SYMBOL(of_find_property); 225 226 struct device_node *__of_find_all_nodes(struct device_node *prev) 227 { 228 struct device_node *np; 229 if (!prev) { 230 np = of_root; 231 } else if (prev->child) { 232 np = prev->child; 233 } else { 234 /* Walk back up looking for a sibling, or the end of the structure */ 235 np = prev; 236 while (np->parent && !np->sibling) 237 np = np->parent; 238 np = np->sibling; /* Might be null at the end of the tree */ 239 } 240 return np; 241 } 242 243 /** 244 * of_find_all_nodes - Get next node in global list 245 * @prev: Previous node or NULL to start iteration 246 * of_node_put() will be called on it 247 * 248 * Return: A node pointer with refcount incremented, use 249 * of_node_put() on it when done. 250 */ 251 struct device_node *of_find_all_nodes(struct device_node *prev) 252 { 253 struct device_node *np; 254 unsigned long flags; 255 256 raw_spin_lock_irqsave(&devtree_lock, flags); 257 np = __of_find_all_nodes(prev); 258 of_node_get(np); 259 of_node_put(prev); 260 raw_spin_unlock_irqrestore(&devtree_lock, flags); 261 return np; 262 } 263 EXPORT_SYMBOL(of_find_all_nodes); 264 265 /* 266 * Find a property with a given name for a given node 267 * and return the value. 268 */ 269 const void *__of_get_property(const struct device_node *np, 270 const char *name, int *lenp) 271 { 272 struct property *pp = __of_find_property(np, name, lenp); 273 274 return pp ? pp->value : NULL; 275 } 276 277 /* 278 * Find a property with a given name for a given node 279 * and return the value. 280 */ 281 const void *of_get_property(const struct device_node *np, const char *name, 282 int *lenp) 283 { 284 struct property *pp = of_find_property(np, name, lenp); 285 286 return pp ? pp->value : NULL; 287 } 288 EXPORT_SYMBOL(of_get_property); 289 290 /** 291 * of_get_cpu_hwid - Get the hardware ID from a CPU device node 292 * 293 * @cpun: CPU number(logical index) for which device node is required 294 * @thread: The local thread number to get the hardware ID for. 295 * 296 * Return: The hardware ID for the CPU node or ~0ULL if not found. 297 */ 298 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread) 299 { 300 const __be32 *cell; 301 int ac, len; 302 303 ac = of_n_addr_cells(cpun); 304 cell = of_get_property(cpun, "reg", &len); 305 if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len)) 306 return ~0ULL; 307 308 cell += ac * thread; 309 return of_read_number(cell, ac); 310 } 311 312 /* 313 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 314 * 315 * @cpu: logical cpu index of a core/thread 316 * @phys_id: physical identifier of a core/thread 317 * 318 * CPU logical to physical index mapping is architecture specific. 319 * However this __weak function provides a default match of physical 320 * id to logical cpu index. phys_id provided here is usually values read 321 * from the device tree which must match the hardware internal registers. 322 * 323 * Returns true if the physical identifier and the logical cpu index 324 * correspond to the same core/thread, false otherwise. 325 */ 326 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 327 { 328 return (u32)phys_id == cpu; 329 } 330 331 /* 332 * Checks if the given "prop_name" property holds the physical id of the 333 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 334 * NULL, local thread number within the core is returned in it. 335 */ 336 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 337 const char *prop_name, int cpu, unsigned int *thread) 338 { 339 const __be32 *cell; 340 int ac, prop_len, tid; 341 u64 hwid; 342 343 ac = of_n_addr_cells(cpun); 344 cell = of_get_property(cpun, prop_name, &prop_len); 345 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 346 return true; 347 if (!cell || !ac) 348 return false; 349 prop_len /= sizeof(*cell) * ac; 350 for (tid = 0; tid < prop_len; tid++) { 351 hwid = of_read_number(cell, ac); 352 if (arch_match_cpu_phys_id(cpu, hwid)) { 353 if (thread) 354 *thread = tid; 355 return true; 356 } 357 cell += ac; 358 } 359 return false; 360 } 361 362 /* 363 * arch_find_n_match_cpu_physical_id - See if the given device node is 364 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 365 * else false. If 'thread' is non-NULL, the local thread number within the 366 * core is returned in it. 367 */ 368 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 369 int cpu, unsigned int *thread) 370 { 371 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 372 * for thread ids on PowerPC. If it doesn't exist fallback to 373 * standard "reg" property. 374 */ 375 if (IS_ENABLED(CONFIG_PPC) && 376 __of_find_n_match_cpu_property(cpun, 377 "ibm,ppc-interrupt-server#s", 378 cpu, thread)) 379 return true; 380 381 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 382 } 383 384 /** 385 * of_get_cpu_node - Get device node associated with the given logical CPU 386 * 387 * @cpu: CPU number(logical index) for which device node is required 388 * @thread: if not NULL, local thread number within the physical core is 389 * returned 390 * 391 * The main purpose of this function is to retrieve the device node for the 392 * given logical CPU index. It should be used to initialize the of_node in 393 * cpu device. Once of_node in cpu device is populated, all the further 394 * references can use that instead. 395 * 396 * CPU logical to physical index mapping is architecture specific and is built 397 * before booting secondary cores. This function uses arch_match_cpu_phys_id 398 * which can be overridden by architecture specific implementation. 399 * 400 * Return: A node pointer for the logical cpu with refcount incremented, use 401 * of_node_put() on it when done. Returns NULL if not found. 402 */ 403 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 404 { 405 struct device_node *cpun; 406 407 for_each_of_cpu_node(cpun) { 408 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 409 return cpun; 410 } 411 return NULL; 412 } 413 EXPORT_SYMBOL(of_get_cpu_node); 414 415 /** 416 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 417 * 418 * @cpu_node: Pointer to the device_node for CPU. 419 * 420 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the 421 * CPU is not found. 422 */ 423 int of_cpu_node_to_id(struct device_node *cpu_node) 424 { 425 int cpu; 426 bool found = false; 427 struct device_node *np; 428 429 for_each_possible_cpu(cpu) { 430 np = of_cpu_device_node_get(cpu); 431 found = (cpu_node == np); 432 of_node_put(np); 433 if (found) 434 return cpu; 435 } 436 437 return -ENODEV; 438 } 439 EXPORT_SYMBOL(of_cpu_node_to_id); 440 441 /** 442 * of_get_cpu_state_node - Get CPU's idle state node at the given index 443 * 444 * @cpu_node: The device node for the CPU 445 * @index: The index in the list of the idle states 446 * 447 * Two generic methods can be used to describe a CPU's idle states, either via 448 * a flattened description through the "cpu-idle-states" binding or via the 449 * hierarchical layout, using the "power-domains" and the "domain-idle-states" 450 * bindings. This function check for both and returns the idle state node for 451 * the requested index. 452 * 453 * Return: An idle state node if found at @index. The refcount is incremented 454 * for it, so call of_node_put() on it when done. Returns NULL if not found. 455 */ 456 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, 457 int index) 458 { 459 struct of_phandle_args args; 460 int err; 461 462 err = of_parse_phandle_with_args(cpu_node, "power-domains", 463 "#power-domain-cells", 0, &args); 464 if (!err) { 465 struct device_node *state_node = 466 of_parse_phandle(args.np, "domain-idle-states", index); 467 468 of_node_put(args.np); 469 if (state_node) 470 return state_node; 471 } 472 473 return of_parse_phandle(cpu_node, "cpu-idle-states", index); 474 } 475 EXPORT_SYMBOL(of_get_cpu_state_node); 476 477 /** 478 * __of_device_is_compatible() - Check if the node matches given constraints 479 * @device: pointer to node 480 * @compat: required compatible string, NULL or "" for any match 481 * @type: required device_type value, NULL or "" for any match 482 * @name: required node name, NULL or "" for any match 483 * 484 * Checks if the given @compat, @type and @name strings match the 485 * properties of the given @device. A constraints can be skipped by 486 * passing NULL or an empty string as the constraint. 487 * 488 * Returns 0 for no match, and a positive integer on match. The return 489 * value is a relative score with larger values indicating better 490 * matches. The score is weighted for the most specific compatible value 491 * to get the highest score. Matching type is next, followed by matching 492 * name. Practically speaking, this results in the following priority 493 * order for matches: 494 * 495 * 1. specific compatible && type && name 496 * 2. specific compatible && type 497 * 3. specific compatible && name 498 * 4. specific compatible 499 * 5. general compatible && type && name 500 * 6. general compatible && type 501 * 7. general compatible && name 502 * 8. general compatible 503 * 9. type && name 504 * 10. type 505 * 11. name 506 */ 507 static int __of_device_is_compatible(const struct device_node *device, 508 const char *compat, const char *type, const char *name) 509 { 510 struct property *prop; 511 const char *cp; 512 int index = 0, score = 0; 513 514 /* Compatible match has highest priority */ 515 if (compat && compat[0]) { 516 prop = __of_find_property(device, "compatible", NULL); 517 for (cp = of_prop_next_string(prop, NULL); cp; 518 cp = of_prop_next_string(prop, cp), index++) { 519 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 520 score = INT_MAX/2 - (index << 2); 521 break; 522 } 523 } 524 if (!score) 525 return 0; 526 } 527 528 /* Matching type is better than matching name */ 529 if (type && type[0]) { 530 if (!__of_node_is_type(device, type)) 531 return 0; 532 score += 2; 533 } 534 535 /* Matching name is a bit better than not */ 536 if (name && name[0]) { 537 if (!of_node_name_eq(device, name)) 538 return 0; 539 score++; 540 } 541 542 return score; 543 } 544 545 /** Checks if the given "compat" string matches one of the strings in 546 * the device's "compatible" property 547 */ 548 int of_device_is_compatible(const struct device_node *device, 549 const char *compat) 550 { 551 unsigned long flags; 552 int res; 553 554 raw_spin_lock_irqsave(&devtree_lock, flags); 555 res = __of_device_is_compatible(device, compat, NULL, NULL); 556 raw_spin_unlock_irqrestore(&devtree_lock, flags); 557 return res; 558 } 559 EXPORT_SYMBOL(of_device_is_compatible); 560 561 /** Checks if the device is compatible with any of the entries in 562 * a NULL terminated array of strings. Returns the best match 563 * score or 0. 564 */ 565 int of_device_compatible_match(struct device_node *device, 566 const char *const *compat) 567 { 568 unsigned int tmp, score = 0; 569 570 if (!compat) 571 return 0; 572 573 while (*compat) { 574 tmp = of_device_is_compatible(device, *compat); 575 if (tmp > score) 576 score = tmp; 577 compat++; 578 } 579 580 return score; 581 } 582 583 /** 584 * of_machine_is_compatible - Test root of device tree for a given compatible value 585 * @compat: compatible string to look for in root node's compatible property. 586 * 587 * Return: A positive integer if the root node has the given value in its 588 * compatible property. 589 */ 590 int of_machine_is_compatible(const char *compat) 591 { 592 struct device_node *root; 593 int rc = 0; 594 595 root = of_find_node_by_path("/"); 596 if (root) { 597 rc = of_device_is_compatible(root, compat); 598 of_node_put(root); 599 } 600 return rc; 601 } 602 EXPORT_SYMBOL(of_machine_is_compatible); 603 604 /** 605 * __of_device_is_available - check if a device is available for use 606 * 607 * @device: Node to check for availability, with locks already held 608 * 609 * Return: True if the status property is absent or set to "okay" or "ok", 610 * false otherwise 611 */ 612 static bool __of_device_is_available(const struct device_node *device) 613 { 614 const char *status; 615 int statlen; 616 617 if (!device) 618 return false; 619 620 status = __of_get_property(device, "status", &statlen); 621 if (status == NULL) 622 return true; 623 624 if (statlen > 0) { 625 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 626 return true; 627 } 628 629 return false; 630 } 631 632 /** 633 * of_device_is_available - check if a device is available for use 634 * 635 * @device: Node to check for availability 636 * 637 * Return: True if the status property is absent or set to "okay" or "ok", 638 * false otherwise 639 */ 640 bool of_device_is_available(const struct device_node *device) 641 { 642 unsigned long flags; 643 bool res; 644 645 raw_spin_lock_irqsave(&devtree_lock, flags); 646 res = __of_device_is_available(device); 647 raw_spin_unlock_irqrestore(&devtree_lock, flags); 648 return res; 649 650 } 651 EXPORT_SYMBOL(of_device_is_available); 652 653 /** 654 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 655 * 656 * @device: Node to check status for, with locks already held 657 * 658 * Return: True if the status property is set to "fail" or "fail-..." (for any 659 * error code suffix), false otherwise 660 */ 661 static bool __of_device_is_fail(const struct device_node *device) 662 { 663 const char *status; 664 665 if (!device) 666 return false; 667 668 status = __of_get_property(device, "status", NULL); 669 if (status == NULL) 670 return false; 671 672 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5); 673 } 674 675 /** 676 * of_device_is_big_endian - check if a device has BE registers 677 * 678 * @device: Node to check for endianness 679 * 680 * Return: True if the device has a "big-endian" property, or if the kernel 681 * was compiled for BE *and* the device has a "native-endian" property. 682 * Returns false otherwise. 683 * 684 * Callers would nominally use ioread32be/iowrite32be if 685 * of_device_is_big_endian() == true, or readl/writel otherwise. 686 */ 687 bool of_device_is_big_endian(const struct device_node *device) 688 { 689 if (of_property_read_bool(device, "big-endian")) 690 return true; 691 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 692 of_property_read_bool(device, "native-endian")) 693 return true; 694 return false; 695 } 696 EXPORT_SYMBOL(of_device_is_big_endian); 697 698 /** 699 * of_get_parent - Get a node's parent if any 700 * @node: Node to get parent 701 * 702 * Return: A node pointer with refcount incremented, use 703 * of_node_put() on it when done. 704 */ 705 struct device_node *of_get_parent(const struct device_node *node) 706 { 707 struct device_node *np; 708 unsigned long flags; 709 710 if (!node) 711 return NULL; 712 713 raw_spin_lock_irqsave(&devtree_lock, flags); 714 np = of_node_get(node->parent); 715 raw_spin_unlock_irqrestore(&devtree_lock, flags); 716 return np; 717 } 718 EXPORT_SYMBOL(of_get_parent); 719 720 /** 721 * of_get_next_parent - Iterate to a node's parent 722 * @node: Node to get parent of 723 * 724 * This is like of_get_parent() except that it drops the 725 * refcount on the passed node, making it suitable for iterating 726 * through a node's parents. 727 * 728 * Return: A node pointer with refcount incremented, use 729 * of_node_put() on it when done. 730 */ 731 struct device_node *of_get_next_parent(struct device_node *node) 732 { 733 struct device_node *parent; 734 unsigned long flags; 735 736 if (!node) 737 return NULL; 738 739 raw_spin_lock_irqsave(&devtree_lock, flags); 740 parent = of_node_get(node->parent); 741 of_node_put(node); 742 raw_spin_unlock_irqrestore(&devtree_lock, flags); 743 return parent; 744 } 745 EXPORT_SYMBOL(of_get_next_parent); 746 747 static struct device_node *__of_get_next_child(const struct device_node *node, 748 struct device_node *prev) 749 { 750 struct device_node *next; 751 752 if (!node) 753 return NULL; 754 755 next = prev ? prev->sibling : node->child; 756 of_node_get(next); 757 of_node_put(prev); 758 return next; 759 } 760 #define __for_each_child_of_node(parent, child) \ 761 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 762 child = __of_get_next_child(parent, child)) 763 764 /** 765 * of_get_next_child - Iterate a node childs 766 * @node: parent node 767 * @prev: previous child of the parent node, or NULL to get first 768 * 769 * Return: A node pointer with refcount incremented, use of_node_put() on 770 * it when done. Returns NULL when prev is the last child. Decrements the 771 * refcount of prev. 772 */ 773 struct device_node *of_get_next_child(const struct device_node *node, 774 struct device_node *prev) 775 { 776 struct device_node *next; 777 unsigned long flags; 778 779 raw_spin_lock_irqsave(&devtree_lock, flags); 780 next = __of_get_next_child(node, prev); 781 raw_spin_unlock_irqrestore(&devtree_lock, flags); 782 return next; 783 } 784 EXPORT_SYMBOL(of_get_next_child); 785 786 /** 787 * of_get_next_available_child - Find the next available child node 788 * @node: parent node 789 * @prev: previous child of the parent node, or NULL to get first 790 * 791 * This function is like of_get_next_child(), except that it 792 * automatically skips any disabled nodes (i.e. status = "disabled"). 793 */ 794 struct device_node *of_get_next_available_child(const struct device_node *node, 795 struct device_node *prev) 796 { 797 struct device_node *next; 798 unsigned long flags; 799 800 if (!node) 801 return NULL; 802 803 raw_spin_lock_irqsave(&devtree_lock, flags); 804 next = prev ? prev->sibling : node->child; 805 for (; next; next = next->sibling) { 806 if (!__of_device_is_available(next)) 807 continue; 808 if (of_node_get(next)) 809 break; 810 } 811 of_node_put(prev); 812 raw_spin_unlock_irqrestore(&devtree_lock, flags); 813 return next; 814 } 815 EXPORT_SYMBOL(of_get_next_available_child); 816 817 /** 818 * of_get_next_cpu_node - Iterate on cpu nodes 819 * @prev: previous child of the /cpus node, or NULL to get first 820 * 821 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 822 * will be skipped. 823 * 824 * Return: A cpu node pointer with refcount incremented, use of_node_put() 825 * on it when done. Returns NULL when prev is the last child. Decrements 826 * the refcount of prev. 827 */ 828 struct device_node *of_get_next_cpu_node(struct device_node *prev) 829 { 830 struct device_node *next = NULL; 831 unsigned long flags; 832 struct device_node *node; 833 834 if (!prev) 835 node = of_find_node_by_path("/cpus"); 836 837 raw_spin_lock_irqsave(&devtree_lock, flags); 838 if (prev) 839 next = prev->sibling; 840 else if (node) { 841 next = node->child; 842 of_node_put(node); 843 } 844 for (; next; next = next->sibling) { 845 if (__of_device_is_fail(next)) 846 continue; 847 if (!(of_node_name_eq(next, "cpu") || 848 __of_node_is_type(next, "cpu"))) 849 continue; 850 if (of_node_get(next)) 851 break; 852 } 853 of_node_put(prev); 854 raw_spin_unlock_irqrestore(&devtree_lock, flags); 855 return next; 856 } 857 EXPORT_SYMBOL(of_get_next_cpu_node); 858 859 /** 860 * of_get_compatible_child - Find compatible child node 861 * @parent: parent node 862 * @compatible: compatible string 863 * 864 * Lookup child node whose compatible property contains the given compatible 865 * string. 866 * 867 * Return: a node pointer with refcount incremented, use of_node_put() on it 868 * when done; or NULL if not found. 869 */ 870 struct device_node *of_get_compatible_child(const struct device_node *parent, 871 const char *compatible) 872 { 873 struct device_node *child; 874 875 for_each_child_of_node(parent, child) { 876 if (of_device_is_compatible(child, compatible)) 877 break; 878 } 879 880 return child; 881 } 882 EXPORT_SYMBOL(of_get_compatible_child); 883 884 /** 885 * of_get_child_by_name - Find the child node by name for a given parent 886 * @node: parent node 887 * @name: child name to look for. 888 * 889 * This function looks for child node for given matching name 890 * 891 * Return: A node pointer if found, with refcount incremented, use 892 * of_node_put() on it when done. 893 * Returns NULL if node is not found. 894 */ 895 struct device_node *of_get_child_by_name(const struct device_node *node, 896 const char *name) 897 { 898 struct device_node *child; 899 900 for_each_child_of_node(node, child) 901 if (of_node_name_eq(child, name)) 902 break; 903 return child; 904 } 905 EXPORT_SYMBOL(of_get_child_by_name); 906 907 struct device_node *__of_find_node_by_path(struct device_node *parent, 908 const char *path) 909 { 910 struct device_node *child; 911 int len; 912 913 len = strcspn(path, "/:"); 914 if (!len) 915 return NULL; 916 917 __for_each_child_of_node(parent, child) { 918 const char *name = kbasename(child->full_name); 919 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 920 return child; 921 } 922 return NULL; 923 } 924 925 struct device_node *__of_find_node_by_full_path(struct device_node *node, 926 const char *path) 927 { 928 const char *separator = strchr(path, ':'); 929 930 while (node && *path == '/') { 931 struct device_node *tmp = node; 932 933 path++; /* Increment past '/' delimiter */ 934 node = __of_find_node_by_path(node, path); 935 of_node_put(tmp); 936 path = strchrnul(path, '/'); 937 if (separator && separator < path) 938 break; 939 } 940 return node; 941 } 942 943 /** 944 * of_find_node_opts_by_path - Find a node matching a full OF path 945 * @path: Either the full path to match, or if the path does not 946 * start with '/', the name of a property of the /aliases 947 * node (an alias). In the case of an alias, the node 948 * matching the alias' value will be returned. 949 * @opts: Address of a pointer into which to store the start of 950 * an options string appended to the end of the path with 951 * a ':' separator. 952 * 953 * Valid paths: 954 * * /foo/bar Full path 955 * * foo Valid alias 956 * * foo/bar Valid alias + relative path 957 * 958 * Return: A node pointer with refcount incremented, use 959 * of_node_put() on it when done. 960 */ 961 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 962 { 963 struct device_node *np = NULL; 964 struct property *pp; 965 unsigned long flags; 966 const char *separator = strchr(path, ':'); 967 968 if (opts) 969 *opts = separator ? separator + 1 : NULL; 970 971 if (strcmp(path, "/") == 0) 972 return of_node_get(of_root); 973 974 /* The path could begin with an alias */ 975 if (*path != '/') { 976 int len; 977 const char *p = separator; 978 979 if (!p) 980 p = strchrnul(path, '/'); 981 len = p - path; 982 983 /* of_aliases must not be NULL */ 984 if (!of_aliases) 985 return NULL; 986 987 for_each_property_of_node(of_aliases, pp) { 988 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 989 np = of_find_node_by_path(pp->value); 990 break; 991 } 992 } 993 if (!np) 994 return NULL; 995 path = p; 996 } 997 998 /* Step down the tree matching path components */ 999 raw_spin_lock_irqsave(&devtree_lock, flags); 1000 if (!np) 1001 np = of_node_get(of_root); 1002 np = __of_find_node_by_full_path(np, path); 1003 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1004 return np; 1005 } 1006 EXPORT_SYMBOL(of_find_node_opts_by_path); 1007 1008 /** 1009 * of_find_node_by_name - Find a node by its "name" property 1010 * @from: The node to start searching from or NULL; the node 1011 * you pass will not be searched, only the next one 1012 * will. Typically, you pass what the previous call 1013 * returned. of_node_put() will be called on @from. 1014 * @name: The name string to match against 1015 * 1016 * Return: A node pointer with refcount incremented, use 1017 * of_node_put() on it when done. 1018 */ 1019 struct device_node *of_find_node_by_name(struct device_node *from, 1020 const char *name) 1021 { 1022 struct device_node *np; 1023 unsigned long flags; 1024 1025 raw_spin_lock_irqsave(&devtree_lock, flags); 1026 for_each_of_allnodes_from(from, np) 1027 if (of_node_name_eq(np, name) && of_node_get(np)) 1028 break; 1029 of_node_put(from); 1030 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1031 return np; 1032 } 1033 EXPORT_SYMBOL(of_find_node_by_name); 1034 1035 /** 1036 * of_find_node_by_type - Find a node by its "device_type" property 1037 * @from: The node to start searching from, or NULL to start searching 1038 * the entire device tree. The node you pass will not be 1039 * searched, only the next one will; typically, you pass 1040 * what the previous call returned. of_node_put() will be 1041 * called on from for you. 1042 * @type: The type string to match against 1043 * 1044 * Return: A node pointer with refcount incremented, use 1045 * of_node_put() on it when done. 1046 */ 1047 struct device_node *of_find_node_by_type(struct device_node *from, 1048 const char *type) 1049 { 1050 struct device_node *np; 1051 unsigned long flags; 1052 1053 raw_spin_lock_irqsave(&devtree_lock, flags); 1054 for_each_of_allnodes_from(from, np) 1055 if (__of_node_is_type(np, type) && of_node_get(np)) 1056 break; 1057 of_node_put(from); 1058 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1059 return np; 1060 } 1061 EXPORT_SYMBOL(of_find_node_by_type); 1062 1063 /** 1064 * of_find_compatible_node - Find a node based on type and one of the 1065 * tokens in its "compatible" property 1066 * @from: The node to start searching from or NULL, the node 1067 * you pass will not be searched, only the next one 1068 * will; typically, you pass what the previous call 1069 * returned. of_node_put() will be called on it 1070 * @type: The type string to match "device_type" or NULL to ignore 1071 * @compatible: The string to match to one of the tokens in the device 1072 * "compatible" list. 1073 * 1074 * Return: A node pointer with refcount incremented, use 1075 * of_node_put() on it when done. 1076 */ 1077 struct device_node *of_find_compatible_node(struct device_node *from, 1078 const char *type, const char *compatible) 1079 { 1080 struct device_node *np; 1081 unsigned long flags; 1082 1083 raw_spin_lock_irqsave(&devtree_lock, flags); 1084 for_each_of_allnodes_from(from, np) 1085 if (__of_device_is_compatible(np, compatible, type, NULL) && 1086 of_node_get(np)) 1087 break; 1088 of_node_put(from); 1089 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1090 return np; 1091 } 1092 EXPORT_SYMBOL(of_find_compatible_node); 1093 1094 /** 1095 * of_find_node_with_property - Find a node which has a property with 1096 * the given name. 1097 * @from: The node to start searching from or NULL, the node 1098 * you pass will not be searched, only the next one 1099 * will; typically, you pass what the previous call 1100 * returned. of_node_put() will be called on it 1101 * @prop_name: The name of the property to look for. 1102 * 1103 * Return: A node pointer with refcount incremented, use 1104 * of_node_put() on it when done. 1105 */ 1106 struct device_node *of_find_node_with_property(struct device_node *from, 1107 const char *prop_name) 1108 { 1109 struct device_node *np; 1110 struct property *pp; 1111 unsigned long flags; 1112 1113 raw_spin_lock_irqsave(&devtree_lock, flags); 1114 for_each_of_allnodes_from(from, np) { 1115 for (pp = np->properties; pp; pp = pp->next) { 1116 if (of_prop_cmp(pp->name, prop_name) == 0) { 1117 of_node_get(np); 1118 goto out; 1119 } 1120 } 1121 } 1122 out: 1123 of_node_put(from); 1124 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1125 return np; 1126 } 1127 EXPORT_SYMBOL(of_find_node_with_property); 1128 1129 static 1130 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1131 const struct device_node *node) 1132 { 1133 const struct of_device_id *best_match = NULL; 1134 int score, best_score = 0; 1135 1136 if (!matches) 1137 return NULL; 1138 1139 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1140 score = __of_device_is_compatible(node, matches->compatible, 1141 matches->type, matches->name); 1142 if (score > best_score) { 1143 best_match = matches; 1144 best_score = score; 1145 } 1146 } 1147 1148 return best_match; 1149 } 1150 1151 /** 1152 * of_match_node - Tell if a device_node has a matching of_match structure 1153 * @matches: array of of device match structures to search in 1154 * @node: the of device structure to match against 1155 * 1156 * Low level utility function used by device matching. 1157 */ 1158 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1159 const struct device_node *node) 1160 { 1161 const struct of_device_id *match; 1162 unsigned long flags; 1163 1164 raw_spin_lock_irqsave(&devtree_lock, flags); 1165 match = __of_match_node(matches, node); 1166 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1167 return match; 1168 } 1169 EXPORT_SYMBOL(of_match_node); 1170 1171 /** 1172 * of_find_matching_node_and_match - Find a node based on an of_device_id 1173 * match table. 1174 * @from: The node to start searching from or NULL, the node 1175 * you pass will not be searched, only the next one 1176 * will; typically, you pass what the previous call 1177 * returned. of_node_put() will be called on it 1178 * @matches: array of of device match structures to search in 1179 * @match: Updated to point at the matches entry which matched 1180 * 1181 * Return: A node pointer with refcount incremented, use 1182 * of_node_put() on it when done. 1183 */ 1184 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1185 const struct of_device_id *matches, 1186 const struct of_device_id **match) 1187 { 1188 struct device_node *np; 1189 const struct of_device_id *m; 1190 unsigned long flags; 1191 1192 if (match) 1193 *match = NULL; 1194 1195 raw_spin_lock_irqsave(&devtree_lock, flags); 1196 for_each_of_allnodes_from(from, np) { 1197 m = __of_match_node(matches, np); 1198 if (m && of_node_get(np)) { 1199 if (match) 1200 *match = m; 1201 break; 1202 } 1203 } 1204 of_node_put(from); 1205 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1206 return np; 1207 } 1208 EXPORT_SYMBOL(of_find_matching_node_and_match); 1209 1210 /** 1211 * of_modalias_node - Lookup appropriate modalias for a device node 1212 * @node: pointer to a device tree node 1213 * @modalias: Pointer to buffer that modalias value will be copied into 1214 * @len: Length of modalias value 1215 * 1216 * Based on the value of the compatible property, this routine will attempt 1217 * to choose an appropriate modalias value for a particular device tree node. 1218 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1219 * from the first entry in the compatible list property. 1220 * 1221 * Return: This routine returns 0 on success, <0 on failure. 1222 */ 1223 int of_modalias_node(struct device_node *node, char *modalias, int len) 1224 { 1225 const char *compatible, *p; 1226 int cplen; 1227 1228 compatible = of_get_property(node, "compatible", &cplen); 1229 if (!compatible || strlen(compatible) > cplen) 1230 return -ENODEV; 1231 p = strchr(compatible, ','); 1232 strlcpy(modalias, p ? p + 1 : compatible, len); 1233 return 0; 1234 } 1235 EXPORT_SYMBOL_GPL(of_modalias_node); 1236 1237 /** 1238 * of_find_node_by_phandle - Find a node given a phandle 1239 * @handle: phandle of the node to find 1240 * 1241 * Return: A node pointer with refcount incremented, use 1242 * of_node_put() on it when done. 1243 */ 1244 struct device_node *of_find_node_by_phandle(phandle handle) 1245 { 1246 struct device_node *np = NULL; 1247 unsigned long flags; 1248 u32 handle_hash; 1249 1250 if (!handle) 1251 return NULL; 1252 1253 handle_hash = of_phandle_cache_hash(handle); 1254 1255 raw_spin_lock_irqsave(&devtree_lock, flags); 1256 1257 if (phandle_cache[handle_hash] && 1258 handle == phandle_cache[handle_hash]->phandle) 1259 np = phandle_cache[handle_hash]; 1260 1261 if (!np) { 1262 for_each_of_allnodes(np) 1263 if (np->phandle == handle && 1264 !of_node_check_flag(np, OF_DETACHED)) { 1265 phandle_cache[handle_hash] = np; 1266 break; 1267 } 1268 } 1269 1270 of_node_get(np); 1271 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1272 return np; 1273 } 1274 EXPORT_SYMBOL(of_find_node_by_phandle); 1275 1276 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1277 { 1278 int i; 1279 printk("%s %pOF", msg, args->np); 1280 for (i = 0; i < args->args_count; i++) { 1281 const char delim = i ? ',' : ':'; 1282 1283 pr_cont("%c%08x", delim, args->args[i]); 1284 } 1285 pr_cont("\n"); 1286 } 1287 1288 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1289 const struct device_node *np, 1290 const char *list_name, 1291 const char *cells_name, 1292 int cell_count) 1293 { 1294 const __be32 *list; 1295 int size; 1296 1297 memset(it, 0, sizeof(*it)); 1298 1299 /* 1300 * one of cell_count or cells_name must be provided to determine the 1301 * argument length. 1302 */ 1303 if (cell_count < 0 && !cells_name) 1304 return -EINVAL; 1305 1306 list = of_get_property(np, list_name, &size); 1307 if (!list) 1308 return -ENOENT; 1309 1310 it->cells_name = cells_name; 1311 it->cell_count = cell_count; 1312 it->parent = np; 1313 it->list_end = list + size / sizeof(*list); 1314 it->phandle_end = list; 1315 it->cur = list; 1316 1317 return 0; 1318 } 1319 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1320 1321 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1322 { 1323 uint32_t count = 0; 1324 1325 if (it->node) { 1326 of_node_put(it->node); 1327 it->node = NULL; 1328 } 1329 1330 if (!it->cur || it->phandle_end >= it->list_end) 1331 return -ENOENT; 1332 1333 it->cur = it->phandle_end; 1334 1335 /* If phandle is 0, then it is an empty entry with no arguments. */ 1336 it->phandle = be32_to_cpup(it->cur++); 1337 1338 if (it->phandle) { 1339 1340 /* 1341 * Find the provider node and parse the #*-cells property to 1342 * determine the argument length. 1343 */ 1344 it->node = of_find_node_by_phandle(it->phandle); 1345 1346 if (it->cells_name) { 1347 if (!it->node) { 1348 pr_err("%pOF: could not find phandle %d\n", 1349 it->parent, it->phandle); 1350 goto err; 1351 } 1352 1353 if (of_property_read_u32(it->node, it->cells_name, 1354 &count)) { 1355 /* 1356 * If both cell_count and cells_name is given, 1357 * fall back to cell_count in absence 1358 * of the cells_name property 1359 */ 1360 if (it->cell_count >= 0) { 1361 count = it->cell_count; 1362 } else { 1363 pr_err("%pOF: could not get %s for %pOF\n", 1364 it->parent, 1365 it->cells_name, 1366 it->node); 1367 goto err; 1368 } 1369 } 1370 } else { 1371 count = it->cell_count; 1372 } 1373 1374 /* 1375 * Make sure that the arguments actually fit in the remaining 1376 * property data length 1377 */ 1378 if (it->cur + count > it->list_end) { 1379 pr_err("%pOF: %s = %d found %d\n", 1380 it->parent, it->cells_name, 1381 count, it->cell_count); 1382 goto err; 1383 } 1384 } 1385 1386 it->phandle_end = it->cur + count; 1387 it->cur_count = count; 1388 1389 return 0; 1390 1391 err: 1392 if (it->node) { 1393 of_node_put(it->node); 1394 it->node = NULL; 1395 } 1396 1397 return -EINVAL; 1398 } 1399 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1400 1401 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1402 uint32_t *args, 1403 int size) 1404 { 1405 int i, count; 1406 1407 count = it->cur_count; 1408 1409 if (WARN_ON(size < count)) 1410 count = size; 1411 1412 for (i = 0; i < count; i++) 1413 args[i] = be32_to_cpup(it->cur++); 1414 1415 return count; 1416 } 1417 1418 static int __of_parse_phandle_with_args(const struct device_node *np, 1419 const char *list_name, 1420 const char *cells_name, 1421 int cell_count, int index, 1422 struct of_phandle_args *out_args) 1423 { 1424 struct of_phandle_iterator it; 1425 int rc, cur_index = 0; 1426 1427 /* Loop over the phandles until all the requested entry is found */ 1428 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1429 /* 1430 * All of the error cases bail out of the loop, so at 1431 * this point, the parsing is successful. If the requested 1432 * index matches, then fill the out_args structure and return, 1433 * or return -ENOENT for an empty entry. 1434 */ 1435 rc = -ENOENT; 1436 if (cur_index == index) { 1437 if (!it.phandle) 1438 goto err; 1439 1440 if (out_args) { 1441 int c; 1442 1443 c = of_phandle_iterator_args(&it, 1444 out_args->args, 1445 MAX_PHANDLE_ARGS); 1446 out_args->np = it.node; 1447 out_args->args_count = c; 1448 } else { 1449 of_node_put(it.node); 1450 } 1451 1452 /* Found it! return success */ 1453 return 0; 1454 } 1455 1456 cur_index++; 1457 } 1458 1459 /* 1460 * Unlock node before returning result; will be one of: 1461 * -ENOENT : index is for empty phandle 1462 * -EINVAL : parsing error on data 1463 */ 1464 1465 err: 1466 of_node_put(it.node); 1467 return rc; 1468 } 1469 1470 /** 1471 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1472 * @np: Pointer to device node holding phandle property 1473 * @phandle_name: Name of property holding a phandle value 1474 * @index: For properties holding a table of phandles, this is the index into 1475 * the table 1476 * 1477 * Return: The device_node pointer with refcount incremented. Use 1478 * of_node_put() on it when done. 1479 */ 1480 struct device_node *of_parse_phandle(const struct device_node *np, 1481 const char *phandle_name, int index) 1482 { 1483 struct of_phandle_args args; 1484 1485 if (index < 0) 1486 return NULL; 1487 1488 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1489 index, &args)) 1490 return NULL; 1491 1492 return args.np; 1493 } 1494 EXPORT_SYMBOL(of_parse_phandle); 1495 1496 /** 1497 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1498 * @np: pointer to a device tree node containing a list 1499 * @list_name: property name that contains a list 1500 * @cells_name: property name that specifies phandles' arguments count 1501 * @index: index of a phandle to parse out 1502 * @out_args: optional pointer to output arguments structure (will be filled) 1503 * 1504 * This function is useful to parse lists of phandles and their arguments. 1505 * Returns 0 on success and fills out_args, on error returns appropriate 1506 * errno value. 1507 * 1508 * Caller is responsible to call of_node_put() on the returned out_args->np 1509 * pointer. 1510 * 1511 * Example:: 1512 * 1513 * phandle1: node1 { 1514 * #list-cells = <2>; 1515 * }; 1516 * 1517 * phandle2: node2 { 1518 * #list-cells = <1>; 1519 * }; 1520 * 1521 * node3 { 1522 * list = <&phandle1 1 2 &phandle2 3>; 1523 * }; 1524 * 1525 * To get a device_node of the ``node2`` node you may call this: 1526 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1527 */ 1528 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1529 const char *cells_name, int index, 1530 struct of_phandle_args *out_args) 1531 { 1532 int cell_count = -1; 1533 1534 if (index < 0) 1535 return -EINVAL; 1536 1537 /* If cells_name is NULL we assume a cell count of 0 */ 1538 if (!cells_name) 1539 cell_count = 0; 1540 1541 return __of_parse_phandle_with_args(np, list_name, cells_name, 1542 cell_count, index, out_args); 1543 } 1544 EXPORT_SYMBOL(of_parse_phandle_with_args); 1545 1546 /** 1547 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1548 * @np: pointer to a device tree node containing a list 1549 * @list_name: property name that contains a list 1550 * @stem_name: stem of property names that specify phandles' arguments count 1551 * @index: index of a phandle to parse out 1552 * @out_args: optional pointer to output arguments structure (will be filled) 1553 * 1554 * This function is useful to parse lists of phandles and their arguments. 1555 * Returns 0 on success and fills out_args, on error returns appropriate errno 1556 * value. The difference between this function and of_parse_phandle_with_args() 1557 * is that this API remaps a phandle if the node the phandle points to has 1558 * a <@stem_name>-map property. 1559 * 1560 * Caller is responsible to call of_node_put() on the returned out_args->np 1561 * pointer. 1562 * 1563 * Example:: 1564 * 1565 * phandle1: node1 { 1566 * #list-cells = <2>; 1567 * }; 1568 * 1569 * phandle2: node2 { 1570 * #list-cells = <1>; 1571 * }; 1572 * 1573 * phandle3: node3 { 1574 * #list-cells = <1>; 1575 * list-map = <0 &phandle2 3>, 1576 * <1 &phandle2 2>, 1577 * <2 &phandle1 5 1>; 1578 * list-map-mask = <0x3>; 1579 * }; 1580 * 1581 * node4 { 1582 * list = <&phandle1 1 2 &phandle3 0>; 1583 * }; 1584 * 1585 * To get a device_node of the ``node2`` node you may call this: 1586 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1587 */ 1588 int of_parse_phandle_with_args_map(const struct device_node *np, 1589 const char *list_name, 1590 const char *stem_name, 1591 int index, struct of_phandle_args *out_args) 1592 { 1593 char *cells_name, *map_name = NULL, *mask_name = NULL; 1594 char *pass_name = NULL; 1595 struct device_node *cur, *new = NULL; 1596 const __be32 *map, *mask, *pass; 1597 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1598 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1599 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1600 const __be32 *match_array = initial_match_array; 1601 int i, ret, map_len, match; 1602 u32 list_size, new_size; 1603 1604 if (index < 0) 1605 return -EINVAL; 1606 1607 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1608 if (!cells_name) 1609 return -ENOMEM; 1610 1611 ret = -ENOMEM; 1612 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1613 if (!map_name) 1614 goto free; 1615 1616 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1617 if (!mask_name) 1618 goto free; 1619 1620 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1621 if (!pass_name) 1622 goto free; 1623 1624 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1625 out_args); 1626 if (ret) 1627 goto free; 1628 1629 /* Get the #<list>-cells property */ 1630 cur = out_args->np; 1631 ret = of_property_read_u32(cur, cells_name, &list_size); 1632 if (ret < 0) 1633 goto put; 1634 1635 /* Precalculate the match array - this simplifies match loop */ 1636 for (i = 0; i < list_size; i++) 1637 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1638 1639 ret = -EINVAL; 1640 while (cur) { 1641 /* Get the <list>-map property */ 1642 map = of_get_property(cur, map_name, &map_len); 1643 if (!map) { 1644 ret = 0; 1645 goto free; 1646 } 1647 map_len /= sizeof(u32); 1648 1649 /* Get the <list>-map-mask property (optional) */ 1650 mask = of_get_property(cur, mask_name, NULL); 1651 if (!mask) 1652 mask = dummy_mask; 1653 /* Iterate through <list>-map property */ 1654 match = 0; 1655 while (map_len > (list_size + 1) && !match) { 1656 /* Compare specifiers */ 1657 match = 1; 1658 for (i = 0; i < list_size; i++, map_len--) 1659 match &= !((match_array[i] ^ *map++) & mask[i]); 1660 1661 of_node_put(new); 1662 new = of_find_node_by_phandle(be32_to_cpup(map)); 1663 map++; 1664 map_len--; 1665 1666 /* Check if not found */ 1667 if (!new) 1668 goto put; 1669 1670 if (!of_device_is_available(new)) 1671 match = 0; 1672 1673 ret = of_property_read_u32(new, cells_name, &new_size); 1674 if (ret) 1675 goto put; 1676 1677 /* Check for malformed properties */ 1678 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1679 goto put; 1680 if (map_len < new_size) 1681 goto put; 1682 1683 /* Move forward by new node's #<list>-cells amount */ 1684 map += new_size; 1685 map_len -= new_size; 1686 } 1687 if (!match) 1688 goto put; 1689 1690 /* Get the <list>-map-pass-thru property (optional) */ 1691 pass = of_get_property(cur, pass_name, NULL); 1692 if (!pass) 1693 pass = dummy_pass; 1694 1695 /* 1696 * Successfully parsed a <list>-map translation; copy new 1697 * specifier into the out_args structure, keeping the 1698 * bits specified in <list>-map-pass-thru. 1699 */ 1700 match_array = map - new_size; 1701 for (i = 0; i < new_size; i++) { 1702 __be32 val = *(map - new_size + i); 1703 1704 if (i < list_size) { 1705 val &= ~pass[i]; 1706 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1707 } 1708 1709 out_args->args[i] = be32_to_cpu(val); 1710 } 1711 out_args->args_count = list_size = new_size; 1712 /* Iterate again with new provider */ 1713 out_args->np = new; 1714 of_node_put(cur); 1715 cur = new; 1716 } 1717 put: 1718 of_node_put(cur); 1719 of_node_put(new); 1720 free: 1721 kfree(mask_name); 1722 kfree(map_name); 1723 kfree(cells_name); 1724 kfree(pass_name); 1725 1726 return ret; 1727 } 1728 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1729 1730 /** 1731 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1732 * @np: pointer to a device tree node containing a list 1733 * @list_name: property name that contains a list 1734 * @cell_count: number of argument cells following the phandle 1735 * @index: index of a phandle to parse out 1736 * @out_args: optional pointer to output arguments structure (will be filled) 1737 * 1738 * This function is useful to parse lists of phandles and their arguments. 1739 * Returns 0 on success and fills out_args, on error returns appropriate 1740 * errno value. 1741 * 1742 * Caller is responsible to call of_node_put() on the returned out_args->np 1743 * pointer. 1744 * 1745 * Example:: 1746 * 1747 * phandle1: node1 { 1748 * }; 1749 * 1750 * phandle2: node2 { 1751 * }; 1752 * 1753 * node3 { 1754 * list = <&phandle1 0 2 &phandle2 2 3>; 1755 * }; 1756 * 1757 * To get a device_node of the ``node2`` node you may call this: 1758 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1759 */ 1760 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1761 const char *list_name, int cell_count, 1762 int index, struct of_phandle_args *out_args) 1763 { 1764 if (index < 0) 1765 return -EINVAL; 1766 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1767 index, out_args); 1768 } 1769 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1770 1771 /** 1772 * of_count_phandle_with_args() - Find the number of phandles references in a property 1773 * @np: pointer to a device tree node containing a list 1774 * @list_name: property name that contains a list 1775 * @cells_name: property name that specifies phandles' arguments count 1776 * 1777 * Return: The number of phandle + argument tuples within a property. It 1778 * is a typical pattern to encode a list of phandle and variable 1779 * arguments into a single property. The number of arguments is encoded 1780 * by a property in the phandle-target node. For example, a gpios 1781 * property would contain a list of GPIO specifies consisting of a 1782 * phandle and 1 or more arguments. The number of arguments are 1783 * determined by the #gpio-cells property in the node pointed to by the 1784 * phandle. 1785 */ 1786 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1787 const char *cells_name) 1788 { 1789 struct of_phandle_iterator it; 1790 int rc, cur_index = 0; 1791 1792 /* 1793 * If cells_name is NULL we assume a cell count of 0. This makes 1794 * counting the phandles trivial as each 32bit word in the list is a 1795 * phandle and no arguments are to consider. So we don't iterate through 1796 * the list but just use the length to determine the phandle count. 1797 */ 1798 if (!cells_name) { 1799 const __be32 *list; 1800 int size; 1801 1802 list = of_get_property(np, list_name, &size); 1803 if (!list) 1804 return -ENOENT; 1805 1806 return size / sizeof(*list); 1807 } 1808 1809 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1810 if (rc) 1811 return rc; 1812 1813 while ((rc = of_phandle_iterator_next(&it)) == 0) 1814 cur_index += 1; 1815 1816 if (rc != -ENOENT) 1817 return rc; 1818 1819 return cur_index; 1820 } 1821 EXPORT_SYMBOL(of_count_phandle_with_args); 1822 1823 /** 1824 * __of_add_property - Add a property to a node without lock operations 1825 * @np: Caller's Device Node 1826 * @prop: Property to add 1827 */ 1828 int __of_add_property(struct device_node *np, struct property *prop) 1829 { 1830 struct property **next; 1831 1832 prop->next = NULL; 1833 next = &np->properties; 1834 while (*next) { 1835 if (strcmp(prop->name, (*next)->name) == 0) 1836 /* duplicate ! don't insert it */ 1837 return -EEXIST; 1838 1839 next = &(*next)->next; 1840 } 1841 *next = prop; 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * of_add_property - Add a property to a node 1848 * @np: Caller's Device Node 1849 * @prop: Property to add 1850 */ 1851 int of_add_property(struct device_node *np, struct property *prop) 1852 { 1853 unsigned long flags; 1854 int rc; 1855 1856 mutex_lock(&of_mutex); 1857 1858 raw_spin_lock_irqsave(&devtree_lock, flags); 1859 rc = __of_add_property(np, prop); 1860 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1861 1862 if (!rc) 1863 __of_add_property_sysfs(np, prop); 1864 1865 mutex_unlock(&of_mutex); 1866 1867 if (!rc) 1868 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1869 1870 return rc; 1871 } 1872 EXPORT_SYMBOL_GPL(of_add_property); 1873 1874 int __of_remove_property(struct device_node *np, struct property *prop) 1875 { 1876 struct property **next; 1877 1878 for (next = &np->properties; *next; next = &(*next)->next) { 1879 if (*next == prop) 1880 break; 1881 } 1882 if (*next == NULL) 1883 return -ENODEV; 1884 1885 /* found the node */ 1886 *next = prop->next; 1887 prop->next = np->deadprops; 1888 np->deadprops = prop; 1889 1890 return 0; 1891 } 1892 1893 /** 1894 * of_remove_property - Remove a property from a node. 1895 * @np: Caller's Device Node 1896 * @prop: Property to remove 1897 * 1898 * Note that we don't actually remove it, since we have given out 1899 * who-knows-how-many pointers to the data using get-property. 1900 * Instead we just move the property to the "dead properties" 1901 * list, so it won't be found any more. 1902 */ 1903 int of_remove_property(struct device_node *np, struct property *prop) 1904 { 1905 unsigned long flags; 1906 int rc; 1907 1908 if (!prop) 1909 return -ENODEV; 1910 1911 mutex_lock(&of_mutex); 1912 1913 raw_spin_lock_irqsave(&devtree_lock, flags); 1914 rc = __of_remove_property(np, prop); 1915 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1916 1917 if (!rc) 1918 __of_remove_property_sysfs(np, prop); 1919 1920 mutex_unlock(&of_mutex); 1921 1922 if (!rc) 1923 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1924 1925 return rc; 1926 } 1927 EXPORT_SYMBOL_GPL(of_remove_property); 1928 1929 int __of_update_property(struct device_node *np, struct property *newprop, 1930 struct property **oldpropp) 1931 { 1932 struct property **next, *oldprop; 1933 1934 for (next = &np->properties; *next; next = &(*next)->next) { 1935 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1936 break; 1937 } 1938 *oldpropp = oldprop = *next; 1939 1940 if (oldprop) { 1941 /* replace the node */ 1942 newprop->next = oldprop->next; 1943 *next = newprop; 1944 oldprop->next = np->deadprops; 1945 np->deadprops = oldprop; 1946 } else { 1947 /* new node */ 1948 newprop->next = NULL; 1949 *next = newprop; 1950 } 1951 1952 return 0; 1953 } 1954 1955 /* 1956 * of_update_property - Update a property in a node, if the property does 1957 * not exist, add it. 1958 * 1959 * Note that we don't actually remove it, since we have given out 1960 * who-knows-how-many pointers to the data using get-property. 1961 * Instead we just move the property to the "dead properties" list, 1962 * and add the new property to the property list 1963 */ 1964 int of_update_property(struct device_node *np, struct property *newprop) 1965 { 1966 struct property *oldprop; 1967 unsigned long flags; 1968 int rc; 1969 1970 if (!newprop->name) 1971 return -EINVAL; 1972 1973 mutex_lock(&of_mutex); 1974 1975 raw_spin_lock_irqsave(&devtree_lock, flags); 1976 rc = __of_update_property(np, newprop, &oldprop); 1977 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1978 1979 if (!rc) 1980 __of_update_property_sysfs(np, newprop, oldprop); 1981 1982 mutex_unlock(&of_mutex); 1983 1984 if (!rc) 1985 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1986 1987 return rc; 1988 } 1989 1990 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1991 int id, const char *stem, int stem_len) 1992 { 1993 ap->np = np; 1994 ap->id = id; 1995 strncpy(ap->stem, stem, stem_len); 1996 ap->stem[stem_len] = 0; 1997 list_add_tail(&ap->link, &aliases_lookup); 1998 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1999 ap->alias, ap->stem, ap->id, np); 2000 } 2001 2002 /** 2003 * of_alias_scan - Scan all properties of the 'aliases' node 2004 * @dt_alloc: An allocator that provides a virtual address to memory 2005 * for storing the resulting tree 2006 * 2007 * The function scans all the properties of the 'aliases' node and populates 2008 * the global lookup table with the properties. It returns the 2009 * number of alias properties found, or an error code in case of failure. 2010 */ 2011 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2012 { 2013 struct property *pp; 2014 2015 of_aliases = of_find_node_by_path("/aliases"); 2016 of_chosen = of_find_node_by_path("/chosen"); 2017 if (of_chosen == NULL) 2018 of_chosen = of_find_node_by_path("/chosen@0"); 2019 2020 if (of_chosen) { 2021 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 2022 const char *name = NULL; 2023 2024 if (of_property_read_string(of_chosen, "stdout-path", &name)) 2025 of_property_read_string(of_chosen, "linux,stdout-path", 2026 &name); 2027 if (IS_ENABLED(CONFIG_PPC) && !name) 2028 of_property_read_string(of_aliases, "stdout", &name); 2029 if (name) 2030 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2031 } 2032 2033 if (!of_aliases) 2034 return; 2035 2036 for_each_property_of_node(of_aliases, pp) { 2037 const char *start = pp->name; 2038 const char *end = start + strlen(start); 2039 struct device_node *np; 2040 struct alias_prop *ap; 2041 int id, len; 2042 2043 /* Skip those we do not want to proceed */ 2044 if (!strcmp(pp->name, "name") || 2045 !strcmp(pp->name, "phandle") || 2046 !strcmp(pp->name, "linux,phandle")) 2047 continue; 2048 2049 np = of_find_node_by_path(pp->value); 2050 if (!np) 2051 continue; 2052 2053 /* walk the alias backwards to extract the id and work out 2054 * the 'stem' string */ 2055 while (isdigit(*(end-1)) && end > start) 2056 end--; 2057 len = end - start; 2058 2059 if (kstrtoint(end, 10, &id) < 0) 2060 continue; 2061 2062 /* Allocate an alias_prop with enough space for the stem */ 2063 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2064 if (!ap) 2065 continue; 2066 memset(ap, 0, sizeof(*ap) + len + 1); 2067 ap->alias = start; 2068 of_alias_add(ap, np, id, start, len); 2069 } 2070 } 2071 2072 /** 2073 * of_alias_get_id - Get alias id for the given device_node 2074 * @np: Pointer to the given device_node 2075 * @stem: Alias stem of the given device_node 2076 * 2077 * The function travels the lookup table to get the alias id for the given 2078 * device_node and alias stem. 2079 * 2080 * Return: The alias id if found. 2081 */ 2082 int of_alias_get_id(struct device_node *np, const char *stem) 2083 { 2084 struct alias_prop *app; 2085 int id = -ENODEV; 2086 2087 mutex_lock(&of_mutex); 2088 list_for_each_entry(app, &aliases_lookup, link) { 2089 if (strcmp(app->stem, stem) != 0) 2090 continue; 2091 2092 if (np == app->np) { 2093 id = app->id; 2094 break; 2095 } 2096 } 2097 mutex_unlock(&of_mutex); 2098 2099 return id; 2100 } 2101 EXPORT_SYMBOL_GPL(of_alias_get_id); 2102 2103 /** 2104 * of_alias_get_alias_list - Get alias list for the given device driver 2105 * @matches: Array of OF device match structures to search in 2106 * @stem: Alias stem of the given device_node 2107 * @bitmap: Bitmap field pointer 2108 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2109 * 2110 * The function travels the lookup table to record alias ids for the given 2111 * device match structures and alias stem. 2112 * 2113 * Return: 0 or -ENOSYS when !CONFIG_OF or 2114 * -EOVERFLOW if alias ID is greater then allocated nbits 2115 */ 2116 int of_alias_get_alias_list(const struct of_device_id *matches, 2117 const char *stem, unsigned long *bitmap, 2118 unsigned int nbits) 2119 { 2120 struct alias_prop *app; 2121 int ret = 0; 2122 2123 /* Zero bitmap field to make sure that all the time it is clean */ 2124 bitmap_zero(bitmap, nbits); 2125 2126 mutex_lock(&of_mutex); 2127 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2128 list_for_each_entry(app, &aliases_lookup, link) { 2129 pr_debug("%s: stem: %s, id: %d\n", 2130 __func__, app->stem, app->id); 2131 2132 if (strcmp(app->stem, stem) != 0) { 2133 pr_debug("%s: stem comparison didn't pass %s\n", 2134 __func__, app->stem); 2135 continue; 2136 } 2137 2138 if (of_match_node(matches, app->np)) { 2139 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2140 2141 if (app->id >= nbits) { 2142 pr_warn("%s: ID %d >= than bitmap field %d\n", 2143 __func__, app->id, nbits); 2144 ret = -EOVERFLOW; 2145 } else { 2146 set_bit(app->id, bitmap); 2147 } 2148 } 2149 } 2150 mutex_unlock(&of_mutex); 2151 2152 return ret; 2153 } 2154 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2155 2156 /** 2157 * of_alias_get_highest_id - Get highest alias id for the given stem 2158 * @stem: Alias stem to be examined 2159 * 2160 * The function travels the lookup table to get the highest alias id for the 2161 * given alias stem. It returns the alias id if found. 2162 */ 2163 int of_alias_get_highest_id(const char *stem) 2164 { 2165 struct alias_prop *app; 2166 int id = -ENODEV; 2167 2168 mutex_lock(&of_mutex); 2169 list_for_each_entry(app, &aliases_lookup, link) { 2170 if (strcmp(app->stem, stem) != 0) 2171 continue; 2172 2173 if (app->id > id) 2174 id = app->id; 2175 } 2176 mutex_unlock(&of_mutex); 2177 2178 return id; 2179 } 2180 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2181 2182 /** 2183 * of_console_check() - Test and setup console for DT setup 2184 * @dn: Pointer to device node 2185 * @name: Name to use for preferred console without index. ex. "ttyS" 2186 * @index: Index to use for preferred console. 2187 * 2188 * Check if the given device node matches the stdout-path property in the 2189 * /chosen node. If it does then register it as the preferred console. 2190 * 2191 * Return: TRUE if console successfully setup. Otherwise return FALSE. 2192 */ 2193 bool of_console_check(struct device_node *dn, char *name, int index) 2194 { 2195 if (!dn || dn != of_stdout || console_set_on_cmdline) 2196 return false; 2197 2198 /* 2199 * XXX: cast `options' to char pointer to suppress complication 2200 * warnings: printk, UART and console drivers expect char pointer. 2201 */ 2202 return !add_preferred_console(name, index, (char *)of_stdout_options); 2203 } 2204 EXPORT_SYMBOL_GPL(of_console_check); 2205 2206 /** 2207 * of_find_next_cache_node - Find a node's subsidiary cache 2208 * @np: node of type "cpu" or "cache" 2209 * 2210 * Return: A node pointer with refcount incremented, use 2211 * of_node_put() on it when done. Caller should hold a reference 2212 * to np. 2213 */ 2214 struct device_node *of_find_next_cache_node(const struct device_node *np) 2215 { 2216 struct device_node *child, *cache_node; 2217 2218 cache_node = of_parse_phandle(np, "l2-cache", 0); 2219 if (!cache_node) 2220 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2221 2222 if (cache_node) 2223 return cache_node; 2224 2225 /* OF on pmac has nodes instead of properties named "l2-cache" 2226 * beneath CPU nodes. 2227 */ 2228 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2229 for_each_child_of_node(np, child) 2230 if (of_node_is_type(child, "cache")) 2231 return child; 2232 2233 return NULL; 2234 } 2235 2236 /** 2237 * of_find_last_cache_level - Find the level at which the last cache is 2238 * present for the given logical cpu 2239 * 2240 * @cpu: cpu number(logical index) for which the last cache level is needed 2241 * 2242 * Return: The the level at which the last cache is present. It is exactly 2243 * same as the total number of cache levels for the given logical cpu. 2244 */ 2245 int of_find_last_cache_level(unsigned int cpu) 2246 { 2247 u32 cache_level = 0; 2248 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2249 2250 while (np) { 2251 prev = np; 2252 of_node_put(np); 2253 np = of_find_next_cache_node(np); 2254 } 2255 2256 of_property_read_u32(prev, "cache-level", &cache_level); 2257 2258 return cache_level; 2259 } 2260 2261 /** 2262 * of_map_id - Translate an ID through a downstream mapping. 2263 * @np: root complex device node. 2264 * @id: device ID to map. 2265 * @map_name: property name of the map to use. 2266 * @map_mask_name: optional property name of the mask to use. 2267 * @target: optional pointer to a target device node. 2268 * @id_out: optional pointer to receive the translated ID. 2269 * 2270 * Given a device ID, look up the appropriate implementation-defined 2271 * platform ID and/or the target device which receives transactions on that 2272 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2273 * @id_out may be NULL if only the other is required. If @target points to 2274 * a non-NULL device node pointer, only entries targeting that node will be 2275 * matched; if it points to a NULL value, it will receive the device node of 2276 * the first matching target phandle, with a reference held. 2277 * 2278 * Return: 0 on success or a standard error code on failure. 2279 */ 2280 int of_map_id(struct device_node *np, u32 id, 2281 const char *map_name, const char *map_mask_name, 2282 struct device_node **target, u32 *id_out) 2283 { 2284 u32 map_mask, masked_id; 2285 int map_len; 2286 const __be32 *map = NULL; 2287 2288 if (!np || !map_name || (!target && !id_out)) 2289 return -EINVAL; 2290 2291 map = of_get_property(np, map_name, &map_len); 2292 if (!map) { 2293 if (target) 2294 return -ENODEV; 2295 /* Otherwise, no map implies no translation */ 2296 *id_out = id; 2297 return 0; 2298 } 2299 2300 if (!map_len || map_len % (4 * sizeof(*map))) { 2301 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2302 map_name, map_len); 2303 return -EINVAL; 2304 } 2305 2306 /* The default is to select all bits. */ 2307 map_mask = 0xffffffff; 2308 2309 /* 2310 * Can be overridden by "{iommu,msi}-map-mask" property. 2311 * If of_property_read_u32() fails, the default is used. 2312 */ 2313 if (map_mask_name) 2314 of_property_read_u32(np, map_mask_name, &map_mask); 2315 2316 masked_id = map_mask & id; 2317 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2318 struct device_node *phandle_node; 2319 u32 id_base = be32_to_cpup(map + 0); 2320 u32 phandle = be32_to_cpup(map + 1); 2321 u32 out_base = be32_to_cpup(map + 2); 2322 u32 id_len = be32_to_cpup(map + 3); 2323 2324 if (id_base & ~map_mask) { 2325 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2326 np, map_name, map_name, 2327 map_mask, id_base); 2328 return -EFAULT; 2329 } 2330 2331 if (masked_id < id_base || masked_id >= id_base + id_len) 2332 continue; 2333 2334 phandle_node = of_find_node_by_phandle(phandle); 2335 if (!phandle_node) 2336 return -ENODEV; 2337 2338 if (target) { 2339 if (*target) 2340 of_node_put(phandle_node); 2341 else 2342 *target = phandle_node; 2343 2344 if (*target != phandle_node) 2345 continue; 2346 } 2347 2348 if (id_out) 2349 *id_out = masked_id - id_base + out_base; 2350 2351 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2352 np, map_name, map_mask, id_base, out_base, 2353 id_len, id, masked_id - id_base + out_base); 2354 return 0; 2355 } 2356 2357 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2358 id, target && *target ? *target : NULL); 2359 2360 /* Bypasses translation */ 2361 if (id_out) 2362 *id_out = id; 2363 return 0; 2364 } 2365 EXPORT_SYMBOL_GPL(of_map_id); 2366