xref: /openbmc/linux/drivers/of/base.c (revision 1f012283)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 	u32 cells;
93 
94 	for (; np; np = np->parent)
95 		if (!of_property_read_u32(np, "#address-cells", &cells))
96 			return cells;
97 
98 	/* No #address-cells property for the root node */
99 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101 
102 int of_n_addr_cells(struct device_node *np)
103 {
104 	if (np->parent)
105 		np = np->parent;
106 
107 	return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110 
111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 	u32 cells;
114 
115 	for (; np; np = np->parent)
116 		if (!of_property_read_u32(np, "#size-cells", &cells))
117 			return cells;
118 
119 	/* No #size-cells property for the root node */
120 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122 
123 int of_n_size_cells(struct device_node *np)
124 {
125 	if (np->parent)
126 		np = np->parent;
127 
128 	return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131 
132 #ifdef CONFIG_NUMA
133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 	return NUMA_NO_NODE;
136 }
137 #endif
138 
139 #define OF_PHANDLE_CACHE_BITS	7
140 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
141 
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143 
144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148 
149 /*
150  * Caller must hold devtree_lock.
151  */
152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 	u32 handle_hash;
155 	struct device_node *np;
156 
157 	if (!handle)
158 		return;
159 
160 	handle_hash = of_phandle_cache_hash(handle);
161 
162 	np = phandle_cache[handle_hash];
163 	if (np && handle == np->phandle)
164 		phandle_cache[handle_hash] = NULL;
165 }
166 
167 void __init of_core_init(void)
168 {
169 	struct device_node *np;
170 
171 
172 	/* Create the kset, and register existing nodes */
173 	mutex_lock(&of_mutex);
174 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 	if (!of_kset) {
176 		mutex_unlock(&of_mutex);
177 		pr_err("failed to register existing nodes\n");
178 		return;
179 	}
180 	for_each_of_allnodes(np) {
181 		__of_attach_node_sysfs(np);
182 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 	}
185 	mutex_unlock(&of_mutex);
186 
187 	/* Symlink in /proc as required by userspace ABI */
188 	if (of_root)
189 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191 
192 static struct property *__of_find_property(const struct device_node *np,
193 					   const char *name, int *lenp)
194 {
195 	struct property *pp;
196 
197 	if (!np)
198 		return NULL;
199 
200 	for (pp = np->properties; pp; pp = pp->next) {
201 		if (of_prop_cmp(pp->name, name) == 0) {
202 			if (lenp)
203 				*lenp = pp->length;
204 			break;
205 		}
206 	}
207 
208 	return pp;
209 }
210 
211 struct property *of_find_property(const struct device_node *np,
212 				  const char *name,
213 				  int *lenp)
214 {
215 	struct property *pp;
216 	unsigned long flags;
217 
218 	raw_spin_lock_irqsave(&devtree_lock, flags);
219 	pp = __of_find_property(np, name, lenp);
220 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
221 
222 	return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225 
226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 	struct device_node *np;
229 	if (!prev) {
230 		np = of_root;
231 	} else if (prev->child) {
232 		np = prev->child;
233 	} else {
234 		/* Walk back up looking for a sibling, or the end of the structure */
235 		np = prev;
236 		while (np->parent && !np->sibling)
237 			np = np->parent;
238 		np = np->sibling; /* Might be null at the end of the tree */
239 	}
240 	return np;
241 }
242 
243 /**
244  * of_find_all_nodes - Get next node in global list
245  * @prev:	Previous node or NULL to start iteration
246  *		of_node_put() will be called on it
247  *
248  * Return: A node pointer with refcount incremented, use
249  * of_node_put() on it when done.
250  */
251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 	struct device_node *np;
254 	unsigned long flags;
255 
256 	raw_spin_lock_irqsave(&devtree_lock, flags);
257 	np = __of_find_all_nodes(prev);
258 	of_node_get(np);
259 	of_node_put(prev);
260 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 	return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264 
265 /*
266  * Find a property with a given name for a given node
267  * and return the value.
268  */
269 const void *__of_get_property(const struct device_node *np,
270 			      const char *name, int *lenp)
271 {
272 	struct property *pp = __of_find_property(np, name, lenp);
273 
274 	return pp ? pp->value : NULL;
275 }
276 
277 /*
278  * Find a property with a given name for a given node
279  * and return the value.
280  */
281 const void *of_get_property(const struct device_node *np, const char *name,
282 			    int *lenp)
283 {
284 	struct property *pp = of_find_property(np, name, lenp);
285 
286 	return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289 
290 /**
291  * of_get_cpu_hwid - Get the hardware ID from a CPU device node
292  *
293  * @cpun: CPU number(logical index) for which device node is required
294  * @thread: The local thread number to get the hardware ID for.
295  *
296  * Return: The hardware ID for the CPU node or ~0ULL if not found.
297  */
298 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
299 {
300 	const __be32 *cell;
301 	int ac, len;
302 
303 	ac = of_n_addr_cells(cpun);
304 	cell = of_get_property(cpun, "reg", &len);
305 	if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
306 		return ~0ULL;
307 
308 	cell += ac * thread;
309 	return of_read_number(cell, ac);
310 }
311 
312 /*
313  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
314  *
315  * @cpu: logical cpu index of a core/thread
316  * @phys_id: physical identifier of a core/thread
317  *
318  * CPU logical to physical index mapping is architecture specific.
319  * However this __weak function provides a default match of physical
320  * id to logical cpu index. phys_id provided here is usually values read
321  * from the device tree which must match the hardware internal registers.
322  *
323  * Returns true if the physical identifier and the logical cpu index
324  * correspond to the same core/thread, false otherwise.
325  */
326 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
327 {
328 	return (u32)phys_id == cpu;
329 }
330 
331 /*
332  * Checks if the given "prop_name" property holds the physical id of the
333  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
334  * NULL, local thread number within the core is returned in it.
335  */
336 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
337 			const char *prop_name, int cpu, unsigned int *thread)
338 {
339 	const __be32 *cell;
340 	int ac, prop_len, tid;
341 	u64 hwid;
342 
343 	ac = of_n_addr_cells(cpun);
344 	cell = of_get_property(cpun, prop_name, &prop_len);
345 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
346 		return true;
347 	if (!cell || !ac)
348 		return false;
349 	prop_len /= sizeof(*cell) * ac;
350 	for (tid = 0; tid < prop_len; tid++) {
351 		hwid = of_read_number(cell, ac);
352 		if (arch_match_cpu_phys_id(cpu, hwid)) {
353 			if (thread)
354 				*thread = tid;
355 			return true;
356 		}
357 		cell += ac;
358 	}
359 	return false;
360 }
361 
362 /*
363  * arch_find_n_match_cpu_physical_id - See if the given device node is
364  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
365  * else false.  If 'thread' is non-NULL, the local thread number within the
366  * core is returned in it.
367  */
368 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
369 					      int cpu, unsigned int *thread)
370 {
371 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
372 	 * for thread ids on PowerPC. If it doesn't exist fallback to
373 	 * standard "reg" property.
374 	 */
375 	if (IS_ENABLED(CONFIG_PPC) &&
376 	    __of_find_n_match_cpu_property(cpun,
377 					   "ibm,ppc-interrupt-server#s",
378 					   cpu, thread))
379 		return true;
380 
381 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
382 }
383 
384 /**
385  * of_get_cpu_node - Get device node associated with the given logical CPU
386  *
387  * @cpu: CPU number(logical index) for which device node is required
388  * @thread: if not NULL, local thread number within the physical core is
389  *          returned
390  *
391  * The main purpose of this function is to retrieve the device node for the
392  * given logical CPU index. It should be used to initialize the of_node in
393  * cpu device. Once of_node in cpu device is populated, all the further
394  * references can use that instead.
395  *
396  * CPU logical to physical index mapping is architecture specific and is built
397  * before booting secondary cores. This function uses arch_match_cpu_phys_id
398  * which can be overridden by architecture specific implementation.
399  *
400  * Return: A node pointer for the logical cpu with refcount incremented, use
401  * of_node_put() on it when done. Returns NULL if not found.
402  */
403 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
404 {
405 	struct device_node *cpun;
406 
407 	for_each_of_cpu_node(cpun) {
408 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
409 			return cpun;
410 	}
411 	return NULL;
412 }
413 EXPORT_SYMBOL(of_get_cpu_node);
414 
415 /**
416  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
417  *
418  * @cpu_node: Pointer to the device_node for CPU.
419  *
420  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
421  * CPU is not found.
422  */
423 int of_cpu_node_to_id(struct device_node *cpu_node)
424 {
425 	int cpu;
426 	bool found = false;
427 	struct device_node *np;
428 
429 	for_each_possible_cpu(cpu) {
430 		np = of_cpu_device_node_get(cpu);
431 		found = (cpu_node == np);
432 		of_node_put(np);
433 		if (found)
434 			return cpu;
435 	}
436 
437 	return -ENODEV;
438 }
439 EXPORT_SYMBOL(of_cpu_node_to_id);
440 
441 /**
442  * of_get_cpu_state_node - Get CPU's idle state node at the given index
443  *
444  * @cpu_node: The device node for the CPU
445  * @index: The index in the list of the idle states
446  *
447  * Two generic methods can be used to describe a CPU's idle states, either via
448  * a flattened description through the "cpu-idle-states" binding or via the
449  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
450  * bindings. This function check for both and returns the idle state node for
451  * the requested index.
452  *
453  * Return: An idle state node if found at @index. The refcount is incremented
454  * for it, so call of_node_put() on it when done. Returns NULL if not found.
455  */
456 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
457 					  int index)
458 {
459 	struct of_phandle_args args;
460 	int err;
461 
462 	err = of_parse_phandle_with_args(cpu_node, "power-domains",
463 					"#power-domain-cells", 0, &args);
464 	if (!err) {
465 		struct device_node *state_node =
466 			of_parse_phandle(args.np, "domain-idle-states", index);
467 
468 		of_node_put(args.np);
469 		if (state_node)
470 			return state_node;
471 	}
472 
473 	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
474 }
475 EXPORT_SYMBOL(of_get_cpu_state_node);
476 
477 /**
478  * __of_device_is_compatible() - Check if the node matches given constraints
479  * @device: pointer to node
480  * @compat: required compatible string, NULL or "" for any match
481  * @type: required device_type value, NULL or "" for any match
482  * @name: required node name, NULL or "" for any match
483  *
484  * Checks if the given @compat, @type and @name strings match the
485  * properties of the given @device. A constraints can be skipped by
486  * passing NULL or an empty string as the constraint.
487  *
488  * Returns 0 for no match, and a positive integer on match. The return
489  * value is a relative score with larger values indicating better
490  * matches. The score is weighted for the most specific compatible value
491  * to get the highest score. Matching type is next, followed by matching
492  * name. Practically speaking, this results in the following priority
493  * order for matches:
494  *
495  * 1. specific compatible && type && name
496  * 2. specific compatible && type
497  * 3. specific compatible && name
498  * 4. specific compatible
499  * 5. general compatible && type && name
500  * 6. general compatible && type
501  * 7. general compatible && name
502  * 8. general compatible
503  * 9. type && name
504  * 10. type
505  * 11. name
506  */
507 static int __of_device_is_compatible(const struct device_node *device,
508 				     const char *compat, const char *type, const char *name)
509 {
510 	struct property *prop;
511 	const char *cp;
512 	int index = 0, score = 0;
513 
514 	/* Compatible match has highest priority */
515 	if (compat && compat[0]) {
516 		prop = __of_find_property(device, "compatible", NULL);
517 		for (cp = of_prop_next_string(prop, NULL); cp;
518 		     cp = of_prop_next_string(prop, cp), index++) {
519 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
520 				score = INT_MAX/2 - (index << 2);
521 				break;
522 			}
523 		}
524 		if (!score)
525 			return 0;
526 	}
527 
528 	/* Matching type is better than matching name */
529 	if (type && type[0]) {
530 		if (!__of_node_is_type(device, type))
531 			return 0;
532 		score += 2;
533 	}
534 
535 	/* Matching name is a bit better than not */
536 	if (name && name[0]) {
537 		if (!of_node_name_eq(device, name))
538 			return 0;
539 		score++;
540 	}
541 
542 	return score;
543 }
544 
545 /** Checks if the given "compat" string matches one of the strings in
546  * the device's "compatible" property
547  */
548 int of_device_is_compatible(const struct device_node *device,
549 		const char *compat)
550 {
551 	unsigned long flags;
552 	int res;
553 
554 	raw_spin_lock_irqsave(&devtree_lock, flags);
555 	res = __of_device_is_compatible(device, compat, NULL, NULL);
556 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
557 	return res;
558 }
559 EXPORT_SYMBOL(of_device_is_compatible);
560 
561 /** Checks if the device is compatible with any of the entries in
562  *  a NULL terminated array of strings. Returns the best match
563  *  score or 0.
564  */
565 int of_device_compatible_match(struct device_node *device,
566 			       const char *const *compat)
567 {
568 	unsigned int tmp, score = 0;
569 
570 	if (!compat)
571 		return 0;
572 
573 	while (*compat) {
574 		tmp = of_device_is_compatible(device, *compat);
575 		if (tmp > score)
576 			score = tmp;
577 		compat++;
578 	}
579 
580 	return score;
581 }
582 
583 /**
584  * of_machine_is_compatible - Test root of device tree for a given compatible value
585  * @compat: compatible string to look for in root node's compatible property.
586  *
587  * Return: A positive integer if the root node has the given value in its
588  * compatible property.
589  */
590 int of_machine_is_compatible(const char *compat)
591 {
592 	struct device_node *root;
593 	int rc = 0;
594 
595 	root = of_find_node_by_path("/");
596 	if (root) {
597 		rc = of_device_is_compatible(root, compat);
598 		of_node_put(root);
599 	}
600 	return rc;
601 }
602 EXPORT_SYMBOL(of_machine_is_compatible);
603 
604 /**
605  *  __of_device_is_available - check if a device is available for use
606  *
607  *  @device: Node to check for availability, with locks already held
608  *
609  *  Return: True if the status property is absent or set to "okay" or "ok",
610  *  false otherwise
611  */
612 static bool __of_device_is_available(const struct device_node *device)
613 {
614 	const char *status;
615 	int statlen;
616 
617 	if (!device)
618 		return false;
619 
620 	status = __of_get_property(device, "status", &statlen);
621 	if (status == NULL)
622 		return true;
623 
624 	if (statlen > 0) {
625 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
626 			return true;
627 	}
628 
629 	return false;
630 }
631 
632 /**
633  *  of_device_is_available - check if a device is available for use
634  *
635  *  @device: Node to check for availability
636  *
637  *  Return: True if the status property is absent or set to "okay" or "ok",
638  *  false otherwise
639  */
640 bool of_device_is_available(const struct device_node *device)
641 {
642 	unsigned long flags;
643 	bool res;
644 
645 	raw_spin_lock_irqsave(&devtree_lock, flags);
646 	res = __of_device_is_available(device);
647 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
648 	return res;
649 
650 }
651 EXPORT_SYMBOL(of_device_is_available);
652 
653 /**
654  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
655  *
656  *  @device: Node to check status for, with locks already held
657  *
658  *  Return: True if the status property is set to "fail" or "fail-..." (for any
659  *  error code suffix), false otherwise
660  */
661 static bool __of_device_is_fail(const struct device_node *device)
662 {
663 	const char *status;
664 
665 	if (!device)
666 		return false;
667 
668 	status = __of_get_property(device, "status", NULL);
669 	if (status == NULL)
670 		return false;
671 
672 	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
673 }
674 
675 /**
676  *  of_device_is_big_endian - check if a device has BE registers
677  *
678  *  @device: Node to check for endianness
679  *
680  *  Return: True if the device has a "big-endian" property, or if the kernel
681  *  was compiled for BE *and* the device has a "native-endian" property.
682  *  Returns false otherwise.
683  *
684  *  Callers would nominally use ioread32be/iowrite32be if
685  *  of_device_is_big_endian() == true, or readl/writel otherwise.
686  */
687 bool of_device_is_big_endian(const struct device_node *device)
688 {
689 	if (of_property_read_bool(device, "big-endian"))
690 		return true;
691 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
692 	    of_property_read_bool(device, "native-endian"))
693 		return true;
694 	return false;
695 }
696 EXPORT_SYMBOL(of_device_is_big_endian);
697 
698 /**
699  * of_get_parent - Get a node's parent if any
700  * @node:	Node to get parent
701  *
702  * Return: A node pointer with refcount incremented, use
703  * of_node_put() on it when done.
704  */
705 struct device_node *of_get_parent(const struct device_node *node)
706 {
707 	struct device_node *np;
708 	unsigned long flags;
709 
710 	if (!node)
711 		return NULL;
712 
713 	raw_spin_lock_irqsave(&devtree_lock, flags);
714 	np = of_node_get(node->parent);
715 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
716 	return np;
717 }
718 EXPORT_SYMBOL(of_get_parent);
719 
720 /**
721  * of_get_next_parent - Iterate to a node's parent
722  * @node:	Node to get parent of
723  *
724  * This is like of_get_parent() except that it drops the
725  * refcount on the passed node, making it suitable for iterating
726  * through a node's parents.
727  *
728  * Return: A node pointer with refcount incremented, use
729  * of_node_put() on it when done.
730  */
731 struct device_node *of_get_next_parent(struct device_node *node)
732 {
733 	struct device_node *parent;
734 	unsigned long flags;
735 
736 	if (!node)
737 		return NULL;
738 
739 	raw_spin_lock_irqsave(&devtree_lock, flags);
740 	parent = of_node_get(node->parent);
741 	of_node_put(node);
742 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
743 	return parent;
744 }
745 EXPORT_SYMBOL(of_get_next_parent);
746 
747 static struct device_node *__of_get_next_child(const struct device_node *node,
748 						struct device_node *prev)
749 {
750 	struct device_node *next;
751 
752 	if (!node)
753 		return NULL;
754 
755 	next = prev ? prev->sibling : node->child;
756 	of_node_get(next);
757 	of_node_put(prev);
758 	return next;
759 }
760 #define __for_each_child_of_node(parent, child) \
761 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
762 	     child = __of_get_next_child(parent, child))
763 
764 /**
765  * of_get_next_child - Iterate a node childs
766  * @node:	parent node
767  * @prev:	previous child of the parent node, or NULL to get first
768  *
769  * Return: A node pointer with refcount incremented, use of_node_put() on
770  * it when done. Returns NULL when prev is the last child. Decrements the
771  * refcount of prev.
772  */
773 struct device_node *of_get_next_child(const struct device_node *node,
774 	struct device_node *prev)
775 {
776 	struct device_node *next;
777 	unsigned long flags;
778 
779 	raw_spin_lock_irqsave(&devtree_lock, flags);
780 	next = __of_get_next_child(node, prev);
781 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
782 	return next;
783 }
784 EXPORT_SYMBOL(of_get_next_child);
785 
786 /**
787  * of_get_next_available_child - Find the next available child node
788  * @node:	parent node
789  * @prev:	previous child of the parent node, or NULL to get first
790  *
791  * This function is like of_get_next_child(), except that it
792  * automatically skips any disabled nodes (i.e. status = "disabled").
793  */
794 struct device_node *of_get_next_available_child(const struct device_node *node,
795 	struct device_node *prev)
796 {
797 	struct device_node *next;
798 	unsigned long flags;
799 
800 	if (!node)
801 		return NULL;
802 
803 	raw_spin_lock_irqsave(&devtree_lock, flags);
804 	next = prev ? prev->sibling : node->child;
805 	for (; next; next = next->sibling) {
806 		if (!__of_device_is_available(next))
807 			continue;
808 		if (of_node_get(next))
809 			break;
810 	}
811 	of_node_put(prev);
812 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
813 	return next;
814 }
815 EXPORT_SYMBOL(of_get_next_available_child);
816 
817 /**
818  * of_get_next_cpu_node - Iterate on cpu nodes
819  * @prev:	previous child of the /cpus node, or NULL to get first
820  *
821  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
822  * will be skipped.
823  *
824  * Return: A cpu node pointer with refcount incremented, use of_node_put()
825  * on it when done. Returns NULL when prev is the last child. Decrements
826  * the refcount of prev.
827  */
828 struct device_node *of_get_next_cpu_node(struct device_node *prev)
829 {
830 	struct device_node *next = NULL;
831 	unsigned long flags;
832 	struct device_node *node;
833 
834 	if (!prev)
835 		node = of_find_node_by_path("/cpus");
836 
837 	raw_spin_lock_irqsave(&devtree_lock, flags);
838 	if (prev)
839 		next = prev->sibling;
840 	else if (node) {
841 		next = node->child;
842 		of_node_put(node);
843 	}
844 	for (; next; next = next->sibling) {
845 		if (__of_device_is_fail(next))
846 			continue;
847 		if (!(of_node_name_eq(next, "cpu") ||
848 		      __of_node_is_type(next, "cpu")))
849 			continue;
850 		if (of_node_get(next))
851 			break;
852 	}
853 	of_node_put(prev);
854 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
855 	return next;
856 }
857 EXPORT_SYMBOL(of_get_next_cpu_node);
858 
859 /**
860  * of_get_compatible_child - Find compatible child node
861  * @parent:	parent node
862  * @compatible:	compatible string
863  *
864  * Lookup child node whose compatible property contains the given compatible
865  * string.
866  *
867  * Return: a node pointer with refcount incremented, use of_node_put() on it
868  * when done; or NULL if not found.
869  */
870 struct device_node *of_get_compatible_child(const struct device_node *parent,
871 				const char *compatible)
872 {
873 	struct device_node *child;
874 
875 	for_each_child_of_node(parent, child) {
876 		if (of_device_is_compatible(child, compatible))
877 			break;
878 	}
879 
880 	return child;
881 }
882 EXPORT_SYMBOL(of_get_compatible_child);
883 
884 /**
885  * of_get_child_by_name - Find the child node by name for a given parent
886  * @node:	parent node
887  * @name:	child name to look for.
888  *
889  * This function looks for child node for given matching name
890  *
891  * Return: A node pointer if found, with refcount incremented, use
892  * of_node_put() on it when done.
893  * Returns NULL if node is not found.
894  */
895 struct device_node *of_get_child_by_name(const struct device_node *node,
896 				const char *name)
897 {
898 	struct device_node *child;
899 
900 	for_each_child_of_node(node, child)
901 		if (of_node_name_eq(child, name))
902 			break;
903 	return child;
904 }
905 EXPORT_SYMBOL(of_get_child_by_name);
906 
907 struct device_node *__of_find_node_by_path(struct device_node *parent,
908 						const char *path)
909 {
910 	struct device_node *child;
911 	int len;
912 
913 	len = strcspn(path, "/:");
914 	if (!len)
915 		return NULL;
916 
917 	__for_each_child_of_node(parent, child) {
918 		const char *name = kbasename(child->full_name);
919 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
920 			return child;
921 	}
922 	return NULL;
923 }
924 
925 struct device_node *__of_find_node_by_full_path(struct device_node *node,
926 						const char *path)
927 {
928 	const char *separator = strchr(path, ':');
929 
930 	while (node && *path == '/') {
931 		struct device_node *tmp = node;
932 
933 		path++; /* Increment past '/' delimiter */
934 		node = __of_find_node_by_path(node, path);
935 		of_node_put(tmp);
936 		path = strchrnul(path, '/');
937 		if (separator && separator < path)
938 			break;
939 	}
940 	return node;
941 }
942 
943 /**
944  * of_find_node_opts_by_path - Find a node matching a full OF path
945  * @path: Either the full path to match, or if the path does not
946  *       start with '/', the name of a property of the /aliases
947  *       node (an alias).  In the case of an alias, the node
948  *       matching the alias' value will be returned.
949  * @opts: Address of a pointer into which to store the start of
950  *       an options string appended to the end of the path with
951  *       a ':' separator.
952  *
953  * Valid paths:
954  *  * /foo/bar	Full path
955  *  * foo	Valid alias
956  *  * foo/bar	Valid alias + relative path
957  *
958  * Return: A node pointer with refcount incremented, use
959  * of_node_put() on it when done.
960  */
961 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
962 {
963 	struct device_node *np = NULL;
964 	struct property *pp;
965 	unsigned long flags;
966 	const char *separator = strchr(path, ':');
967 
968 	if (opts)
969 		*opts = separator ? separator + 1 : NULL;
970 
971 	if (strcmp(path, "/") == 0)
972 		return of_node_get(of_root);
973 
974 	/* The path could begin with an alias */
975 	if (*path != '/') {
976 		int len;
977 		const char *p = separator;
978 
979 		if (!p)
980 			p = strchrnul(path, '/');
981 		len = p - path;
982 
983 		/* of_aliases must not be NULL */
984 		if (!of_aliases)
985 			return NULL;
986 
987 		for_each_property_of_node(of_aliases, pp) {
988 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
989 				np = of_find_node_by_path(pp->value);
990 				break;
991 			}
992 		}
993 		if (!np)
994 			return NULL;
995 		path = p;
996 	}
997 
998 	/* Step down the tree matching path components */
999 	raw_spin_lock_irqsave(&devtree_lock, flags);
1000 	if (!np)
1001 		np = of_node_get(of_root);
1002 	np = __of_find_node_by_full_path(np, path);
1003 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1004 	return np;
1005 }
1006 EXPORT_SYMBOL(of_find_node_opts_by_path);
1007 
1008 /**
1009  * of_find_node_by_name - Find a node by its "name" property
1010  * @from:	The node to start searching from or NULL; the node
1011  *		you pass will not be searched, only the next one
1012  *		will. Typically, you pass what the previous call
1013  *		returned. of_node_put() will be called on @from.
1014  * @name:	The name string to match against
1015  *
1016  * Return: A node pointer with refcount incremented, use
1017  * of_node_put() on it when done.
1018  */
1019 struct device_node *of_find_node_by_name(struct device_node *from,
1020 	const char *name)
1021 {
1022 	struct device_node *np;
1023 	unsigned long flags;
1024 
1025 	raw_spin_lock_irqsave(&devtree_lock, flags);
1026 	for_each_of_allnodes_from(from, np)
1027 		if (of_node_name_eq(np, name) && of_node_get(np))
1028 			break;
1029 	of_node_put(from);
1030 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1031 	return np;
1032 }
1033 EXPORT_SYMBOL(of_find_node_by_name);
1034 
1035 /**
1036  * of_find_node_by_type - Find a node by its "device_type" property
1037  * @from:	The node to start searching from, or NULL to start searching
1038  *		the entire device tree. The node you pass will not be
1039  *		searched, only the next one will; typically, you pass
1040  *		what the previous call returned. of_node_put() will be
1041  *		called on from for you.
1042  * @type:	The type string to match against
1043  *
1044  * Return: A node pointer with refcount incremented, use
1045  * of_node_put() on it when done.
1046  */
1047 struct device_node *of_find_node_by_type(struct device_node *from,
1048 	const char *type)
1049 {
1050 	struct device_node *np;
1051 	unsigned long flags;
1052 
1053 	raw_spin_lock_irqsave(&devtree_lock, flags);
1054 	for_each_of_allnodes_from(from, np)
1055 		if (__of_node_is_type(np, type) && of_node_get(np))
1056 			break;
1057 	of_node_put(from);
1058 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1059 	return np;
1060 }
1061 EXPORT_SYMBOL(of_find_node_by_type);
1062 
1063 /**
1064  * of_find_compatible_node - Find a node based on type and one of the
1065  *                                tokens in its "compatible" property
1066  * @from:	The node to start searching from or NULL, the node
1067  *		you pass will not be searched, only the next one
1068  *		will; typically, you pass what the previous call
1069  *		returned. of_node_put() will be called on it
1070  * @type:	The type string to match "device_type" or NULL to ignore
1071  * @compatible:	The string to match to one of the tokens in the device
1072  *		"compatible" list.
1073  *
1074  * Return: A node pointer with refcount incremented, use
1075  * of_node_put() on it when done.
1076  */
1077 struct device_node *of_find_compatible_node(struct device_node *from,
1078 	const char *type, const char *compatible)
1079 {
1080 	struct device_node *np;
1081 	unsigned long flags;
1082 
1083 	raw_spin_lock_irqsave(&devtree_lock, flags);
1084 	for_each_of_allnodes_from(from, np)
1085 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1086 		    of_node_get(np))
1087 			break;
1088 	of_node_put(from);
1089 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1090 	return np;
1091 }
1092 EXPORT_SYMBOL(of_find_compatible_node);
1093 
1094 /**
1095  * of_find_node_with_property - Find a node which has a property with
1096  *                              the given name.
1097  * @from:	The node to start searching from or NULL, the node
1098  *		you pass will not be searched, only the next one
1099  *		will; typically, you pass what the previous call
1100  *		returned. of_node_put() will be called on it
1101  * @prop_name:	The name of the property to look for.
1102  *
1103  * Return: A node pointer with refcount incremented, use
1104  * of_node_put() on it when done.
1105  */
1106 struct device_node *of_find_node_with_property(struct device_node *from,
1107 	const char *prop_name)
1108 {
1109 	struct device_node *np;
1110 	struct property *pp;
1111 	unsigned long flags;
1112 
1113 	raw_spin_lock_irqsave(&devtree_lock, flags);
1114 	for_each_of_allnodes_from(from, np) {
1115 		for (pp = np->properties; pp; pp = pp->next) {
1116 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1117 				of_node_get(np);
1118 				goto out;
1119 			}
1120 		}
1121 	}
1122 out:
1123 	of_node_put(from);
1124 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125 	return np;
1126 }
1127 EXPORT_SYMBOL(of_find_node_with_property);
1128 
1129 static
1130 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1131 					   const struct device_node *node)
1132 {
1133 	const struct of_device_id *best_match = NULL;
1134 	int score, best_score = 0;
1135 
1136 	if (!matches)
1137 		return NULL;
1138 
1139 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1140 		score = __of_device_is_compatible(node, matches->compatible,
1141 						  matches->type, matches->name);
1142 		if (score > best_score) {
1143 			best_match = matches;
1144 			best_score = score;
1145 		}
1146 	}
1147 
1148 	return best_match;
1149 }
1150 
1151 /**
1152  * of_match_node - Tell if a device_node has a matching of_match structure
1153  * @matches:	array of of device match structures to search in
1154  * @node:	the of device structure to match against
1155  *
1156  * Low level utility function used by device matching.
1157  */
1158 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1159 					 const struct device_node *node)
1160 {
1161 	const struct of_device_id *match;
1162 	unsigned long flags;
1163 
1164 	raw_spin_lock_irqsave(&devtree_lock, flags);
1165 	match = __of_match_node(matches, node);
1166 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1167 	return match;
1168 }
1169 EXPORT_SYMBOL(of_match_node);
1170 
1171 /**
1172  * of_find_matching_node_and_match - Find a node based on an of_device_id
1173  *				     match table.
1174  * @from:	The node to start searching from or NULL, the node
1175  *		you pass will not be searched, only the next one
1176  *		will; typically, you pass what the previous call
1177  *		returned. of_node_put() will be called on it
1178  * @matches:	array of of device match structures to search in
1179  * @match:	Updated to point at the matches entry which matched
1180  *
1181  * Return: A node pointer with refcount incremented, use
1182  * of_node_put() on it when done.
1183  */
1184 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1185 					const struct of_device_id *matches,
1186 					const struct of_device_id **match)
1187 {
1188 	struct device_node *np;
1189 	const struct of_device_id *m;
1190 	unsigned long flags;
1191 
1192 	if (match)
1193 		*match = NULL;
1194 
1195 	raw_spin_lock_irqsave(&devtree_lock, flags);
1196 	for_each_of_allnodes_from(from, np) {
1197 		m = __of_match_node(matches, np);
1198 		if (m && of_node_get(np)) {
1199 			if (match)
1200 				*match = m;
1201 			break;
1202 		}
1203 	}
1204 	of_node_put(from);
1205 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1206 	return np;
1207 }
1208 EXPORT_SYMBOL(of_find_matching_node_and_match);
1209 
1210 /**
1211  * of_modalias_node - Lookup appropriate modalias for a device node
1212  * @node:	pointer to a device tree node
1213  * @modalias:	Pointer to buffer that modalias value will be copied into
1214  * @len:	Length of modalias value
1215  *
1216  * Based on the value of the compatible property, this routine will attempt
1217  * to choose an appropriate modalias value for a particular device tree node.
1218  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1219  * from the first entry in the compatible list property.
1220  *
1221  * Return: This routine returns 0 on success, <0 on failure.
1222  */
1223 int of_modalias_node(struct device_node *node, char *modalias, int len)
1224 {
1225 	const char *compatible, *p;
1226 	int cplen;
1227 
1228 	compatible = of_get_property(node, "compatible", &cplen);
1229 	if (!compatible || strlen(compatible) > cplen)
1230 		return -ENODEV;
1231 	p = strchr(compatible, ',');
1232 	strlcpy(modalias, p ? p + 1 : compatible, len);
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(of_modalias_node);
1236 
1237 /**
1238  * of_find_node_by_phandle - Find a node given a phandle
1239  * @handle:	phandle of the node to find
1240  *
1241  * Return: A node pointer with refcount incremented, use
1242  * of_node_put() on it when done.
1243  */
1244 struct device_node *of_find_node_by_phandle(phandle handle)
1245 {
1246 	struct device_node *np = NULL;
1247 	unsigned long flags;
1248 	u32 handle_hash;
1249 
1250 	if (!handle)
1251 		return NULL;
1252 
1253 	handle_hash = of_phandle_cache_hash(handle);
1254 
1255 	raw_spin_lock_irqsave(&devtree_lock, flags);
1256 
1257 	if (phandle_cache[handle_hash] &&
1258 	    handle == phandle_cache[handle_hash]->phandle)
1259 		np = phandle_cache[handle_hash];
1260 
1261 	if (!np) {
1262 		for_each_of_allnodes(np)
1263 			if (np->phandle == handle &&
1264 			    !of_node_check_flag(np, OF_DETACHED)) {
1265 				phandle_cache[handle_hash] = np;
1266 				break;
1267 			}
1268 	}
1269 
1270 	of_node_get(np);
1271 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1272 	return np;
1273 }
1274 EXPORT_SYMBOL(of_find_node_by_phandle);
1275 
1276 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1277 {
1278 	int i;
1279 	printk("%s %pOF", msg, args->np);
1280 	for (i = 0; i < args->args_count; i++) {
1281 		const char delim = i ? ',' : ':';
1282 
1283 		pr_cont("%c%08x", delim, args->args[i]);
1284 	}
1285 	pr_cont("\n");
1286 }
1287 
1288 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1289 		const struct device_node *np,
1290 		const char *list_name,
1291 		const char *cells_name,
1292 		int cell_count)
1293 {
1294 	const __be32 *list;
1295 	int size;
1296 
1297 	memset(it, 0, sizeof(*it));
1298 
1299 	/*
1300 	 * one of cell_count or cells_name must be provided to determine the
1301 	 * argument length.
1302 	 */
1303 	if (cell_count < 0 && !cells_name)
1304 		return -EINVAL;
1305 
1306 	list = of_get_property(np, list_name, &size);
1307 	if (!list)
1308 		return -ENOENT;
1309 
1310 	it->cells_name = cells_name;
1311 	it->cell_count = cell_count;
1312 	it->parent = np;
1313 	it->list_end = list + size / sizeof(*list);
1314 	it->phandle_end = list;
1315 	it->cur = list;
1316 
1317 	return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1320 
1321 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1322 {
1323 	uint32_t count = 0;
1324 
1325 	if (it->node) {
1326 		of_node_put(it->node);
1327 		it->node = NULL;
1328 	}
1329 
1330 	if (!it->cur || it->phandle_end >= it->list_end)
1331 		return -ENOENT;
1332 
1333 	it->cur = it->phandle_end;
1334 
1335 	/* If phandle is 0, then it is an empty entry with no arguments. */
1336 	it->phandle = be32_to_cpup(it->cur++);
1337 
1338 	if (it->phandle) {
1339 
1340 		/*
1341 		 * Find the provider node and parse the #*-cells property to
1342 		 * determine the argument length.
1343 		 */
1344 		it->node = of_find_node_by_phandle(it->phandle);
1345 
1346 		if (it->cells_name) {
1347 			if (!it->node) {
1348 				pr_err("%pOF: could not find phandle %d\n",
1349 				       it->parent, it->phandle);
1350 				goto err;
1351 			}
1352 
1353 			if (of_property_read_u32(it->node, it->cells_name,
1354 						 &count)) {
1355 				/*
1356 				 * If both cell_count and cells_name is given,
1357 				 * fall back to cell_count in absence
1358 				 * of the cells_name property
1359 				 */
1360 				if (it->cell_count >= 0) {
1361 					count = it->cell_count;
1362 				} else {
1363 					pr_err("%pOF: could not get %s for %pOF\n",
1364 					       it->parent,
1365 					       it->cells_name,
1366 					       it->node);
1367 					goto err;
1368 				}
1369 			}
1370 		} else {
1371 			count = it->cell_count;
1372 		}
1373 
1374 		/*
1375 		 * Make sure that the arguments actually fit in the remaining
1376 		 * property data length
1377 		 */
1378 		if (it->cur + count > it->list_end) {
1379 			pr_err("%pOF: %s = %d found %d\n",
1380 			       it->parent, it->cells_name,
1381 			       count, it->cell_count);
1382 			goto err;
1383 		}
1384 	}
1385 
1386 	it->phandle_end = it->cur + count;
1387 	it->cur_count = count;
1388 
1389 	return 0;
1390 
1391 err:
1392 	if (it->node) {
1393 		of_node_put(it->node);
1394 		it->node = NULL;
1395 	}
1396 
1397 	return -EINVAL;
1398 }
1399 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1400 
1401 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1402 			     uint32_t *args,
1403 			     int size)
1404 {
1405 	int i, count;
1406 
1407 	count = it->cur_count;
1408 
1409 	if (WARN_ON(size < count))
1410 		count = size;
1411 
1412 	for (i = 0; i < count; i++)
1413 		args[i] = be32_to_cpup(it->cur++);
1414 
1415 	return count;
1416 }
1417 
1418 static int __of_parse_phandle_with_args(const struct device_node *np,
1419 					const char *list_name,
1420 					const char *cells_name,
1421 					int cell_count, int index,
1422 					struct of_phandle_args *out_args)
1423 {
1424 	struct of_phandle_iterator it;
1425 	int rc, cur_index = 0;
1426 
1427 	/* Loop over the phandles until all the requested entry is found */
1428 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1429 		/*
1430 		 * All of the error cases bail out of the loop, so at
1431 		 * this point, the parsing is successful. If the requested
1432 		 * index matches, then fill the out_args structure and return,
1433 		 * or return -ENOENT for an empty entry.
1434 		 */
1435 		rc = -ENOENT;
1436 		if (cur_index == index) {
1437 			if (!it.phandle)
1438 				goto err;
1439 
1440 			if (out_args) {
1441 				int c;
1442 
1443 				c = of_phandle_iterator_args(&it,
1444 							     out_args->args,
1445 							     MAX_PHANDLE_ARGS);
1446 				out_args->np = it.node;
1447 				out_args->args_count = c;
1448 			} else {
1449 				of_node_put(it.node);
1450 			}
1451 
1452 			/* Found it! return success */
1453 			return 0;
1454 		}
1455 
1456 		cur_index++;
1457 	}
1458 
1459 	/*
1460 	 * Unlock node before returning result; will be one of:
1461 	 * -ENOENT : index is for empty phandle
1462 	 * -EINVAL : parsing error on data
1463 	 */
1464 
1465  err:
1466 	of_node_put(it.node);
1467 	return rc;
1468 }
1469 
1470 /**
1471  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1472  * @np: Pointer to device node holding phandle property
1473  * @phandle_name: Name of property holding a phandle value
1474  * @index: For properties holding a table of phandles, this is the index into
1475  *         the table
1476  *
1477  * Return: The device_node pointer with refcount incremented.  Use
1478  * of_node_put() on it when done.
1479  */
1480 struct device_node *of_parse_phandle(const struct device_node *np,
1481 				     const char *phandle_name, int index)
1482 {
1483 	struct of_phandle_args args;
1484 
1485 	if (index < 0)
1486 		return NULL;
1487 
1488 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1489 					 index, &args))
1490 		return NULL;
1491 
1492 	return args.np;
1493 }
1494 EXPORT_SYMBOL(of_parse_phandle);
1495 
1496 /**
1497  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1498  * @np:		pointer to a device tree node containing a list
1499  * @list_name:	property name that contains a list
1500  * @cells_name:	property name that specifies phandles' arguments count
1501  * @index:	index of a phandle to parse out
1502  * @out_args:	optional pointer to output arguments structure (will be filled)
1503  *
1504  * This function is useful to parse lists of phandles and their arguments.
1505  * Returns 0 on success and fills out_args, on error returns appropriate
1506  * errno value.
1507  *
1508  * Caller is responsible to call of_node_put() on the returned out_args->np
1509  * pointer.
1510  *
1511  * Example::
1512  *
1513  *  phandle1: node1 {
1514  *	#list-cells = <2>;
1515  *  };
1516  *
1517  *  phandle2: node2 {
1518  *	#list-cells = <1>;
1519  *  };
1520  *
1521  *  node3 {
1522  *	list = <&phandle1 1 2 &phandle2 3>;
1523  *  };
1524  *
1525  * To get a device_node of the ``node2`` node you may call this:
1526  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1527  */
1528 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1529 				const char *cells_name, int index,
1530 				struct of_phandle_args *out_args)
1531 {
1532 	int cell_count = -1;
1533 
1534 	if (index < 0)
1535 		return -EINVAL;
1536 
1537 	/* If cells_name is NULL we assume a cell count of 0 */
1538 	if (!cells_name)
1539 		cell_count = 0;
1540 
1541 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1542 					    cell_count, index, out_args);
1543 }
1544 EXPORT_SYMBOL(of_parse_phandle_with_args);
1545 
1546 /**
1547  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1548  * @np:		pointer to a device tree node containing a list
1549  * @list_name:	property name that contains a list
1550  * @stem_name:	stem of property names that specify phandles' arguments count
1551  * @index:	index of a phandle to parse out
1552  * @out_args:	optional pointer to output arguments structure (will be filled)
1553  *
1554  * This function is useful to parse lists of phandles and their arguments.
1555  * Returns 0 on success and fills out_args, on error returns appropriate errno
1556  * value. The difference between this function and of_parse_phandle_with_args()
1557  * is that this API remaps a phandle if the node the phandle points to has
1558  * a <@stem_name>-map property.
1559  *
1560  * Caller is responsible to call of_node_put() on the returned out_args->np
1561  * pointer.
1562  *
1563  * Example::
1564  *
1565  *  phandle1: node1 {
1566  *  	#list-cells = <2>;
1567  *  };
1568  *
1569  *  phandle2: node2 {
1570  *  	#list-cells = <1>;
1571  *  };
1572  *
1573  *  phandle3: node3 {
1574  *  	#list-cells = <1>;
1575  *  	list-map = <0 &phandle2 3>,
1576  *  		   <1 &phandle2 2>,
1577  *  		   <2 &phandle1 5 1>;
1578  *  	list-map-mask = <0x3>;
1579  *  };
1580  *
1581  *  node4 {
1582  *  	list = <&phandle1 1 2 &phandle3 0>;
1583  *  };
1584  *
1585  * To get a device_node of the ``node2`` node you may call this:
1586  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1587  */
1588 int of_parse_phandle_with_args_map(const struct device_node *np,
1589 				   const char *list_name,
1590 				   const char *stem_name,
1591 				   int index, struct of_phandle_args *out_args)
1592 {
1593 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1594 	char *pass_name = NULL;
1595 	struct device_node *cur, *new = NULL;
1596 	const __be32 *map, *mask, *pass;
1597 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1598 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1599 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1600 	const __be32 *match_array = initial_match_array;
1601 	int i, ret, map_len, match;
1602 	u32 list_size, new_size;
1603 
1604 	if (index < 0)
1605 		return -EINVAL;
1606 
1607 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1608 	if (!cells_name)
1609 		return -ENOMEM;
1610 
1611 	ret = -ENOMEM;
1612 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1613 	if (!map_name)
1614 		goto free;
1615 
1616 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1617 	if (!mask_name)
1618 		goto free;
1619 
1620 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1621 	if (!pass_name)
1622 		goto free;
1623 
1624 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1625 					   out_args);
1626 	if (ret)
1627 		goto free;
1628 
1629 	/* Get the #<list>-cells property */
1630 	cur = out_args->np;
1631 	ret = of_property_read_u32(cur, cells_name, &list_size);
1632 	if (ret < 0)
1633 		goto put;
1634 
1635 	/* Precalculate the match array - this simplifies match loop */
1636 	for (i = 0; i < list_size; i++)
1637 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1638 
1639 	ret = -EINVAL;
1640 	while (cur) {
1641 		/* Get the <list>-map property */
1642 		map = of_get_property(cur, map_name, &map_len);
1643 		if (!map) {
1644 			ret = 0;
1645 			goto free;
1646 		}
1647 		map_len /= sizeof(u32);
1648 
1649 		/* Get the <list>-map-mask property (optional) */
1650 		mask = of_get_property(cur, mask_name, NULL);
1651 		if (!mask)
1652 			mask = dummy_mask;
1653 		/* Iterate through <list>-map property */
1654 		match = 0;
1655 		while (map_len > (list_size + 1) && !match) {
1656 			/* Compare specifiers */
1657 			match = 1;
1658 			for (i = 0; i < list_size; i++, map_len--)
1659 				match &= !((match_array[i] ^ *map++) & mask[i]);
1660 
1661 			of_node_put(new);
1662 			new = of_find_node_by_phandle(be32_to_cpup(map));
1663 			map++;
1664 			map_len--;
1665 
1666 			/* Check if not found */
1667 			if (!new)
1668 				goto put;
1669 
1670 			if (!of_device_is_available(new))
1671 				match = 0;
1672 
1673 			ret = of_property_read_u32(new, cells_name, &new_size);
1674 			if (ret)
1675 				goto put;
1676 
1677 			/* Check for malformed properties */
1678 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1679 				goto put;
1680 			if (map_len < new_size)
1681 				goto put;
1682 
1683 			/* Move forward by new node's #<list>-cells amount */
1684 			map += new_size;
1685 			map_len -= new_size;
1686 		}
1687 		if (!match)
1688 			goto put;
1689 
1690 		/* Get the <list>-map-pass-thru property (optional) */
1691 		pass = of_get_property(cur, pass_name, NULL);
1692 		if (!pass)
1693 			pass = dummy_pass;
1694 
1695 		/*
1696 		 * Successfully parsed a <list>-map translation; copy new
1697 		 * specifier into the out_args structure, keeping the
1698 		 * bits specified in <list>-map-pass-thru.
1699 		 */
1700 		match_array = map - new_size;
1701 		for (i = 0; i < new_size; i++) {
1702 			__be32 val = *(map - new_size + i);
1703 
1704 			if (i < list_size) {
1705 				val &= ~pass[i];
1706 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1707 			}
1708 
1709 			out_args->args[i] = be32_to_cpu(val);
1710 		}
1711 		out_args->args_count = list_size = new_size;
1712 		/* Iterate again with new provider */
1713 		out_args->np = new;
1714 		of_node_put(cur);
1715 		cur = new;
1716 	}
1717 put:
1718 	of_node_put(cur);
1719 	of_node_put(new);
1720 free:
1721 	kfree(mask_name);
1722 	kfree(map_name);
1723 	kfree(cells_name);
1724 	kfree(pass_name);
1725 
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1729 
1730 /**
1731  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1732  * @np:		pointer to a device tree node containing a list
1733  * @list_name:	property name that contains a list
1734  * @cell_count: number of argument cells following the phandle
1735  * @index:	index of a phandle to parse out
1736  * @out_args:	optional pointer to output arguments structure (will be filled)
1737  *
1738  * This function is useful to parse lists of phandles and their arguments.
1739  * Returns 0 on success and fills out_args, on error returns appropriate
1740  * errno value.
1741  *
1742  * Caller is responsible to call of_node_put() on the returned out_args->np
1743  * pointer.
1744  *
1745  * Example::
1746  *
1747  *  phandle1: node1 {
1748  *  };
1749  *
1750  *  phandle2: node2 {
1751  *  };
1752  *
1753  *  node3 {
1754  *  	list = <&phandle1 0 2 &phandle2 2 3>;
1755  *  };
1756  *
1757  * To get a device_node of the ``node2`` node you may call this:
1758  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1759  */
1760 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1761 				const char *list_name, int cell_count,
1762 				int index, struct of_phandle_args *out_args)
1763 {
1764 	if (index < 0)
1765 		return -EINVAL;
1766 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1767 					   index, out_args);
1768 }
1769 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1770 
1771 /**
1772  * of_count_phandle_with_args() - Find the number of phandles references in a property
1773  * @np:		pointer to a device tree node containing a list
1774  * @list_name:	property name that contains a list
1775  * @cells_name:	property name that specifies phandles' arguments count
1776  *
1777  * Return: The number of phandle + argument tuples within a property. It
1778  * is a typical pattern to encode a list of phandle and variable
1779  * arguments into a single property. The number of arguments is encoded
1780  * by a property in the phandle-target node. For example, a gpios
1781  * property would contain a list of GPIO specifies consisting of a
1782  * phandle and 1 or more arguments. The number of arguments are
1783  * determined by the #gpio-cells property in the node pointed to by the
1784  * phandle.
1785  */
1786 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1787 				const char *cells_name)
1788 {
1789 	struct of_phandle_iterator it;
1790 	int rc, cur_index = 0;
1791 
1792 	/*
1793 	 * If cells_name is NULL we assume a cell count of 0. This makes
1794 	 * counting the phandles trivial as each 32bit word in the list is a
1795 	 * phandle and no arguments are to consider. So we don't iterate through
1796 	 * the list but just use the length to determine the phandle count.
1797 	 */
1798 	if (!cells_name) {
1799 		const __be32 *list;
1800 		int size;
1801 
1802 		list = of_get_property(np, list_name, &size);
1803 		if (!list)
1804 			return -ENOENT;
1805 
1806 		return size / sizeof(*list);
1807 	}
1808 
1809 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1810 	if (rc)
1811 		return rc;
1812 
1813 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1814 		cur_index += 1;
1815 
1816 	if (rc != -ENOENT)
1817 		return rc;
1818 
1819 	return cur_index;
1820 }
1821 EXPORT_SYMBOL(of_count_phandle_with_args);
1822 
1823 /**
1824  * __of_add_property - Add a property to a node without lock operations
1825  * @np:		Caller's Device Node
1826  * @prop:	Property to add
1827  */
1828 int __of_add_property(struct device_node *np, struct property *prop)
1829 {
1830 	struct property **next;
1831 
1832 	prop->next = NULL;
1833 	next = &np->properties;
1834 	while (*next) {
1835 		if (strcmp(prop->name, (*next)->name) == 0)
1836 			/* duplicate ! don't insert it */
1837 			return -EEXIST;
1838 
1839 		next = &(*next)->next;
1840 	}
1841 	*next = prop;
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * of_add_property - Add a property to a node
1848  * @np:		Caller's Device Node
1849  * @prop:	Property to add
1850  */
1851 int of_add_property(struct device_node *np, struct property *prop)
1852 {
1853 	unsigned long flags;
1854 	int rc;
1855 
1856 	mutex_lock(&of_mutex);
1857 
1858 	raw_spin_lock_irqsave(&devtree_lock, flags);
1859 	rc = __of_add_property(np, prop);
1860 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1861 
1862 	if (!rc)
1863 		__of_add_property_sysfs(np, prop);
1864 
1865 	mutex_unlock(&of_mutex);
1866 
1867 	if (!rc)
1868 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1869 
1870 	return rc;
1871 }
1872 EXPORT_SYMBOL_GPL(of_add_property);
1873 
1874 int __of_remove_property(struct device_node *np, struct property *prop)
1875 {
1876 	struct property **next;
1877 
1878 	for (next = &np->properties; *next; next = &(*next)->next) {
1879 		if (*next == prop)
1880 			break;
1881 	}
1882 	if (*next == NULL)
1883 		return -ENODEV;
1884 
1885 	/* found the node */
1886 	*next = prop->next;
1887 	prop->next = np->deadprops;
1888 	np->deadprops = prop;
1889 
1890 	return 0;
1891 }
1892 
1893 /**
1894  * of_remove_property - Remove a property from a node.
1895  * @np:		Caller's Device Node
1896  * @prop:	Property to remove
1897  *
1898  * Note that we don't actually remove it, since we have given out
1899  * who-knows-how-many pointers to the data using get-property.
1900  * Instead we just move the property to the "dead properties"
1901  * list, so it won't be found any more.
1902  */
1903 int of_remove_property(struct device_node *np, struct property *prop)
1904 {
1905 	unsigned long flags;
1906 	int rc;
1907 
1908 	if (!prop)
1909 		return -ENODEV;
1910 
1911 	mutex_lock(&of_mutex);
1912 
1913 	raw_spin_lock_irqsave(&devtree_lock, flags);
1914 	rc = __of_remove_property(np, prop);
1915 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1916 
1917 	if (!rc)
1918 		__of_remove_property_sysfs(np, prop);
1919 
1920 	mutex_unlock(&of_mutex);
1921 
1922 	if (!rc)
1923 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1924 
1925 	return rc;
1926 }
1927 EXPORT_SYMBOL_GPL(of_remove_property);
1928 
1929 int __of_update_property(struct device_node *np, struct property *newprop,
1930 		struct property **oldpropp)
1931 {
1932 	struct property **next, *oldprop;
1933 
1934 	for (next = &np->properties; *next; next = &(*next)->next) {
1935 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1936 			break;
1937 	}
1938 	*oldpropp = oldprop = *next;
1939 
1940 	if (oldprop) {
1941 		/* replace the node */
1942 		newprop->next = oldprop->next;
1943 		*next = newprop;
1944 		oldprop->next = np->deadprops;
1945 		np->deadprops = oldprop;
1946 	} else {
1947 		/* new node */
1948 		newprop->next = NULL;
1949 		*next = newprop;
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 /*
1956  * of_update_property - Update a property in a node, if the property does
1957  * not exist, add it.
1958  *
1959  * Note that we don't actually remove it, since we have given out
1960  * who-knows-how-many pointers to the data using get-property.
1961  * Instead we just move the property to the "dead properties" list,
1962  * and add the new property to the property list
1963  */
1964 int of_update_property(struct device_node *np, struct property *newprop)
1965 {
1966 	struct property *oldprop;
1967 	unsigned long flags;
1968 	int rc;
1969 
1970 	if (!newprop->name)
1971 		return -EINVAL;
1972 
1973 	mutex_lock(&of_mutex);
1974 
1975 	raw_spin_lock_irqsave(&devtree_lock, flags);
1976 	rc = __of_update_property(np, newprop, &oldprop);
1977 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1978 
1979 	if (!rc)
1980 		__of_update_property_sysfs(np, newprop, oldprop);
1981 
1982 	mutex_unlock(&of_mutex);
1983 
1984 	if (!rc)
1985 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1986 
1987 	return rc;
1988 }
1989 
1990 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1991 			 int id, const char *stem, int stem_len)
1992 {
1993 	ap->np = np;
1994 	ap->id = id;
1995 	strncpy(ap->stem, stem, stem_len);
1996 	ap->stem[stem_len] = 0;
1997 	list_add_tail(&ap->link, &aliases_lookup);
1998 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1999 		 ap->alias, ap->stem, ap->id, np);
2000 }
2001 
2002 /**
2003  * of_alias_scan - Scan all properties of the 'aliases' node
2004  * @dt_alloc:	An allocator that provides a virtual address to memory
2005  *		for storing the resulting tree
2006  *
2007  * The function scans all the properties of the 'aliases' node and populates
2008  * the global lookup table with the properties.  It returns the
2009  * number of alias properties found, or an error code in case of failure.
2010  */
2011 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2012 {
2013 	struct property *pp;
2014 
2015 	of_aliases = of_find_node_by_path("/aliases");
2016 	of_chosen = of_find_node_by_path("/chosen");
2017 	if (of_chosen == NULL)
2018 		of_chosen = of_find_node_by_path("/chosen@0");
2019 
2020 	if (of_chosen) {
2021 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2022 		const char *name = NULL;
2023 
2024 		if (of_property_read_string(of_chosen, "stdout-path", &name))
2025 			of_property_read_string(of_chosen, "linux,stdout-path",
2026 						&name);
2027 		if (IS_ENABLED(CONFIG_PPC) && !name)
2028 			of_property_read_string(of_aliases, "stdout", &name);
2029 		if (name)
2030 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2031 	}
2032 
2033 	if (!of_aliases)
2034 		return;
2035 
2036 	for_each_property_of_node(of_aliases, pp) {
2037 		const char *start = pp->name;
2038 		const char *end = start + strlen(start);
2039 		struct device_node *np;
2040 		struct alias_prop *ap;
2041 		int id, len;
2042 
2043 		/* Skip those we do not want to proceed */
2044 		if (!strcmp(pp->name, "name") ||
2045 		    !strcmp(pp->name, "phandle") ||
2046 		    !strcmp(pp->name, "linux,phandle"))
2047 			continue;
2048 
2049 		np = of_find_node_by_path(pp->value);
2050 		if (!np)
2051 			continue;
2052 
2053 		/* walk the alias backwards to extract the id and work out
2054 		 * the 'stem' string */
2055 		while (isdigit(*(end-1)) && end > start)
2056 			end--;
2057 		len = end - start;
2058 
2059 		if (kstrtoint(end, 10, &id) < 0)
2060 			continue;
2061 
2062 		/* Allocate an alias_prop with enough space for the stem */
2063 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2064 		if (!ap)
2065 			continue;
2066 		memset(ap, 0, sizeof(*ap) + len + 1);
2067 		ap->alias = start;
2068 		of_alias_add(ap, np, id, start, len);
2069 	}
2070 }
2071 
2072 /**
2073  * of_alias_get_id - Get alias id for the given device_node
2074  * @np:		Pointer to the given device_node
2075  * @stem:	Alias stem of the given device_node
2076  *
2077  * The function travels the lookup table to get the alias id for the given
2078  * device_node and alias stem.
2079  *
2080  * Return: The alias id if found.
2081  */
2082 int of_alias_get_id(struct device_node *np, const char *stem)
2083 {
2084 	struct alias_prop *app;
2085 	int id = -ENODEV;
2086 
2087 	mutex_lock(&of_mutex);
2088 	list_for_each_entry(app, &aliases_lookup, link) {
2089 		if (strcmp(app->stem, stem) != 0)
2090 			continue;
2091 
2092 		if (np == app->np) {
2093 			id = app->id;
2094 			break;
2095 		}
2096 	}
2097 	mutex_unlock(&of_mutex);
2098 
2099 	return id;
2100 }
2101 EXPORT_SYMBOL_GPL(of_alias_get_id);
2102 
2103 /**
2104  * of_alias_get_alias_list - Get alias list for the given device driver
2105  * @matches:	Array of OF device match structures to search in
2106  * @stem:	Alias stem of the given device_node
2107  * @bitmap:	Bitmap field pointer
2108  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2109  *
2110  * The function travels the lookup table to record alias ids for the given
2111  * device match structures and alias stem.
2112  *
2113  * Return:	0 or -ENOSYS when !CONFIG_OF or
2114  *		-EOVERFLOW if alias ID is greater then allocated nbits
2115  */
2116 int of_alias_get_alias_list(const struct of_device_id *matches,
2117 			     const char *stem, unsigned long *bitmap,
2118 			     unsigned int nbits)
2119 {
2120 	struct alias_prop *app;
2121 	int ret = 0;
2122 
2123 	/* Zero bitmap field to make sure that all the time it is clean */
2124 	bitmap_zero(bitmap, nbits);
2125 
2126 	mutex_lock(&of_mutex);
2127 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2128 	list_for_each_entry(app, &aliases_lookup, link) {
2129 		pr_debug("%s: stem: %s, id: %d\n",
2130 			 __func__, app->stem, app->id);
2131 
2132 		if (strcmp(app->stem, stem) != 0) {
2133 			pr_debug("%s: stem comparison didn't pass %s\n",
2134 				 __func__, app->stem);
2135 			continue;
2136 		}
2137 
2138 		if (of_match_node(matches, app->np)) {
2139 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2140 
2141 			if (app->id >= nbits) {
2142 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2143 					__func__, app->id, nbits);
2144 				ret = -EOVERFLOW;
2145 			} else {
2146 				set_bit(app->id, bitmap);
2147 			}
2148 		}
2149 	}
2150 	mutex_unlock(&of_mutex);
2151 
2152 	return ret;
2153 }
2154 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2155 
2156 /**
2157  * of_alias_get_highest_id - Get highest alias id for the given stem
2158  * @stem:	Alias stem to be examined
2159  *
2160  * The function travels the lookup table to get the highest alias id for the
2161  * given alias stem.  It returns the alias id if found.
2162  */
2163 int of_alias_get_highest_id(const char *stem)
2164 {
2165 	struct alias_prop *app;
2166 	int id = -ENODEV;
2167 
2168 	mutex_lock(&of_mutex);
2169 	list_for_each_entry(app, &aliases_lookup, link) {
2170 		if (strcmp(app->stem, stem) != 0)
2171 			continue;
2172 
2173 		if (app->id > id)
2174 			id = app->id;
2175 	}
2176 	mutex_unlock(&of_mutex);
2177 
2178 	return id;
2179 }
2180 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2181 
2182 /**
2183  * of_console_check() - Test and setup console for DT setup
2184  * @dn: Pointer to device node
2185  * @name: Name to use for preferred console without index. ex. "ttyS"
2186  * @index: Index to use for preferred console.
2187  *
2188  * Check if the given device node matches the stdout-path property in the
2189  * /chosen node. If it does then register it as the preferred console.
2190  *
2191  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2192  */
2193 bool of_console_check(struct device_node *dn, char *name, int index)
2194 {
2195 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2196 		return false;
2197 
2198 	/*
2199 	 * XXX: cast `options' to char pointer to suppress complication
2200 	 * warnings: printk, UART and console drivers expect char pointer.
2201 	 */
2202 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2203 }
2204 EXPORT_SYMBOL_GPL(of_console_check);
2205 
2206 /**
2207  * of_find_next_cache_node - Find a node's subsidiary cache
2208  * @np:	node of type "cpu" or "cache"
2209  *
2210  * Return: A node pointer with refcount incremented, use
2211  * of_node_put() on it when done.  Caller should hold a reference
2212  * to np.
2213  */
2214 struct device_node *of_find_next_cache_node(const struct device_node *np)
2215 {
2216 	struct device_node *child, *cache_node;
2217 
2218 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2219 	if (!cache_node)
2220 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2221 
2222 	if (cache_node)
2223 		return cache_node;
2224 
2225 	/* OF on pmac has nodes instead of properties named "l2-cache"
2226 	 * beneath CPU nodes.
2227 	 */
2228 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2229 		for_each_child_of_node(np, child)
2230 			if (of_node_is_type(child, "cache"))
2231 				return child;
2232 
2233 	return NULL;
2234 }
2235 
2236 /**
2237  * of_find_last_cache_level - Find the level at which the last cache is
2238  * 		present for the given logical cpu
2239  *
2240  * @cpu: cpu number(logical index) for which the last cache level is needed
2241  *
2242  * Return: The the level at which the last cache is present. It is exactly
2243  * same as  the total number of cache levels for the given logical cpu.
2244  */
2245 int of_find_last_cache_level(unsigned int cpu)
2246 {
2247 	u32 cache_level = 0;
2248 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2249 
2250 	while (np) {
2251 		prev = np;
2252 		of_node_put(np);
2253 		np = of_find_next_cache_node(np);
2254 	}
2255 
2256 	of_property_read_u32(prev, "cache-level", &cache_level);
2257 
2258 	return cache_level;
2259 }
2260 
2261 /**
2262  * of_map_id - Translate an ID through a downstream mapping.
2263  * @np: root complex device node.
2264  * @id: device ID to map.
2265  * @map_name: property name of the map to use.
2266  * @map_mask_name: optional property name of the mask to use.
2267  * @target: optional pointer to a target device node.
2268  * @id_out: optional pointer to receive the translated ID.
2269  *
2270  * Given a device ID, look up the appropriate implementation-defined
2271  * platform ID and/or the target device which receives transactions on that
2272  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2273  * @id_out may be NULL if only the other is required. If @target points to
2274  * a non-NULL device node pointer, only entries targeting that node will be
2275  * matched; if it points to a NULL value, it will receive the device node of
2276  * the first matching target phandle, with a reference held.
2277  *
2278  * Return: 0 on success or a standard error code on failure.
2279  */
2280 int of_map_id(struct device_node *np, u32 id,
2281 	       const char *map_name, const char *map_mask_name,
2282 	       struct device_node **target, u32 *id_out)
2283 {
2284 	u32 map_mask, masked_id;
2285 	int map_len;
2286 	const __be32 *map = NULL;
2287 
2288 	if (!np || !map_name || (!target && !id_out))
2289 		return -EINVAL;
2290 
2291 	map = of_get_property(np, map_name, &map_len);
2292 	if (!map) {
2293 		if (target)
2294 			return -ENODEV;
2295 		/* Otherwise, no map implies no translation */
2296 		*id_out = id;
2297 		return 0;
2298 	}
2299 
2300 	if (!map_len || map_len % (4 * sizeof(*map))) {
2301 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2302 			map_name, map_len);
2303 		return -EINVAL;
2304 	}
2305 
2306 	/* The default is to select all bits. */
2307 	map_mask = 0xffffffff;
2308 
2309 	/*
2310 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2311 	 * If of_property_read_u32() fails, the default is used.
2312 	 */
2313 	if (map_mask_name)
2314 		of_property_read_u32(np, map_mask_name, &map_mask);
2315 
2316 	masked_id = map_mask & id;
2317 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2318 		struct device_node *phandle_node;
2319 		u32 id_base = be32_to_cpup(map + 0);
2320 		u32 phandle = be32_to_cpup(map + 1);
2321 		u32 out_base = be32_to_cpup(map + 2);
2322 		u32 id_len = be32_to_cpup(map + 3);
2323 
2324 		if (id_base & ~map_mask) {
2325 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2326 				np, map_name, map_name,
2327 				map_mask, id_base);
2328 			return -EFAULT;
2329 		}
2330 
2331 		if (masked_id < id_base || masked_id >= id_base + id_len)
2332 			continue;
2333 
2334 		phandle_node = of_find_node_by_phandle(phandle);
2335 		if (!phandle_node)
2336 			return -ENODEV;
2337 
2338 		if (target) {
2339 			if (*target)
2340 				of_node_put(phandle_node);
2341 			else
2342 				*target = phandle_node;
2343 
2344 			if (*target != phandle_node)
2345 				continue;
2346 		}
2347 
2348 		if (id_out)
2349 			*id_out = masked_id - id_base + out_base;
2350 
2351 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2352 			np, map_name, map_mask, id_base, out_base,
2353 			id_len, id, masked_id - id_base + out_base);
2354 		return 0;
2355 	}
2356 
2357 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2358 		id, target && *target ? *target : NULL);
2359 
2360 	/* Bypasses translation */
2361 	if (id_out)
2362 		*id_out = id;
2363 	return 0;
2364 }
2365 EXPORT_SYMBOL_GPL(of_map_id);
2366